1
|
Colasante C, Chen J, Ahlemeyer B, Baumgart-Vogt E. Peroxisomes in cardiomyocytes and the peroxisome / peroxisome proliferator-activated receptor-loop. Thromb Haemost 2017; 113:452-63. [DOI: 10.1160/th14-06-0497] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/18/2014] [Indexed: 01/29/2023]
Abstract
SummaryIt is well established that the heart is strongly dependent on fatty acid metabolism. In cardiomyocytes there are two distinct sites for the β-oxidisation of fatty acids: the mitochondrion and the peroxisome. Although the metabolism of these two organelles is believed to be tightly coupled, the nature of this relationship has not been fully investigated. Recent research has established the significant contribution of mitochondrial function to cardiac ATP production under normal and pathological conditions. In contrast, limited information is available on peroxisomal function in the heart. This is despite these organelles harbouring metabolic pathways that are potentially cardioprotective, and findings that patients with peroxisomal diseases, such as adult Refsum’s disease, can develop heart failure. In this article, we provide a comprehensive overview on the current knowledge of peroxisomes and the regulation of lipid metabolism by PPARs in cardiomyocytes. We also present new experimental evidence on the differential expression of peroxisome-related genes in the heart chambers and demonstrate that even a mild peroxisomal biogenesis defect (Pex11α-/- ) can induce profound alterations in the cardiomyocyte’s peroxisomal compartment and related gene expression, including the concomitant deregulation of specific PPARs. The possible impact of peroxisomal dysfunction in the heart is discussed and a model for the modulation of myocardial metabolism via a peroxisome/PPAR-loop is proposed.
Collapse
|
2
|
Bhaskaran S, Unnikrishnan A, Ranjit R, Qaisar R, Pharaoh G, Matyi S, Kinter M, Deepa SS. A fish oil diet induces mitochondrial uncoupling and mitochondrial unfolded protein response in epididymal white adipose tissue of mice. Free Radic Biol Med 2017; 108:704-714. [PMID: 28455142 DOI: 10.1016/j.freeradbiomed.2017.04.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 01/14/2023]
Abstract
White adipose tissue (WAT) mitochondrial dysfunction is linked to the pathogenesis of obesity driven insulin resistance. Dietary conditions that alter fat mass are known to affect white adipocyte mitochondrial function, however, the impact of high calorie diets on white adipocyte mitochondria is not fully understood. The aim of this study is to assess the effect of a diet rich in saturated or polyunsaturated fat on mitochondrial unfolded protein response (UPRmt), a retrograde signaling response that maintains mitochondrial homeostasis, in epididymal WAT (eWAT). Mice were fed a low fat diet (LFD), saturated fat diet (SFD) or fish oil (unsaturated fat diet, UFD) and assessed changes in eWAT mitochondria. Compared to mice fed a LFD, SFD-fed mice have reduced mitochondrial biogenesis markers, mitochondrial fatty acid oxidation enzymes and TCA cycle enzymes, suggesting an impaired mitochondrial function that could contribute to increased fat mass. In contrast, isocaloric UFD-fed mice have increased expression of mitochondrial uncoupling protein 1 (UCP1) and peroxisomal fatty acid oxidation enzymes suggesting that elevated mitochondrial uncoupling and peroxisomal fatty acid oxidation could contribute to the reduction in fat mass. Interestingly, expression of UPRmt-associated proteins caseinolytic peptidase (ClpP) and heat shock protein 60 (Hsp60) are induced by UFD, whereas SFD reduced the expression of ClpP. Based on our data, we propose that induction of UPRmt helps to preserve a functional mitochondria and efficient utilization of fat by UFD whereas a dampened UPRmt response might impair mitochondrial function and promote fat accumulation by SFD. Thus, our findings suggest a potential role of UPRmt in mediating the beneficial effects of fish oil.
Collapse
Affiliation(s)
- Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Archana Unnikrishnan
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rojina Ranjit
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Rizwan Qaisar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Gavin Pharaoh
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stephanie Matyi
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sathyaseelan S Deepa
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
3
|
Rindler PM, Plafker SM, Szweda LI, Kinter M. High dietary fat selectively increases catalase expression within cardiac mitochondria. J Biol Chem 2012. [PMID: 23204527 DOI: 10.1074/jbc.m112.412890] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Obesity is a predictor of diabetes and cardiovascular disease. One consequence of obesity is dyslipidemia characterized by high blood triglycerides. It has been proposed that oxidative stress, driven by utilization of lipids for energy, contributes to these diseases. The effects of oxidative stress are mitigated by an endogenous antioxidant enzyme network, but little is known about its response to high fat utilization. Our experiments used a multiplexed quantitative proteomics method to measure antioxidant enzyme expression in heart tissue in a mouse model of diet-induced obesity. This experiment showed a rapid and specific up-regulation of catalase protein, with subsequent assays showing increases in activity and mRNA. Catalase, traditionally considered a peroxisomal protein, was found to be present in cardiac mitochondria and significantly increased in content and activity during high fat feeding. These data, coupled with the fact that fatty acid oxidation enhances mitochondrial H(2)O(2) production, suggest that a localized catalase increase is needed to consume excessive mitochondrial H(2)O(2) produced by increased fat metabolism. To determine whether the catalase-specific response is a common feature of physiological conditions that increase blood triglycerides and fatty acid oxidation, we measured changes in antioxidant expression in fasted versus fed mice. Indeed, a similar specific catalase increase was observed in mice fasted for 24 h. Our findings suggest a fundamental metabolic process in which catalase expression is regulated to prevent damage while preserving an H(2)O(2)-mediated sensing of diet composition that appropriately adjusts insulin sensitivity in the short term as needed to prioritize lipid metabolism for complete utilization.
Collapse
Affiliation(s)
- Paul M Rindler
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
4
|
Hirako S, Kim HJ, Shimizu S, Chiba H, Matsumoto A. Low-dose fish oil consumption prevents hepatic lipid accumulation in high cholesterol diet fed mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:13353-13359. [PMID: 22066791 DOI: 10.1021/jf203761t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We examined the effects of low-dose fish oil ingestion on hepatic lipid accumulation caused after high cholesterol feeding in C57BL/6J mice. The mice were fed purified experimental diets consisting of 20 energy % (en%) safflower oil (SO or SO/CH), 2 en% fish oil + 18 en% safflower oil (2FO or 2FO/CH), or 5 en% fish oil + 15 en% safflower oil (5FO or 5FO/CH) with or without 2 weight % (wt %) cholesterol for 8 weeks. Hepatic triglyceride and total cholesterol contents were significantly lower in groups that were fed diets containing fish oil and cholesterol than in those that were fed safflower oil and cholesterol. The hepatic mRNA levels of fatty acid synthase (FAS) were lower in groups fed cholesterol or fish oil. Fatty acid oxidation-related hepatic gene expressions were higher in fish oil-fed groups. Fecal cholesterol excretion was higher in all cholesterol-fed groups; cholesterol excretion was high in groups fed fish oil and cholesterol. These results suggest that low-dose fish oil diets improve lipid metabolism by modifying the expression of lipid metabolism-related genes in the liver and increasing fecal cholesterol excretion.
Collapse
Affiliation(s)
- Satoshi Hirako
- Department of Clinical Dietetics and Human Nutrition, Josai University, Faculty of Pharmaceutical Sciences, Keyakidai 1-1, Sakado, Saitama 350-0295, Japan
| | | | | | | | | |
Collapse
|
5
|
Islinger M, Cardoso MJR, Schrader M. Be different--the diversity of peroxisomes in the animal kingdom. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:881-97. [PMID: 20347886 DOI: 10.1016/j.bbamcr.2010.03.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/15/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
Abstract
Peroxisomes represent so-called "multipurpose organelles" as they contribute to various anabolic as well as catabolic pathways. Thus, with respect to the physiological specialization of an individual organ or animal species, peroxisomes exhibit a functional diversity, which is documented by significant variations in their proteome. These differences are usually regarded as an adaptational response to the nutritional and environmental life conditions of a specific organism. Thus, human peroxisomes can be regarded as an in part physiologically unique organellar entity fulfilling metabolic functions that differ from our animal model systems. In line with this, a profound understanding on how peroxisomes acquired functional heterogeneity in terms of an evolutionary and mechanistic background is required. This review summarizes our current knowledge on the heterogeneity of peroxisomal physiology, providing insights into the genetic and cell biological mechanisms, which lead to the differential localization or expression of peroxisomal proteins and further gives an overview on peroxisomal biochemical pathways, which are specialized in different animal species and organs. Moreover, it addresses the impact of proteome studies on our understanding of differential peroxisome function describing the utility of mass spectrometry and computer-assisted algorithms to identify peroxisomal target sequences for the detection of new organ- or species-specific peroxisomal proteins.
Collapse
Affiliation(s)
- M Islinger
- Department of Anatomy and Cell Biology, Ruprecht-Karls University, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
6
|
Zou Y, Du H, Yin M, Zhang L, Mao L, Xiao N, Ren G, Zhang C, Pan J. Effects of high dietary fat and cholesterol on expression of PPAR alpha, LXR alpha, and their responsive genes in the liver of apoE and LDLR double deficient mice. Mol Cell Biochem 2008; 323:195-205. [PMID: 19067122 DOI: 10.1007/s11010-008-9982-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/28/2008] [Indexed: 11/28/2022]
Abstract
The significance of transcription factors PPAR alpha, LXR alpha, and their responsive/target genes for the pathogenesis of atherosclerosis in apolipoprotein E and low-density lipoprotein receptor double deficient (AL) mice fed with high fat and cholesterol (HF) diet were studied. C57BL/6J wild-type (WT) mice were used as control to the AL mice. Plasma lipid metabolites and morphological atherosclerotic lesions in aortic wall were determined. Semi- and real-time quantitative RT-PCR were used to measure gene expression patterns between AL mice and the controls, which were fed with HF or normal chow diet. The results showed that in AL mice fed with HF diet, plasma lipid levels, hepatic lipid accumulation, and atherogenesis together with upregulated PPAR alpha, LXR alpha, and their target genes, i.e., FAT, SCD1, FAS, Angptl3, and apoB100 significantly increased in a 12-week long feeding period. In contrast, apoAI, apoAIV, apoF, LPL, and SR-BI were decreased compared to chow-fed group. In WT mice, PPAR alpha, LXR alpha, FAS, Angpt13, CPT1, apoF, ACOX1, LPL, and SR-BI were increased with HF treatment, while apoAI and apoAIV were decreased markedly. The different changes of lipid metabolism-related genes between AL and WT mice, fed with HF diet or chow diet indicated that the mechanisms of dietary effects on gene mutant mice are different from those of intact WT mice. Since lipid metabolic system defected genetically in AL mice, we suggest that the changes of PPAR alpha, LXR alpha, and their target genes aggravated lipid metabolic disorder in the liver and further accelerated the development of atherosclerosis on a stress of HF diet feeding in AL mice.
Collapse
Affiliation(s)
- Yanyan Zou
- The Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Vijaya Padma V, Shyamala Devi CS, Ramkumar KM. Effect of fish oil pretreatment on isoproterenol-induced changes in myocardial membrane phospholipids. Nutrition 2006; 22:1171-6. [PMID: 17027232 DOI: 10.1016/j.nut.2006.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 08/03/2006] [Accepted: 08/03/2006] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In the present study, the protective effect of fish oil treatment on the fatty acid composition in isoproterenol (IPH)-induced myocardial infarction was studied in male albino Wistar rats. METHODS Rats were injected for 2 consecutive days with IPH (60 mg/kg body weight) at 24-h intervals to induce myocardial infarction. Fish oil was administered orally at a dose of 0.05 mL/d for 45 d, after which serum and heart tissue were assayed for lipid profile, lipoprotein changes, and myocardial membrane phospholipid fatty acid composition. RESULTS Biochemical assessment of myocardial infarction was done by measuring the activities of creatinine kinase and lactate dehydrogenase, which were significantly elevated in the rats administered with IPH. Further, the administration of IPH modified the fatty acid composition and analysis of fatty acids showed there was an increase in the omega-3/omega-6 ratio in phospholipid pool. In addition, increased levels of total cholesterol, free cholesterol, ester cholesterol, phospholipids, triacylglycerols and free fatty acid was observed in serum and heart tissue of IPH-induced rats. The fish oil treatment for a period of 45 d decreased the levels of cardiac markers (creatinine kinase and lactate dehydrogenase) and reversed the biochemical lesions induced by IPH. CONCLUSION Our study suggests that fish oil treatment has a hypolipidemic effect and has potential use in the treatment of myocardial infarction.
Collapse
Affiliation(s)
- V Vijaya Padma
- Department of Biochemistry and Molecular Biology, University of Madras, Chennai, India.
| | | | | |
Collapse
|
8
|
Delaney J, Hodson MP, Thakkar H, Connor SC, Sweatman BC, Kenny SP, McGill PJ, Holder JC, Hutton KA, Haselden JN, Waterfield CJ. Tryptophan-NAD+ pathway metabolites as putative biomarkers and predictors of peroxisome proliferation. Arch Toxicol 2004; 79:208-23. [PMID: 15838709 DOI: 10.1007/s00204-004-0625-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 08/10/2004] [Indexed: 10/26/2022]
Abstract
The present study was designed to provide further information about the relevance of raised urinary levels of N-methylnicotinamide (NMN), and/or its metabolites N-methyl-4-pyridone-3-carboxamide (4PY) and N-methyl-2-pyridone-3-carboxamide (2PY), to peroxisome proliferation by dosing rats with known peroxisome proliferator-activated receptor alpha (PPARalpha) ligands [fenofibrate, diethylhexylphthalate (DEHP) and long-chain fatty acids (LCFA)] and other compounds believed to modulate lipid metabolism via PPARalpha-independent mechanisms (simvastatin, hydrazine and chlorpromazine). Urinary NMN was correlated with standard markers of peroxisome proliferation and serum lipid parameters with the aim of establishing whether urinary NMN could be used as a biomarker for peroxisome proliferation in the rat. Data from this study were also used to validate a previously constructed multivariate statistical model of peroxisome proliferation (PP) in the rat. The predictive model, based on 1H nuclear magnetic resonance (NMR) spectroscopy of urine, uses spectral patterns of NMN, 4PY and other endogenous metabolites to predict hepatocellular peroxisome count. Each treatment induced pharmacological (serum lipid) effects characteristic of their class, but only fenofibrate, DEHP and simvastatin increased peroxisome number and raised urinary NMN, 2PY and 4PY, with simvastatin having only a transient effect on the latter. These compounds also reduced mRNA expression for aminocarboxymuconate-semialdehyde decarboxylase (ACMSDase, EC 4.1.1.45), the enzyme believed to be involved in modulating the flux of tryptophan through this pathway, with decreasing order of potency, fenofibrate (-10.39-fold) >DEHP (-3.09-fold) >simvastatin (-1.84-fold). Of the other treatments, only LCFA influenced mRNA expression of ACMSDase (-3.62-fold reduction) and quinolinate phosphoribosyltransferase (QAPRTase, EC 2.4.2.19) (-2.42-fold) without any change in urinary NMN excretion. Although there were no correlations between urinary NMN concentration and serum lipid parameters, NMN did correlate with peroxisome count (r2=0.63) and acyl-CoA oxidase activity (r2=0.61). These correlations were biased by the large response to fenofibrate compared to the other treatments; nevertheless the data do indicate a relationship between the tryptophan-NAD+ pathway and PPARalpha-dependent pathways, making this metabolite a potentially useful biomarker to detect PP. In order to strengthen the observed link between the metabolites associated with the tryptophan-NAD+ pathway and more accurately predict PP, other urinary metabolites were included in a predictive statistical model. This statistical model was found to predict the observed PP in 26/27 instances using a pre-determined threshold of 2-fold mean control peroxisome count. The model also predicted a time-dependent increase in peroxisome count for the fenofibrate group, which is important when considering the use of such modelling to predict the onset and progression of PP prior to its observation in samples taken at autopsy.
Collapse
Affiliation(s)
- Jane Delaney
- Safety Assessment, GlaxoSmithKline, Park Road, Ware, Herts, SG12 0DP, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cornwell PD, De Souza AT, Ulrich RG. Profiling of hepatic gene expression in rats treated with fibric acid analogs. Mutat Res 2004; 549:131-45. [PMID: 15120967 DOI: 10.1016/j.mrfmmm.2003.12.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 12/09/2003] [Accepted: 12/10/2003] [Indexed: 04/29/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors whose ligands include fatty acids, eicosanoids and the fibrate class of drugs. In humans, fibrates are used to treat dyslipidemias. In rodents, fibrates cause peroxisome proliferation, a change that might explain the observed hepatomegaly. In this study, rats were treated with multiple dose levels of six fibric acid analogs (including fenofibrate) for up to two weeks. Pathological analysis identified hepatocellular hypertrophy as the only sign of hepatotoxicity, and only one compound at the highest dose caused any significant increase in serum ALT or AST activity. RNA profiling revealed that the expression of 1288 genes was related to dose or length of treatment and correlated with hepatocellular hypertrophy. This gene list included expression changes that were consistent with increased mitochondrial and peroxisomal beta-oxidation, increased fatty acid transport, increased hepatic uptake of LDL-cholesterol, decreased hepatic uptake of glucose, decreased gluconeogenesis and decreased glycolysis. These changes are likely linked to many of the clinical benefits of fibrate drugs, including decreased serum triglycerides, decreased serum LDL-cholesterol and increased serum HDL-cholesterol. In light of the fact that all six compounds stimulated similar or identical changes in the expression of this set of 1288 genes, these results indicate that hepatomegaly is due to PPARalpha activation, although signaling through other receptors (e.g. PPARgamma, RXR) or through non-receptor pathways cannot be excluded.
Collapse
Affiliation(s)
- Paul D Cornwell
- Rosetta Inpharmatics-Merck Research Laboratories, 401 Terry Ave N, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
10
|
Hong DD, Takahashi Y, Kushiro M, Ide T. Divergent effects of eicosapentaenoic and docosahexaenoic acid ethyl esters, and fish oil on hepatic fatty acid oxidation in the rat. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1635:29-36. [PMID: 14642774 DOI: 10.1016/j.bbalip.2003.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The physiological activity of fish oil, and ethyl esters of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) affecting hepatic fatty acid oxidation was compared in rats. Five groups of rats were fed various experimental diets for 15 days. A group fed a diet containing 9.4% palm oil almost devoid of n-3 fatty acids served as a control. The test diets contained 4% n-3 fatty acids mainly as EPA and DHA in the form of triacylglycerol (9.4% fish oil) or ethyl esters (diets containing 4% EPA ethyl ester, 4% DHA ethyl ester, and 1% EPA plus 3% DHA ethyl esters). The lipid content of diets containing EPA and DHA ethyl esters was adjusted to 9.4% by adding palm oil. The fish oil diet and ethyl ester diets, compared to the control diet containing 9.4% palm oil, increased activity and mRNA levels of hepatic mitochondrial and peroxisomal fatty acid oxidation enzymes, though not 3-hydroxyacyl-CoA dehydrogenase activity. The extent of the increase was, however, much greater with the fish oil than with EPA and DHA ethyl esters. EPA and DHA ethyl esters, compared to the control diet, increased 3-hydroxyacyl-CoA dehydrogenase activity, but fish oil strongly reduced it. It is apparent that EPA and DHA in the form of ethyl esters cannot mimic the physiological activity of fish oil at least in affecting hepatic fatty acid oxidation in rat.
Collapse
Affiliation(s)
- Dang Diem Hong
- Division of Physiology and Nutrition, Laboratory of Nutritional Biochemistry, National Food Research Institute, 2-1-12 Kannondai, Tsukuba 305-8642, Japan
| | | | | | | |
Collapse
|
11
|
KIMURA F, NATSUSAKA J, ENDO Y, FUJIMOTO K. Effect of Dose of Fat and Fat Content of the Maintenance Diet on Postprandial Serum Triglyceride in Rats. J Oleo Sci 2004. [DOI: 10.5650/jos.53.515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Devos S, De Bosscher K, Staels B, Bauer E, Roels F, Vanden Berghe W, Haegeman G, Hooghe R, Hooghe-Peters EL. Inhibition of cytokine production by the herbicide atrazine. Search for nuclear receptor targets. Biochem Pharmacol 2003; 65:303-8. [PMID: 12504806 DOI: 10.1016/s0006-2952(02)01507-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hematological toxicity of the commonly used triazine herbicides is a cause for concern. In a search for molecular targets of these compounds, as their effects paralleled those seen with dexamethasone (DEX), we first looked for interaction with the glucocorticoid receptor. In contrast to the effects on proliferation and cytokine production of DEX, those induced by atrazine were not prevented by the glucocorticoid antagonist RU486. Also, whereas DEX was able to inhibit the promoter activity of genes regulated by NF-kappaB, atrazine failed to do so. We next looked for interaction with members of the peroxisome proliferator-activated receptor (PPAR) family. No peroxisome proliferation was observed in the liver or kidneys of mice treated with atrazine. Moreover, no PPAR-mediated induction of promoter activity was seen on targets of PPARalpha, PPARgamma, or PPARdelta. Similarly, neither atrazine nor simazine were able to stimulate RORalpha-mediated promoter activity. Finally, no binding of atrazine to the AR was observed. In conclusion, the effects of atrazine-type herbicides most probably do not result from interaction with the above-mentioned nuclear receptors.
Collapse
Affiliation(s)
- Sabrina Devos
- Pharmacology Department (FARC), Medical School, Vrije Universiteit Brussel, 103 Laarbeeklaan, B-1090 Brussel, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Latruffe N, Nicolas-Francès V, Clemencet MC, Hansmannel F, Chevillard G, Etienne P, Le Jossic-Corcos C, Cherkaoui Malki M. Gene Regulation of Peroxisomal Enzymes by Nutrients, Hormones and Nuclear Signalling Factors in Animal and Human Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 544:225-36. [PMID: 14713234 DOI: 10.1007/978-1-4419-9072-3_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Norbert Latruffe
- Laboratory of Cell Molecular Biology, GDR-CNRS no 2583, University of Burgundy, Faculty of Life Sciences, 6. Bd Gabriel-21000 Dijon, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hamilton JS, Powell LA, McMaster C, McMaster D, Trimble ER. Interaction of glucose and long chain fatty acids (C18) on antioxidant defences and free radical damage in porcine vascular smooth muscle cells in vitro. Diabetologia 2003; 46:106-14. [PMID: 12637989 DOI: 10.1007/s00125-002-1003-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2002] [Revised: 07/24/2002] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Abnormalities of glucose and fatty acid metabolism in diabetes are believed to contribute to the development of oxidative stress and the long term vascular complications of the disease; therefore the interactions of glucose and long chain fatty acids on free radical damage and endogenous antioxidant defences were investigated in vascular smooth muscle cells. METHODS Porcine vascular smooth muscle cells were cultured in 5 mmol/l or 25 mmol/l glucose for 10 days. Fatty acids, stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and alpha-linolenic acid (18:3) were added with defatted bovine serum albumin as a carrier for the final three days. RESULTS Glucose (25 mmol/l) alone caused oxidative stress in the cells as evidenced by free radical-mediated damage to DNA, lipids, and proteins. The addition of fatty acids (0.2 mmol/l) altered the profile of free radical damage; the response was J-shaped with respect to the degree of unsaturation of each acid, and oleic acid was associated with least damage. At a lower concentration alpha-linolenic acid (0.01 mmol/l) was markedly different in that, when added to 25 mmol/l glucose it resulted in a decrease in free radical damage to DNA, lipids and proteins. This was accompanied by a marked increase in antioxidant and glutathione concentrations as well as by increased gene expression is of gamma-glutamylcysteine synthetase, the rate-limiting enzyme in glutathione synthesis. CONCLUSIONS/INTERPRETATION The results clearly show that glucose and fatty acids interact in the production of oxidative stress in vascular smooth muscle cells.
Collapse
MESH Headings
- Animals
- Antioxidants/metabolism
- Catalase/genetics
- Catalase/metabolism
- Cells, Cultured
- DNA Fragmentation/drug effects
- Fatty Acids/metabolism
- Fatty Acids/pharmacology
- Free Radicals/metabolism
- Gene Expression/drug effects
- Glucose/pharmacology
- Glutamate-Cysteine Ligase/genetics
- Glutamate-Cysteine Ligase/metabolism
- Glutathione/metabolism
- Glutathione Peroxidase/metabolism
- Glutathione Reductase/metabolism
- Malondialdehyde/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxidation-Reduction/drug effects
- Proteins/metabolism
- Superoxide Dismutase/metabolism
- Swine
Collapse
Affiliation(s)
- J S Hamilton
- Department of Clinical Biochemistry, Queen's University, Belfast, UK
| | | | | | | | | |
Collapse
|
15
|
Baybutt RC, Rosales C, Brady H, Molteni A. Dietary fish oil protects against lung and liver inflammation and fibrosis in monocrotaline treated rats. Toxicology 2002; 175:1-13. [PMID: 12049831 DOI: 10.1016/s0300-483x(02)00063-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purpose of the present study was to evaluate the effectiveness of fish oil in preventing tissue pathologies associated with monocrotaline (MCT) toxicity. Twenty-four weanling rats were randomly assigned to one of two groups: (1) 12 to a group fed a diet containing 15% (w/w) corn oil (control) and (2) 12 to a group fed a diet containing fish oil (13%) and corn oil (2%) as the source of fat. Rats were fed for 4 weeks prior to MCT treatment. Six rats in each group were subcutaneously injected with MCT and six injected with its vehicle (water) and all were continued on their respective diets. All rats were sacrificed 3 weeks after injection. In rats receiving MCT, we observed severe interstitial pneumonia, septal fibrosis, vasculitis with virtual obliteration of the lumen of the small arteries and arterioles, right ventricular hypertrophy (RVH), and hepatomegaly and hepatocyte vacuole formation. Dietary fish oil significantly reduced septal fibrosis and development of pneumonia. There was a slight, but statistically insignificant decrease in vasculitis and fish oil did not prevent RVH (pulmonary hypertension). In addition, fish oil effectively protected the MCT-treated rats from development of hepatocyte vacuoles (steatosis), hepatic inflammation and vasculitis, increased presence of fibroblasts and collagen deposition in the centrilobular and, to a lesser extent, in the periportal spaces. These results suggest that lung parenchymal inflammation can be attenuated without altering the course of development of pulmonary hypertension in the MCT model. These results also indicate that fish oil protects against inflammation and fibrosis in the lung and liver, and against hepatocyte vacuole formation in MCT-treated rats.
Collapse
Affiliation(s)
- Richard C Baybutt
- Department of Human Nutrition, Kansas State University, Justin Hall, Manhattan, KS 66502-1407, USA.
| | | | | | | |
Collapse
|
16
|
Maldonado EN, Furland NE, Pennacchiotti GL, Aveldano MI. Reversibility of the changes induced by n-3 fatty acids in mouse plasma, liver and blood cell lipids. J Nutr Biochem 2002; 13:36-46. [PMID: 11834218 DOI: 10.1016/s0955-2863(01)00193-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The changes induced by dietary n-3 fatty acids (FA) in the lipids and FA of plasma, liver and blood cells, and their reversibility, was studied in mice given a diet containing 9% fish oil (FO) for 2 weeks and then returned to, and kept for another 2 weeks on, the usual standard lab chow diet. In plasma, the concentrations of phospholipids (PL), mostly phosphatidylcholine (PC), triacylglycerols (TG), cholesterol and cholesterol esters (CE) decreased rapidly after starting the FO diet, and remained low from day 3 onwards. This decrease was concomitant with a remarkable reduction in the n-6 FA, especially 18:2n-6, not compensated for by the relative enrichment in n-3 FA induced by FO. In liver, TG and CE decreased and PL slightly increased, all of them showing reduced n-6/n-3 ratios. Sphingomyelin, which lacks polyunsaturated FA other than small amounts of 18:2 and 24:2n-6, showed altered ratios between its very long chain monoenes and saturates. In the washout phase, the most rapid event was an immediate increase in 18:2n-6 and after a few days in 20:4n-6 in plasma and liver, where most of the lipid and FA changes were reversed completely in about 10 days. In the case of blood cells even 2 weeks were insufficient for a reversal to the initial n-6/n-3 ratios. The lipid class responsible for this lack of reversibility was phosphatidylethanolamine, PC having returned to the initial fatty acid composition during the stated period.
Collapse
Affiliation(s)
- Eduardo N. Maldonado
- Instituto de Investigaciones Bioquijmicas de Bahija Blanca, Consejo Nacional de Investigaciones Cientijficas y Tecnicas, y Universidad Nacional del Sur, 8000, Bahija Blanca, Argentina
| | | | | | | |
Collapse
|
17
|
Dallongeville J, Baugé E, Tailleux A, Peters JM, Gonzalez FJ, Fruchart JC, Staels B. Peroxisome proliferator-activated receptor alpha is not rate-limiting for the lipoprotein-lowering action of fish oil. J Biol Chem 2001; 276:4634-9. [PMID: 11050100 DOI: 10.1074/jbc.m008809200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Similar to fibrate hypolipidemic drugs, long chain polyunsaturated fatty acids contained in fish oil are activators of peroxisome proliferator-activated receptor alpha (PPARalpha). The goal of this study was to assess the contribution of PPARalpha in mediating the effect of fish oil on plasma lipid, lipoprotein, and apolipoprotein levels. To this end, PPARalpha-deficient mice and wild-type littermates were fed isocaloric fish oil or coconut oil diets, the content of which varied reciprocally between 0, 3, 7, and 10% for 1 week. In both wild-type and PPARalpha-deficient mice, fish oil feeding was associated with a dose-dependent decrease in triglycerides, cholesterol, and phospholipids associated with lower levels of very low density lipoprotein (VLDL) triglycerides and high density lipoprotein (HDL) cholesterol. The lowering of triglycerides and VLDL triglycerides was associated with a significant decrease of plasma apoC-III in both genotypes. Fish oil treatment did not influence hepatic apoC-III mRNA levels in either genotype indicating that apoC-III is not under transcriptional control by fish oil. The lowering of HDL cholesterol observed in both genotypes was associated with reduced plasma apoA-II without changes in liver apoA-II mRNA levels. In contrast, plasma apoA-I and liver apoA-I mRNA levels were decreased in wild-type but not in PPARalpha-deficient mice after fish oil feeding indicating that PPARalpha contributes to the effect of fish oil on apoA-I gene expression. In conclusion, PPARalpha is not rate-limiting for fish oil to exert its triglyceride- and HDL-lowering action. Furthermore, PPARalpha mediates, at least partly, the decrease of apoA-I after fish oil treatment, whereas apoC-III and apoA-II levels are affected in a PPARalpha-independent manner. Altogether, these results show major molecular differences in action between fibrates and fish oil providing a molecular rationale for combination treatment with these compounds.
Collapse
Affiliation(s)
- J Dallongeville
- Département d'Athérosclérose, INSERM U-508, and INSERM U-325, Institut Pasteur de Lille, 59019 Lille, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Atalay M, Laaksonen DE, Khanna S, Kaliste-Korhonen E, Hänninen O, Sen CK. Vitamin E regulates changes in tissue antioxidants induced by fish oil and acute exercise. Med Sci Sports Exerc 2000; 32:601-7. [PMID: 10731001 DOI: 10.1097/00005768-200003000-00008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Prooxidant effects of fish oil supplementation could unfavorably affect the cardiovascular benefits of fish oil. We tested the effects of 8 wk vitamin E cosupplementation with fish oil on antioxidant defenses at rest and in response to exhaustive exercise in rats. METHODS Rats (N = 80) were divided into fish oil, fish oil and vitamin E (FOVE), soy oil, and soy oil and vitamin E (SOVE) supplemented groups. For the vitamin E supplemented rats, corresponding groups (FOVE-Ex and SOVE-Ex) performed an acute bout of exhaustive exercise after the supplementation period. RESULTS Fish oil supplementation increased the activity of catalase, glutathione peroxidase, and glutathione-S-transferase in the liver and red gastrocnemius (RG) muscle. Fish oil decreased liver total glutathione (TGSH) levels. Vitamin E supplementation decreased antioxidant enzyme activities to levels at or near those in SOVE in a tissue specific pattern. Vitamin E increased TGSH in liver, heart, and RG. Regression analysis showed TGSH to be a negative determinant of protein oxidative damage as measured by protein carbonyl levels in both liver and RG. Catalase activity was associated with liver lipid peroxidation as measured by thiobarbituric acid-reacting substances. The exercise-induced decrease in hepatic TGSH tended to be less in FOVE versus SOVE. Exhaustive exercise also modulated tissue antioxidant enzymes. CONCLUSIONS Vitamin E supplementation markedly decreased fish oil induced antioxidant enzyme activities in all tissues. Sparing of glutathione may be an important mechanism by which vitamin E decreased tissue protein oxidative damage.
Collapse
Affiliation(s)
- M Atalay
- Department of Physiology and National Laboratory Animal Center University of Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
19
|
De Craemer D, Van den Branden C, Fontaine M, Vamecq J. Effects of Lorenzo's Oil on peroxisomes in healthy mice. Prostaglandins Other Lipid Mediat 1998; 55:237-44. [PMID: 9644114 DOI: 10.1016/s0090-6980(98)00023-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated peroxisomal alterations in mice treated with different doses of Lorenzo's Oil (a therapy for X-linked adrenoleukodystrophy patients) for up to 100 days. Hepatic erucic acid levels were already significantly increased 2.2-fold and 2.6-fold in mice treated with 10% and 20% Lorenzo's Oil for 21 days, respectively. No lipidosis was found in liver, myocardium and kidney of any of the treated mice. While hepatic catalase, lauroyl-CoA oxidase and glycolate oxidase, and renal catalase activities were not induced by either diet, myocardial catalase activity was increased in most groups. This suggests that the mechanism of the effect of Lorenzo's Oil in X-linked adrenoleukodystrophy patients may not be a direct effect on the peroxisomes.
Collapse
Affiliation(s)
- D De Craemer
- Menselijke Anatomie, Vrije Universiteit Brussel, Belgium
| | | | | | | |
Collapse
|
20
|
De Craemer D, Pauwels M, Van den Branden C. Morphological adaptations of human liver peroxisomes in cholestasis. APMIS 1998; 106:339-44. [PMID: 9531968 DOI: 10.1111/j.1699-0463.1998.tb01355.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Part of the bile acid synthesis takes place in peroxisomes. An altered enterohepatic circulation of bile acids might influence peroxisomal beta-oxidation enzymes and peroxisomal morphology. We performed a morphological and morphometric investigation of peroxisomes in liver biopsy samples of eight patients with cholestasis of different origin: graft versus host reaction (n = 1), obstruction of the bile flow (n = 3), and drug-induced cholestatic hepatitis (n = 4). Peroxisomes were identified using catalase cytochemistry. They were regularly shaped and showed individual differences in electron density. A perinuclear distribution was observed in a variable number of hepatocytes in each sample. Morphometric analysis of peroxisomes revealed an increase in numerical density and surface density in all, and a decreased mean diameter in four liver samples. Based on previously obtained data in experimental animals, we hypothesize that the observed alterations in peroxisomal morphology indicate an enhanced metabolic activity of the enzymes in the peroxisomal matrix. Among them are enzymes involved in bile acid synthesis.
Collapse
|
21
|
De Craemer D, Verbeelen D, Van den Branden C. Morphometric characteristics of peroxisomes in rats with chronic renal failure induced by five-sixth nephrectomy. APMIS 1997; 105:631-6. [PMID: 9298102 DOI: 10.1111/j.1699-0463.1997.tb05064.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An increased H2O2 production and a decreased activity of several peroxisomal oxidases have previously been reported in kidneys of rats with five-sixth nephrectomy, a model for chronic renal failure. We investigated the morphological and morphometric characteristics of peroxisomes, the organelles in which an important part of cellular H2O2 metabolism is localized, in remnant kidneys 16 weeks after operation. The vast majority of renal peroxisomes were found in the epithelial cells of proximal tubules. The organelles were distributed throughout the cells. We observed a significant increase in size, perimeter and volume density of the peroxisomes as compared to normal kidneys. Elongated peroxisomes were less frequent. An inverse linear correlation between mean size and number of peroxisomes was found. In cortex homogenates, the activity of catalase the peroxisomal H2O2-scavenging enzyme, was significantly decreased and was inversely proportional to the mean peroxisomal diameter. The observed morphological adaptations are believed to create an unfavorable situation for the enzymatic activities in remnant kidney peroxisomes.
Collapse
Affiliation(s)
- D De Craemer
- Menselijke Anatomie & Embryologie. Vrije Universiteit Brussel, Belgium
| | | | | |
Collapse
|
22
|
Sen CK, Atalay M, Agren J, Laaksonen DE, Roy S, Hänninen O. Fish oil and vitamin E supplementation in oxidative stress at rest and after physical exercise. J Appl Physiol (1985) 1997; 83:189-95. [PMID: 9216963 DOI: 10.1152/jappl.1997.83.1.189] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fish oil supplementation and physical exercise may induce oxidative stress. We tested the effects of 8 wk of alpha-tocopherol (vitamin E) and fish oil (FO) supplementation on resting and exercise-induced oxidative stress. Rats (n = 80) were divided into groups supplemented with FO, FO and vitamin E (FOVE), soy oil (SO), and SO and vitamin E (SOVE), and for FOVE and SOVE they were divided into corresponding exercise groups (FOVE-Ex and SOVE-Ex). Lipid peroxidation [thiobarbituric acid-reacting substances (TBARS)] was 33% higher in FO compared with SO in the liver, but oxidative protein damage (carbonyl levels) remained similar in both liver and red gastrocnemius muscle (RG). Vitamin E supplementation, compared with FO and SO, markedly decreased liver and RG TBARS, but liver TBARS remained 32% higher in FOVE vs. SOVE. Vitamin E also markedly decreased liver and RG protein carbonyl levels, although levels in FOVE and SOVE were similar. Exercise increased liver and RG TBARS and RG protein carbonyl levels markedly, with similar levels in FOVE-Ex and SOVE-Ex. FO increased lipid peroxidation but not protein oxidation in a tissue-specific manner. Vitamin E markedly decreased lipid peroxidation and protein oxidation in both FOVE and SOVE, although liver lipid peroxidation remained higher in FOVE. Despite higher levels of hepatic lipid peroxidation at rest in FOVE compared with SOVE, liver appeared to be relatively less susceptible to exercise-induced oxidative stress in FOVE.
Collapse
Affiliation(s)
- C K Sen
- Department of Physiology, Faculty of Medicine, University of Kuopio, 70211 Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
23
|
De Craemer D, Pauwels M, Van den Branden C. Dietary docosahexaenoic acid has little effect on peroxisomes in healthy mice. Lipids 1996; 31:1157-61. [PMID: 8934448 DOI: 10.1007/bf02524290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
NMRI mice were fed diets supplemented with 0.05, 0.2, or 2% (w/w) docosahexaenoic acid (DHA), a polyunsaturated fatty acid present in fish oil, for 3 d, 3 wk, or 3 mon. The doses of DHA were chosen to supply the mice with concentrations of DHA which approximate those that have been reported to be beneficial to patients with peroxisomal disease. Diets containing 0.05 or 0.2% DHA did not change hepatic, myocardial, and renal catalase (EC 1.11.1.6) activity except for a slight but significant increase (to 120%) in myocardial catalase activity in mice treated with the 0.05% DHA diet for 3 mon. A diet with 2% DHA induced myocardial catalase activity to 150% after both 3 d and 3 wk of administration. In the liver of mice fed this diet for 3 wk, hepatic catalase activity was increased to 140% while no induction of palmitoyl-CoA oxidase (EC 1.3.99.3), urate oxidase (EC 1.7.3.3), and L-alpha-hydroxyisovalerate oxidase (EC 1.1.3.a) was observed. With the light microscope, no changes in peroxisomal morphology were visually evaluated in catalase stained sections of liver, myocardium, and kidney of mice fed either diet. Our results show that in healthy mice a low dietary DHA dose (< 0.2%; this corresponds to a dose prescribed to peroxisomal patients) has no effect on several hepatic peroxisomal H2O2-producing enzymes, including the rate-limiting enzyme of the peroxisomal fatty acid beta-oxidation. This may indicate that such a DHA dose will not add a strong load on the often disturbed fatty acid metabolism in the liver of patients with peroxisomal disorders.
Collapse
Affiliation(s)
- D De Craemer
- Menselijke Anatomie & Embryologie, Vrije Universiteit Brussel, Belgium
| | | | | |
Collapse
|
24
|
De Craemer D, Pauwels M, Van den Branden C. Morphometric characteristics of human hepatocellular peroxisomes in alcoholic liver disease. Alcohol Clin Exp Res 1996; 20:908-13. [PMID: 8865967 DOI: 10.1111/j.1530-0277.1996.tb05270.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatocellular peroxisomes harbor one of the metabolic pathways for ethanol metabolism (i.e., catalase in the presence of H2O2-generating enzymes). We studied the morphometric characteristics of these organelles in 26 biopsy samples of patients with different alcohol-induced lesions (12 with steatosis, 5 with hepatitis, and 9 with cirrhosis) and compared the findings with those obtained in seven control livers. All 33 human liver biopsy samples were stained for catalase activity to facilitate peroxisomal identification. Morphometric analysis of the peroxisomes was performed on calibrated electron micrographs. The numerical density of the peroxisomes was significantly increased to 183%, whereas the mean peroxisomal diameter (dcircle) revealed a significant decrease to 89%. This resulted in a normal volume density of the peroxisomal compartment, whereas the surface density was significantly induced. Peroxisomal shape was not different between alcoholic and control livers. When alcoholic livers were divided into three subgroups according to histopathological findings, similar morphometric results were obtained when compared with control livers, although significantly was sometimes lost. No differences in peroxisomal characteristics were found among alcoholic subgroups. The mean peroxisomal diameter per human liver (alcoholic and control) was inversely correlated to the numerical density. It is concluded that the peroxisomal adaptation in human alcoholic liver is such as to create an efficient environment for a presumably increased peroxisomal metabolism.
Collapse
Affiliation(s)
- D De Craemer
- Menselijke Anatomie & Embryologie, Vrije Universiteit Brussel, Belgium
| | | | | |
Collapse
|
25
|
Schoonjans K, Staels B, Auwerx J. The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1302:93-109. [PMID: 8695669 DOI: 10.1016/0005-2760(96)00066-5] [Citation(s) in RCA: 732] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The three types of peroxisome proliferator activated receptor (PPAR), alpha, beta (or delta), and gamma, each with a specific tissue distribution, compose a subfamily of the nuclear hormone receptor gene family. Although peroxisome proliferators, including fibrates and fatty acids, activate the transcriptional activity of these receptors, only prostaglandin J2 derivatives have been identified as natural ligands of the PPAR gamma subtype, which also binds thiazolidinedione antidiabetic agents with high affinity. Activated PPARs heterodimerize with RXR and alter the transcription of target genes after binding to specific response elements or PPREs, consisting of a direct repeat of the nuclear receptor hexameric DNA core recognition motif spaced by one nucleotide. The different PPARs can be considered key messengers responsible for the translation of nutritional, pharmacological and metabolic stimuli into changes in the expression of genes, more specifically those genes involved in lipid metabolism. PPAR alpha is involved in stimulating beta-oxidation of fatty acids. In rodents, a PPAR alpha-mediated change in the expression of genes involved in fatty acid metabolism lies at the basis of the phenomenon of peroxisome proliferation, a pleiotropic cellular response, mainly limited to liver and kidney and which can lead to hepatocarcinogenesis. In addition to their role in peroxisome proliferation in rodents, PPAR is also involved in the control of HDL cholesterol levels by fibrates and fatty acids in rodents and humans. This effect is, at least partially, based on a PPAR-mediated transcriptional regulation of the major HDL apolipoproteins, apo A-I and apo A-II. The hypotriglyceridemic action of fibrates and fatty acids also involves PPARs and can be summarized as follows: (1) an increased lipolysis and clearance of remnant particles, due to changes in LPL and apo C-III levels, (2) a stimulation of cellular fatty acid uptake and their conversion to acyl-CoA derivatives by the induction of FAT, FATP and ACS activity, (3) an induction of fatty acid beta-oxidation pathways, (4) a reduction in fatty acid and triglyceride synthesis, and finally (5) a decrease in VLDL production. Hence, both enhanced catabolism of triglyceride-rich particles as well as reduced secretion of VLDL particles are mechanisms that contribute to the hypolipidemic effect of fibrates and FFAs. Whereas for PPAR beta no function so far has been identified, PPAR gamma triggers adipocyte differentiation by inducing the expression of several genes critical for adipogenesis.
Collapse
Affiliation(s)
- K Schoonjans
- L.B.R.E., Unité 325 INSERM, Département d'Athérosclérose, Institut Pasteur, Lille, France
| | | | | |
Collapse
|
26
|
Van den Munckhof RJ. In situ heterogeneity of peroxisomal oxidase activities: an update. THE HISTOCHEMICAL JOURNAL 1996; 28:401-29. [PMID: 8863047 DOI: 10.1007/bf02331433] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidases are a widespread group of enzymes. They are present in numerous organisms and organs and in various tissues, cells, and subcellular compartments, such as mitochondria. An important source of oxidases, which is investigated and discussed in this study, are the (micro)peroxisomes. Oxidases share the ability to reduce molecular oxygen during oxidation of their substrate, yielding an oxidized product and hydrogen peroxide. Besides the hydrogen peroxide-catabolizing enzyme catalase, peroxisomes contain one or more hydrogen peroxide-generating oxidases, which participate in different metabolic pathways. During the last four decades, various methods have been developed and elaborated for the histochemical localization of the activities of these oxidases. These methods are based either on the reduction of soluble electron acceptors by oxidase activity or on the capture of hydrogen peroxide. Both methods yield a coloured and/or electron dense precipitate. The most reliable technique in peroxisomal oxidase histochemistry is the cerium salt capture method. This method is based on the direct capture of hydrogen peroxide by cerium ions to form a fine crystalline, insoluble, electron dense reaction product, cerium perhydroxide, which can be visualized for light microscopy with diaminobenzidine. With the use of this technique, it became clear that oxidase activities not only vary between different organisms, organs, and tissues, but that heterogeneity also exists between different cells and within cells, i.e. between individual peroxisomes. A literature review, and recent studies performed in our laboratory, show that peroxisomes are highly differentiated organelles with respect to the presence of active enzymes. This study gives an overview of the in situ distribution and heterogeneity of peroxisomal enzyme activities as detected by histochemical assays of the activities of catalase, and the peroxisomal oxidases D-amino acid oxidase, L-alpha-hydroxy acid oxidase, polyamine oxidase and uric acid oxidase.
Collapse
Affiliation(s)
- R J Van den Munckhof
- University of Amsterdam, Department of Cell Biology and Histology, The Netherlands
| |
Collapse
|
27
|
Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)42003-6] [Citation(s) in RCA: 899] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
28
|
Martinez M. Docosahexaenoic acid therapy in docosahexaenoic acid-deficient patients with disorders of peroxisomal biogenesis. Lipids 1996; 31 Suppl:S145-52. [PMID: 8729110 DOI: 10.1007/bf02637067] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A patient with classic Zellweger syndrome was treated with docosahexaenoic acid ethyl ester (DHA-EE) for three months. Five other patients with Zellweger variants (four of them less than one-year-old and a five-year-old) were treated with DHA-EE until normalization of the DHA levels in erythrocytes. When arachidonic acid (AA) concentration decreased, AA was added to the diet. Thereafter, a combined treatment with DHA plus AA followed, in a variable proportion that allowed the high levels of DHA in erythrocytes to be maintained. In the patient with Zellweger syndrome, DHA therapy produced an increase in plasmalogen and a decrease in 26:0 and 26:1. No clear clinical improvement could be detected in this patient during the short period of treatment with DHA-EE. The most consistent clinical effect produced by DHA therapy in the other patients with disorders of peroxisomal biogenesis was visual improvement, even in those patients that were virtually blind before the treatment. In general, the developmental curve began to accelerate. The infants became more alert, acquired better visual and social contact and muscular tone improved, with the beginning of good head control. The liver tests tended to normalize and some patients showed a reduction of hepatomegaly. All these favorable changes occurred when the patients were taking the DHA-EE alone. In some of the patients, muscular tone seemed to improve further after introducing AA supplements. From the biochemical point of view, the plasmalogen levels increased in most cases in erythrocytes, and the two ratios 26:0/22:0 and 26:1/22:0 decreased in plasma. In some patients there was a tendency for 26:1 to increase in plasma and for 18:0 plasmalogen to decrease in erythrocytes when AA was introduced in the diet. The significance of these findings remains to be elucidated, but they stress the importance of strict monitoring and control of the polyunsaturated fatty acids status during DHA therapy.
Collapse
Affiliation(s)
- M Martinez
- Biomedical Research Unit, University Maternity-Children's Hospital, Barcelona, Spain
| |
Collapse
|
29
|
De Craemer D, Pauwels M, Van den Branden C. Alterations of peroxisomes in steatosis of the human liver: a quantitative study. Hepatology 1995; 22:744-52. [PMID: 7657278 DOI: 10.1002/hep.1840220309] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We investigated the hepatocellular peroxisomes in 27 patients with steatosis of the liver by means of catalase cytochemistry, light and electron microscopic study, and morphometry. Seven normal human livers were used as controls. In our patients, fatty liver was mainly associated with alcohol abuse or obesity. Indications for a slight decrease in catalase activity and for a proliferation were found in visual evaluation of the peroxisomes. Morphometric analysis showed a significant decrease in mean peroxisomal diameter (to 87%) and a simultaneous significant elevation to numerical density of the peroxisomes (to 188%); this resulted in a normal volume density and a significant increase to (133%) in surface density. However, individual differences were found. No differences in peroxisomal characteristics were found between fatty livers of different causes. A significant inverse linear correlation between mean peroxisomal diameter and numerical density was found in patients with fatty livers. Because a similar correlation was also found when control data were added to the fatty liver data, we hypothesize that the peroxisomal compartment in human fatty livers is adapted in such a way to permit the same metabolic efficiency as in control livers.
Collapse
Affiliation(s)
- D De Craemer
- Menselijke Anatomie and Embryologie, Vrije Universiteit Brussel, Belgium
| | | | | |
Collapse
|
30
|
Van den Branden C, De Craemer D, Pauwels M, Vamecq J. Peroxisomes in mice fed a diet supplemented with low doses of fish oil. Lipids 1995; 30:701-5. [PMID: 7475984 DOI: 10.1007/bf02537795] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The influence of low dietary doses (0.1 and 0.8% w/w) of a commercial fish oil preparation on peroxisomes in normal mice was studied and compared to the known strong inductive effects of high (10%) fish oil diets. Low fish oil doses were chosen to supply the mice with a concentration of docosahexaenoic acid, which was beneficial to patients with a peroxisomal disease. Peroxisomes were evaluated by cytochemical, morphometric, and enzymological techniques. The 0.1% fish oil diet had no effect on peroxisomes in liver, heart, and kidney even after prolonged treatment. The 0.8% diet did not change the peroxisomal number nor the catalase (EC 1.11.1.6) activity in the liver. Hepatic peroxisomal beta-oxidation, however, was increased by 50% after 14 d. This was accompanied by reduced peroxisomal size. The 0.8% diet also caused a small increase (+25%) in myocardial catalase activity. No effect was observed in kidneys. Our results indicate that in mice a low (< 0.8%) dietary fish oil dose has no or only a slight effect on hepatic peroxisomal beta-oxidation. This may be of particular interest to patients with a peroxisomal fatty acid beta-oxidation defect and who display a severe deficiency of docosahexaenoic acid--diets supplemented with low fish oil doses will improve the docosahexaenoic acid level without adding a strong load to the disturbed fatty acid metabolism.
Collapse
|
31
|
Van Noorden CJ. Effects of n-3 and n-6 polyunsaturated fatty acid-enriched diets on lipid metabolism in periportal and pericentral compartments of female rat liver lobules and the consequences for cell proliferation after partial hepatectomy. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)41490-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Abstract
This article reviews the available data on the role of the peroxisome in the growth, differentiation and degeneration of mammalian tissues. Developmental progressions of peroxisomes are described, along with the influence of inhibitors of peroxisomal enzymes, peroxisome proliferators and morphogenetic agents on the ontogeny of experimental animals. The role of the peroxisome in protecting tissues from damage by oxygen free radicals is also described, as is the changing role of the peroxisome in the ageing animal. Amongst the degenerative diseases which have been associated with free radical damage are cancer, atherosclerosis, muscular dystrophy, rheumatoid arthritis and the senile degeneration of brain function. In all these conditions, the major characteristics of molecular damage have been considered, along with the particular role of the peroxisome in alleviating these effects. Proposals for further research into peroxisomal function during ontogeny and the degenerative changes associated with ageing are developed, and the possibility of palliative treatments discussed.
Collapse
Affiliation(s)
- C J Masters
- Faculty of Science and Technology, Griffith University, Brisbane, Qld, Australia
| | | |
Collapse
|
33
|
Abstract
The morphological and morphometric characteristics of peroxisomes in normal human liver and the peroxisomal alterations in the liver of patients with acquired or congenital non-peroxisomal diseases are reviewed. Secondary peroxisomal changes are observed in steatosis, hepatitis and cirrhosis induced by various agents (viruses, alcohol, drugs, etc.), in cholestasis, in hepatomas, in extra-hepatic cancer with or without liver metastasis, in extrahepatic inflammatory processes, in metabolic disorders affecting metabolism of carbohydrates, lipids and lipoproteins, glycoproteins, amino acids, bilirubin or copper, and in altered thyroid hormone levels. They are recognized as a proliferation of peroxisomes (increased in number and to a lesser extent in surface density and volume density) often accompanied by a minor reduction in size (at most to 68% of the mean diameter in control livers) but very rarely by an increase in mean peroxisomal diameter, and as proliferation-related changes in shape (tails, gastruloid cisternae, funnel-like constrictions, elongation, protrusions) in at least a few of the peroxisomes. These secondary alterations of the peroxisomes are clearly distinguishable from the primary changes in peroxisomes observed in the liver of patients with congenital peroxisomal disorders.
Collapse
Affiliation(s)
- D De Craemer
- Menselijke Anatomie & Embryologie, Vrije Universiteit Brussel, Belgium
| |
Collapse
|