1
|
Hvid U, Mitarai N. Competitive advantages of T-even phage lysis inhibition in response to secondary infection. PLoS Comput Biol 2024; 20:e1012242. [PMID: 38976747 PMCID: PMC11257392 DOI: 10.1371/journal.pcbi.1012242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/18/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
T-even bacteriophages are known to employ lysis inhibition (LIN), where the lysis of an infected host is delayed in response to secondary adsorptions. Upon the eventual burst of the host, significantly more phage progenies are released. Here, we analysed the competitive advantage of LIN using a mathematical model. In batch culture, LIN provides a bigger phage yield at the end of the growth where all the hosts are infected due to an exceeding number of phage particles and, in addition, gives a competitive advantage against LIN mutants with rapid lysis by letting them adsorb to already infected hosts in the LIN state. By simulating plaque formation in a spatially structured environment, we show that, while LIN phages will produce a smaller zone of clearance, the area over which the phages spread is actually comparable to those without LIN. The analysis suggests that LIN induced by secondary adsorption is favourable in terms of competition, both in spatially homogeneous and inhomogeneous environments.
Collapse
Affiliation(s)
- Ulrik Hvid
- The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Namiko Mitarai
- The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Duan S, Zhang Z, Wang X, Sun Y, Dong Y, Ren L, Geng L, Xiu Z. Co-production of 1,3-propanediol and phage phiKpS2 from the glycerol fermentation by Klebsiella pneumoniae. BIORESOUR BIOPROCESS 2024; 11:44. [PMID: 38722416 PMCID: PMC11082122 DOI: 10.1186/s40643-024-00760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
As an alternative to antibiotics in response to antimicrobial-resistant infections, bacteriophages (phages) are garnering renewed interest in recent years. However, the massive preparation of phage is restricted using traditional pathogens as host cells, which incurs additional costs and contamination. In this study, an opportunistic pathogen, Klebsiella pneumoniae used to convert glycerol to 1,3-propanediol (1,3-PDO), was reused to prepare phage after fermentation. The phage infection showed that the fed-batch fermentation broth containing 71.6 g/L 1,3-PDO can be directly used for preparation of phage with a titer of 1 × 108 pfu/mL. Then, the two-step salting-out extraction was adopted to remove most impurities, e.g. acetic acid (93.5%), ethanol (91.5%) and cells (99.4%) at the first step, and obtain 1,3-PDO (56.6%) in the top phase as well as phage (97.4%) in the middle phase at the second step. This integrated process provides a cheap and environment-friendly manner for coproduction of 1,3-PDO and phage.
Collapse
Affiliation(s)
- Suyang Duan
- School of Bioengineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, P. R. China
| | - Zhirong Zhang
- School of Bioengineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, P. R. China
| | - Xiaoli Wang
- School of Bioengineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, P. R. China
| | - Yaqin Sun
- School of Bioengineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, P. R. China
| | - Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, P. R. China
| | - Lina Ren
- Department of Respiratory, Affiliated Dalian Municipal Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P. R. China
| | - Lili Geng
- Department of Respiratory, Affiliated Dalian Municipal Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P. R. China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, P. R. China.
| |
Collapse
|
3
|
Wang X, Leptihn S. Defense and anti-defense mechanisms of bacteria and bacteriophages. J Zhejiang Univ Sci B 2024; 25:181-196. [PMID: 38453634 PMCID: PMC10918411 DOI: 10.1631/jzus.b2300101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/24/2023] [Indexed: 03/09/2024]
Abstract
In the post-antibiotic era, the overuse of antimicrobials has led to a massive increase in antimicrobial resistance, leaving medical doctors few or no treatment options to fight infections caused by superbugs. The use of bacteriophages is a promising alternative to treat infections, supplementing or possibly even replacing antibiotics. Using phages for therapy is possible, since these bacterial viruses can kill bacteria specifically, causing no harm to the normal flora. However, bacteria have developed a multitude of sophisticated and complex ways to resist infection by phages, including abortive infection and the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system. Phages also can evolve and acquire new anti-defense strategies to continue predation. An in-depth exploration of both defense and anti-defense mechanisms would contribute to optimizing phage therapy, while we would also gain novel insights into the microbial world. In this paper, we summarize recent research on bacterial phage resistance and phage anti-defense mechanisms, as well as collaborative win-win systems involving both virus and host.
Collapse
Affiliation(s)
- Xiaoqing Wang
- School of Medicine, Lishui University, Lishui 323000, China.
| | - Sebastian Leptihn
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JZ, UK.
- HMU Health and Medical University, Am Anger 64/73- 99084 Erfurt, Germany.
| |
Collapse
|
4
|
Eriksen RS, Larsen F, Svenningsen SL, Sneppen K, Mitarai N. The dynamics of phage predation on a microcolony. Biophys J 2024; 123:147-156. [PMID: 38069473 PMCID: PMC10808037 DOI: 10.1016/j.bpj.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/23/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Phage predation is an important factor for controlling the bacterial biomass. At face value, dense microbial habitats are expected to be vulnerable to phage epidemics due to the abundance of fresh hosts immediately next to any infected bacteria. Despite this, the bacterial microcolony is a common habitat for bacteria in nature. Here, we experimentally quantify the fate of microcolonies of Escherichia coli exposed to virulent phage T4. It has been proposed that the outer bacterial layers of the colony will shield the inner layers from the phage invasion and thereby constrain the phage to the colony's surface. We develop a dynamical model that incorporates this shielding mechanism and fit the results with experimental measurements to extract important phage-bacteria interaction parameters. The analysis suggests that, while the shielding mechanism delays phage attack, T4 phage are able to diffuse so deep into the dense bacterial environment that colony-level survival of the bacterial community is challenged.
Collapse
Affiliation(s)
- Rasmus Skytte Eriksen
- The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark; Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Frej Larsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Kim Sneppen
- The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Namiko Mitarai
- The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Luthe T, Kever L, Thormann K, Frunzke J. Bacterial multicellular behavior in antiviral defense. Curr Opin Microbiol 2023; 74:102314. [PMID: 37030144 DOI: 10.1016/j.mib.2023.102314] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Multicellular behavior benefits seemingly simple organisms such as bacteria, by improving nutrient uptake, resistance to stresses, or by providing advantages in predatory interactions. Several recent studies have shown that this also extends to the defense against bacteriophages, which are omnipresent in almost all habitats. In this review, we summarize strategies conferring protection against phage infection at the multicellular level, covering secretion of small antiphage molecules or membrane vesicles, the role of quorum sensing in phage defense, the development of transient phage resistance, and the impact of biofilm components and architecture. Recent studies focusing on these topics push the boundaries of our understanding of the bacterial immune system and set the ground for an appreciation of bacterial multicellular behavior in antiviral defense.
Collapse
|
6
|
Jaroni D, Litt PK, Bule P, Rumbaugh K. Effectiveness of Bacteriophages against Biofilm-Forming Shiga-Toxigenic Escherichia coli In Vitro and on Food-Contact Surfaces. Foods 2023; 12:2787. [PMID: 37509879 PMCID: PMC10378794 DOI: 10.3390/foods12142787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Formation of biofilms on food-contact surfaces by Shiga-toxigenic Escherichia coli (STEC) can pose a significant challenge to the food industry, making conventional control methods insufficient. Targeted use of bacteriophages to disrupt these biofilms could reduce this problem. Previously isolated and characterized bacteriophages (n = 52) were evaluated against STEC biofilms in vitro and on food-contact surfaces. (2) Methods: Phage treatments (9 logs PFU/mL) in phosphate-buffered saline were used individually or as cocktails. Biofilms of STEC (O157, O26, O45, O103, O111, O121, and O145) were formed in 96-well micro-titer plates (7 logs CFU/mL; 24 h) or on stainless steel (SS) and high-density polyethylene (HDPE) coupons (9 logs CFU/cm2; 7 h), followed by phage treatment. Biofilm disruption was measured in vitro at 0, 3, and 6 h as a change in optical density (A595). Coupons were treated with STEC serotype-specific phage-cocktails or a 21-phage cocktail (3 phages/serotype) for 0, 3, 6, and 16 h, and surviving STEC populations were enumerated. (3) Results: Of the 52 phages, 77% showed STEC biofilm disruption in vitro. Serotype-specific phage treatments reduced pathogen population within the biofilms by 1.9-4.1 and 2.3-5.6 logs CFU/cm2, while the 21-phage cocktail reduced it by 4.0 and 4.8 logs CFU/cm2 on SS and HDPE, respectively. (4) Conclusions: Bacteriophages can be used to reduce STEC and their biofilms.
Collapse
Affiliation(s)
- Divya Jaroni
- Department of Animal and Food Sciences, and Food and Agricultural Products Center, Oklahoma State University, N. Monroe Street, Stillwater, OK 74078, USA
| | - Pushpinder Kaur Litt
- Department of Animal and Food Sciences, and Food and Agricultural Products Center, Oklahoma State University, N. Monroe Street, Stillwater, OK 74078, USA
| | - Punya Bule
- Department of Animal and Food Sciences, and Food and Agricultural Products Center, Oklahoma State University, N. Monroe Street, Stillwater, OK 74078, USA
| | - Kaylee Rumbaugh
- Department of Animal and Food Sciences, and Food and Agricultural Products Center, Oklahoma State University, N. Monroe Street, Stillwater, OK 74078, USA
| |
Collapse
|
7
|
Laguna-Castro M, Rodríguez-Moreno A, Llorente E, Lázaro E. The balance between fitness advantages and costs drives adaptation of bacteriophage Qβ to changes in host density at different temperatures. Front Microbiol 2023; 14:1197085. [PMID: 37303783 PMCID: PMC10248866 DOI: 10.3389/fmicb.2023.1197085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Host density is one of the main factors affecting the infective capacity of viruses. When host density is low, it is more difficult for the virus to find a susceptible cell, which increases its probability of being damaged by the physicochemical agents of the environment. Nevertheless, viruses can adapt to variations in host density through different strategies that depend on the particular characteristics of the life cycle of each virus. In a previous work, using the bacteriophage Qβ as an experimental model, we found that when bacterial density was lower than optimal the virus increased its capacity to penetrate into the bacteria through a mutation in the minor capsid protein (A1) that is not described to interact with the cell receptor. Results Here we show that the adaptive pathway followed by Qβ in the face of similar variations in host density depends on environmental temperature. When the value for this parameter is lower than optimal (30°C), the mutation selected is the same as at the optimal temperature (37°C). However, when temperature increases to 43°C, the mutation selected is located in a different protein (A2), which is involved both in the interaction with the cell receptor and in the process of viral progeny release. The new mutation increases the entry of the phage into the bacteria at the three temperatures assayed. However, it also considerably increases the latent period at 30 and 37°C, which is probably the reason why it is not selected at these temperatures. Conclusion The conclusion is that the adaptive strategies followed by bacteriophage Qβ, and probably other viruses, in the face of variations in host density depend not only on their advantages at this selective pressure, but also on the fitness costs that particular mutations may present in function of the rest of environmental parameters that influence viral replication and stability.
Collapse
|
8
|
Abedon ST. Ecology and Evolutionary Biology of Hindering Phage Therapy: The Phage Tolerance vs. Phage Resistance of Bacterial Biofilms. Antibiotics (Basel) 2023; 12:245. [PMID: 36830158 PMCID: PMC9952518 DOI: 10.3390/antibiotics12020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
As with antibiotics, we can differentiate various acquired mechanisms of bacteria-mediated inhibition of the action of bacterial viruses (phages or bacteriophages) into ones of tolerance vs. resistance. These also, respectively, may be distinguished as physiological insensitivities (or protections) vs. resistance mutations, phenotypic resistance vs. genotypic resistance, temporary vs. more permanent mechanisms, and ecologically vs. also near-term evolutionarily motivated functions. These phenomena can result from multiple distinct molecular mechanisms, many of which for bacterial tolerance of phages are associated with bacterial biofilms (as is also the case for the bacterial tolerance of antibiotics). The resulting inhibitions are relevant from an applied perspective because of their potential to thwart phage-based treatments of bacterial infections, i.e., phage therapies, as well as their potential to interfere more generally with approaches to the phage-based biological control of bacterial biofilms. In other words, given the generally low toxicity of properly chosen therapeutic phages, it is a combination of phage tolerance and phage resistance, as displayed by targeted bacteria, that seems to represent the greatest impediments to phage therapy's success. Here I explore general concepts of bacterial tolerance of vs. bacterial resistance to phages, particularly as they may be considered in association with bacterial biofilms.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA
| |
Collapse
|
9
|
Igler C. Phenotypic flux: The role of physiology in explaining the conundrum of bacterial persistence amid phage attack. Virus Evol 2022; 8:veac086. [PMID: 36225237 PMCID: PMC9547521 DOI: 10.1093/ve/veac086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages, the viruses of bacteria, have been studied for over a century. They were not only instrumental in laying the foundations of molecular biology, but they are also likely to play crucial roles in shaping our biosphere and may offer a solution to the control of drug-resistant bacterial infections. However, it remains challenging to predict the conditions for bacterial eradication by phage predation, sometimes even under well-defined laboratory conditions, and, most curiously, if the majority of surviving cells are genetically phage-susceptible. Here, I propose that even clonal phage and bacterial populations are generally in a state of continuous 'phenotypic flux', which is caused by transient and nongenetic variation in phage and bacterial physiology. Phenotypic flux can shape phage infection dynamics by reducing the force of infection to an extent that allows for coexistence between phages and susceptible bacteria. Understanding the mechanisms and impact of phenotypic flux may be key to providing a complete picture of phage-bacteria coexistence. I review the empirical evidence for phenotypic variation in phage and bacterial physiology together with the ways they have been modeled and discuss the potential implications of phenotypic flux for ecological and evolutionary dynamics between phages and bacteria, as well as for phage therapy.
Collapse
Affiliation(s)
- Claudia Igler
- Department of Environmental Systems Science, ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, Zurich 8092, Switzerland
| |
Collapse
|
10
|
Choi I, Lee JS, Han J. Application of bacteriophage to develop indicator for Escherichia coli detection and modulation of its biochemical reaction to improve detection ability: A proof-of-concept study. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Olson EG, Micciche AC, Rothrock MJ, Yang Y, Ricke SC. Application of Bacteriophages to Limit Campylobacter in Poultry Production. Front Microbiol 2022; 12:458721. [PMID: 35069459 PMCID: PMC8766974 DOI: 10.3389/fmicb.2021.458721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Campylobacter is a major foodborne pathogen with over a million United States cases a year and is typically acquired through the consumption of poultry products. The common occurrence of Campylobacter as a member of the poultry gastrointestinal tract microbial community remains a challenge for optimizing intervention strategies. Simultaneously, increasing demand for antibiotic-free products has led to the development of several alternative control measures both at the farm and in processing operations. Bacteriophages administered to reduce foodborne pathogens are one of the alternatives that have received renewed interest. Campylobacter phages have been isolated from both conventionally and organically raised poultry. Isolated and cultivated Campylobacter bacteriophages have been used as an intervention in live birds to target colonized Campylobacter in the gastrointestinal tract. Application of Campylobacter phages to poultry carcasses has also been explored as a strategy to reduce Campylobacter levels during poultry processing. This review will focus on the biology and ecology of Campylobacter bacteriophages in poultry production followed by discussion on current and potential applications as an intervention strategy to reduce Campylobacter occurrence in poultry production.
Collapse
Affiliation(s)
- Elena G. Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Andrew C. Micciche
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael J. Rothrock
- Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
12
|
Miernikiewicz P, Dąbrowska K. Endocytosis of Bacteriophages. Curr Opin Virol 2021; 52:229-235. [PMID: 34968792 DOI: 10.1016/j.coviro.2021.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 11/19/2022]
Abstract
Endocytosis is used by eukaryotic cells for ingesting external objects. Importantly, endocytosis is a major process that determines phage pharmacokinetics in vivo. Either dissemination of phages throughout the system or phage clearance engages cellular uptake of phage particles. Here we discuss phage uptake by mammalian cells, focusing on mechanisms and pathways involved. Of note, cellular uptake of phage virions was first observed in professional phagocytes, such as macrophages or granulocytes. For this reason, it was historically referred to as 'phagocytosis'. The modern definition of phagocytosis, however, identifies this process as a type of endocytosis within a larger repertoire of endocytic pathways, such as macropinocytosis, clathrin-mediated endocytosis, and caveolar endocytosis, which have all been included in the scope of this review.
Collapse
Affiliation(s)
- Paulina Miernikiewicz
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wrocław, 53-114, Poland
| | - Krystyna Dąbrowska
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wrocław, 53-114, Poland.
| |
Collapse
|
13
|
Choi I, Yoo DS, Chang Y, Kim SY, Han J. Polycaprolactone film functionalized with bacteriophage T4 promotes antibacterial activity of food packaging toward Escherichia coli. Food Chem 2020; 346:128883. [PMID: 33434864 DOI: 10.1016/j.foodchem.2020.128883] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022]
Abstract
Bacteriophages (phages) have been extensively utilized as antibacterial agents in the food industry because of their host-specificity. However, their application in polymer films has been limited because of the lack of a strong attachment method for phage to the surface. We developed an antibacterial film by covalently immobilizing Escherichia coli (E. coli)-specific phage T4 on a polycaprolactone (PCL) film. The chemical bond formation was confirmed by XPS analysis, and the covalent attachment of phage T4 effectively inhibited E. coli growth even after external stimulation of the film by sonication. When applied as a packaging film for raw beef inoculated with E. coli O157:H7, the chemically functionalized PCL film showed approximately 30-fold higher bacterial inhibitory effects than the film with physically adsorbed phage T4. These results indicate the promising application potential of chemically functionalized PCL film with phage T4 as an antibacterial food packaging material against the foodborne pathogen E. coli.
Collapse
Affiliation(s)
- Inyoung Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Da Som Yoo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yoonjee Chang
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea
| | - So Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| | - Jaejoon Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Food Biosciences and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
14
|
Echeverría-Vega A, Morales-Vicencio P, Saez-Saavedra C, Alvarez MA, Gordillo F, Del-Valle R, Solís ME, Araya R. Characterization of the Bacteriophage vB_VorS-PVo5 Infection on Vibrio ordalii: A Model for Phage-Bacteria Adsorption in Aquatic Environments. Front Microbiol 2020; 11:550979. [PMID: 33193133 PMCID: PMC7661435 DOI: 10.3389/fmicb.2020.550979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/11/2020] [Indexed: 01/24/2023] Open
Abstract
A mathematical first-order difference equation was designed to predict the dynamics of the phage-bacterium adsorption process in aquatic environments, under laboratory conditions. Our model requires knowledge of bacteria and bacteriophage concentrations and the measurements of bacterial size and velocity to predict both the number of bacteriophages adsorbed onto their bacterial host and the number of infected bacteria in a given specific time. It does not require data from previously performed adhesion experiments. The predictions generated by our model were validated in laboratory. Our model was initially conceived as an estimator for the effectiveness of the inoculation of phages as antibacterial therapy for aquaculture, is also suitable for a wide range of potential applications.
Collapse
Affiliation(s)
- Alex Echeverría-Vega
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Pablo Morales-Vicencio
- Laboratorio de Microbiología Costera, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Camila Saez-Saavedra
- Laboratorio de Microbiología Costera, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - María Alejandra Alvarez
- Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Felipe Gordillo
- Centro de Biotecnología de los Recursos Naturales, Facultad de Agronomía y Ciencias Forestales, Universidad Católica del Maule, Talca, Chile
| | - Rodrigo Del-Valle
- Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Ma. Eugenia Solís
- Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Rubén Araya
- Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
15
|
Šivec K, Podgornik A. Determination of bacteriophage growth parameters under cultivating conditions. Appl Microbiol Biotechnol 2020; 104:8949-8960. [DOI: 10.1007/s00253-020-10866-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023]
|
16
|
Simmons EL, Bond MC, Koskella B, Drescher K, Bucci V, Nadell CD. Biofilm Structure Promotes Coexistence of Phage-Resistant and Phage-Susceptible Bacteria. mSystems 2020; 5:e00877-19. [PMID: 32576653 PMCID: PMC7311319 DOI: 10.1128/msystems.00877-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/29/2020] [Indexed: 01/21/2023] Open
Abstract
Encounters among bacteria and their viral predators (bacteriophages) are among the most common ecological interactions on Earth. These encounters are likely to occur with regularity inside surface-bound communities that microbes most often occupy in natural environments. Such communities, termed biofilms, are spatially constrained: interactions become limited to near neighbors, diffusion of solutes and particulates can be reduced, and there is pronounced heterogeneity in nutrient access and physiological state. It is appreciated from prior theoretical work that phage-bacteria interactions are fundamentally different in spatially structured contexts, as opposed to well-mixed liquid culture. Spatially structured communities are predicted to promote the protection of susceptible host cells from phage exposure, and thus weaken selection for phage resistance. The details and generality of this prediction in realistic biofilm environments, however, are not known. Here, we explore phage-host interactions using experiments and simulations that are tuned to represent the essential elements of biofilm communities. Our simulations show that in biofilms, phage-resistant cells-as their relative abundance increases-can protect clusters of susceptible cells from phage exposure, promoting the coexistence of susceptible and phage-resistant bacteria under a large array of conditions. We characterize the population dynamics underlying this coexistence, and we show that coexistence is recapitulated in an experimental model of biofilm growth measured with confocal microscopy. Our results provide a clear view into the dynamics of phage resistance in biofilms with single-cell resolution of the underlying cell-virion interactions, linking the predictions of canonical theory to realistic models and in vitro experiments of biofilm growth.IMPORTANCE In the natural environment, bacteria most often live in communities bound to one another by secreted adhesives. These communities, or biofilms, play a central role in biogeochemical cycling, microbiome functioning, wastewater treatment, and disease. Wherever there are bacteria, there are also viruses that attack them, called phages. Interactions between bacteria and phages are likely to occur ubiquitously in biofilms. We show here, using simulations and experiments, that biofilms will in most conditions allow phage-susceptible bacteria to be protected from phage exposure, if they are growing alongside other cells that are phage resistant. This result has implications for the fundamental ecology of phage-bacteria interactions, as well as the development of phage-based antimicrobial therapeutics.
Collapse
Affiliation(s)
- Emilia L Simmons
- Department of Biological Sciences, Dartmouth, Hanover, New Hampshire, USA
| | - Matthew C Bond
- Department of Biological Sciences, Dartmouth, Hanover, New Hampshire, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, USA
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
17
|
Eriksen RS, Mitarai N, Sneppen K. Sustainability of spatially distributed bacteria-phage systems. Sci Rep 2020; 10:3154. [PMID: 32081858 PMCID: PMC7035299 DOI: 10.1038/s41598-020-59635-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/09/2020] [Indexed: 11/09/2022] Open
Abstract
Virulent phages can expose their bacterial hosts to devastating epidemics, in principle leading to complete elimination of their hosts. Although experiments indeed confirm a large reduction of susceptible bacteria, there are no reports of complete extinctions. We here address this phenomenon from the perspective of spatial organization of bacteria and how this can influence the final survival of them. By modelling the transient dynamics of bacteria and phages when they are introduced into an environment with finite resources, we quantify how time delayed lysis, the spatial separation of initial bacterial positions, and the self-protection of bacteria growing in spherical colonies favour bacterial survival. Our results suggest that spatial structures on the millimetre and submillimetre scale play an important role in maintaining microbial diversity.
Collapse
Affiliation(s)
| | - Namiko Mitarai
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Kim Sneppen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Barrios-Hernández ML, Pronk M, Garcia H, Boersma A, Brdjanovic D, van Loosdrecht MC, Hooijmans CM. Removal of bacterial and viral indicator organisms in full-scale aerobic granular sludge and conventional activated sludge systems. WATER RESEARCH X 2020; 6:100040. [PMID: 31909394 PMCID: PMC6940708 DOI: 10.1016/j.wroa.2019.100040] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 05/07/2023]
Abstract
The aim of this study was to evaluate the effectiveness of the novel aerobic granular sludge (AGS) wastewater treatment technology in removing faecal indicator organisms (FIOs) compared to the conventional activated sludge (CAS) treatment system. The work was carried out at two full-scale wastewater treatment plants (WWTP) in the Netherlands, Vroomshoop and Garmerwolde. Both treatment plants have a CAS and AGS system operated in parallel. The parallel treatment lines are provided with the same influent wastewater. The concentrations of the measured FIOs in the influent of the two WWTPs were comparable with reported literature values as follows: F-specific RNA bacteriophages at 106 PFU/100 mL, and Escherichia coli (E. coli), Enterococci, and Thermotolerant coliforms (TtC) at 105 to 106 CFU/100 mL. Although both systems (CAS and AGS) are different in terms of design, operation, and microbial community, both systems showed similar FIOs removal efficiency. At the Vroomshoop WWTP, Log10 removals for F-specific RNA bacteriophages of 1.4 ± 0.5 and 1.3 ± 0.6 were obtained for the AGS and CAS systems, while at the Garmerwolde WWTP, Log10 removals for F-specific RNA bacteriophages of 1.9 ± 0.7 and 2.1 ± 0.7 were found for the AGS and CAS systems. Correspondingly, E. coli, Enterococci, and TtC Log10 removals of 1.7 ± 0.7 and 1.1 ± 0.7 were achieved for the AGS and CAS systems at Vroomshoop WWTP. For Garmerwolde WWTP Log10 removals of 2.3 ± 0.8 and 1.9 ± 0.7 for the AGS and CAS systems were found, respectively. The measured difference in removal rates between the plants was not significant. Physicochemical water quality parameters, such as the concentrations of organic matter, nutrients, and total suspended solids (TSS) were also determined. Overall, it was not possible to establish a direct correlation between the physicochemical parameters and the removal of FIOs for any of the treatment systems (CAS and AGS). Only the removal of TSS could be positively correlated to the E. coli removal for the AGS technology at the evaluated WWTPs.
Collapse
Affiliation(s)
- Mary Luz Barrios-Hernández
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601, DA, Delft, the Netherlands
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands
- Corresponding author. Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands
- Royal HaskoningDHV B.V., P.O Box 1132, 3800, BC, Amersfoort, the Netherlands
| | - Hector Garcia
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601, DA, Delft, the Netherlands
| | - Arne Boersma
- Royal HaskoningDHV B.V., P.O Box 1132, 3800, BC, Amersfoort, the Netherlands
| | - Damir Brdjanovic
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601, DA, Delft, the Netherlands
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - Mark C.M. van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - Christine M. Hooijmans
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601, DA, Delft, the Netherlands
| |
Collapse
|
19
|
Abstract
Clinical trial results of phage treatment of bacterial infections show a low to moderate efficacy, and the variation in infection clearance between subjects within studies is often large. Phage therapy is complicated and introduces many additional components of variance as compared to antibiotic treatment. A large part of the variation is due to in vivo pharmacokinetics and pharmacodynamics being virtually unknown, but also to a lack of standardisation. This is a consequence of the great variation of phages, bacteria, and infections, which results in different experiments or trials being impossible to compare, and difficulties in estimating important parameter values in a quantitative and reproducible way. The limitations of phage therapy will have to be recognised and future research focussed on optimising infection clearance rates by e.g. selecting phages, bacteria, and target bacterial infections where the prospects of high efficacy can be anticipated, and by combining information from new mathematical modelling of in vivo pharmacokinetic and pharmacodynamic processes and quantitatively assessed experiments.
Collapse
Affiliation(s)
- Anders S. Nilsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
20
|
Campylobacter Phage Isolation and Characterization: What We Have Learned So Far. Methods Protoc 2019; 2:mps2010018. [PMID: 31164600 PMCID: PMC6481058 DOI: 10.3390/mps2010018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Lytic Campylobacter phages, which can be used to combat this pathogen in animals and on food products, have been studied for more than 30 years. Though, due to some peculiarities of the phages, which hampered their isolation and particularly their molecular analysis for a long time, progress in this research field was rather slow. Meanwhile, the situation has changed and much more is known about the biology and genetics of those phages. In this article, we address specific issues that should be considered when Campylobacter phages are studied, starting with the isolation and propagation of the phages and ending with a thorough characterization including whole-genome sequencing. The basis for advice and recommendations given here is a careful review of the scientific literature and experiences that we have had ourselves with Campylobacter phages.
Collapse
|
21
|
Bull JJ, Christensen KA, Scott C, Jack BR, Crandall CJ, Krone SM. Phage-Bacterial Dynamics with Spatial Structure: Self Organization around Phage Sinks Can Promote Increased Cell Densities. Antibiotics (Basel) 2018; 7:antibiotics7010008. [PMID: 29382134 PMCID: PMC5872119 DOI: 10.3390/antibiotics7010008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 11/16/2022] Open
Abstract
Bacteria growing on surfaces appear to be profoundly more resistant to control by lytic bacteriophages than do the same cells grown in liquid. Here, we use simulation models to investigate whether spatial structure per se can account for this increased cell density in the presence of phages. A measure is derived for comparing cell densities between growth in spatially structured environments versus well mixed environments (known as mass action). Maintenance of sensitive cells requires some form of phage death; we invoke death mechanisms that are spatially fixed, as if produced by cells. Spatially structured phage death provides cells with a means of protection that can boost cell densities an order of magnitude above that attained under mass action, although the effect is sometimes in the opposite direction. Phage and bacteria self organize into separate refuges, and spatial structure operates so that the phage progeny from a single burst do not have independent fates (as they do with mass action). Phage incur a high loss when invading protected areas that have high cell densities, resulting in greater protection for the cells. By the same metric, mass action dynamics either show no sustained bacterial elevation or oscillate between states of low and high cell densities and an elevated average. The elevated cell densities observed in models with spatial structure do not approach the empirically observed increased density of cells in structured environments with phages (which can be many orders of magnitude), so the empirical phenomenon likely requires additional mechanisms than those analyzed here.
Collapse
Affiliation(s)
- James J Bull
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA.
- The Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA.
- Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712, USA.
| | - Kelly A Christensen
- Department of Mathematics, University of Idaho, Moscow, ID 83844, USA.
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA.
| | - Carly Scott
- Department of Mathematics, University of Idaho, Moscow, ID 83844, USA.
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| | - Benjamin R Jack
- The Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA.
| | - Cameron J Crandall
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| | - Stephen M Krone
- Department of Mathematics, University of Idaho, Moscow, ID 83844, USA.
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA.
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
22
|
Diverse Bacteriophage Roles in an Aphid-Bacterial Defensive Mutualism. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Mendes JJ, Leandro C, Mottola C, Barbosa R, Silva FA, Oliveira M, Vilela CL, Melo-Cristino J, Górski A, Pimentel M, São-José C, Cavaco-Silva P, Garcia M. In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections. J Med Microbiol 2014; 63:1055-1065. [PMID: 24869663 DOI: 10.1099/jmm.0.071753-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In patients with diabetes mellitus, foot infections pose a significant risk. These are complex infections commonly caused by Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii, all of which are potentially susceptible to bacteriophages. Here, we characterized five bacteriophages that we had determined previously to have antimicrobial and wound-healing potential in chronic S. aureus, P. aeruginosa and A. baumannii infections. Morphological and genetic features indicated that the bacteriophages were lytic members of the family Myoviridae or Podoviridae and did not harbour any known bacterial virulence genes. Combinations of the bacteriophages had broad host ranges for the different target bacterial species. The activity of the bacteriophages against planktonic cells revealed effective, early killing at 4 h, followed by bacterial regrowth to pre-treatment levels by 24 h. Using metabolic activity as a measure of cell viability within established biofilms, we found significant cell impairment following bacteriophage exposure. Repeated treatment every 4 h caused a further decrease in cell activity. The greatest effects on both planktonic and biofilm cells occurred at a bacteriophage : bacterium input multiplicity of 10. These studies on both planktonic cells and established biofilms allowed us to better evaluate the effects of a high input multiplicity and a multiple-dose treatment protocol, and the findings support further clinical development of bacteriophage therapy.
Collapse
Affiliation(s)
- João J Mendes
- Internal Medicine Department, Santa Marta's Hospital/Central Lisbon Hospital Center, Lisbon, Portugal.,TechnoPhage, S.A., Lisbon, Portugal
| | | | - Carla Mottola
- Interdisciplinary Center of Research in Animal Health, Faculty of Veterinary Medicine of the University of Lisbon, Lisbon, Portugal
| | | | | | - Manuela Oliveira
- Interdisciplinary Center of Research in Animal Health, Faculty of Veterinary Medicine of the University of Lisbon, Lisbon, Portugal
| | - Cristina L Vilela
- Interdisciplinary Center of Research in Animal Health, Faculty of Veterinary Medicine of the University of Lisbon, Lisbon, Portugal
| | - José Melo-Cristino
- Institute of Microbiology, Faculty of Medicine of the University of Lisbon, Lisbon, Portugal
| | - Andrzej Górski
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Madalena Pimentel
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,TechnoPhage, S.A., Lisbon, Portugal
| | - Carlos São-José
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,TechnoPhage, S.A., Lisbon, Portugal
| | - Patrícia Cavaco-Silva
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Superior Institute of Health Sciences Egas Moniz, Monte de Caparica, Portugal.,TechnoPhage, S.A., Lisbon, Portugal
| | | |
Collapse
|
24
|
Trigo G, Martins TG, Fraga AG, Longatto-Filho A, Castro AG, Azeredo J, Pedrosa J. Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model. PLoS Negl Trop Dis 2013; 7:e2183. [PMID: 23638204 PMCID: PMC3636042 DOI: 10.1371/journal.pntd.0002183] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/18/2013] [Indexed: 11/21/2022] Open
Abstract
Background Buruli Ulcer (BU) is a neglected, necrotizing skin disease caused by Mycobacterium ulcerans. Currently, there is no vaccine against M. ulcerans infection. Although the World Health Organization recommends a combination of rifampicin and streptomycin for the treatment of BU, clinical management of advanced stages is still based on the surgical resection of infected skin. The use of bacteriophages for the control of bacterial infections has been considered as an alternative or to be used in association with antibiotherapy. Additionally, the mycobacteriophage D29 has previously been shown to display lytic activity against M. ulcerans isolates. Methodology/Principal findings We used the mouse footpad model of M. ulcerans infection to evaluate the therapeutic efficacy of treatment with mycobacteriophage D29. Analyses of macroscopic lesions, bacterial burdens, histology and cytokine production were performed in both M. ulcerans-infected footpads and draining lymph nodes (DLN). We have demonstrated that a single subcutaneous injection of the mycobacteriophage D29, administered 33 days after bacterial challenge, was sufficient to decrease pathology and to prevent ulceration. This protection resulted in a significant reduction of M. ulcerans numbers accompanied by an increase of cytokine levels (including IFN-γ), both in footpads and DLN. Additionally, mycobacteriophage D29 treatment induced a cellular infiltrate of a lymphocytic/macrophagic profile. Conclusions/Significance Our observations demonstrate the potential of phage therapy against M. ulcerans infection, paving the way for future studies aiming at the development of novel phage-related therapeutic approaches against BU. Buruli Ulcer (BU), caused by Mycobacterium ulcerans, is a necrotizing disease of the skin, subcutaneous tissue and bone. Standard treatment of BU patients consists of a combination of the antibiotics rifampicin and streptomycin for 8 weeks. However, in advanced stages of the disease, surgical resection of the destroyed skin is still required. The use of bacterial viruses (bacteriophages) for the control of bacterial infections has been considered as an alternative or a supplement to antibiotic chemotherapy. By using a mouse model of M. ulcerans footpad infection, we show that mice treated with a single subcutaneous injection of the mycobacteriophage D29 present decreased footpad pathology associated with a reduction of the bacterial burden. In addition, D29 treatment induced increased levels of IFN-γ and TNF in M. ulcerans-infected footpads, correlating with a predominance of a mononuclear infiltrate. These findings suggest the potential use of phage therapy in BU, as a novel therapeutic approach against this disease, particularly in advanced stages where bacteria are found primarily in an extracellular location in the subcutaneous tissue, and thus immediately accessible by lytic phages.
Collapse
Affiliation(s)
- Gabriela Trigo
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
25
|
Lau GL, Sieo CC, Tan WS, Ho YW. Characteristics of a phage effective for colibacillosis control in poultry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:2657-2663. [PMID: 22505020 DOI: 10.1002/jsfa.5683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 11/08/2011] [Accepted: 03/04/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND Colibacillosis is one of the main causes of economic loss in the poultry industry worldwide. Although antibiotics have been used to control this infection, the emergence of antibiotic-resistant bacteria poses a threat to animal and human health. Phage therapy has been reported as one of the potential alternative methods to control bacterial infections. However, efficient phage therapy is highly dependent on the characteristics of the phage isolated. In the present study the characteristics of a lytic phage, ØEC1, which was found to be effective against the causative agent of colibacillosis in chickens in a previous in vivo study, are reported. RESULTS Examination by transmission electron microscopy revealed that ØEC1 is a DNA phage belonging to the Podoviridae family. ØEC1 showed an optimum multiplicity of infection of 0.1-1. The latent period of ØEC1 was 25 min, with a burst size of 200 particles per infected cell. Under the experimental conditions the maximum adsorption rate for ØEC1 was 99.9% within 8 min. ØEC1 demonstrated an optimum phage lytic activity at pH 6-9 and 25-41 °C. CONCLUSION These characteristics can serve as a guideline for selection of effective candidates for phage therapy, in this case for collibacillosis control in chickens.
Collapse
Affiliation(s)
- Gee Leng Lau
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
26
|
Coexistence of phage and bacteria on the boundary of self-organized refuges. Proc Natl Acad Sci U S A 2012; 109:12828-33. [PMID: 22807479 DOI: 10.1073/pnas.1200771109] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage are voracious predators of bacteria and a major determinant in shaping bacterial life strategies. Many phage species are virulent, meaning that infection leads to certain death of the host and immediate release of a large batch of phage progeny. Despite this apparent voraciousness, bacteria have stably coexisted with virulent phages for eons. Here, using individual-based stochastic spatial models, we study the conditions for achieving coexistence on the edge between two habitats, one of which is a bacterial refuge with conditions hostile to phage whereas the other is phage friendly. We show how bacterial density-dependent, or quorum-sensing, mechanisms such as the formation of biofilm can produce such refuges and edges in a self-organized manner. Coexistence on these edges exhibits the following properties, all of which are observed in real phage-bacteria ecosystems but difficult to achieve together in nonspatial ecosystem models: (i) highly efficient virulent phage with relatively long lifetimes, high infection rates and large burst sizes; (ii) large, stable, and high-density populations of phage and bacteria; (iii) a fast turnover of both phage and bacteria; and (iv) stability over evolutionary timescales despite imbalances in the rates of phage vs. bacterial evolution.
Collapse
|
27
|
Abstract
A continuous delay differential model for dynamics of bacteria and bacteriophage interaction has been developed. The time lag is assumed because of latency period of infected bacteria. The model incorporates the lysogenic life cycle of bacteriophage. Accordingly, the infected bacteria can grow logistically. Due to the presence of lytic phage inside the infected bacterium cell, a constant number of phage is released to the system after lysis of each infected bacteria. The model has been analyzed both analytically and numerically. The coexistence of bacteria, bacteriophage and infected bacteria has been established. The condition for existence and stability of susceptible bacteria free equilibrium has been obtained. A simple Hopf-bifurcation has been discussed for non-zero equilibrium point. The lysogenic growth of infected bacteria can stabilize the unstable positive equilibrium point and increases the region of stability. Further, the unstable disease free equilibrium state can be stabilized with inclusion of lysogenic growth.
Collapse
Affiliation(s)
- SUNITA GAKKHAR
- Department of Mathematics, IIT Roorkee, Roorkee, 247667, India
| | | |
Collapse
|
28
|
Gallet R, Kannoly S, Wang IN. Effects of bacteriophage traits on plaque formation. BMC Microbiol 2011; 11:181. [PMID: 21827665 PMCID: PMC3176204 DOI: 10.1186/1471-2180-11-181] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 08/09/2011] [Indexed: 11/10/2022] Open
Abstract
Background The appearance of plaques on a bacterial lawn is one of the enduring imageries in modern day biology. The seeming simplicity of a plaque has invited many hypotheses and models in trying to describe and explain the details of its formation. However, until now, there has been no systematic experimental exploration on how different bacteriophage (phage) traits may influence the formation of a plaque. In this study, we constructed a series of isogenic λ phages that differ in their adsorption rate, lysis timing, or morphology so that we can determine the effects if these changes on three plaque properties: size, progeny productivity, and phage concentration within plaques. Results We found that the adsorption rate has a diminishing, but negative impact on all three plaque measurements. Interestingly, there exists a concave relationship between the lysis time and plaque size, resulting in an apparent optimal lysis time that maximizes the plaque size. Although suggestive in appearance, we did not detect a significant effect of lysis time on plaque productivity. Nonetheless, the combined effects of plaque size and productivity resulted in an apparent convex relationship between the lysis time and phage concentration within plaques. Lastly, we found that virion morphology also affected plaque size. We compared our results to the available models on plaque size and productivity. For the models in their current forms, a few of them can capture the qualitative aspects of our results, but not consistently in both plaque properties. Conclusions By using a collection of isogenic phage strains, we were able to investigate the effects of individual phage traits on plaque size, plaque productivity, and average phage concentration in a plaque while holding all other traits constant. The controlled nature of our study allowed us to test several model predictions on plaque size and plaque productivity. It seems that a more realistic theoretical approach to plaque formation is needed in order to capture the complex interaction between phage and its bacterium host in a spatially restricted environment.
Collapse
Affiliation(s)
- Romain Gallet
- Department of Biological Sciences, University at Albany, 1400 Washington Avenue, Albany, New York 12222, USA.
| | | | | |
Collapse
|
29
|
Abstract
Bacteria have evolved diverse defense mechanisms that allow them to fight viral attacks. One such mechanism, the clustered, regularly interspaced, short palindromic repeat (CRISPR) system, is an adaptive immune system consisting of genetic loci that can take up genetic material from invasive elements (viruses and plasmids) and later use them to reject the returning invaders. It remains an open question how, despite the ongoing evolution of attack and defense mechanisms, bacteria and viral phages manage to coexist. Using a simple mathematical model and a two-dimensional numerical simulation, we found that CRISPR adaptive immunity allows for robust phage-bacterium coexistence even when the number of virus species far exceeds the capacity of CRISPR-encoded genetic memory. Coexistence is predicted to be a consequence of the presence of many interdependent species that stress but do not overrun the bacterial defense system.
Collapse
|
30
|
Siringan P, Connerton PL, Payne RJH, Connerton IF. Bacteriophage-Mediated Dispersal of Campylobacter jejuni Biofilms. Appl Environ Microbiol 2011; 77:3320-6. [PMID: 21441325 PMCID: PMC3126433 DOI: 10.1128/aem.02704-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/17/2011] [Indexed: 11/20/2022] Open
Abstract
Bacteria in their natural environments frequently exist as mixed surface-associated communities, protected by extracellular material, termed biofilms. Biofilms formed by the human pathogen Campylobacter jejuni may arise in the gastrointestinal tract of animals but also in water pipes and other industrial situations, leading to their possible transmission into the human food chain either directly or via farm animals. Bacteriophages are natural predators of bacteria that usually kill their prey by cell lysis and have potential application for the biocontrol and dispersal of target bacteria in biofilms. The effects of virulent Campylobacter specific-bacteriophages CP8 and CP30 on C. jejuni biofilms formed on glass by strains NCTC 11168 and PT14 at 37°C under microaerobic conditions were investigated. Independent bacteriophage treatments (n ≥ 3) led to 1 to 3 log₁₀ CFU/cm² reductions in the viable count 24 h postinfection compared with control levels. In contrast, bacteriophages applied under these conditions effected a reduction of less than 1 log₁₀ CFU/ml in planktonic cells. Resistance to bacteriophage in bacteria surviving bacteriophage treatment of C. jejuni NCTC 11168 biofilms was 84% and 90% for CP8 and CP30, respectively, whereas bacteriophage resistance was not found in similarly recovered C. jejuni PT14 cells. Dispersal of the biofilm matrix by bacteriophage was demonstrated by crystal violet staining and transmission electron microscopy. Bacteriophage may play an important role in the control of attachment and biofilm formation by Campylobacter in situations where biofilms occur in nature, and they have the potential for application in industrial situations leading to improvements in food safety.
Collapse
Affiliation(s)
- Patcharin Siringan
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Phillippa L. Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Robert J. H. Payne
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Ian F. Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| |
Collapse
|
31
|
Connerton PL, Timms AR, Connerton IF. Campylobacter bacteriophages and bacteriophage therapy. J Appl Microbiol 2011; 111:255-65. [PMID: 21447013 DOI: 10.1111/j.1365-2672.2011.05012.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Members of the genus Campylobacter are frequently responsible for human enteric disease with occasionally very serious outcomes. Much of this disease burden is thought to arise from consumption of contaminated poultry products. More than 80% of poultry in the UK harbour Campylobacter as a part of their intestinal flora. To address this unacceptably high prevalence, various interventions have been suggested and evaluated. Among these is the novel approach of using Campylobacter-specific bacteriophages, which are natural predators of the pathogen. To optimize their use as therapeutic agents, it is important to have a comprehensive understanding of the bacteriophages that infect Campylobacter, and how they can affect their host bacteria. This review will focus on many aspects of Campylobacter-specific bacteriophages including: their first isolation in the 1960s, their use in bacteriophage typing schemes, their isolation from the different biological sources and genomic characterization. As well as their use as therapeutic agents to reduce Campylobacter in poultry their future potential, including their use in bio-sanitization of food, will be explored. The evolutionary consequences of naturally occurring bacteriophage infection that have come to light through investigations of bacteriophages in the poultry ecosystem will also be discussed.
Collapse
Affiliation(s)
- P L Connerton
- School of Biosciences, Division of Food Sciences, University of Nottingham, Loughborough Leics, UK
| | | | | |
Collapse
|
32
|
Shapiro OH, Kushmaro A. Bacteriophage ecology in environmental biotechnology processes. Curr Opin Biotechnol 2011; 22:449-55. [PMID: 21354780 DOI: 10.1016/j.copbio.2011.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/17/2011] [Accepted: 01/28/2011] [Indexed: 11/18/2022]
Abstract
Heterotrophic bacteria are an integral part of any environmental biotechnology process (EBP). Therefore, factors controlling bacterial abundance, activity, and community composition are central to the understanding of such processes. Among these factors, top-down control by bacteriophage predation has so far received very limited attention. With over 10(8) particles per ml, phage appear to be the most numerous biological entities in EBP. Phage populations in EBP appear to be highly dynamic and to correlate with the population dynamics of their hosts and genomic evidence suggests bacteria evolve to avoid phage predation. Clearly, there is much to learn regarding bacteriophage in EBP before we can truly understand the microbial ecology of these globally important systems.
Collapse
Affiliation(s)
- Orr H Shapiro
- Ben Gurion University of the Negev, Biotechnology Engineering, POb 653, Beer sheva 84105, Israel.
| | | |
Collapse
|
33
|
Abstract
Virulent phages and their bacterial hosts represent an unusual sort of predator-prey system where each time a prey is eaten, hundreds of new predators are born. It is puzzling how, despite the apparent effectiveness of the phage predators, they manage to avoid driving their bacterial prey to extinction. Here we consider a phage-bacterial ecosystem on a two-dimensional (2-d) surface and show that homogeneous space in itself enhances coexistence. We analyze different behavioral mechanisms that can facilitate coexistence in a spatial environment. For example, we find that when the latent times of the phage are allowed to evolve, selection favors "mediocre killers," since voracious phage rapidly deplete local resources and go extinct. Our model system thus emphasizes the differences between short-term proliferation and long-term ecosystem sustainability.
Collapse
|
34
|
Kunisaki H, Tanji Y. Intercrossing of phage genomes in a phage cocktail and stable coexistence with Escherichia coli O157:H7 in anaerobic continuous culture. Appl Microbiol Biotechnol 2009; 85:1533-40. [DOI: 10.1007/s00253-009-2230-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 11/29/2022]
|
35
|
Cairns BJ, Timms AR, Jansen VAA, Connerton IF, Payne RJH. Quantitative models of in vitro bacteriophage-host dynamics and their application to phage therapy. PLoS Pathog 2009; 5:e1000253. [PMID: 19119417 PMCID: PMC2603284 DOI: 10.1371/journal.ppat.1000253] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 12/03/2008] [Indexed: 11/18/2022] Open
Abstract
Phage therapy is the use of bacteriophages as antimicrobial agents for the control of pathogenic and other problem bacteria. It has previously been argued that successful application of phage therapy requires a good understanding of the non-linear kinetics of phage-bacteria interactions. Here we combine experimental and modelling approaches to make a detailed examination of such kinetics for the important food-borne pathogen Campylobacter jejuni and a suitable virulent phage in an in vitro system. Phage-insensitive populations of C. jejuni arise readily, and as far as we are aware this is the first phage therapy study to test, against in vitro data, models for phage-bacteria interactions incorporating phage-insensitive or resistant bacteria. We find that even an apparently simplistic model fits the data surprisingly well, and we confirm that the so-called inundation and proliferation thresholds are likely to be of considerable practical importance to phage therapy. We fit the model to time series data in order to estimate thresholds and rate constants directly. A comparison of the fit for each culture reveals density-dependent features of phage infectivity that are worthy of further investigation. Our results illustrate how insight from empirical studies can be greatly enhanced by the use of kinetic models: such combined studies of in vitro systems are likely to be an essential precursor to building a meaningful picture of the kinetic properties of in vivo phage therapy.
Collapse
Affiliation(s)
- Benjamin J. Cairns
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew R. Timms
- Division of Food Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Vincent A. A. Jansen
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Ian F. Connerton
- Division of Food Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Robert J. H. Payne
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
36
|
Stochastic receptor expression allows sensitive bacteria to evade phage attack. Part II: theoretical analyses. Biophys J 2008; 94:4537-48. [PMID: 18310241 DOI: 10.1529/biophysj.107.121723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stochastic gene expression in bacteria can create a diverse protein distribution. Most of the current studies have focused on fluctuations around the mean, which constitutes the majority of a bacterial population. However, when the bacterial population is subject to a severe selection pressure, it is the properties of the minority cells that determine the fate of the population. The central question is whether phenotype heterogeneity, such as a spread in the expression level of a critical protein, is sufficient to account for the persistence of the bacteria under the selection. A related question is how long such persistence can last before genetic mutation becomes significant. In this work, survival statistics of a bacterial population with a diverse phage-receptor number distribution is theoretically investigated when the cells are subject to phage pressures. The calculations are compared with our experimental observations presented in Part I in this issue. The fundamental basis of our analysis is the Berg-Purcell theoretical result for the reaction rate between a phage particle and a bacterium with a discrete number of receptors, and the observation that most phage-resistant mutants isolated in laboratory cultures are defective in phage binding. It is shown that a heterogeneous bacterial population is significantly more fit compared to a homogeneous population when confronting a phage attack.
Collapse
|
37
|
Carletti M. Mean-square stability of a stochastic model for bacteriophage infection with time delays. Math Biosci 2007; 210:395-414. [PMID: 17662309 DOI: 10.1016/j.mbs.2007.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 04/30/2007] [Accepted: 05/18/2007] [Indexed: 11/29/2022]
Abstract
We consider the stability properties of the positive equilibrium of a stochastic model for bacteriophage infection with discrete time delay. Conditions for mean-square stability of the trivial solution of the linearized system around the equilibrium are given by the construction of suitable Lyapunov functionals. The numerical simulations of the strong solutions of the arising stochastic delay differential system suggest that, even for the original non-linear model, the longer the incubation time the more the phage and bacteria populations can coexist on a stable equilibrium in a noisy environment for very long time.
Collapse
|
38
|
Aviram I, Rabinovitch A. Dynamical types of bacteria and bacteriophages interaction: shielding by debris. J Theor Biol 2007; 251:121-36. [PMID: 18160076 DOI: 10.1016/j.jtbi.2007.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 11/02/2007] [Accepted: 11/04/2007] [Indexed: 11/25/2022]
Abstract
The dynamics of the bacteria and bacteriophages interaction process was explored in depth, and laid on a firm basis through simulation and analysis. A modified Campbell model of phage-bacteria interaction was used to simulate three interacting species: bacteria, phages and bacterial debris, and their time behavior in terms of three parameters, in selected range values: the phages burst size (beta), the dissolution rate of the bacterial debris (q), and the lysing time delay (tau). Six types of dynamical behavior were identified, occupying various zones in the two-dimensional (2D) plane (q, beta) for several values of tau, allowing the determination of the region where shielding by bacterial debris is in effect. The problem of the occurrence of stability transitions between stable and unstable dynamical regimes was also addressed analytically, and compared with simulation results.
Collapse
Affiliation(s)
- Ira Aviram
- Department of Physics, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 84105, Israel
| | | |
Collapse
|
39
|
Loc Carrillo C, Atterbury RJ, el-Shibiny A, Connerton PL, Dillon E, Scott A, Connerton IF. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl Environ Microbiol 2005; 71:6554-63. [PMID: 16269681 PMCID: PMC1287621 DOI: 10.1128/aem.71.11.6554-6563.2005] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 06/16/2005] [Indexed: 11/20/2022] Open
Abstract
Colonization of broiler chickens by the enteric pathogen Campylobacter jejuni is widespread and difficult to prevent. Bacteriophage therapy is one possible means by which this colonization could be controlled, thus limiting the entry of campylobacters into the human food chain. Prior to evaluating the efficacy of phage therapy, experimental models of Campylobacter colonization of broiler chickens were established by using low-passage C. jejuni isolates HPC5 and GIIC8 from United Kingdom broiler flocks. The screening of 53 lytic bacteriophage isolates against a panel of 50 Campylobacter isolates from broiler chickens and 80 strains isolated after human infection identified two phage candidates with broad host lysis. These phages, CP8 and CP34, were orally administered in antacid suspension, at different dosages, to 25-day-old broiler chickens experimentally colonized with the C. jejuni broiler isolates. Phage treatment of C. jejuni-colonized birds resulted in Campylobacter counts falling between 0.5 and 5 log10 CFU/g of cecal contents compared to untreated controls over a 5-day period postadministration. These reductions were dependent on the phage-Campylobacter combination, the dose of phage applied, and the time elapsed after administration. Campylobacters resistant to bacteriophage infection were recovered from phage-treated chickens at a frequency of <4%. These resistant types were compromised in their ability to colonize experimental chickens and rapidly reverted to a phage-sensitive phenotype in vivo. The selection of appropriate phage and their dose optimization are key elements for the success of phage therapy to reduce campylobacters in broiler chickens.
Collapse
Affiliation(s)
- C Loc Carrillo
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
40
|
Adhya S, Black L, Friedman D, Hatfull G, Kreuzer K, Merril C, Oppenheim A, Rohwer F, Young R. 2004 ASM Conference on the New Phage Biology: the 'Phage Summit'. Mol Microbiol 2005; 55:1300-14. [PMID: 15720541 DOI: 10.1111/j.1365-2958.2005.04509.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In August, more than 350 conferees from 24 countries attended the ASM Conference on the New Phage Biology, in Key Biscayne, Florida. This meeting, also called the Phage Summit, was the first major international gathering in decades devoted exclusively to phage biology. What emerged from the 5 days of the Summit was a clear perspective on the explosive resurgence of interest in all aspects of bacteriophage biology. The classic phage systems like lambda and T4, reinvigorated by structural biology, bioinformatics and new molecular and cell biology tools, remain model systems of unequalled power and facility for studying fundamental biological issues. In addition, the New Phage Biology is also populated by basic and applied scientists focused on ecology, evolution, nanotechnology, bacterial pathogenesis and phage-based immunologics, therapeutics and diagnostics, resulting in a heightened interest in bacteriophages per se, rather than as a model system. Besides constituting another landmark in the long history of a field begun by d'Herelle and Twort during the early 20th century, the Summit provided a unique venue for establishment of new interactive networks for collaborative efforts between scientists of many different backgrounds, interests and expertise.
Collapse
Affiliation(s)
- Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, 37 Convent Dr., Rm 5138, Bethesda, MD 20892-4264, USA
| | | | | | | | | | | | | | | | | |
Collapse
|