1
|
Zhao Y, Cui Y, Ni W, Yu S, Pan D, Liu S, Jia Z, Gao Y, Zhao D, Liu M, Wang S. Ginseng total saponin improves red blood cell oxidative stress injury by regulating tyrosine phosphorylation and glycolysis in red blood cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155785. [PMID: 38823342 DOI: 10.1016/j.phymed.2024.155785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Oxidative stress is the main cause of many diseases, but because of its complex pathogenic factors, there is no clear method for treating it. Ginseng total saponin (GTS) an important active ingredients in Panax ginseng C.A. Mey (PG) and has potential therapeutic ability for oxidative stress due to various causes. However, the molecular mechanism of GTS in the treating oxidative stress damage in red blood cells (RBCs) is still unclear. PURPOSE This study aimed to examine the protective effect of GTS on RBCs under oxidative stress damage and to determine its potential mechanism. METHODS The oxidative stress models of rat RBCs induced by hydrogen peroxide (H2O2) and exhaustive swimming in vivo and in vitro was used. We determined the cell morphology, oxygen carrying capacity, apoptosis, antioxidant capacity, and energy metabolism of RBCs. The effect of tyrosine phosphorylation (pTyr) of Band 3 protein on RBCs glycolysis was also examined. RESULTS GTS reduced the hemolysis of RBCs induced by H2O2 at the lowest concentration. Moreover, GTS effectively improved the morphology, enhanced the oxygen carrying capacity, and increased antioxidant enzyme activity, adenosine triphosphate (ATP) levels, and adenosine triphosphatase (ATPase) activity in RBCs. GTS also promoted the expression of membrane proteins in RBCs, inhibited pTyr of Band 3 protein, and further improved glycolysis, restoring the morphological structure and physiological function of RBCs. CONCLUSIONS This study shows, that GTS can protect RBCs from oxidative stress damage by improving RBCs morphology and physiological function. Changes in pTyr expression and its related pTyr regulatory enzymes before and after GTS treatment suggest that Band 3 protein is the main target of GTS in the treating endogenous and exogenous oxidative stress. Moreover, GTS can enhance the glycolytic ability of RBCs by inhibiting pTyr of Band 3 protein, thereby restoring the function of RBCs.
Collapse
Affiliation(s)
- Yuchu Zhao
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Yuan Cui
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Weifeng Ni
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Shiting Yu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Daian Pan
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Shichao Liu
- Academic Affairs Office, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Ziyi Jia
- School of Pharmacy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Yanan Gao
- School of Pharmacy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Daqing Zhao
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China
| | - Meichen Liu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Siming Wang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| |
Collapse
|
2
|
Gansemer ER, Rutkowski DT. Pathways Linking Nicotinamide Adenine Dinucleotide Phosphate Production to Endoplasmic Reticulum Protein Oxidation and Stress. Front Mol Biosci 2022; 9:858142. [PMID: 35601828 PMCID: PMC9114485 DOI: 10.3389/fmolb.2022.858142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) lumen is highly oxidizing compared to other subcellular compartments, and maintaining the appropriate levels of oxidizing and reducing equivalents is essential to ER function. Both protein oxidation itself and other essential ER processes, such as the degradation of misfolded proteins and the sequestration of cellular calcium, are tuned to the ER redox state. Simultaneously, nutrients are oxidized in the cytosol and mitochondria to power ATP generation, reductive biosynthesis, and defense against reactive oxygen species. These parallel needs for protein oxidation in the ER and nutrient oxidation in the cytosol and mitochondria raise the possibility that the two processes compete for electron acceptors, even though they occur in separate cellular compartments. A key molecule central to both processes is NADPH, which is produced by reduction of NADP+ during nutrient catabolism and which in turn drives the reduction of components such as glutathione and thioredoxin that influence the redox potential in the ER lumen. For this reason, NADPH might serve as a mediator linking metabolic activity to ER homeostasis and stress, and represent a novel form of mitochondria-to-ER communication. In this review, we discuss oxidative protein folding in the ER, NADPH generation by the major pathways that mediate it, and ER-localized systems that can link the two processes to connect ER function to metabolic activity.
Collapse
Affiliation(s)
- Erica R. Gansemer
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
3
|
Iqbal J, Jahangir Z, Al-Qarni AA. Microsomal Triglyceride Transfer Protein: From Lipid Metabolism to Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:37-52. [DOI: 10.1007/978-981-15-6082-8_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Koerner CM, Roberts BS, Neher SB. Endoplasmic reticulum quality control in lipoprotein metabolism. Mol Cell Endocrinol 2019; 498:110547. [PMID: 31442546 PMCID: PMC6814580 DOI: 10.1016/j.mce.2019.110547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 12/26/2022]
Abstract
Lipids play a critical role in energy metabolism, and a suite of proteins is required to deliver lipids to tissues. Several of these proteins require an intricate endoplasmic reticulum (ER) quality control (QC) system and unique secondary chaperones for folding. Key examples include apolipoprotein B (apoB), which is the primary scaffold for many lipoproteins, dimeric lipases, which hydrolyze triglycerides from circulating lipoproteins, and the low-density lipoprotein receptor (LDLR), which clears cholesterol-rich lipoproteins from the circulation. ApoB requires specialized proteins for lipidation, dimeric lipases lipoprotein lipase (LPL) and hepatic lipase (HL) require a transmembrane maturation factor for secretion, and the LDLR requires several specialized, domain-specific chaperones. Deleterious mutations in these proteins or their chaperones may result in dyslipidemias, which are detrimental to human health. Here, we review the ER quality control systems that ensure secretion of apoB, LPL, HL, and LDLR with a focus on the specialized chaperones required by each protein.
Collapse
Affiliation(s)
- Cari M Koerner
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA
| | - Benjamin S Roberts
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
5
|
Doonan LM, Fisher EA, Brodsky JL. Can modulators of apolipoproteinB biogenesis serve as an alternate target for cholesterol-lowering drugs? Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:762-771. [PMID: 29627384 DOI: 10.1016/j.bbalip.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/07/2018] [Accepted: 03/27/2018] [Indexed: 12/23/2022]
Abstract
Understanding the molecular defects underlying cardiovascular disease is necessary for the development of therapeutics. The most common method to lower circulating lipids, which reduces the incidence of cardiovascular disease, is statins, but other drugs are now entering the clinic, some of which have been approved. Nevertheless, patients cannot tolerate some of these therapeutics, the drugs are costly, and/or the treatments are approved for only rare forms of disease. Efforts to find alternative treatments have focused on other factors, such as apolipoproteinB (apoB), which transports cholesterol in the blood stream. The levels of apoB are regulated by endoplasmic reticulum (ER) associated degradation as well as by a post ER degradation pathway in model systems, and we suggest that these events provide novel therapeutic targets. We discuss first how cardiovascular disease arises and how cholesterol is regulated, and then summarize the mechanisms of action of existing treatments for cardiovascular disease. We then review the apoB biosynthetic pathway, focusing on steps that might be amenable to therapeutic interventions.
Collapse
Affiliation(s)
- Lynley M Doonan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Edward A Fisher
- Departments of Medicine (Cardiology) and Cell Biology and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
6
|
Manchekar M, Kapil R, Sun Z, Segrest JP, Dashti N. Relationship between Amphipathic β Structures in the β 1 Domain of Apolipoprotein B and the Properties of the Secreted Lipoprotein Particles in McA-RH7777 Cells. Biochemistry 2017; 56:4084-4094. [PMID: 28702990 DOI: 10.1021/acs.biochem.6b01174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our previous studies demonstrated that the first 1000 amino acid residues (the βα1 domain) of human apolipoprotein (apo) B-100, termed apoB:1000, are required for the initiation of lipoprotein assembly and the formation of a monodisperse stable phospholipid (PL)-rich particle. The objectives of this study were (a) to assess the effects on the properties of apoB truncates undergoing sequential inclusion of the amphipathic β strands in the 700 N-terminal residues of the β1 domain of apoB-100 and (b) to identify the subdomain in the β1 domain that is required for the formation of a microsomal triglyceride transfer protein (MTP)-dependent triacylglycerol (TAG)-rich apoB-containing particle. Characterization of particles secreted by stable transformants of McA-RH7777 cells demonstrated the following. (1) The presence of amphipathic β strands in the 200 N-terminal residues of the β1 domain resulted in the secretion of apoB truncates (apoB:1050 to apoB:1200) as both lipidated and lipid-poor particles. (2) Inclusion of residues 300-700 of the β1 domain led to the secretion of apoB:1300, apoB:1400, apoB:1500, and apoB:1700 predominantly as lipidated particles. (3) Particles containing residues 1050-1500 were all rich in PL. (4) There was a marked increase in the lipid loading capacity and TAG content of apoB:1700-containing particles. (5) Only the level of secretion of apoB:1700 was markedly diminished by MTP inhibitor BMS-197636. These results suggest that apoB:1700 marks the threshold for the formation of a TAG-rich particle and support the concept that MTP participates in apoB assembly and secretion at the stage where particles undergo a transition from PL-rich to TAG-rich.
Collapse
Affiliation(s)
| | | | | | - Jere P Segrest
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | | |
Collapse
|
7
|
Rivabene R, Napolitano M, Cantafora A, Bravo E. Redox-Dependent Modulation of Lipid Synthesis Induced by Oleic Acid in the Human Intestinal Epithelial Cell Line Caco-2. Exp Biol Med (Maywood) 2016; 226:191-8. [PMID: 11361037 DOI: 10.1177/153537020122600306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The absorption, remodeling, and delivery of dietary lipids by intestinal cells are part of a complex multi-step process, the dynamics of which is influenced by the lipid composition of the diet and the physiological state of enterocytes. Emerging data indicate that, among the parameters known to modulate the cell functionality, the internal oxidative balance plays a pivotal role. In this study, we analyzed the effects of varying redox equilibria on the way in which the intestinal Caco-2 cell line utilize an otogenous lipid source such as oleic acid. Firstly, we manipulated the intracellular levels of soluble thiols (glutathione), and the amount of cell-associated products of lipid peroxidation, commonly regarded as two critical parameters characterizing the redox profile of the cells. Two different perturbants having opposite effects on the cell's redox profile were used: the pro-oxidizing agent CuSO4 (2.5 and 10 µM) and the antioxidant and thiol supplier N-acetylcysteine (NAC, 2.5 and 5 mM). The influence of these mild but critical manipulations on the incorporation of oleate (50 and 500 µM) into cholesterol, triacylglycerol, end phospholipid was then evaluated. We found that the emerging pro-oxidant condition induced by CuSO4 pre-exposure was associated with a significant up-regulation of phospholipid synthesis, while minor modifications were detected in that of triacylgiycerols. Conversely, when a more reducing state was induced by NAC pre-treatment, there was a significant down-regulation of triacylglycerol synthesis, with minor modifications in that of phospholipids. In addition, the incorporation of oleic acid in the cholesteryl ester fraction appeared to be unmodified under all the redox conditions reported. On the whole, these results indicate that the pre-existing internal redox potential of the enterocytes is a critical factor that is able to differentially modulate lipid synthesis at the Intestinal level. Thus, the adoption of a strategy designed to control/buffer the antioxidant capacity of the gastrointestinal tract could have important consequences for the modulation of lipid balance in the body.
Collapse
Affiliation(s)
- R Rivabene
- Laboratory of Metabolism and Pathological Biochemistry, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | |
Collapse
|
8
|
Wang S, Park S, Kodali VK, Han J, Yip T, Chen Z, Davidson NO, Kaufman RJ. Identification of protein disulfide isomerase 1 as a key isomerase for disulfide bond formation in apolipoprotein B100. Mol Biol Cell 2014; 26:594-604. [PMID: 25518935 PMCID: PMC4325832 DOI: 10.1091/mbc.e14-08-1274] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pdi1 knockdown decreases apoB100 synthesis, reduces MTP activity and apoB100 lipidation, and impairs the oxidative folding of apoB100, which causes defective VLDL secretion. PDI1 promotes formation of disulfide bonds in apoB100 and serves as its disulfide isomerase. Apolipoprotein (apo) B is an obligatory component of very low density lipoprotein (VLDL), and its cotranslational and posttranslational modifications are important in VLDL synthesis, secretion, and hepatic lipid homeostasis. ApoB100 contains 25 cysteine residues and eight disulfide bonds. Although these disulfide bonds were suggested to be important in maintaining apoB100 function, neither the specific oxidoreductase involved nor the direct role of these disulfide bonds in apoB100-lipidation is known. Here we used RNA knockdown to evaluate both MTP-dependent and -independent roles of PDI1 in apoB100 synthesis and lipidation in McA-RH7777 cells. Pdi1 knockdown did not elicit any discernible detrimental effect under normal, unstressed conditions. However, it decreased apoB100 synthesis with attenuated MTP activity, delayed apoB100 oxidative folding, and reduced apoB100 lipidation, leading to defective VLDL secretion. The oxidative folding–impaired apoB100 was secreted mainly associated with LDL instead of VLDL particles from PDI1-deficient cells, a phenotype that was fully rescued by overexpression of wild-type but not a catalytically inactive PDI1 that fully restored MTP activity. Further, we demonstrate that PDI1 directly interacts with apoB100 via its redox-active CXXC motifs and assists in the oxidative folding of apoB100. Taken together, these findings reveal an unsuspected, yet key role for PDI1 in oxidative folding of apoB100 and VLDL assembly.
Collapse
Affiliation(s)
- Shiyu Wang
- Degenerative Diseases Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Shuin Park
- Degenerative Diseases Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Vamsi K Kodali
- Degenerative Diseases Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Jaeseok Han
- Soonchunhyang Institute of Med-Bio Science, Soonchunhayng University, Cheonan-si, Choongchengnam-do 330-930, Republic of Korea
| | - Theresa Yip
- Degenerative Diseases Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Zhouji Chen
- Division of Geriatrics and Nutrition Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Randal J Kaufman
- Degenerative Diseases Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| |
Collapse
|
9
|
Khachfe HM, Atkinson D. Conformation and stability properties of B17: I. Analytical investigations using circular dichroism. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2012; 41:639-46. [PMID: 22828936 DOI: 10.1007/s00249-012-0836-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/24/2012] [Accepted: 06/25/2012] [Indexed: 11/29/2022]
Abstract
Structural characterization of B17, the 17% N-terminal domain of apo B, was carried out using circular dichroic (CD) spectroscopy, where secondary and tertiary structures were studied as a function of temperature and pH. Mild acidic conditions that correlate with histidine protonation invoked a change in the α-helix and random coil contents of the protein, with no apparent change in the β-sheet structural content. Specific changes in the structure of the protein that occur in response to temperature were also investigated to understand the stability and conformational changes of B17. Far- and near-UV CDs were used to probe the thermal changes in the protein. The protonation of some histidine residues was attributed to underlie the increase in the helical content of the protein.
Collapse
|
10
|
Blade AM, Fabritius MA, Hou L, Weinberg RB, Shelness GS. Biogenesis of apolipoprotein A-V and its impact on VLDL triglyceride secretion. J Lipid Res 2011; 52:237-44. [PMID: 21115968 PMCID: PMC3023543 DOI: 10.1194/jlr.m010793] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/09/2010] [Indexed: 12/12/2022] Open
Abstract
Apolipoprotein A-V (apoA-V) is a potent regulator of intravascular triglyceride (TG) metabolism, yet its plasma concentration is very low compared with that of other apolipoproteins. To examine the basis for its low plasma concentration, the secretion efficiency of apoA-V was measured in stably transfected McA-RH7777 rat hepatoma cells. Pulse-chase experiments revealed that only ∼20% of newly synthesized apoA-V is secreted into culture medium within 3 h postsynthesis and that ∼65% undergoes presecretory turnover; similar results were obtained with transfected nonhepatic Chinese hamster ovary cells. ApoA-V secreted by McA-RH7777 cells was not associated with cell surface heparin-competable binding sites. When stably transfected McA-RH7777 cells were treated with oleic acid, the resulting increase in TG synthesis caused a reduction in apoA-V secretion, a reciprocal increase in cell-associated apoA-V, and movement of apoA-V onto cytosolic lipid droplets. In a stably transfected doxycycline-inducible McA-RH7777 cell line, apoA-V expression inhibited TG secretion by ∼50%, increased cellular TG, and reduced Z-average VLDL(1) particle diameter from 81 to 67 nm; however, no impact on apoB secretion was observed. These data demonstrate that apoA-V inefficiently traffics within the secretory pathway, that its intracellular itinerary can be regulated by changes in cellular TG accumulation, and that apoA-V synthesis can modulate VLDL TG mobilization and secretion.
Collapse
Affiliation(s)
- Anna M. Blade
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Melissa A. Fabritius
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Li Hou
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Richard B. Weinberg
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
- Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Gregory S. Shelness
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
11
|
Hanson SM, Czajkowski C. Disulphide trapping of the GABA(A) receptor reveals the importance of the coupling interface in the action of benzodiazepines. Br J Pharmacol 2011; 162:673-87. [PMID: 20942818 PMCID: PMC3041256 DOI: 10.1111/j.1476-5381.2010.01073.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/15/2010] [Accepted: 09/23/2010] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND SIGNIFICANCE Although the functional effects of benzodiazepines (BZDs) on GABA(A) receptors have been well characterized, the structural mechanism by which these modulators alter activation of the receptor by GABA is still undefined. EXPERIMENTAL APPROACH We used disulphide trapping between engineered cysteines to probe BZD-induced conformational changes within the γ₂ subunit and at the α₁/γ₂ coupling interface (Loops 2, 7 and 9) of α₁β₂γ₂ GABA(A) receptors. KEY RESULTS Crosslinking γ₂ Loop 9 to γ₂β-strand 9 (via γ₂ S195C/F203C and γ₂ S187C/L206C) significantly decreased maximum potentiation by flurazepam, suggesting that modulation of GABA-induced current (I(GABA)) by flurazepam involves movements of γ₂ Loop 9 relative to γ₂β-strand 9. In contrast, tethering γ₂β-strand 9 to the γ₂ pre-M1 region (via γ₂S202C/S230C) significantly enhanced potentiation by both flurazepam and zolpidem, indicating γ₂S202C/S230C trapped the receptor in a more favourable conformation for positive modulation by BZDs. Intersubunit disulphide bonds formed at the α/γ coupling interface between α₁ Loop 2 and γ₂Loop 9 (α₁D56C/γ₂L198C) prevented flurazepam and zolpidem from efficiently modulating I(GABA) . Disulphide trapping α₁ Loop 2 (α₁D56C) to γ₂β-strand 1 (γ₂P64C) decreased maximal I(GABA) as well as flurazepam potentiation. None of the disulphide bonds affected the ability of the negative modulator, 3-carbomethoxy-4-ethyl-6,7-dimethoxy-β-carboline (DMCM), to inhibit I(GABA) . CONCLUSIONS AND IMPLICATIONS Positive modulation of GABA(A) receptors by BZDs requires reorganization of the loops in the α₁/γ₂ coupling interface. BZD-induced movements at the α/γ coupling interface likely synergize with rearrangements induced by GABA binding at the β/α subunit interfaces to enhance channel activation by GABA.
Collapse
Affiliation(s)
- Susan M Hanson
- Department of Physiology, University of Wisconsin-Madison, Madison, WI, USA.
| | | |
Collapse
|
12
|
Rutledge AC, Su Q, Adeli K. Apolipoprotein B100 biogenesis: a complex array of intracellular mechanisms regulating folding, stability, and lipoprotein assemblyThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases” and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:251-67. [DOI: 10.1139/o09-168] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Apolipoprotein B100 (apoB) is a large amphipathic lipid-binding protein that is synthesized by hepatocytes and used to assemble and stabilize very low density lipoproteins (VLDL). It may have been derived through evolution from other lipid-associating proteins such as microsomal triglyceride transfer protein or vitellogenin. The correct folding of apoB requires assistance from chaperone proteins in co-translational lipidation, disulfide bond formation, and glycosylation. Any impairment in these processes results in co-translational targeting of the misfolded apoB molecule for proteasomal degradation. In fact, most of the regulation of apoB production is mediated by intracellular degradation. ApoB that misfolds post-translationally, perhaps as a result of oxidative stress, may be eliminated through autophagy. This review focuses on the proposed pentapartite domain structure of apoB, the role that each domain plays in the binding of lipid species and regulation of apoB synthesis, and the process of VLDL assembly. The factors involved in the recognition, ubiquitination, and proteasomal delivery of defective apoB molecules are also discussed.
Collapse
Affiliation(s)
- Angela C. Rutledge
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Qiaozhu Su
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Khosrow Adeli
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
13
|
Hooper AJ, van Bockxmeer FM, Burnett JR. Monogenic Hypocholesterolaemic Lipid Disorders and Apolipoprotein B Metabolism. Crit Rev Clin Lab Sci 2008; 42:515-45. [PMID: 16390683 DOI: 10.1080/10408360500295113] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The study of apolipoprotein (apo) B metabolism is central to our understanding of human lipoprotein metabolism. Moreover, the assembly and secretion of apoB-containing lipoproteins is a complex process. Increased plasma concentrations of apoB-containing lipoproteins are an important risk factor for the development of atherosclerotic coronary heart disease. In contrast, decreased levels of, but not the absence of, these apoB-containing lipoproteins is associated with resistance to atherosclerosis and potential long life. The study of inherited monogenic dyslipidaemias has been an effective means to elucidate key metabolic steps and biologically relevant mechanisms. Naturally occurring gene mutations in affected families have been useful in identifying important domains of apoB and microsomal triglyceride transfer protein (MTP) governing the metabolism of apoB-containing lipoproteins. Truncation-causing mutations in the APOB gene cause familial hypobetalipoproteinaemia, whereas mutations in MTP result in abetalipoproteinaemia; both rare conditions are characterised by marked hypocholesterolaemia. The purpose of this review is to examine the role of apoB in lipoprotein metabolism and to explore the key biochemical, clinical, metabolic and genetic features of the monogenic hypocholesterolaemic lipid disorders affecting apoB metabolism.
Collapse
Affiliation(s)
- Amanda J Hooper
- School of Surgery and Pathology, University of Western Australia, Crawley, Australia
| | | | | |
Collapse
|
14
|
Abstract
Low density lipoprotein (LDL) particles are the main cholesterol carriers in human plasma. The organization of the particle, composed of apolar lipids and phospholipid monolayer stabilized by apolipoprotein B100 (apoB), is highly complex and still unknown. ApoB is an extremely large protein (4563 amino acids) and very little is known about its structure. A 3D model of the N-terminal region has been recently proposed and has provided interesting insights about the physico-chemical properties of the protein and putative interaction zones with lipids. In the present article, we propose the first tentative 3D modelling for most remaining residues. All predicted features emerging from the models are confronted with agreement to experimental data available. Using different up-to-date prediction methods, we decomposed the protein into eight domains and predicted 3D structure for each of them. The analysis of hydrophobic patches, polar regions, coupled with functional predictions based on the 3D models, gives new clues to understanding of the functional role of apoB. We suggest precise regions putatively involved in the lipid interactions, and discuss the position of apoB on the LDL particle. Finally, we propose relative organization of the domains, providing a shape quite compatible with the low resolution electron microscopy map.
Collapse
Affiliation(s)
- Anita Krisko
- Université Denis Diderot- Paris 7, Equipe Bioinformatique Génomique et Moléculaire, Inserm U-726, 2 place Jussieu, 75251 Paris Cedex 05, France.
| | | |
Collapse
|
15
|
Abstract
AbstractBackground: Plasma lipoproteins are important determinants of atherosclerosis. Apolipoprotein (apo) B is a large, amphipathic glycoprotein that plays a central role in human lipoprotein metabolism. Two forms of apoB are produced from the APOB gene by a unique posttranscriptional editing process: apoB-48, which is required for chylomicron production in the small intestine, and apoB-100, required for VLDL production in the liver. In addition to being the essential structural component of VLDL, apoB-100 is the ligand for LDL-receptor-mediated endocytosis of LDL particles.Content: The study of monogenic dyslipidemias has revealed important aspects of metabolic pathways. In this review, we discuss the regulation of apoB metabolism and examine how APOB gene defects can lead to both hypo- and hypercholesterolemia. The key clinical, metabolic, and genetic features of familial hypobetalipoproteinemia and familial ligand-defective apoB-100 are described.Summary: Missense mutations in the LDL-receptor-binding domain of apoB cause familial ligand-defective apoB-100, characterized by hypercholesterolemia and premature coronary artery disease. Other mutations in APOB can cause familial hypobetalipoproteinemia, characterized by hypocholesterolemia and resistance to atherosclerosis. These naturally occurring mutations reveal key domains in apoB and demonstrate how monogenic dyslipidemias can provide insight into biologically important mechanisms.
Collapse
Affiliation(s)
- Amanda J Whitfield
- School of Surgery and Pathology, University of Western Australia, Crawley
| | | | | | | |
Collapse
|
16
|
Gallagher JW, Weinberg RB, Shelness GS. apoA-IV tagged with the ER retention signal KDEL perturbs the intracellular trafficking and secretion of apoB. J Lipid Res 2004; 45:1826-34. [PMID: 15258202 DOI: 10.1194/jlr.m400188-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To examine the role of apolipoprotein A-IV (apoA-IV) in the intracellular trafficking and secretion of apoB, COS cells were cotransfected with microsomal triglyceride transfer protein (MTP), apoB-41 (amino terminal 41% of apoB), and either native apoA-IV or apoA-IV modified with the carboxy-terminal endoplasmic reticulum (ER) retention signal, KDEL (apoA-IV-KDEL). As expected, apoA-IV-KDEL was inefficiently secreted relative to native apoA-IV. Coexpression of apoB-41 with apoA-IV-KDEL reduced the secretion of apoB-41 by approximately 80%. The apoA-IV-KDEL effect was specific, as neither KDEL-modified forms of human serum albumin or apoA-I affected apoB-41 secretion. Similar results were observed in McA-RH7777 rat hepatoma cells, which express endogenous MTP. The full inhibitory effect of apoA-IV-KDEL on apoB secretion was observed only for forms of apoB containing a minimum of the amino-terminal 25% of the protein (apoB-25). However, apoA-IV-KDEL inhibited the secretion of both lipid-associated and lipid-poor forms of apoB-25. Dual-label immunofluorescence microscopy of cells transfected with native apoA-IV and apoB-25 revealed that both apolipoproteins were localized to the ER and Golgi, as expected. However, when apoA-IV-KDEL was cotransfected with apoB-25, both proteins localized primarily to the ER. These data suggest that apoA-IV may physically interact with apoB in the secretory pathway, perhaps reflecting a role in modulating the process of triglyceride-rich lipoprotein assembly and secretion.
Collapse
Affiliation(s)
- James W Gallagher
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
17
|
Manchekar M, Richardson PE, Forte TM, Datta G, Segrest JP, Dashti N. Apolipoprotein B-containing lipoprotein particle assembly: lipid capacity of the nascent lipoprotein particle. J Biol Chem 2004; 279:39757-66. [PMID: 15254032 DOI: 10.1074/jbc.m406302200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously proposed that the N-terminal 1000-residue betaalpha(1) domain of apolipoprotein B (apoB) forms a bulk lipid pocket homologous to that of lamprey lipovitellin. In support of this "lipid pocket" hypothesis, we demonstrated that apoB:1000 (residues 1-1000) is secreted by a stable transformant of McA-RH7777 cells as a monodisperse particle with high density lipoprotein 3 (HDL(3)) density. In contrast, apoB:931 (residues 1-931), missing only 69 residues of the sequence homologous to lipovitellin, was secreted as a particle considerably more dense than HDL(3). In the present study we have determined the stoichiometry of the lipid component of the apoB:931 and apoB:1000 particles. The secreted [(3)H]glycerol-labeled apoB:1000 particles, isolated by nondenaturing gradient gel electrophoresis, contained 50 phospholipid (PL) and 11 triacylglycerol (TAG) molecules/particle. In contrast, apoB:931 particles contained only a few molecules of PL and were devoid of TAG. The unlabeled apoB:1000 particles, isolated by immunoaffinity chromatography, contained 56 PL, 8 TAG, and 7 cholesteryl ester molecules/particle. The surface to core lipid ratio of apoB:1000-containing particles was approximately 4:1 and was not affected by oleate supplementation. Although very small amounts of microsomal triglyceride transfer protein (MTP) were associated with apoB:1000 particles, it never approached a 1:1 molar ratio of MTP to apoB. These results support a model in which (i) the first 1000 amino acid residues of apoB are competent to complete the lipid pocket without a structural requirement for MTP; (ii) a portion, or perhaps all, of the amino acid residues between 931 and 1000 of apoB-100 are critical for the formation of a stable, bulk lipid-containing nascent lipoprotein particle, and (iii) the lipid pocket created by the first 1000 residues of apoB-100 is PL-rich, suggesting a small bilayer type organization and has a maximum capacity on the order of 50 molecules of phospholipid.
Collapse
Affiliation(s)
- Medha Manchekar
- Department of Medicine, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
18
|
Shelness GS, Hou L, Ledford AS, Parks JS, Weinberg RB. Identification of the lipoprotein initiating domain of apolipoprotein B. J Biol Chem 2003; 278:44702-7. [PMID: 12941937 DOI: 10.1074/jbc.m307562200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have explored the minimum sequence requirement for the initiation of apolipoprotein B (apoB)-mediated triglyceride-rich lipoprotein assembly. A series of apoB COOH-terminal truncation mutants, spanning a range from apoB34 (amino acid residues 1-1544 of apoB100) to apoB19 (residues 1-862) were transfected into COS cells with and without coexpression of the microsomal triglyceride transfer protein (MTP). ApoB34, -25, -23, -21, -20.5, and -20.1 underwent efficient conversion to buoyant lipoproteins when coexpressed with MTP. ApoB19.5 (amino acids 1-884) also directed MTP-dependent particle assembly, although at reduced efficiency. When apoB19.5 was truncated by another 22 amino acids to form apoB19, MTP-dependent lipoprotein assembly was abolished. Analysis of the lipid stoichiometry of secreted lipoproteins revealed that all apoB truncation mutants formed spherical particles containing a hydrophobic core. Even highly truncated assembly-competent forms of apoB, such as apoB19.5 and 20.1, formed lipoproteins with surface:core lipid ratios of <1. We conclude that the translation of the first approximately 884 amino acids of apoB completes a domain capable of initiating nascent lipoprotein assembly. The composition of lipids recruited into lipoproteins by this initiating domain is consistent with formation of small emulsion particles, perhaps by simultaneous desorption of both polar and neutral lipids from a saturated bilayer.
Collapse
Affiliation(s)
- Gregory S Shelness
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1040, USA.
| | | | | | | | | |
Collapse
|
19
|
Nassir F, Xie Y, Davidson NO. Apolipoprotein[a] secretion from hepatoma cells is regulated in a size-dependent manner by alterations in disulfide bond formation. J Lipid Res 2003; 44:816-27. [PMID: 12562843 DOI: 10.1194/jlr.m200451-jlr200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein[a] (apo[a]) is a large disulfide linked glycoprotein synthesized by hepatocytes. We have examined the role of disulfide bond formation in the processing of apo[a] using human and rat hepatoma cells expressing apo[a] isoforms containing varying numbers of kringle 4 (K4) domains, following treatment with DTT. Hepatoma cells expressing 6- or 9-K4 isoforms revealed approximately 90% inhibition of apo[a] secretion following DTT treatment, although larger isoforms containing 13- or 17-K4 domains demonstrated continued secretion (up to 30% of control values), suggesting that a fraction of the larger isoforms is at least partially DTT resistant. Wash-out experiments demonstrated that these effects were completely reversible for all isoforms studied, with no enhanced degradation associated with prolonged intracellular retention. DTT treatment was associated with enhanced binding of apo[a] with the endoplasmic reticulum-associated chaperone proteins calnexin, calreticulin, and BiP, which was reversible upon DTT removal. The chemical chaperone 6-aminohexanoic acid, previously demonstrated by others to rescue defective apo[a] secretion associated with alterations in glycosylation, failed to alter the secretion of apo[a] following DTT treatment. The demonstration that DTT modulates apo[a] secretion in a manner influenced by both the type and number of K4 repeats extends understanding of the mechanisms that regulate its exit from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Fatiha Nassir
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
20
|
Vukmirica J, Nishimaki-Mogami T, Tran K, Shan J, McLeod RS, Yuan J, Yao Z. The N-linked oligosaccharides at the amino terminus of human apoB are important for the assembly and secretion of VLDL. J Lipid Res 2002; 43:1496-507. [PMID: 12235182 DOI: 10.1194/jlr.m200077-jlr200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the role of N-linked glycosylation of apolipoprotein B (apoB) in the assembly and secretion of lipoproteins using transfected rat hepatoma McA-RH7777 cells expressing human apoB-17, apoB-37, and apoB-50, three apoB variants with different ability to recruit neutral lipids. Substituting Asn residue with Gln at the single glycosylation site within apoB-17 (N(158)) decreased its secretion efficiency to a level equivalent to that of wild-type apoB-17 treated with tunicamycin, but had little effect on its synthesis or intracellular distribution. When selective N-to-Q substitution was introduced at one or more of the five N-linked glycosylation sites within apoB-37 (N(158), N(956), N(1341), N(1350), and N(1496)), secretion efficiency of apoB-37 from transiently transfected cells was variably affected. When all five N-linked glycosylation sites were mutated within apoB-37, the secretion efficiency and association with lipoproteins were decreased by >50% as compared with wild-type apoB-37. Similarly, mutant apoB-50 with all of its N-linked glycosylation sites mutagenized showed decreased secretion efficiency and decreased lipoprotein association in both d < 1.02 and d > 1.02 g/ml fractions. The inability of mutant apoB-37 and apoB-50 to associate with very low-density lipoproteins was attributable to impaired assembly and was not due to the limitation of lipid availability. The decreased secretion of mutant apoB-17 and apoB-37 was not accompanied by accumulation within the cells, suggesting that the proportion of mutant apoB not secreted was rapidly degraded. However unlike apoB-17 or apoB-37, accumulation of mutant apoB-50 was observed within the endoplasmic reticulum and Golgi compartments. These data imply that the N-glycans at the amino terminus of apoB play an important role in the assembly and secretion of lipoproteins containing the carboxyl terminally truncated apoB.
Collapse
Affiliation(s)
- Jelena Vukmirica
- Lipoprotein and Atherosclerosis Group, Department of Pathology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada, K1Y 4W7
| | | | | | | | | | | | | |
Collapse
|
21
|
Cardozo C, Wu X, Pan M, Wang H, Fisher EA. The inhibition of microsomal triglyceride transfer protein activity in rat hepatoma cells promotes proteasomal and nonproteasomal degradation of apoprotein b100. Biochemistry 2002; 41:10105-14. [PMID: 12146975 DOI: 10.1021/bi025749w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the human hepatic cell line, HepG2, apolipoprotein B100 (apoB100) degradation is increased by inhibiting lipid transfer mediated by the microsomal triglyceride transfer protein (MTP) and is predominantly accomplished by the ubiquitin-proteasome pathway. In the current study, we determined whether this degradative pathway was restricted to HepG2 cells or was of more general importance in hepatic apoB100 metabolism. Rat hepatoma McArdle RH7777 cells (McA), compared to HepG2 cells, secrete a large fraction of apoB100 associated with VLDL particles, as does the normal mammalian liver. In McA cells studied under basal conditions, the proteasome inhibitor lactacystin (LAC) increased apoB100 recovery, indicating that the role of the proteasome in apoB100 metabolism is not restricted to HepG2 cells. When apoB100 lipidation was blocked by an inhibitor of MTP (MTPI), recovery of cellular apoB100 was markedly reduced, but LAC was only partially ( approximately 50%) effective in reversing the induced degradation. This partial effectiveness of LAC may have represented either (1) incomplete inhibition by LAC of its preferred target, the chymotrypsin-like activity of the proteasome, (2) the presence of an apoB100 proteolytic activity of the proteasome resistant to LAC, or (3) a nonproteasomal proteolytic pathway of apoB100 degradation. By studying immunoisolated proteasomes and McA cells treated with LAC and/or MTPI and a variety of protease inhibitors, we determined that the proteasomal component of apoB100 degradation was entirely attributable to the chymotrypsin-like catalytic activity, but only accounted for part of apoB100 degradation induced by MTPI. The nonproteasomal apoB100 degradative pathway was nonlysosomal and resistant to E64d, DTT, and peptide aldehydes such as MG132 or ALLN but was partially sensitive to the serine protease inhibitor APMSF. Furthermore, when the protein trafficking inhibitor, brefeldin A, was used to block endoplasmic reticulum (ER) to Golgi transport in MTPI-treated McA cells, degradative activity resistant to LAC was increased, suggesting that the nonproteasomal pathway is associated with the ER.
Collapse
Affiliation(s)
- Christopher Cardozo
- Department of Medicine, The Cardiovascular Institute, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
22
|
Sellers JA, Shelness GS. Lipoprotein assembly capacity of the mammary tumor-derived cell line C127 is due to the expression of functional microsomal triglyceride transfer protein. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31516-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Segrest JP, Jones MK, De Loof H, Dashti N. Structure of apolipoprotein B-100 in low density lipoproteins. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)30267-4] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
Abstract
The assembly of apolipoprotein B (apoB) into VLDL is broadly divided into two steps. The first involves transfer of lipid by the microsomal triglyceride transfer protein (MTP) to apoB during translation. The second involves fusion of apoB-containing precursor particles with triglyceride droplets to form mature VLDL. ApoB and MTP are homologs of the egg yolk storage protein, lipovitellin. Homodimerization surfaces in lipovitellin are reutilized in apoB and MTP to achieve apoB-MTP interactions necessary for first step assembly. Structural modeling predicts a small lipovitellin-like lipid binding cavity in MTP and a transient lipovitellin-like cavity in apoB important for nucleation of lipid sequestration. The formation of triglyceride droplets in the endoplasmic reticulum requires MTP however, their fusion with apoB may be MTP-independent. Second step assembly is modulated by phospholipase D and A2. Phospholipases may prime membrane transport steps required for second step fusion and/or channel phospholipids into a pathway for VLDL triglyceride production. The enzymology of VLDL triglyceride synthesis is still poorly understood; however, it appears that ACAT2 is the sole source of cholesterol esters for VLDL and chylomicron assembly. VLDL production is controlled primarily at the level of presecretory degradation. Recently, it was discovered that the LDL receptor modulates VLDL production through its interactions with nascent VLDL in the secretory pathway.
Collapse
Affiliation(s)
- G S Shelness
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| | | |
Collapse
|
25
|
Vesicle-binding properties of wild-type and cysteine mutant forms of α1 domain of apolipoprotein B. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31664-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Davidson NO, Shelness GS. APOLIPOPROTEIN B: mRNA editing, lipoprotein assembly, and presecretory degradation. Annu Rev Nutr 2001; 20:169-93. [PMID: 10940331 DOI: 10.1146/annurev.nutr.20.1.169] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apolipoprotein (apo)B circulates in two distinct forms, apoB100 and apoB48. Human liver secretes apoB100, the product of a large mRNA encoding 4536 residues. The small intestine of all mammals secretes apoB48, which arises following C-to-U deamination of a single cytidine base in the nuclear apoB transcript, introducing a translational stop codon. This process, referred to as apoB RNA editing, operates through a multicomponent enzyme complex that contains a single catalytic subunit, apobec-1, in addition to other protein factors that have yet to be cloned. ApoB RNA editing also exhibits stringent cis-acting requirements that include both structural and sequence-specific elements-specifically efficiency elements that flank the minimal cassette, an AU-rich RNA context, and an 11-nucleotide mooring sequence-located in proximity to a suitably positioned (usually upstream) cytidine. C-to-U RNA editing may become unconstrained under circumstances where apobec-1 is overexpressed, in which case multiple cytidines in apoB RNA, as well as in other transcripts, undergo C-to-U editing. ApoB RNA editing is eliminated following targeting of apobec-1, establishing that there is no genetic redundancy in this function. Under physiological circumstances, apoB RNA editing exhibits developmental, hormonal, and nutritional regulation, in some cases related to transcriptional regulation of apobec-1 mRNA. ApoB and the microsomal triglyceride transfer protein (MTP) are essential for the assembly and secretion of apoB-containing lipoproteins. MTP functions by transferring lipid to apoB during its translation and by transporting triglycerides into the endoplasmic reticulum to form apoB-free lipid droplets. These droplets fuse with nascent apoB-containing particles to form mature, very low-density lipoproteins or chylomicrons. In cultured hepatic cells, lipid availability dictates the rate of apoB production. Unlipidated or underlipidated forms of apoB are subjected to presecretory degradation, a process mediated by retrograde transport from the lumen of the endoplasmic reticulum to the cytosol, coupled with multiubquitination and proteasomal degradation. Although control of lipid secretion in vivo is primarily achieved at the level of lipoprotein particle size, regulation of apoB production by presecretory degradation may be relevant in some dyslipidemic states.
Collapse
Affiliation(s)
- N O Davidson
- Departments of Medicine and Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
27
|
Herscovitz H, Derksen A, Walsh MT, McKnight CJ, Gantz DL, Hadzopoulou-Cladaras M, Zannis V, Curry C, Small DM. The N-terminal 17% of apoB binds tightly and irreversibly to emulsions modeling nascent very low density lipoproteins. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)32335-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
|
29
|
Macri J, Kazemian P, Kulinski A, Rudy D, Aiton A, Thibert RJ, Adeli K. Translocational status of ApoB in the presence of an inhibitor of microsomal triglyceride transfer protein. Biochem Biophys Res Commun 2000; 276:1035-47. [PMID: 11027587 DOI: 10.1006/bbrc.2000.3509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite numerous studies demonstrating that microsomal triglyceride transfer protein (MTP) activity is critical to apoB secretion, there is still controversy as to whether MTP directly facilitates the translocation of apoB across the membrane of the endoplasmic reticulum (ER) through either the recruitment of lipids and/or chaperone activity. In the present study, a specific inhibitor of MTP (BMS 197636) was utilized in HepG2 cells to investigate whether a direct relationship exists between the translocation of apoB across the ER membrane and the lipid-transferring activity of MTP. Inhibition of MTP (with 10 and 50 nmol/L of the inhibitor) did not significantly affect the translocation of newly synthesized apoB (P = 0.77) or the translocational efficiency of the steady-state apoB mass (P = 0.45), despite a 49% decrease in apoB secretion and increased proteosomal degradation. These results compared well with subcellular fractionation experiments which showed no significant change in the fraction of apoB accumulated in the lumen of isolated microsomes in MTP-treated cells (P = 0.35). In summary, MTP lipid transfer activity does not appear to influence translocational status of apoB, but its inhibition is associated with an increased susceptibility to proteasome-mediated degradation and reduced assembly and secretion of apoB lipoprotein particles.
Collapse
Affiliation(s)
- J Macri
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Carraway M, Herscovitz H, Zannis V, Small DM. Specificity of lipid incorporation is determined by sequences in the N-terminal 37 of apoB. Biochemistry 2000; 39:9737-45. [PMID: 10933790 DOI: 10.1021/bi000791h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The N-terminal 17% of apolipoprotein B (apoB-17) is secreted lipid-poor while apoB-41 particles are secreted with a triacylglycerol (TAG)-rich core. Thus, the sequence between apoB-17 and apoB-41 is necessary for the assembly of TAG-rich lipoproteins. To delineate this region, C127 cells were permanently transfected to secrete the N-terminal 29, 32.5, or 37% of apoB. Density gradient centrifugation showed that secreted apoB-29, apoB-32.5, and apoB-37 had peak densities of 1.25, 1.22, and 1.16 g/mL and percent lipid of particle weights of 30, 37, and 49%, respectively. Calculated anhydrous particle diameters were: apoB-29 = 81 A, apoB-32.5 = 88 A, and apoB-37 = 101 A. Immunoprecipitated particles labeled with [(3)H]oleate showed that, as apoB length increased from apoB-29 to apoB-32.5 and apoB-37, the number of TAG (core) molecules per apoB particle increased almost 16-fold from 8 to 32 to 124, while phospholipids and diacylglycerols (surface lipids) increased only slightly from 71 to 87 to 97 molecules, respectively. Thus, sequences in the C-terminus of apoB-29 bind phospholipids and diacylglycerols, sequences between apoB-29 and apoB-32.5 augment TAG binding and sequences between apoB-32.5 and apoB-41 account for the marked incorporation of TAG at a rate of approximately 1 TAG per 2 amino acids. Cryoelectron micrographs of isolated apoB-37 particles revealed mostly spherical particles of approximately 110 A (11.0 nm) with an electron lucent center, consistent with these particles having a TAG core. We suggest that the predicted amphipathic beta-sheets beginning at apoB-29, starts to preferentially recruit core lipids into apoB and propose that the consistent presence of DAG in the secreted particles may have a role in fission of the nascent lipoprotein particles from the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- M Carraway
- Department of Biophysics and Department of Medicine, Cardiovascular Institute, Center for Advanced Biomedical Research at Boston University School of Medicine, 715 Albany Street Boston, Massachusetts 02118-2526, USA.
| | | | | | | |
Collapse
|
31
|
Burch WL, Herscovitz H. Disulfide bonds are required for folding and secretion of apolipoprotein B regardless of its lipidation state. J Biol Chem 2000; 275:16267-74. [PMID: 10747912 DOI: 10.1074/jbc.m000446200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo) B-100, an essential protein for the assembly and secretion of very low density lipoproteins depends on lipid binding (lipidation) for its secretion. Seven of its 8 disulfides are clustered within the N-terminal 21%. The role of these disulfides in the secretion of lipidated or unlipidated truncated forms of apoB was studied in C127 cells expressing apoB-17, apoB-29, or apoB-41. These cells do not express microsomal triglyceride transfer protein yet secrete apoB-41 on triacylglycerol-rich lipoproteins while apoB-29 and apoB-17 are secreted with little or no lipid, respectively. Dithiothreitol utilized in pulse-chase studies prevented the cotranslational formation of disulfides and when added posttranslationally reduced native disulfides. As a result, the secretion of reduced apoB forms was blocked and they were retained in the cells. Reduced apoB polypeptides were rescued following removal of dithiothreitol, as they underwent post-translational disulfide bonding, attained their mature form, and were subsequently secreted. Together the data suggest that in C127 cells the formation of native disulfides is critical for the folding and secretion of apoB independent of its length, its requirement for lipidation or microsomal triglyceride transfer protein expression. Therefore, these cells provide an appropriate model to study the folding of apoB in great detail.
Collapse
Affiliation(s)
- W L Burch
- Department of Biophysics, Center for Advanced Biomedical Research, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
32
|
Huang XF, Shelness GS. Efficient glycosylation site utilization by intracellular apolipoprotein B: implications for proteasomal degradation. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32096-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Davis RA. Cell and molecular biology of the assembly and secretion of apolipoprotein B-containing lipoproteins by the liver. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1440:1-31. [PMID: 10477822 DOI: 10.1016/s1388-1981(99)00083-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Triglycerides are one of the most efficient storage forms of free energy. Because of their insolubility in biological fluids, their transport between cells and tissues requires that they be assembled into lipoprotein particles. Genetic disruption of the lipoprotein assembly/secretion pathway leads to several human disorders associated with malnutrition and developmental abnormalities. In contrast, patients displaying inappropriately high rates of lipoprotein production display increased risk for the development of atherosclerotic cardiovascular disease. Insights provided by diverse experimental approaches describe an elegant biological adaptation of basic chemical interactions required to overcome the thermodynamic dilemma of producing a stable emulsion vehicle for the transport and tissue targeting of triglycerides. The mammalian lipoprotein assembly/secretion pathway shows an absolute requirement for: (1) the unique amphipathic protein: apolipoprotein B, in a form that is sufficiently large to assemble a lipoprotein particle containing a neutral lipid core; and, (2) a lipid transfer protein (microsomal triglyceride transfer protein-MTP). In the endoplasmic reticulum apolipoprotein B has two distinct metabolic fates: (1) entrance into the lipoprotein assembly pathway within the lumen of the endoplasmic reticulum; or, (2) degradation in the cytoplasm by the ubiquitin-dependent proteasome. The destiny of apolipoprotein B is determined by the relative availability of individual lipids and level of expression of MTP. The dynamically varied expression of cholesterol-7alpha-hydroxylase indirectly influences the rate of lipid biosynthesis and the assembly and secretion lipoprotein particles by the liver.
Collapse
Affiliation(s)
- R A Davis
- Mammalian Cell and Molecular Biology Laboratory, Department of Biology, The Molecular Biology Institute, San Diego State University, San Diego, CA 92182-0057, USA.
| |
Collapse
|
34
|
Cavallo D, Rudy D, Mohammadi A, Macri J, Adeli K. Studies on degradative mechanisms mediating post-translational fragmentation of apolipoprotein B and the generation of the 70-kDa fragment. J Biol Chem 1999; 274:23135-43. [PMID: 10438483 DOI: 10.1074/jbc.274.33.23135] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been well established that the biogenesis of apoB is mediated co-translationally by the cytosolic proteasome. Here, however, we investigated the role of both the cytosolic proteasome as well as non-proteasome-mediated degradation systems in the post-translational degradation of apoB. In pulse-chase labeling experiments, co-translational (0-h chase) apoB degradation in both intact and permeabilized cells was sensitive to proteasome inhibitors. Interestingly, turnover of apoB in intact cells over a 2-h chase was partially inhibitable by lactacystin, thus suggesting a role for the cytosolic proteasome in the post-translational degradation of apoB. In permeabilized cells, however, there was no post-translational protection of apoB by lactacystin. Further investigations of proteasomal activity in HepG2 cells revealed that, following permeabilization, there was a dramatic loss of the 20 S proteasomal subunits, and consequently the cells exhibited no detectable lactacystin-inhibitable activity. Thus, apoB fragmentation and the generation of the 70-kDa apoB degradation fragment, characteristic of permeabilized cells, continued to occur in these cells despite the absence of functional cytosolic proteasome. Similar results were observed when we used a derivative of lactacystin, clastolactacystin beta-lactone, which represents the active species of the inhibitor. Interestingly, however, the abundance of the 70-kDa fragment could be modulated by the microsomal triglyceride transfer protein inhibitor, BMS-197636, as well as by pretreatment of the permeabilized cells with dithiothreitol. These data thus suggest that although the cytosolic proteasome appears to be involved in the post-translational turnover of apoB in intact cells, the specific post-translational fragmentation of apoB generating the 70-kDa fragment observed in permeabilized cells occurs independent of the cytosolic proteasome.
Collapse
Affiliation(s)
- D Cavallo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | | | | | | | | |
Collapse
|
35
|
N-terminal domain of apolipoprotein B has structural homology to lipovitellin and microsomal triglyceride transfer protein: a “lipid pocket” model for self-assembly of apoB-containing lipoprotein particles. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33382-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Nicodeme E, Benoist F, McLeod R, Yao Z, Scott J, Shoulders CC, Grand-Perret T. Identification of domains in apolipoprotein B100 that confer a high requirement for the microsomal triglyceride transfer protein. J Biol Chem 1999; 274:1986-93. [PMID: 9890955 DOI: 10.1074/jbc.274.4.1986] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microsomal triglyceride transfer protein (MTP) is required for the assembly and secretion of apoB-containing lipoproteins. To investigate the role of MTP in lipoprotein assembly, we determined the ability of carboxyl-terminally truncated forms of apoB to be secreted from cells treated with the MTP inhibitor 4'-bromo-3'-methylmetaqualone (Benoist, F., Nicodeme, E., and Grand-Perret, T. (1996) Eur. J. Biochem. 240, 713-720). In Caco-2 and mhAT3F cells that produce apoB100 and apoB48, the inhibitor preferentially blocked apoB100 secretion. When the inhibitor was tested on McA-RH7777 cells stably transfected with cDNAs encoding human apoB100, apoB72, apoB53, apoB29, and apoB18, the secretion of apoB100, apoB72, and apoB53 was preferentially impaired relative to apoB48 and shorter forms. To delineate the region between apoB48 and apoB53 that has a high requirement for MTP, we used puromycin to generate a range of truncated forms of apoB in HepG2 cells. The secretion of apoB53 and longer forms of apoB was markedly affected by low concentrations of the MTP inhibitor (approximately 1 microM), whereas apoB51 and smaller forms of apoB were only affected at higher concentrations (> 10 microM). The size-related sensitivity to MTP inhibitor was not due to late processing or retention, since the same result was observed when nascent lipoproteins were isolated from the endoplasmic reticulum. The MTP inhibitor did not alter the density of the secreted lipoproteins, indicating that each apoB polypeptide requires a minimally defined amount of lipid to attain a secretable conformation. Our results suggest that the folding of the domain between apoB51 and apoB53 has a high requirement for lipid. This domain is predicted to form amphipathic alpha-helices and to bind lipid reversibly. It proceeds and is followed by rigid amphipathic beta-sheets that are predicted to associate with lipid irreversibly. We speculate that these domains enable apoB to switch from a stable lipid-poor conformation in apoB48 to another lipid-rich conformation in apoB100 during lipoprotein assembly.
Collapse
Affiliation(s)
- E Nicodeme
- Laboratoire GlaxoWellcome, Centre de Recherche, 25 avenue du Quebec, ZA de Courtaboeuf, 91951 Les Ulis cedex, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Mann CJ, Anderson TA, Read J, Chester SA, Harrison GB, Köchl S, Ritchie PJ, Bradbury P, Hussain FS, Amey J, Vanloo B, Rosseneu M, Infante R, Hancock JM, Levitt DG, Banaszak LJ, Scott J, Shoulders CC. The structure of vitellogenin provides a molecular model for the assembly and secretion of atherogenic lipoproteins. J Mol Biol 1999; 285:391-408. [PMID: 9878414 DOI: 10.1006/jmbi.1998.2298] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The assembly of atherogenic lipoproteins requires the formation in the endoplasmic reticulum of a complex between apolipoprotein (apo)B, a microsomal triglyceride transfer protein (MTP) and protein disulphide isomerase (PDI). Here we show by molecular modelling and mutagenesis that the globular amino-terminal regions of apoB and MTP are closely related in structure to the ancient egg yolk storage protein, vitellogenin (VTG). In the MTP complex, conserved structural motifs that form the reciprocal homodimerization interfaces in VTG are re-utilized by MTP to form a stable heterodimer with PDI, which anchors MTP at the site of apoB translocation, and to associate with apoB and initiate lipid transfer. The structural and functional evolution of the VTGs provides a unifying scheme for the invertebrate origins of the major vertebrate lipid transport system.
Collapse
Affiliation(s)
- C J Mann
- MRC Molecular Medicine Group, Imperial College School of Medicine, London W12 ONN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Synthesis and secretion of chylomicrons by the intestine is essential to transport dietary fats in the circulation and to deliver these fats to the appropriate peripheral tissues. The assembly of chylomicrons within the enterocyte and the subsequent secretion of these lipoprotein particles into the lymph is a complex, multi-step process that includes absorption of lipids by the enterocytes, cellular lipid (re)synthesis and translocation of cellular lipid pools, synthesis and post-translational modification of various apolipoproteins and, finally, the assembly of lipid and lipoprotein components into a chylomicron. The key process in chylomicron synthesis is the intracellular association of apolipoprotein (apo)B48, the structural protein of chylomicrons, with lipids.
Collapse
Affiliation(s)
- M M van Greevenbroek
- Laboratory for Molecular Metabolism and Endocrinology, Maastricht University, The Netherlands
| | | |
Collapse
|
39
|
Hussain MM, Bakillah A, Nayak N, Shelness GS. Amino acids 430-570 in apolipoprotein B are critical for its binding to microsomal triglyceride transfer protein. J Biol Chem 1998; 273:25612-5. [PMID: 9748226 DOI: 10.1074/jbc.273.40.25612] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several studies have demonstrated protein-protein interactions between microsomal triglyceride transfer protein (MTP) and apolipoprotein B (apoB). However, the binding sites involved in these interactions have not been elucidated. To identify an MTP binding site in apoB, we have expressed several apoB sequences as fusion proteins with the eight-amino acid FLAG peptide. The chimeras were transiently expressed in COS cells, and conditioned media were used to study the binding of these sequences to either immobilized or soluble MTP. A polypeptide containing amino acids 270-570 (B:270-570), but not 1-300, bound to MTP. AGI-S17, an antagonist of apoB-MTP binding, inhibited the binding of B:270-570 to MTP but not to M2, a monoclonal antibody that recognizes the FLAG peptide. These data indicated that B:270-570 contains an MTP binding site. Next, sequences within 270-570 were subjected to C-terminal truncations at natural proline residues. B:270-509 bound less efficiently than B:270-570, whereas, B:270-430 and other shorter chimeras did not bind to MTP. Furthermore, truncations at amino acids 502 and 509 decreased MTP binding by 73 and 42%, respectively. These data indicate that B:430-570 in the alpha1-globular domain of apoB plays a crucial role in MTP binding and presumably in the initiation and maturation of apoB-containing lipoproteins.
Collapse
Affiliation(s)
- M M Hussain
- Departments of Pathology and Biochemistry, Allegheny University of the Health Sciences, MCP-Hahnemann School of Medicine, Philadelphia, Pennsylvania 19129, USA.
| | | | | | | |
Collapse
|
40
|
Wang H, Singh D, Fliegel L. Functional role of cysteine residues in the Na+/H+ exchanger effects of mutation of cysteine residues on targeting and activity of the Na+/H+ exchanger. Arch Biochem Biophys 1998; 358:116-24. [PMID: 9750172 DOI: 10.1006/abbi.1998.0833] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the role of cysteine residues in activity and localization of the NHE1 isoform of the Na+/H+ exchanger. Each of the nine cysteine residues was mutated to serine or arginine. Mutation of the first serine (amino acid number 9) and serine number six (amino acid number 477) resulted in dramatic decreases in detectable activity of the Na+/H+ exchanger when transfected into AP-1 cells. Some other mutations resulted in minor decreases in activity of the protein. Confocal and light microscopy of mutant cells with decreased activity showed that the antiporter protein was mostly retained in an intracellular compartment which colocalized with the medial-Golgi cisternae. Smaller amounts of active protein still remained targeted to the plasma membrane in these mutants. Treatment of wild-type cells with DTT also caused the retention of the Na+/H+ exchanger to the same intracellular compartment. The results suggest that cysteines play an important role in intracellular folding and trafficking of the Na+/H+ exchanger.
Collapse
Affiliation(s)
- H Wang
- Department of Biochemistry, University of Alberta, 347 Medical Science Building, Edmonton, Alberta, T6G 2H7, Canada
| | | | | |
Collapse
|
41
|
Linnik KM, Herscovitz H. Multiple molecular chaperones interact with apolipoprotein B during its maturation. The network of endoplasmic reticulum-resident chaperones (ERp72, GRP94, calreticulin, and BiP) interacts with apolipoprotein b regardless of its lipidation state. J Biol Chem 1998; 273:21368-73. [PMID: 9694898 DOI: 10.1074/jbc.273.33.21368] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The present study was undertaken to identify and characterize molecular chaperones that assist in the folding of apolipoprotein (apo) B, a secretory protein that requires assembly with lipids (lipidation) for its secretion. Both HepG2 cells, normally secreting full-length apoB (apoB-100), and C127 cells transfected to secrete truncated forms of apoB, apoB-41, apoB-29, and apoB-17, respectively, were employed. C127 cells were used to determine whether chaperone binding is dependent on apoB lipidation as they secrete both unlipidated and lipidated apoB forms despite their lack of microsomal triglyceride transfer protein (MTP), which mediates lipidation of apoB in HepG2 cells. The endoplasmic reticulum (ER)-resident molecular chaperones GRP94, calreticulin, and ERp72 were co-immunoprecipitated with apoB-100 from HepG2 cell lysates following cross-linking of proteins in living cells. The same chaperones including BiP/GRP78 were also associated with all truncated forms of apoB. Sequential immunoprecipitation with antibodies to MTP and apoB revealed the presence of ternary complexes containing apoB-100, MTP, and ERp72. However, MTP is not obligatory for the binding of ERp72 as it was associated with all truncated forms of apoB in C127 cells that lack MTP. The interactions between apoB-100 and ERp72 or GRP94 persisted for at least 2 h following a 30-min pulse. Thus, BiP/GRP78, calreticulin, ERp72, and GRP94 may participate in critical steps in the folding of apoB before any substantial lipidation occurs. ERp72 and GRP94 may also mediate the folding of more advanced folding intermediates and/or target the misfolded underlipidated pool of apoB for degradation.
Collapse
Affiliation(s)
- K M Linnik
- Department of Biophysics, Center for Advanced Biomedical Research, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
42
|
Chen Y, Le Cahérec F, Chuck SL. Calnexin and other factors that alter translocation affect the rapid binding of ubiquitin to apoB in the Sec61 complex. J Biol Chem 1998; 273:11887-94. [PMID: 9565615 DOI: 10.1074/jbc.273.19.11887] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Several secretory proteins, including apolipoprotein B, have been shown to undergo degradation by proteasomes. We found that the rapid degradation of nascent apolipoprotein B in HepG2 cells was diminished but not abolished by the addition of any of three different inhibitors of proteasomes. Ubiquitin is conjugated to apolipoprotein B that is not assembled with sufficient lipids either during or soon after synthesis. In addition, we found that apolipoprotein B that has entered the endoplasmic reticulum sufficiently to become glycosylated can be degraded by proteasomes. Furthermore, we detected ubiquitin-apolipoprotein B that is associated with the Sec61 complex, the major constituent of the translocational channel. Treatment of cells with monomethylethanolamine or dithiothreitol decreased the translocation of apolipoprotein B and increased the proportion of ubiquitin-conjugated molecules associated with Sec61. Conversely, treatment of cells with oleic acid, which increased the proportion of translocated apolipoprotein B, decreased the amount of ubiquitin-apolipoprotein B in the Sec61 complex. Finally, we found that inhibition of the interaction between calnexin and apolipoprotein B decreases the translocation of apolipoprotein B, increases the ubiquitin-apolipoprotein B in the Sec61 complex, and increases the proteasomal degradation of glycosylated apolipoprotein B. Thus, ubiquitin can be attached to unassembled apolipoprotein B in the Sec61 complex, and this process is affected by factors including calnexin that alter the translocation of apolipoprotein B.
Collapse
Affiliation(s)
- Y Chen
- Molecular Medicine Unit, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
43
|
Tran K, Borén J, Macri J, Wang Y, McLeod R, Avramoglu RK, Adeli K, Yao Z. Functional analysis of disulfide linkages clustered within the amino terminus of human apolipoprotein B. J Biol Chem 1998; 273:7244-51. [PMID: 9516417 DOI: 10.1074/jbc.273.13.7244] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We tested the involvement of N-terminal six disulfide bonds (Cys-1 through Cys-12) of human apolipoprotein (apo) B in the assembly and secretion of lipoproteins using two C-terminal-truncated apoB variants, namely B50 and B18. In transfected rat hepatoma McA-RH7777 cells, B50 could assemble very low density lipoproteins (VLDL), and B18 was secreted as high density lipoproteins. When all 12 cysteine residues were substituted with alanines in B50, the mutant protein (B50C1-12) lost its ability to assemble lipid and was degraded intracellularly. However, mutation had no effect on B50C1-12 translation or translocation across the microsomal membrane. Post-translational degradation of B50C1-12 was partially inhibited by the proteasome inhibitor MG132. To determine which cysteines were critical in VLDL assembly and secretion, we prepared three additional mutant B50s, each containing four selected Cys-to-Ala substitutions in tandem (i.e. Cys-1 to Cys-4, Cys-5 to Cys-8, and Cys-9 to Cys-12). Expression of these mutants showed that disruption of disulfide bond formation within Cys-5 to Cys-8 diminished apoB secretion, whereas within Cys-1 to Cys-4 or Cys-9 to Cys-12 had lesser or no effect. In another two mutants in which only one disulfide bond (i.e. between Cys-5 and Cys-6 or between Cys-7 and Cys-8) was eliminated, only secretion of B50 with mutations at Cys-7 and Cys-8 was decreased. Thus, the disulfide bond involving Cys-7 and Cys-8 is most important for VLDL assembly and secretion. In addition, assembly and secretion of VLDL containing endogenous B100 or B48 were impaired in cells transfected with B50s containing Cys-7 and Cys-8 mutation. The Cys-to-Ala substitution abolished recognition of B50 by MB19, a conformational antibody with an epitope at the N terminus of human apoB. The Cys-to-Ala substitution also attenuated secretion of B18, but the effect of the mutation on B18 secretion was less evident than on B50.
Collapse
Affiliation(s)
- K Tran
- Lipoprotein and Atherosclerosis Group, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4E9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Rustaeus S, Stillemark P, Lindberg K, Gordon D, Olofsson SO. The microsomal triglyceride transfer protein catalyzes the post-translational assembly of apolipoprotein B-100 very low density lipoprotein in McA-RH7777 cells. J Biol Chem 1998; 273:5196-203. [PMID: 9478974 DOI: 10.1074/jbc.273.9.5196] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In cells in which the lipoprotein assembly process had been inactivated by brefeldin A (BFA), membrane-associated apoB-100 disappeared without forming lipoproteins or being secreted, indicating that it was degraded. Reactivation of the assembly process by chasing the cells in the absence of BFA, gave rise to a quantitative recovery of the membrane-associated apoB-100 in the very low density lipoprotein (VLDL) fraction in the medium. These results indicate that the membrane-associated apoB-100 can be converted to VLDL. A new method was developed by which the major amount (88%) of microsomal apoB-100 but not integral membrane proteins could be extracted. The major effect of this method was to increase the recovery of apoB-100 that banded in the LDL and HDL density regions, suggesting that the membrane-associated form of apoB-100 is partially lipidated. We also investigated the role of the microsomal triglyceride transfer protein (MTP) in the assembly of apoB-100 VLDL using a photoactivatable MTP inhibitor (BMS-192951). This compound strongly inhibited the assembly and secretion of apoB-100 VLDL when present during the translation of the protein. To investigate the importance of MTP during the later stages in the assembly process, the cells were preincubated with BFA (to reversibly inhibit the assembly of apoB-100 VLDL) and pulse-labeled (+BFA) and chased (+BFA) for 30 min to obtain full-length apoB-100 associated with the microsomal membrane. Inhibition of MTP after the 30-min chase blocked assembly of VLDL. This indicates that MTP is important for the conversion of full-length apoB-100 into VLDL. Results from experiments in which a second chase (-BFA) was introduced before the inactivation of MTP indicated that only early events in this conversion of full-length apoB-100 into VLDL were blocked by the MTP inhibitor. Together these results indicate that there is a MTP-dependent "window" in the VLDL assembly process that occurs after the completion of apoB-100 but before the major amount of lipids is added to the VLDL particle. Thus the assembly of apoB-100 VLDL from membrane-associated apoB-100 involves an early MTP-dependent phase and a late MTP-independent phase, during which the major amount of lipid is added.
Collapse
Affiliation(s)
- S Rustaeus
- Department of Medical Biochemistry and the Wallenberg Laboratory, University of Göteborg, Sweden and the Division of Metabolic Diseases, Bristol-Myers Squibb Co., Princeton, New Jersey 08543, USA
| | | | | | | | | |
Collapse
|
45
|
Huang XF, Shelness GS. Identification of cysteine pairs within the amino-terminal 5% of apolipoprotein B essential for hepatic lipoprotein assembly and secretion. J Biol Chem 1997; 272:31872-6. [PMID: 9395534 DOI: 10.1074/jbc.272.50.31872] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
There is growing evidence that the amino-terminal globular domain of apolipoprotein B (apoB) is essential for lipoprotein particle formation in the hepatic endoplasmic reticulum. To identify the structural requirements for its function in lipoprotein assembly, cysteine (Cys) pairs required to form the seven disulfide bonds within the amino-terminal 21% of apoB were replaced in groups or individually by serine. Substitution of Cys pairs required for formation of disulfide bonds 1-3 or 4-7 (numbered from amino to carboxyl terminus) completely blocked the secretion of apoB28 in transfected HepG2 cells. To identify the specific disulfide bonds required for secretion, Cys pairs were mutated individually. Substitution of Cys pairs required for disulfide bonds 1, 3, 5, 6, or 7 had little or no impact on apoB28 secretion or buoyant density. In contrast, individual substitution of Cys pair 2 (amino acid residues 51 and 70) or 4 (218 and 234) severely inhibited apoB28 secretion and its capacity to undergo intracellular assembly with lipid. The same assembly and secretion defects were observed when these mutations were expressed as part of apoB50. These studies provide direct evidence that the ability of the internal lipophilic regions of apoB to engage in the recruitment and sequestration of lipid during translation is critically dependent upon a structural configuration contained within or affected by the amino-terminal 5% of the protein.
Collapse
Affiliation(s)
- X F Huang
- Department of Comparative Medicine, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1040, USA
| | | |
Collapse
|
46
|
Smith JL, Lutton C. Determination of hepatic acyl-coenzyme A-cholesterol acyltransferase activity in LPN hamsters: a model for cholesterol gallstone formation. J Gastroenterol Hepatol 1997; 12:877-86. [PMID: 9504901 DOI: 10.1111/j.1440-1746.1997.tb00387.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acyl-coenzyme A-cholesterol acyltransferase (ACAT) catalyses the esterification of cholesterol with long-chain fatty acyl-coenzyme A derivatives and has been implicated in the development of cholesterol gallstones. In this study we have examined several key components of the hepatic ACAT assay in order to develop a reliable and sensitive ACAT assay for LPN hamsters, a breed of golden Syrian hamster which has been characterized recently by this laboratory as a particularly good model for studying the pathogenesis of cholesterol gallstones. The newly developed ACAT assays were subsequently used to examine whether hepatic ACAT activity is altered in this animal model. Important new methodological findings were: (i) ACAT activity displayed two pH optima, one at 7.0 when assayed using endogenous cholesterol as substrate, and the other at about pH 8.5-9.0 when assayed in the presence of exogenous cholesterol; (ii) ACAT activity increased markedly when exogenous cholesterol was delivered to ACAT in Tween 80 (125-fold) or hydroxypropyl-beta-cyclodextrin (200-fold) in contrast to the use of cholesterol/phosphatidylcholine liposomes (9-fold); (iii) the addition of dithiothreitol, but not reduced glutathione, to the assay mixture resulted in a marked decrease in ACAT activity. Using the optimal assay conditions (exogenous cholesterol added), hepatic ACAT activity was shown to be significantly reduced in hamsters fed a high sucrose lithogenic diet compared with controls (587+/-42 vs 737+/-44 pmol/min per mg; P=0.025). In contrast, ACAT activity measured using endogenous cholesterol as a substrate was greater in sucrose-fed hamsters compared with controls (22.3+/-2.5 vs 13.2+/-2.9 pmol/min per mg; P= 0.030). These results highlight the importance of using an ACAT activity assay which has been well characterized and supports the hypothesis that the pathogenesis of cholesterol gallstones in LPN hamsters is related to an altered hepatic cholesterol metabolism.
Collapse
Affiliation(s)
- J L Smith
- Department of Surgery, The University of Queensland, Royal Brisbane Hospital, Herston, Australia.
| | | |
Collapse
|
47
|
Macri J, Adeli K. Conformational changes in apolipoprotein B modulate intracellular assembly and degradation of ApoB-containing lipoprotein particles in HepG2 cells. Arterioscler Thromb Vasc Biol 1997; 17:2982-94. [PMID: 9409285 DOI: 10.1161/01.atv.17.11.2982] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The linkage between the conformation of apolipoprotein B100 (apoB) and the intracellular assembly and degradation of apoB-containing lipoproteins was investigated in the present study. Disruption of disulfide bond formation in newly synthesized apoB molecules through the use of the reducing agent DTT resulted in a decrease in the secretion of apoB-containing lipoproteins from HepG2 cells compared with control cells. The synthesis of total apoB (apoB100 plus nascent chains), as well as a number of control proteins, such as albumin and alpha 1-antitrypsin, was decreased significantly in DTT-treated cells. However, the intracellular accumulation of full-length apoB100 molecules was not inhibited in the presence of DTT. Subcellular fractionation indicated that apoB molecules isolated from the microsomes of DTT-treated cells had an increased association with the microsomal membrane compared with apoB isolated from untreated cells. Analysis of the distribution of apoB-containing lipoproteins from the lumen of isolated microsomes demonstrated that in the presence of DTT, there was a shift in the distribution, such that there was a decrease in the formation of HDL-sized (lipid-poor) apoB-containing lipoproteins and a decrease in the formation of LDL/VLDL apoB particles. Alterations in apoB conformation and their impact on degradation were also investigated by using DTT and by inhibiting N-linked glycosylation with tunicamycin. DTT appeared to change the rate and pattern of apoB degradation. Degradation was accelerated in both intact and permeabilized HepG2 cells. ApoB degradation occurred in DTT-treated permeabilized cells without the usual generation of the 70-kD and 335-kD fragments and was largely N-acetyl-leucyl-leucyl-norleucinal (ALLN) insensitive. In tunicamycin-treated cells, DTT further accelerated the degradation of unglycosylated apoB. Overall, the data suggest that the misfolding of apoB may prevent the proper association of apoB with lipids, resulting in impairment of the assembly of mature apoB-containing lipoproteins. Alteration in the conformation of apoB also appears to alter the degradation pathway of apoB, such that the protein is degraded through a pathway that is at least in part ALLN insensitive.
Collapse
MESH Headings
- Animals
- Apolipoprotein B-100
- Apolipoproteins B/chemistry
- Apolipoproteins B/drug effects
- Apolipoproteins B/metabolism
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cystine/drug effects
- Dithiothreitol/pharmacology
- Glycosylation/drug effects
- Humans
- Leupeptins/pharmacology
- Lipoproteins/chemistry
- Lipoproteins/metabolism
- Lipoproteins, HDL/chemistry
- Lipoproteins, HDL/metabolism
- Lipoproteins, LDL/chemistry
- Lipoproteins, LDL/metabolism
- Lipoproteins, VLDL/chemistry
- Lipoproteins, VLDL/metabolism
- Liver/metabolism
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Microsomes, Liver/metabolism
- Molecular Weight
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/drug effects
- Neoplasm Proteins/metabolism
- Protease Inhibitors/pharmacology
- Protein Conformation/drug effects
- Protein Denaturation
- Protein Folding
- Protein Processing, Post-Translational/drug effects
- Sulfhydryl Reagents/pharmacology
- Tumor Cells, Cultured/metabolism
- Tunicamycin/pharmacology
Collapse
Affiliation(s)
- J Macri
- Department of Chemistry and Biochemistry, University of Windsor, Ontario, Canada
| | | |
Collapse
|
48
|
Wang L, Fast DG, Attie AD. The enzymatic and non-enzymatic roles of protein-disulfide isomerase in apolipoprotein B secretion. J Biol Chem 1997; 272:27644-51. [PMID: 9346903 DOI: 10.1074/jbc.272.44.27644] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Secretion of apolipoprotein B (apoB) from mammalian cells requires the presence of functional microsomal triglyceride transfer protein (MTP). We previously reported that co-expressing the human intestinal form of apoB, B48, with both subunits of human MTP in oleate-treated Sf21 cells led to a dramatic induction of B48 secretion. Deletion mutagenesis studies showed that the cysteine-enriched amino terminus of apoB was necessary for the MTP responsiveness (Gretch, D. G., Sturley, S. L., Wang, L., Dunning, A., Grunwald, K. A. A., Wetterau, J. R., Yao, Z., Talmud, P., and Attie, A. D. (1996) J. Biol. Chem. 271, 8682-8691). We therefore hypothesized that the small subunit of MTP, protein-disulfide isomerase (PDI), plays a role in apoB secretion by facilitating correct disulfide bond formation. To determine whether the enzymatic activities of PDI are important for MTP-stimulated apoB secretion, the wild type PDI subunit was replaced with an active site mutant, mPDI (Cys36 --> Ser/Cys380 --> Ser), lacking both disulfide shuffling and redox activities. MTP containing mPDI was fully functional in promoting apoB and triglyceride secretion. Therefore, the shufflase and redox activities of PDI are not necessary for the function of MTP. Since PDI exists in large molar excess over the other subunit of MTP, the role of free PDI (independent of the MTP complex) was investigated. PDI or mPDI was co-expressed with B48 and B17, a fragment encompassing the amino-terminal 17% of apoB. Mutant PDI significantly and specifically reduced the accumulation of the B17 and B48 both intracellularly and in the culture medium. The reduction was partially eliminated by the protease inhibitor N-acetyl-leucyl-leucyl-norleucinal, consistent with rapid co- or post-translational degradation of apoB in the presence of mPDI. Treating the cells with oleate reversed the effect of mPDI on B48 secretion in a dose-dependent manner, but had no effect on B17. IN CONCLUSION 1) the role of PDI in the MTP complex involves functions other than its known enzymatic activities; 2) one or both of the enzymatic activities of free PDI is/are important for the MTP-independent steps of apoB secretion; 3) oleate can affect apoB secretion at high physiological concentrations and compensate for the insufficiency of PDI activities.
Collapse
Affiliation(s)
- L Wang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
49
|
Hussain MM, Bakillah A, Jamil H. Apolipoprotein B binding to microsomal triglyceride transfer protein decreases with increases in length and lipidation: implications in lipoprotein biosynthesis. Biochemistry 1997; 36:13060-7. [PMID: 9335568 DOI: 10.1021/bi971395a] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microsomal triglyceride transfer protein (MTP), a heterodimer of 97 kDa and protein disulfide isomerase, is required for the assembly of apolipoprotein B (apoB)-containing triglyceride-rich lipoproteins. These proteins have been shown to interact with each other during early stages of lipoprotein biosynthesis. Our studies indicated that binding between apoB and heterodimeric MTP was of high affinity (Kd 10-30 nM) due to ionic interactions. In contrast to MTP, protein disulfide isomerase alone interacted very poorly with lipoproteins, indicating the importance of the heterodimer in these bindings. Preincubation of lipoproteins with detergents enhanced their interaction with MTP. Native VLDL bound poorly to MTP, but its preincubation with Tween-20 resulted in significantly increased binding to MTP. Furthermore, binding of LDL was enhanced by preincubation with taurocholate, indicating that partial delipidation of apoB-containing lipoproteins results in increased binding to MTP. Subsequently, attempts were made to study interactions between C-terminally truncated apoB polypeptides and MTP. Binding of all the polypeptides to MTP was enhanced in the presence of taurocholate. Comparisons revealed that the binding of different apoB polypeptides to MTP was in the order of apoB18 > apoB28 > apoB42 > apoB100. These studies indicated that optimum interactions occur between apoB18 and MTP, and that the increase in apoB length beyond apoB18 has a negative effect on these interactions. Since apoB18 does not assemble triglyceride-rich lipoproteins, these studies suggest that apoB may interact with MTP before its lipidation. It is proposed that steps in lipoprotein biosynthesis may be dictated by the sequential display of different functional domains on the apoB polypeptide.
Collapse
Affiliation(s)
- M M Hussain
- Department of Pathology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA.
| | | | | |
Collapse
|
50
|
Benoist F, Grand-Perret T. Co-translational degradation of apolipoprotein B100 by the proteasome is prevented by microsomal triglyceride transfer protein. Synchronized translation studies on HepG2 cells treated with an inhibitor of microsomal triglyceride transfer protein. J Biol Chem 1997; 272:20435-42. [PMID: 9252352 DOI: 10.1074/jbc.272.33.20435] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We studied the effect of inhibition of microsomal triglyceride transfer protein (MTP) on apolipoprotein (apo) B100 translation and secretion using HepG2 cells. The MTP-mediated lipid transfer activity was reduced using a specific MTP inhibitor. ApoB100 translation was synchronized by treatment with puromycin prior to L-[35S]methionine pulse-chase labeling. During the first 4 min of chase, synthesis of apoB polypeptides the size of 100-200 kDa was insensitive to the inhibitor, suggesting that inhibition of MTP did not affect the initiation of apoB100 translation. After 15 min of chase, the 100-200-kDa species were chased into polypeptides larger than 320 kDa (i.e. apoB65 or 65% of full-length apoB100) in both control and inhibitor-treated cells. However, the amount of these polypeptides decreased (by 36% for apoB65-75, by 64% for apoB75-85, by 76% for apoB85-95, and by 77% for apoB100) upon MTP inhibition. No accumulation of smaller polypeptides was observed, but total immunoprecipitable apoB radioactivity was decreased suggesting that apoB could undergo co-translational degradation when MTP activity was reduced. Inhibitors of the multicatalytic proteinase complex (proteasome) such as lactacystin or MG-115 could prevent apoB co-translational degradation. Nevertheless, MG-115 could not avoid the MTP inhibitor decreasing apoB100 secretion but rather induced the accumulation of secretion-incompetent apoB100 in the cell. These results indicate that MTP activity is required during the elongation of apoB100 polypeptides, particularly at the sequences downstream of carboxyl terminus of apoB65. Co-translational degradation might constitute a more general mechanism of early quality control for large or complex proteins.
Collapse
Affiliation(s)
- F Benoist
- Laboratoire Glaxo Wellcome, Centre de Recherche, 25 avenue du Quebec, ZA de Courtaboeuf, 91951 Les Ulis cedex, France
| | | |
Collapse
|