1
|
Mackova V, Raudenska M, Polanska HH, Jakubek M, Masarik M. Navigating the redox landscape: reactive oxygen species in regulation of cell cycle. Redox Rep 2024; 29:2371173. [PMID: 38972297 PMCID: PMC11637001 DOI: 10.1080/13510002.2024.2371173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Objectives: To advance our knowledge of disease mechanisms and therapeutic options, understanding cell cycle regulation is critical. Recent research has highlighted the importance of reactive oxygen species (ROS) in cell cycle regulation. Although excessive ROS levels can lead to age-related pathologies, ROS also play an essential role in normal cellular functions. Many cell cycle regulatory proteins are affected by their redox status, but the precise mechanisms and conditions under which ROS promote or inhibit cell proliferation are not fully understood.Methods: This review presents data from the scientific literature and publicly available databases on changes in redox state during the cell cycle and their effects on key regulatory proteins.Results: We identified redox-sensitive targets within the cell cycle machinery and analysed different effects of ROS (type, concentration, duration of exposure) on cell cycle phases. For example, moderate levels of ROS can promote cell proliferation by activating signalling pathways involved in cell cycle progression, whereas excessive ROS levels can induce DNA damage and trigger cell cycle arrest or cell death.Discussion: Our findings encourage future research focused on identifying redox-sensitive targets in the cell cycle machinery, potentially leading to new treatments for diseases with dysregulated cell proliferation.
Collapse
Affiliation(s)
- Viktoria Mackova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Institute of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Cobley JN. 50 shades of oxidative stress: A state-specific cysteine redox pattern hypothesis. Redox Biol 2023; 67:102936. [PMID: 37875063 PMCID: PMC10618833 DOI: 10.1016/j.redox.2023.102936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
Oxidative stress is biochemically complex. Like primary colours, specific reactive oxygen species (ROS) and antioxidant inputs can be mixed to create unique "shades" of oxidative stress. Even a minimal redox module comprised of just 12 (ROS & antioxidant) inputs and 3 outputs (oxidative damage, cysteine-dependent redox-regulation, or both) yields over half a million "shades" of oxidative stress. The present paper proposes the novel hypothesis that: state-specific shades of oxidative stress, such as a discrete disease, are associated with distinct tell-tale cysteine oxidation patterns. The patterns are encoded by many parameters, from the identity of the oxidised proteins, the cysteine oxidation type, and magnitude. The hypothesis is conceptually grounded in distinct ROS and antioxidant inputs coalescing to produce unique cysteine oxidation outputs. And considers the potential biological significance of the holistic cysteine oxidation outputs. The literature supports the existence of state-specific cysteine oxidation patterns. Measuring and manipulating these patterns offer promising avenues for advancing oxidative stress research. The pattern inspired hypothesis provides a framework for understanding the complex biochemical nature of state-specific oxidative stress.
Collapse
Affiliation(s)
- James N Cobley
- Cysteine redox technology Group, Life Science Innovation Centre, University of the Highlands and Islands, Inverness, IV2 5NA, Scotland, UK.
| |
Collapse
|
3
|
Li S, Liu X, Liu G, Liu C. Biomimetic Nanotechnology for SARS-CoV-2 Treatment. Viruses 2023; 15:596. [PMID: 36992304 PMCID: PMC10051120 DOI: 10.3390/v15030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
More than 600 million people worldwide have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the pandemic of coronavirus disease 2019 (COVID-19). In particular, new waves of COVID-19 caused by emerging SARS-CoV-2 variants pose new health risks to the global population. Nanotechnology has developed excellent solutions to combat the virus pandemic, such as ACE2-based nanodecoys, nanobodies, nanovaccines, and drug nanocarriers. Lessons learned and strategies developed during this battle against SARS-CoV-2 variants may also serve as inspiration for developing nanotechnology-based strategies to combat other global infectious diseases and their variants in the future.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Calil IL, Tustumi F, Sousa JHBD, Tomazini BM, Cruz RJ, Saliba GN, Pécora RAA, D’Albuquerque LAC. What is the role of heat shock protein in abdominal organ transplantation? EINSTEIN-SAO PAULO 2022; 20:eRB6181. [PMID: 35293529 PMCID: PMC8909122 DOI: 10.31744/einstein_journal/2022rb6181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/13/2021] [Indexed: 01/02/2023] Open
Abstract
Ischemia-reperfusion injury is a pathophysiological event occuring after abdominal organ transplantation, and has a significant influence on prognosis and survival of the graft. It is involved in delaying the primary function or non-functioning of the graft. The objective of this study was to provide information on heat shock protein mechanisms in ischemia-reperfusion injuries in abdominal organ transplantations, and to indicate the possible factors involved that may influence the graft outcome. Several classes of heat shock proteins are part of the ischemia and reperfusion process, both as inflammatory agonists and in protecting the process. Studies involving heat shock proteins enhance knowledge on ischemia-reperfusion injury mitigation processes and the mechanisms involved in the survival of abdominal grafts, and open space to support therapeutic future clinical studies, minimizing ischemia and reperfusion injuries in abdominal organ transplantations. Expression of heat shock proteins is associated with inflammatory manifestations and ischemia-reperfusion injuries in abdominal organ transplantations and may influence graft outcomes.
Collapse
|
5
|
CaMKII oxidation is a critical performance/disease trade-off acquired at the dawn of vertebrate evolution. Nat Commun 2021; 12:3175. [PMID: 34039988 PMCID: PMC8155201 DOI: 10.1038/s41467-021-23549-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
Antagonistic pleiotropy is a foundational theory that predicts aging-related diseases are the result of evolved genetic traits conferring advantages early in life. Here we examine CaMKII, a pluripotent signaling molecule that contributes to common aging-related diseases, and find that its activation by reactive oxygen species (ROS) was acquired more than half-a-billion years ago along the vertebrate stem lineage. Functional experiments using genetically engineered mice and flies reveal ancestral vertebrates were poised to benefit from the union of ROS and CaMKII, which conferred physiological advantage by allowing ROS to increase intracellular Ca2+ and activate transcriptional programs important for exercise and immunity. Enhanced sensitivity to the adverse effects of ROS in diseases and aging is thus a trade-off for positive traits that facilitated the early and continued evolutionary success of vertebrates. Natural selection may favor traits underlying aging-related diseases if they benefit the young. Wang et al. find that oxidative activation of CaMKII provides physiological benefits critical to the initial and continued success of vertebrates but at the cost of disease, frailty, and shortened lifespan.
Collapse
|
6
|
Bennett KM, Baldelomar EJ, Morozov D, Chevalier RL, Charlton JR. New imaging tools to measure nephron number in vivo: opportunities for developmental nephrology. J Dev Orig Health Dis 2021; 12:179-183. [PMID: 31983353 PMCID: PMC8765346 DOI: 10.1017/s204017442000001x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mammalian kidney is a complex organ, requiring the concerted function of up to millions of nephrons. The number of nephrons is constant after nephrogenesis during development, and nephron loss over a life span can lead to susceptibility to acute or chronic kidney disease. New technologies are under development to count individual nephrons in the kidney in vivo. This review outlines these technologies and highlights their relevance to studies of human renal development and disease.
Collapse
Affiliation(s)
- K M Bennett
- Department of Radiology, Washington University, Saint Louis, MO, USA
| | - E J Baldelomar
- Department of Radiology, Washington University, Saint Louis, MO, USA
| | - D Morozov
- Department of Radiology, Washington University, Saint Louis, MO, USA
| | - R L Chevalier
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - J R Charlton
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
7
|
Mitochondrial Functioning and the Relations among Health, Cognition, and Aging: Where Cell Biology Meets Cognitive Science. Int J Mol Sci 2021; 22:ijms22073562. [PMID: 33808109 PMCID: PMC8037956 DOI: 10.3390/ijms22073562] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cognitive scientists have determined that there is a set of mechanisms common to all sensory, perceptual, and cognitive abilities and correlated with age- and disease-related declines in cognition. These mechanisms also contribute to the development and functional coherence of the large-scale brain networks that support complex forms of cognition. At the same time, these brain and cognitive patterns are correlated with myriad health outcomes, indicating that at least some of the underlying mechanisms are common to all biological systems. Mitochondrial functions, including cellular energy production and control of oxidative stress, among others, are well situated to explain the relations among the brain, cognition, and health. Here, I provide an overview of the relations among cognitive abilities, associated brain networks, and the importance of mitochondrial energy production for their functioning. These are then linked to the relations between cognition, health, and aging. The discussion closes with implications for better integrating research in cognitive science and cell biology in the context of developing more sensitive measures of age- and disease-related declines in cognition.
Collapse
|
8
|
Khalid S, Rasheed U, Qamar U. GenF: A longevity predicting framework to aid public health sectors. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Nunn AVW, Guy GW, Brysch W, Botchway SW, Frasch W, Calabrese EJ, Bell JD. SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing. Immun Ageing 2020; 17:33. [PMID: 33292333 PMCID: PMC7649575 DOI: 10.1186/s12979-020-00204-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Infection with SARs-COV-2 displays increasing fatality with age and underlying co-morbidity, in particular, with markers of the metabolic syndrome and diabetes, which seems to be associated with a "cytokine storm" and an altered immune response. This suggests that a key contributory factor could be immunosenescence that is both age-related and lifestyle-induced. As the immune system itself is heavily reliant on mitochondrial function, then maintaining a healthy mitochondrial system may play a key role in resisting the virus, both directly, and indirectly by ensuring a good vaccine response. Furthermore, as viruses in general, and quite possibly this new virus, have also evolved to modulate immunometabolism and thus mitochondrial function to ensure their replication, this could further stress cellular bioenergetics. Unlike most sedentary modern humans, one of the natural hosts for the virus, the bat, has to "exercise" regularly to find food, which continually provides a powerful adaptive stimulus to maintain functional muscle and mitochondria. In effect the bat is exposed to regular hormetic stimuli, which could provide clues on how to resist this virus. In this paper we review the data that might support the idea that mitochondrial health, induced by a healthy lifestyle, could be a key factor in resisting the virus, and for those people who are perhaps not in optimal health, treatments that could support mitochondrial function might be pivotal to their long-term recovery.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK.
| | | | | | - Stanley W Botchway
- UKRI, STFC, Central Laser Facility, & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX110QX, UK
| | - Wayne Frasch
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jimmy D Bell
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
10
|
Chevalier RL. Bioenergetic Evolution Explains Prevalence of Low Nephron Number at Birth: Risk Factor for CKD. KIDNEY360 2020; 1:863-879. [PMID: 35372951 PMCID: PMC8815749 DOI: 10.34067/kid.0002012020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/29/2020] [Indexed: 05/24/2023]
Abstract
There is greater than tenfold variation in nephron number of the human kidney at birth. Although low nephron number is a recognized risk factor for CKD, its determinants are poorly understood. Evolutionary medicine represents a new discipline that seeks evolutionary explanations for disease, broadening perspectives on research and public health initiatives. Evolution of the kidney, an organ rich in mitochondria, has been driven by natural selection for reproductive fitness constrained by energy availability. Over the past 2 million years, rapid growth of an energy-demanding brain in Homo sapiens enabled hominid adaptation to environmental extremes through selection for mutations in mitochondrial and nuclear DNA epigenetically regulated by allocation of energy to developing organs. Maternal undernutrition or hypoxia results in intrauterine growth restriction or preterm birth, resulting in low birth weight and low nephron number. Regulated through placental transfer, environmental oxygen and nutrients signal nephron progenitor cells to reprogram metabolism from glycolysis to oxidative phosphorylation. These processes are modulated by counterbalancing anabolic and catabolic metabolic pathways that evolved from prokaryote homologs and by hypoxia-driven and autophagy pathways that evolved in eukaryotes. Regulation of nephron differentiation by histone modifications and DNA methyltransferases provide epigenetic control of nephron number in response to energy available to the fetus. Developmental plasticity of nephrogenesis represents an evolved life history strategy that prioritizes energy to early brain growth with adequate kidney function through reproductive years, the trade-off being increasing prevalence of CKD delayed until later adulthood. The research implications of this evolutionary analysis are to identify regulatory pathways of energy allocation directing nephrogenesis while accounting for the different life history strategies of animal models such as the mouse. The clinical implications are to optimize nutrition and minimize hypoxic/toxic stressors in childbearing women and children in early postnatal development.
Collapse
|
11
|
Gaille M, Araneda M, Dubost C, Guillermain C, Kaakai S, Ricadat E, Todd N, Rera M. Ethical and social implications of approaching death prediction in humans - when the biology of ageing meets existential issues. BMC Med Ethics 2020; 21:64. [PMID: 32718352 PMCID: PMC7385957 DOI: 10.1186/s12910-020-00502-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The discovery of biomarkers of ageing has led to the development of predictors of impending natural death and has paved the way for personalised estimation of the risk of death in the general population. This study intends to identify the ethical resources available to approach the idea of a long-lasting dying process and consider the perspective of death prediction. The reflection on human mortality is necessary but not sufficient to face this issue. Knowledge about death anticipation in clinical contexts allows for a better understanding of it. Still, the very notion of prediction and its implications must be clarified. This study outlines in a prospective way issues that call for further investigation in the various fields concerned: ethical, psychological, medical and social. METHODS The study is based on an interdisciplinary approach, a combination of philosophy, clinical psychology, medicine, demography, biology and actuarial science. RESULTS The present study proposes an understanding of death prediction based on its distinction with the relationship to human mortality and death anticipation, and on the analogy with the implications of genetic testing performed in pre-symptomatic stages of a disease. It leads to the identification of a multi-layered issue, including the individual and personal relationship to death prediction, the potential medical uses of biomarkers of ageing, the social and economic implications of the latter, especially in regard to the way longevity risk is perceived. CONCLUSIONS The present study work strives to propose a first sketch of what the implications of death prediction as such could be - from an individual, medical and social point of view. Both with anti-ageing medicine and the transhumanist quest for immortality, research on biomarkers of ageing brings back to the forefront crucial ethical matters: should we, as human beings, keep ignoring certain things, primarily the moment of our death, be it an estimation of it? If such knowledge was available, who should be informed about it and how such information should be given? Is it a knowledge that could be socially shared?
Collapse
Affiliation(s)
- Marie Gaille
- Université de Paris, SPHERE, UMR 7219, CNRS-Université Paris Diderot, bâtiment Condorcet, case 7093, 5 rue Thomas Mann, 75205, Paris, France.
| | - Marco Araneda
- Université de Paris, CRPMS - EA 3522, IUH - EA 3518, bâtiment Olympe de Gouges, 8 rue Albert Einstein, 75013, Paris, France
| | - Clément Dubost
- Head of intensive care unit, Begin military hospital & CognacG research unit, UMR CNRS-Paris Descartes-SSA, Paris, France
| | - Clémence Guillermain
- Université de Paris, SPHERE, UMR 7219, CNRS-Université Paris Diderot, bâtiment Condorcet, case 7093, 5 rue Thomas Mann, 75205, Paris, France
| | - Sarah Kaakai
- Laboratoire Manceau de Mathématiques, Institut du Risque et de l'Assurance, Le Mans Université, 72000, Le Mans, France
| | - Elise Ricadat
- Université de Paris, CRPMS - EA 3522, IUH - EA 3518, bâtiment Olympe de Gouges, 8 rue Albert Einstein, 75013, Paris, France
| | - Nicolas Todd
- Max Planck Institute for Demographic Research, Rostock, Germany
| | - Michael Rera
- Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284. Sorbonne Université, IBPS, B2A, CNRS, Institut de Biologie Paris - Seine, 75005, Paris, France
| |
Collapse
|
12
|
Dormont F, Brusini R, Cailleau C, Reynaud F, Peramo A, Gendron A, Mougin J, Gaudin F, Varna M, Couvreur P. Squalene-based multidrug nanoparticles for improved mitigation of uncontrolled inflammation in rodents. SCIENCE ADVANCES 2020; 6:eaaz5466. [PMID: 32548259 PMCID: PMC7274527 DOI: 10.1126/sciadv.aaz5466] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/10/2020] [Indexed: 05/08/2023]
Abstract
Uncontrolled inflammatory processes are at the root of numerous pathologies. Most recently, studies on confirmed COVID-19 cases have suggested that mortality might be due to virally induced hyperinflammation. Uncontrolled pro-inflammatory states are often driven by continuous positive feedback loops between pro-inflammatory signaling and oxidative stress, which cannot be resolved in a targeted manner. Here, we report on the development of multidrug nanoparticles for the mitigation of uncontrolled inflammation. The nanoparticles are made by conjugating squalene, a natural lipid, to adenosine, an endogenous immunomodulator, and then encapsulating α-tocopherol, as antioxidant. This resulted in high drug loading, biocompatible, multidrug nanoparticles. By exploiting the endothelial dysfunction at sites of acute inflammation, these multidrug nanoparticles delivered the therapeutic agents in a targeted manner, conferring survival advantage to treated animals in models of endotoxemia. Selectively delivering adenosine and antioxidants together could serve as a novel therapeutic approach for safe treatment of acute paradoxal inflammation.
Collapse
Affiliation(s)
- Flavio Dormont
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Romain Brusini
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Catherine Cailleau
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Franceline Reynaud
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
- School of Pharmacy, Federal University of Rio de Janeiro, 21944-59 Rio de Janeiro, Brazil
| | - Arnaud Peramo
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Amandine Gendron
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julie Mougin
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Françoise Gaudin
- Plateforme d’Histologie Immunopathologie de Clamart (PHIC) Université Paris-Saclay, Inserm, CNRS, Institut Paris Saclay d'Innovation thérapeutique, 92296 Châtenay-Malabry, France
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140 Clamart, France
| | - Mariana Varna
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
- Corresponding author.
| |
Collapse
|
13
|
Nunn AVW, Guy GW, Botchway SW, Bell JD. From sunscreens to medicines: Can a dissipation hypothesis explain the beneficial aspects of many plant compounds? Phytother Res 2020; 34:1868-1888. [PMID: 32166791 PMCID: PMC7496984 DOI: 10.1002/ptr.6654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/16/2020] [Accepted: 02/16/2020] [Indexed: 12/17/2022]
Abstract
Medicine has utilised plant‐based treatments for millennia, but precisely how they work is unclear. One approach is to use a thermodynamic viewpoint that life arose by dissipating geothermal and/or solar potential. Hence, the ability to dissipate energy to maintain homeostasis is a fundamental principle in all life, which can be viewed as an accretion system where layers of complexity have built upon core abiotic molecules. Many of these compounds are chromophoric and are now involved in multiple pathways. Plants have further evolved a plethora of chromophoric compounds that can not only act as sunscreens and redox modifiers, but also have now become integrated into a generalised stress adaptive system. This could be an extension of the dissipative process. In animals, many of these compounds are hormetic, modulating mitochondria and calcium signalling. They can also display anti‐pathogen effects. They could therefore modulate bioenergetics across all life due to the conserved electron transport chain and proton gradient. In this review paper, we focus on well‐described medicinal compounds, such as salicylic acid and cannabidiol and suggest, at least in animals, their activity reflects their evolved function in plants in relation to stress adaptation, which itself evolved to maintain dissipative homeostasis.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | | | - Stanley W Botchway
- STFC, UKRI & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
14
|
Ullah I, Lee R, Oh KB, Kim Y, Woo JS, Hwang S, Im GS, Ock SA. Stable Regulation of Senescence-Related Genes in Galactose-alpha1,3-galactose Epitope Knockout and Human Membrane Cofactor Protein hCD46 Pig. Transplant Proc 2019; 51:2043-2050. [PMID: 31399182 DOI: 10.1016/j.transproceed.2019.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/19/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Pigs are considered suitable animal donor models for xenotransplantation. For successful organ transplantation, immune rejection must be overcome. Xenotransplantation has recently been successfully performed using galactose-alpha1,3-galactose epitopes knockout (GalTKO) and a human membrane cofactor protein (hCD46) in a pig model. However, the growth and lifespan of the grafted organ have not been evaluated. Therefore, in the present study we evaluated aging and 84 senescence-related genes using the RT2 Profiler PCR array and whole blood samples from GalTKO/hCD46 Massachusetts General Hospital (MGH) pigs. METHODS Experimental groups were double GalTKO/hCD46 (5-month-old), single GalTKO/hCD46 (2-year-old), and non-genetically modified (>3.5-year-old; control group within the same strain). Age-matched white hairless Yucatan (WHY) miniature pig groups were used as controls. RESULTS Among the 19 senescence-related genes selected from the 84 genes for further evaluation, 13 were upregulated in the double GalTKO/hCD46 MGH pigs compared to control MGH pigs; however, in WHY pigs, only 4 genes were up- or down-regulated among the 19 genes. Moreover, in double GalTKO/hCD46 MGH and WHY pigs, the expression of the 19 genes changed only 1- to 2-fold, suggesting that there were no significant differences in senescence signals between the 2 pig lines. CONCLUSIONS The present results indicate that the double GalTKO/hCD46 MGH pig might be a suitable model for human xenotransplantation studies. However, we used a limited number of experimental individuals, so further studies using larger experimental groups should be conducted to verify the present results.
Collapse
Affiliation(s)
- Imran Ullah
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Ran Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Youngim Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jae-Seok Woo
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Gi-Sun Im
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
15
|
Pourhanifeh MH, Shafabakhsh R, Reiter RJ, Asemi Z. The Effect of Resveratrol on Neurodegenerative Disorders: Possible Protective Actions Against Autophagy, Apoptosis, Inflammation and Oxidative Stress. Curr Pharm Des 2019; 25:2178-2191. [DOI: 10.2174/1381612825666190717110932] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of neurodegenerative disorders characterized by the loss of neuronal function is rapidly
increasing. The pathogenesis of the majority of these diseases is not entirely clear, but current evidence has
shown the possibility that autophagy, apoptosis, inflammation and oxidative stress are involved. The present
review summarizes the therapeutic effects of resveratrol on neurodegenerative disorders, based on the especially
molecular biology of these diseases. The PubMed, Cochrane, Web of Science and Scopus databases were
searched for studies published in English until March 30th, 2019 that contained data for the role of inflammation,
oxidative stress, angiogenesis and apoptosis in the neurodegenerative disorders. There are also studies documenting
the role of molecular processes in the progression of central nervous system diseases. Based on current evidence,
resveratrol has potential properties that may reduce cell damage due to inflammation. This polyphenol
affects cellular processes, including autophagy and the apoptosis cascade under stressful conditions. Current
evidence supports the beneficial effects of resveratrol on the therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammad H. Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
16
|
Chevalier RL. Evolution, kidney development, and chronic kidney disease. Semin Cell Dev Biol 2019; 91:119-131. [PMID: 29857053 PMCID: PMC6281795 DOI: 10.1016/j.semcdb.2018.05.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/29/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022]
Abstract
There is a global epidemic of chronic kidney disease (CKD) characterized by a progressive loss of nephrons, ascribed in large part to a rising incidence of hypertension, metabolic syndrome, and type 2 diabetes mellitus. There is a ten-fold variation in nephron number at birth in the general population, and a 50% overall decrease in nephron number in the last decades of life. The vicious cycle of nephron loss stimulating hypertrophy by remaining nephrons and resulting in glomerulosclerosis has been regarded as maladaptive, and only partially responsive to angiotensin inhibition. Advances over the past century in kidney physiology, genetics, and development have elucidated many aspects of nephron formation, structure and function. Parallel advances have been achieved in evolutionary biology, with the emergence of evolutionary medicine, a discipline that promises to provide new insight into the treatment of chronic disease. This review provides a framework for understanding the origins of contemporary developmental nephrology, and recent progress in evolutionary biology. The establishment of evolutionary developmental biology (evo-devo), ecological developmental biology (eco-devo), and developmental origins of health and disease (DOHaD) followed the discovery of the hox gene family, the recognition of the contribution of cumulative environmental stressors to the changing phenotype over the life cycle, and mechanisms of epigenetic regulation. The maturation of evolutionary medicine has contributed to new investigative approaches to cardiovascular disease, cancer, and infectious disease, and promises the same for CKD. By incorporating these principles, developmental nephrology is ideally positioned to answer important questions regarding the fate of nephrons from embryo through senescence.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, The University of Virginia, P.O. Box 800386, Charlottesville, VA, United States.
| |
Collapse
|
17
|
Costa RO, Ferreira SS, Pereira CA, Harmer JR, Noble CJ, Schenk G, Franco RWA, Resende JALC, Comba P, Roberts AE, Fernandes C, Horn A. A New Mixed-Valence Mn(II)Mn(III) Compound With Catalase and Superoxide Dismutase Activities. Front Chem 2018; 6:491. [PMID: 30456211 PMCID: PMC6231112 DOI: 10.3389/fchem.2018.00491] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
The synthesis, X-ray molecular structure, physico-chemical characterization and dual antioxidant activity (catalase and superoxide dismutase) of a new polymeric mixed valence Mn(III)Mn(II) complex, containing the ligand H2BPClNOL (N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)] propylamine) is described. The monomeric unit is composed of a dinuclear Mn(II)Mn(III) moiety, [Mn(III)(μ-HBPClNOL)(μ-BPClNOL)Mn(II)(Cl)](ClO4)·2H2O, 1, in which the Mn ions are connected by two different bridging groups provided by two molecules of the ligand H2BPClNOL, a phenoxide and an alkoxide group. In the solid state, this mixed valence dinuclear unit is connected to its neighbors through chloro bridges. Magnetic measurements indicated the presence of ferromagnetic [J = +0.076(13) cm−1] and antiferromagnetic [J = −5.224(13) cm−1] interactions. The compound promotes O2•- dismutation in aqueous solution (IC50 = 0.370 μmol dm−3, kcat = 3.6x106 M−1 s−1). EPR studies revealed that a high-valent Mn(III)-O-Mn(IV) species is involved in the superoxide dismutation catalytic cycle. Complex 1 shows catalase activity only in the presence of a base, e.g., piperazine or triethylamine. Kinetic studies were carried out in the presence of piperazine and employing two different methods, resulting in kcat values of 0.58 ± 0.03 s−1 (detection of O2 production employing a Clark electrode) and 2.59 ± 0.12 s−1 (H2O2 consuption recorded via UV-Vis). EPR and ESI-(+)-MS studies indicate that piperazine induces the oxidation of 1, resulting in the formation of the catalytically active Mn(III)-O-Mn(IV) species.
Collapse
Affiliation(s)
- Rafael O Costa
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | | | - Crystiane A Pereira
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - Christopher J Noble
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Roberto W A Franco
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Jackson A L C Resende
- Instituto de Ciências Exatas e da Terra, Campus Universitário do Araguaia, Universidade Federal do Mato Grosso, Barra do Garças, Brazil
| | - Peter Comba
- Anorganisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany.,Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Heidelberg, Germany
| | - Asha E Roberts
- Anorganisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany.,Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Heidelberg, Germany
| | - Christiane Fernandes
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Adolfo Horn
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
18
|
Takahashi PY, Jenkins GD, Welkie BP, McDonnell SK, Evans JM, Cerhan JR, Olson JE, Thibodeau SN, Cicek MS, Ryu E. Association of mitochondrial DNA copy number with self-rated health status. APPLICATION OF CLINICAL GENETICS 2018; 11:121-127. [PMID: 30498369 PMCID: PMC6207265 DOI: 10.2147/tacg.s167640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Purpose In aging adults, mitochondrial dysfunction may be an important contributor. We evaluated the association between mitochondrial DNA (mtDNA) copy number, which is a biomarker for mitochondrial function, and self-rated health status. Patients and methods We conducted a cross-sectional study of patients enrolled within the Mayo Clinic Biobank. We utilized the questionnaire and sequence data from 944 patients. We examined the association between mtDNA copy number and self-rated health status with 3 collapsed categories for the latter variable (excellent/very good, good, and fair/poor). For analysis, we used proportional odds models after log-transforming mtDNA copy number, and we adjusted for age and sex. Results We found the median age at enrollment was 61 years (25th–75th percentile: 51–71), and 64% reported excellent or very good health, 31% reported good health, and 6% reported fair/poor health. Overall, the median mtDNA copy number was 88.9 (25th–75th percentile: 77.6–101.1). Higher mtDNA copy number was found for subjects reporting better self-rated health status after adjusting for age, sex, and comorbidity burden (OR =2.3 [95% CI: 1.2–4.5] for having better self-rated health for a one-unit increase in log-transformed mtDNA copy number). Conclusion We found that a higher mtDNA copy number is associated with better self-rated health status after adjustment for age, sex, and comorbidity burden. The current study implies that mtDNA copy number may serve as a biomarker for self-reported health. Further studies, potentially including cohort studies, may be required.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stephen N Thibodeau
- Department of laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mine S Cicek
- Department of laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
19
|
Tauber S, Christoffel S, Thiel CS, Ullrich O. Transcriptional Homeostasis of Oxidative Stress-Related Pathways in Altered Gravity. Int J Mol Sci 2018; 19:E2814. [PMID: 30231541 PMCID: PMC6164947 DOI: 10.3390/ijms19092814] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 02/07/2023] Open
Abstract
Whereby several types of cultured cells are sensitive to gravity, the immune system belongs to the most affected systems during spaceflight. Since reactive oxygen species/reactive nitrogen species (ROS/RNS) are serving as signals of cellular homeostasis, particularly in the cells of the immune system, we investigated the immediate effect of altered gravity on the transcription of 86 genes involved in reactive oxygen species metabolism, antioxidative systems, and cellular response to oxidative stress, using parabolic flight and suborbital ballistic rocket experiments and microarray analysis. In human myelomonocytic U937 cells, we detected a rapid response of 19.8% of all of the investigated oxidative stress-related transcripts to 1.8 g of hypergravity and 1.1% to microgravity as early as after 20 s. Nearly all (97.2%) of the initially altered transcripts adapted after 75 s of hypergravity (max. 13.5 g), and 100% adapted after 5 min of microgravity. After the almost complete adaptation of initially altered transcripts, a significant second pool of differentially expressed transcripts appeared. In contrast, we detected nearly no response of oxidative stress-related transcripts in human Jurkat T cells to altered gravity. In conclusion, we assume a very well-regulated homeostasis and transcriptional stability of oxidative stress-related pathways in altered gravity in cells of the human immune system.
Collapse
Affiliation(s)
- Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA.
| | - Swantje Christoffel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Cora Sandra Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA.
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA.
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
20
|
Hao ZH, Huang Y, Wang MR, Huo TT, Jia Q, Feng RF, Fan P, Wang JH. SS31 ameliorates age-related activation of NF-κB signaling in senile mice model, SAMP8. Oncotarget 2018; 8:1983-1992. [PMID: 28030844 PMCID: PMC5356771 DOI: 10.18632/oncotarget.14077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 12/12/2016] [Indexed: 01/29/2023] Open
Abstract
Aging has been attributed to oxidative stress and inflammatory response, in which NF-κB and Nrf2-ARE signaling pathways play significant roles. Senescence accelerated mouse prone 8 (SAMP8) is generally used an animal model for aging studies. Here, we investigated the NF-κB and Nrf2-ARE signaling pathways in SAMP8 brains at different ages and their responses to SS31 peptide treatment. Thirty six SAMP8 mice were separated into aging groups and SS31-treatment groups. The hippocampus from each mouse was dissected for RNA and protein extraction. Cytokines and ROS levels were measured using ELISA and standardised method. Gene expressions of NF-κB, Nrf2 and HO-1 were measured by RT-qPCR. Total protein amount of NF-κB and HO-1, as well as the concentrations of nuclear and cytoplasmic Nrf2 were measured using Western blots. Our data showed that aging could activate both NF-κB and Nrf2-ARE signaling pathways, which could be suppressed and activated by SS31 treatment respectively. Regression analysis revealed that NF-κB gene expression was the most important parameter predicting aging process and SS31 treatment effects in SAMP8. Our findings suggested that SS31 treatment may modulate the inflammatory and oxidative stress status of the aged brains and exert protective effects during brain aging.
Collapse
Affiliation(s)
- Zhi-Hua Hao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China.,Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yue Huang
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Mei-Rong Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China.,Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tian-Tian Huo
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qian Jia
- Graduate School,Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rong-Fang Feng
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ping Fan
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jian-Hua Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Neem leaf glycoprotein regulates function of tumor associated M2 macrophages in hypoxic tumor core: Critical role of IL-10/STAT3 signaling. Mol Immunol 2016; 80:1-10. [DOI: 10.1016/j.molimm.2016.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 01/01/2023]
|
22
|
Abstract
A sufficiently complex set of molecules, if subject to perturbation, will self-organize and show emergent behaviour. If such a system can take on information it will become subject to natural selection. This could explain how self-replicating molecules evolved into life and how intelligence arose. A pivotal step in this evolutionary process was of course the emergence of the eukaryote and the advent of the mitochondrion, which both enhanced energy production per cell and increased the ability to process, store and utilize information. Recent research suggest that from its inception life embraced quantum effects such as 'tunnelling' and 'coherence' while competition and stressful conditions provided a constant driver for natural selection. We believe that the biphasic adaptive response to stress described by hormesis-a process that captures information to enable adaptability, is central to this whole process. Critically, hormesis could improve mitochondrial quantum efficiency, improving the ATP/ROS ratio, whereas inflammation, which is tightly associated with the aging process, might do the opposite. This all suggests that to achieve optimal health and healthy aging, one has to sufficiently stress the system to ensure peak mitochondrial function, which itself could reflect selection of optimum efficiency at the quantum level.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, U.K.
| | - Geoffrey W Guy
- GW Pharmaceuticals, Porton Down, Salisbury, Wiltshire SP4 0JQ, U.K
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, U.K
| |
Collapse
|
23
|
Valente AXCN, Adilbayeva A, Tokay T, Rizvanov AA. The Universal Non-Neuronal Nature of Parkinson's Disease: A Theory. Cent Asian J Glob Health 2016; 5:231. [PMID: 29138731 PMCID: PMC5661188 DOI: 10.5195/cajgh.2016.231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, yet the etiology of the majority of its cases remains unknown. In this manuscript, relevant published evidence is interpreted and integrated into a comprehensive hypothesis on the nature, origin, and inter-cellular mode of propagation of sporadic PD. We propose to characterize sporadic PD as a pathological deviation in the global gene expression program of a cell: the PD expression-state, or PD-state for short. A universal cell-generic state, the PD-state deviation would be particularly damaging in a neuronal context, ultimately leading to neuron death and the ensuing observed clinical signs. We review why ageing associated accumulated damage caused by oxidative stress in mitochondria could be the trigger for a primordial cell to shift to the PD-state. We propose that hematopoietic cells could be the first to acquire the PD-state, at hematopoiesis, from the disruption in reactive oxygen species homeostasis that arises with age in the hematopoietic stem-cell niche. We argue that cellular ageing is nevertheless unlikely to explain the shift to the PD-state of all the subsequently affected cells in a patient, thus indicating the existence of a distinct mechanism of cellular propagation of the PD-state. We highlight recently published findings on the inter-cellular exchange of mitochondrial DNA and the ability of mitochondrial DNA to modulate the cellular global gene expression state and propose this could form the basis for the inter-cellular transmission of the PD-state.
Collapse
Affiliation(s)
- André X C N Valente
- Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
- Biocant - Biotechnology Innovation Center, Cantanhede, Portugal
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Tursonjan Tokay
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
24
|
Barton M, Husmann M, Meyer MR. Accelerated Vascular Aging as a Paradigm for Hypertensive Vascular Disease: Prevention and Therapy. Can J Cardiol 2016; 32:680-686.e4. [PMID: 27118295 DOI: 10.1016/j.cjca.2016.02.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/21/2022] Open
Abstract
Aging is considered the most important nonmodifiable risk factor for cardiovascular disease and death after age 28 years. Because of demographic changes the world population is expected to increase to 9 billion by the year 2050 and up to 12 billion by 2100, with several-fold increases among those 65 years of age and older. Healthy aging and prevention of aging-related diseases and associated health costs have become part of political agendas of governments around the world. Atherosclerotic vascular burden increases with age; accordingly, patients with progeria (premature aging) syndromes die from myocardial infarctions or stroke as teenagers or young adults. The incidence and prevalence of arterial hypertension also increases with age. Arterial hypertension-like diabetes and chronic renal failure-shares numerous pathologies and underlying mechanisms with the vascular aging process. In this article, we review how arterial hypertension resembles premature vascular aging, including the mechanisms by which arterial hypertension (as well as other risk factors such as diabetes mellitus, dyslipidemia, or chronic renal failure) accelerates the vascular aging process. We will also address the importance of cardiovascular risk factor control-including antihypertensive therapy-as a powerful intervention to interfere with premature vascular aging to reduce the age-associated prevalence of diseases such as myocardial infarction, heart failure, hypertensive nephropathy, and vascular dementia due to cerebrovascular disease. Finally, we will discuss the implementation of endothelial therapy, which aims at active patient participation to improve primary and secondary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
| | - Marc Husmann
- Division of Angiology, University Hospital Zürich, Zürich, Switzerland
| | | |
Collapse
|
25
|
Kopp VJ, Koenig MW. A lowest oxygen level acceptable (LOLA) standard should apply to all ages. Br J Anaesth 2015; 115:803. [PMID: 26475817 DOI: 10.1093/bja/aev322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- V J Kopp
- Chapel Hill, North Carolina, USA
| | | |
Collapse
|
26
|
Abstract
Neonatal sepsis is one of the most fulminating conditions in neonatal intensive care units. Antipathogen and supportive care are administered routinely, but do not deliver satisfactory results. In addition, the efforts to treat neonatal sepsis with anti-inflammatory agents have generally shown to be futile. The accumulating data imply that intracellular redox changes intertwined into neonatal sepsis redox cycle represent the main cause of dysfunction of mitochondria and cells in neonatal sepsis. Our aim here is to support the new philosophy in neonatal sepsis treatment, which involves the integration of mechanisms that are responsible for cellular dysfunction and organ failure, the recognition of the most important targets, and the selection of safe agents that can stop the neonatal sepsis redox cycle by hitting the hot spots. Redox-active agents that could be beneficial for neonatal sepsis treatment according to these criteria include lactoferrin, interleukin 10, zinc and selenium supplements, ibuprofen, edaravone, and pentoxifylline.
Collapse
|
27
|
Vera S, Martínez R, Gormaz JG, Gajardo A, Galleguillos F, Rodrigo R. Novel relationships between oxidative stress and angiogenesis-related factors in sepsis: New biomarkers and therapies. Ann Med 2015; 47:289-300. [PMID: 25998489 DOI: 10.3109/07853890.2015.1029967] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sepsis is a systemic uncontrolled inflammatory response in the presence of an infection. It remains a major cause of morbidity and mortality in hospitalized patients. According to its severity, sepsis can progress to three different states: severe sepsis, septic shock, and multiple organ dysfunction syndrome, related to organ dysfunction and/or tissue hypoperfusion. Different processes underlie its pathophysiology; among them are oxidative stress, endothelial and mitochondrial dysfunction, and angiogenesis-related factors. However, no studies have integrated these elements in sepsis. The main difficulty in sepsis is its diagnosis. Currently, the potential of inflammatory biomarkers in septic patients remains weak. In this context, the research into new biomarkers is essential to aid with sepsis diagnosis and prognostication. Furthermore, even though the current management of severe forms of sepsis has been effective, morbimortality remains elevated. Therefore, it is essential to explore alternative approaches to therapy development. The aim of this review is to present an update of evidence supporting the role of oxidative stress and angiogenesis-related factors in the pathophysiology of the different forms of sepsis. It proposes a novel convergence between both elements in their role in the disease, and it will cover their utility as new diagnostic tools, predictors of outcome, and as novel therapeutic targets.
Collapse
Affiliation(s)
- Sergio Vera
- Laboratory of Oxidative Stress and Nephrotoxicity, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago , Chile
| | | | | | | | | | | |
Collapse
|
28
|
Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 2015; 6:456-480. [PMID: 25897356 PMCID: PMC4398902 DOI: 10.4239/wjd.v6.i3.456] [Citation(s) in RCA: 758] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/21/2014] [Accepted: 01/12/2015] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM.
Collapse
|
29
|
New insights into the chemical and biochemical basis of the "yang-invigorating" action of chinese yang-tonic herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:856273. [PMID: 25610483 PMCID: PMC4295141 DOI: 10.1155/2014/856273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/07/2014] [Accepted: 06/21/2014] [Indexed: 12/23/2022]
Abstract
In the practice of traditional Chinese medicine, many Yang-tonic herbs have been used for retarding the decline in bodily function and delaying the onset of age-related diseases. Our earlier studies have demonstrated that Yang-invigorating herbs/formulations protect against oxidative injury in various organs and also extend the median lifespan in mice. This lifespan extension was associated with an upregulation of cellular antioxidant status including that of mitochondria whose functional capacity is also increased by “Yang-invigorating” herbs/formulations. In this paper, we propose that triterpenes and phytosterols, which are ubiquitously found in Yang-tonic herbs, may be the chemical entities responsible for enhancing mitochondrial functional and antioxidant capacity and thus the “Yang-invigorating” action. The biochemical mechanism underlying this “Yang-invigorating” action may involve a sustained production of low levels of mitochondrial reactive oxygen species (ROS) secondary to an increased activity of the electron transport chain, with the possible involvement of mitochondrial uncoupling. The increase in mitochondrial functional capacity can retard the decline in bodily function during aging, whereas the mitochondrial ROS production is instrumental in eliciting a glutathione antioxidant response via redox-sensitive signaling pathways, which can delay the onset of age-related diseases.
Collapse
|
30
|
Gui M, Du J, Guo J, Xiao B, Yang W, Li M. Aqueous Extract of Chrysanthemum morifolium ( Jú Huā) Enhances the Antimelanogenic and Antioxidative Activities of the Mixture of Soy Peptide and Collagen Peptide. J Tradit Complement Med 2014; 4:171-6. [PMID: 25161922 PMCID: PMC4142455 DOI: 10.4103/2225-4110.128897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The possible synergistic effect between the aqueous extract of Chrysanthemum morifolium ( Jú Huā) (AECM) and the peptide mixture (PM) containing soy peptide and collagen peptide was investigated in an ultraviolet (UV) irradiation-induced skin damage mouse model. The irradiated mice were treated with the PM or PM + AECM (containing PM and AECM), respectively. Both PM and PM + AECM groups displayed an apparent photoprotective effect on the UV-irradiated skin damage of mice. Histological evaluation demonstrated that the epidermal hyperplasia and melanocytes in the basal epidermal layer of the UV-irradiated skin in mice decreased when treated with either PM or PM + AECM. Further study showed that soy peptide, collagen peptide, and AECM also inhibited the activities of mushroom tyrosinase with IC50 values of 82.3, 28.2, and 1.6 μg/ml, respectively. Additionally, PM + AECM reduced melanogenesis by 46.2% at the concentration of 10 mg/ml in B16 mouse melanoma cells. Meanwhile, the UV-induced increase of antioxidative indicators, including glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and malondialdehyde (MDA), was reduced significantly after treatment with 1.83 g/kg/dbw of PM + AECM. This evidence supported the synergistic antioxidative effect of AECM with PM. These results demonstrated that oral intake of PM and AECM had synergistic antimelanogenic and antioxidative effects in UV-irradiated mice.
Collapse
Affiliation(s)
- Min Gui
- Amway (China) Research and Development Center, Shanghai, China
| | - Jun Du
- Amway (China) Research and Development Center, Shanghai, China
| | - Jianmin Guo
- State Key Laboratory of New Drug Evaluation in Guangzhou, Guangzhou Institute of Pharmaceutical Industry, Guangzhou, China
| | - Baiquan Xiao
- State Key Laboratory of New Drug Evaluation in Guangzhou, Guangzhou Institute of Pharmaceutical Industry, Guangzhou, China
| | - Wei Yang
- State Key Laboratory of New Drug Evaluation in Guangzhou, Guangzhou Institute of Pharmaceutical Industry, Guangzhou, China
| | - Minjie Li
- Amway (China) Research and Development Center, Shanghai, China
| |
Collapse
|
31
|
Abstract
Oxidative stress and inflammation underpin most diseases; their mechanisms are inextricably linked. Chronic inflammation is associated with oxidation, anti-inflammatory cascades are linked to decreased oxidation, increased oxidative stress triggers inflammation, and redox balance inhibits the inflammatory cellular response. Whether or not oxidative stress and inflammation represent the cause or consequence of cellular pathology, they contribute significantly to the pathogenesis of noncommunicable diseases (NCD). The incidence of obesity and other related metabolic disturbances are increasing, as are age-related diseases due to a progressively aging population. Relationships between oxidative stress, inflammatory signaling, and metabolism are, in the broad sense of energy transformation, being increasingly recognized as part of the problem in NCD. In this chapter, we summarize the pathologic consequences of an imbalance between circulating and cellular paraoxonases, the system for scavenging excessive reactive oxygen species and circulating chemokines. They act as inducers of migration and infiltration of immune cells in target tissues as well as in the pathogenesis of disease that perturbs normal metabolic function. This disruption involves pathways controlling lipid and glucose homeostasis as well as metabolically driven chronic inflammatory states that encompass several response pathways. Dysfunction in the endoplasmic reticulum and/or mitochondria represents an important feature of chronic disease linked to oxidation and inflammation seen as self-reinforcing in NCD. Therefore, correct management requires a thorough understanding of these relationships and precise interpretation of laboratory test results.
Collapse
|
32
|
Bostan C, Yildiz A, Ozkan AA, Uzunhasan I, Kaya A, Yigit Z. Beneficial effects of rosuvastatin treatment in patients with metabolic syndrome. Angiology 2014; 66:122-7. [PMID: 24554427 DOI: 10.1177/0003319714522107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We determined the effect of 6-month rosuvastatin treatment on blood lipids, oxidative parameters, apolipoproteins, high-sensitivity C-reactive protein, lipoprotein(a), homocysteine, and glycated hemoglobin (HbA1c) in patients with metabolic syndrome (MetS). Healthy individuals (men aged >40 years and postmenopausal women) with a body mass index ≥ 30 (n = 100) who fulfilled the National Cholesterol Education Program Adult Treatment Panel III diagnostic criteria for MetS were included. Total cholesterol and low-density lipoprotein cholesterol (LDL-C) levels decreased (P < .0001). The change in LDL 1 to 3 subgroups was significant (P = .0007, P < .0001, and P = .006, respectively). Changes in LDL 4 to 7 subgroups were not significant. There was a beneficial effect on oxidized LDL, fibrinogen, homocysteine, and HbA1c. Rosuvastatin significantly increased high-density lipoprotein levels (P = .0003). The oxidant/antioxidant status and subclinical inflammatory state were also beneficially changed. Rosuvastatin had a significant beneficial effect on atherogenic dyslipidemia as well as on oxidative stress and inflammatory biomarkers in patients with MetS.
Collapse
Affiliation(s)
- Cem Bostan
- Department of Cardiology, Istanbul University Institute of Cardiology, Istanbul, Turkey
| | - Ahmet Yildiz
- Department of Cardiology, Istanbul University Institute of Cardiology, Istanbul, Turkey
| | - Alev Arat Ozkan
- Department of Cardiology, Istanbul University Institute of Cardiology, Istanbul, Turkey
| | - Isil Uzunhasan
- Department of Cardiology, Istanbul University Institute of Cardiology, Istanbul, Turkey
| | - Aysem Kaya
- Department of Biochemistry, Istanbul University Institute of Cardiology, Istanbul, Turkey
| | - Zerrin Yigit
- Department of Cardiology, Istanbul University Institute of Cardiology, Istanbul, Turkey
| |
Collapse
|
33
|
Ding R, Chen X, Wu D, Wei R, Hong Q, Shi S, Yin Z, Ma L, Xie Y. Effects of Aging on Kidney Graft Function, Oxidative Stress and Gene Expression after Kidney Transplantation. PLoS One 2013; 8:e65613. [PMID: 23824036 PMCID: PMC3688821 DOI: 10.1371/journal.pone.0065613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/25/2013] [Indexed: 11/30/2022] Open
Abstract
Conflicting results have been reported regarding the effects of donor age, recipient age and donor-recipient age difference on short- and long-term outcomes after kidney transplantation. The aim of this study was to evaluate the effects of recipient age on graft function, oxidative stress, and gene expression after renal transplantation. Fifty male Fischer 344 rats [25 young (Y, 4 months), 25 senior (S, 16 months)] were randomized to 6 groups: 2 sham groups (Y and S, n = 5 in each group) and 4 renal transplant groups[young-to-young (Y-Y), young-to-senior (Y-S), senior-to-young (S-Y), senior-to-senior (S-S), (n = 10 in each group)]. The left kidneys were transplanted from donor to recipient. After 12 weeks, systematic blood pressure, graft weight, graft function, histology and oxidative stress were measured. Microarray analysis and quantitative real-time PCR confirmation were performed to study gene expression in the grafts. There were no differences in renal graft function between young and senior kidney cross-transplantation. Transplanted kidneys showed no significant differences in glomerulosclerosis index compared to non-transplanted kidneys but had significantly different tubulointerstitium scores compared to age-matched controls. Senior rats had lower SOD activity and higher MDA content than young rats. SOD activity was significantly lower and MDA content significantly higher in the Y-S group than in the Y-Y group. There were 548 transcript differences between senior and young kidneys with 36 upregulated and 512 downregulated transcripts. There were 492 transcript differences between Y-S and Y-Y groups with 127 upregulated and 365 downregulated transcripts. There were 1244 transcript differences between the S-Y and S-S groups with 680 upregulated and 574 downregulated transcripts. Oxidative stress and gene expression profile was significantly different in the Y-S compared to the S-Y group. The identified differences were mainly in the MAPK and insulin signal pathways, making these potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rui Ding
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Xiangmei Chen
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital, Beijing, P. R. China
- * E-mail:
| | - Di Wu
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Ribao Wei
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Quan Hong
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Suozhu Shi
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Zhong Yin
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Linlin Ma
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Yuansheng Xie
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital, Beijing, P. R. China
| |
Collapse
|
34
|
Differences in direct pharmacologic effects and antioxidative properties of mature breast milk and infant formulas. Nutrition 2013; 29:431-5. [DOI: 10.1016/j.nut.2012.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 07/12/2012] [Accepted: 07/17/2012] [Indexed: 11/17/2022]
|
35
|
Hydrogen peroxide in adaptation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:596019. [PMID: 23326624 PMCID: PMC3544357 DOI: 10.1155/2012/596019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 11/17/2022]
|
36
|
Furumura M, Sato N, Kusaba N, Takagaki K, Nakayama J. Oral administration of French maritime pine bark extract (Flavangenol(®)) improves clinical symptoms in photoaged facial skin. Clin Interv Aging 2012; 7:275-86. [PMID: 22956863 PMCID: PMC3426262 DOI: 10.2147/cia.s33165] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND French maritime pine bark extract (PBE) has gained popularity as a dietary supplement in the treatment of various diseases due to its polyphenol-rich ingredients. Oligometric proanthocyanidins (OPCs), a class of bioflavonoid complexes, are enriched in French maritime PBE and have antioxidant and anti-inflammatory activity. Previous studies have suggested that French maritime PBE helps reduce ultraviolet radiation damage to the skin and may protect human facial skin from symptoms of photoaging. To evaluate the clinical efficacy of French maritime PBE in the improvement of photodamaged facial skin, we conducted a randomized trial of oral supplementation with PBE. METHODS One hundred and twelve women with mild to moderate photoaging of the skin were randomized to either a 12-week open trial regimen of 100 mg PBE supplementation once daily or to a parallel-group trial regimen of 40 mg PBE supplementation once daily. RESULTS A significant decrease in clinical grading of skin photoaging scores was observed in both time courses of 100 mg daily and 40 mg daily PBE supplementation regimens. A significant reduction in the pigmentation of age spots was also demonstrated utilizing skin color measurements. CONCLUSION Clinically significant improvement in photodamaged skin could be achieved with PBE. Our findings confirm the efficacy and safety of PBE.
Collapse
Affiliation(s)
- Minao Furumura
- Department of Dermatology, Fukuoka University School of Medicine, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
37
|
Singer MA, Vernino SA, Wolfe GI. Idiopathic neuropathy: new paradigms, new promise. J Peripher Nerv Syst 2012; 17 Suppl 2:43-9. [DOI: 10.1111/j.1529-8027.2012.00395.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Abstract
Cellular senescence is a program of irreversible cell cycle arrest that cells undergo in response to a variety of intrinsic and extrinsic stimuli including progressive shortening of telomeres, changes in telomeric structure or other forms of genotoxic and non-genotoxic stress. The role of nuclear factor-κB in cellular senescence is controversial, as it has been associated with both proliferation and tumour progression, and also with growth arrest and ageing. This research perspective focuses on the evidence for a functional relationship between NF-κB and senescence, and how disruption of the NF-κB pathway can lead to its bypass.
Collapse
Affiliation(s)
- Simon Vaughan
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | | |
Collapse
|
39
|
|
40
|
Lam PY, Wong HS, Chen J, Ko KM. A Hypothetical Anti-Aging Mechanism of “Yang-Invigorating” Chinese Tonic Herbs. Chin Med 2012. [DOI: 10.4236/cm.2012.31012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Smallwood HS, López-Ferrer D, Squier TC. Aging enhances the production of reactive oxygen species and bactericidal activity in peritoneal macrophages by upregulating classical activation pathways. Biochemistry 2011; 50:9911-22. [PMID: 21981794 DOI: 10.1021/bi2011866] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3-4 months) and aged (14-15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice. Collectively, these results indicate that macrophages isolated from old mice are in a preactivated state that enhances their sensitivities to LPS exposure. The hyper-responsive activation of macrophages in aged animals may act to minimize infection by general bacterial threats that arise due to age-dependent declines in adaptive immunity. However, this hypersensitivity and the associated increase in the level of formation of reactive oxygen species are likely to contribute to observed age-dependent increases in the level of oxidative damage that underlie many diseases of the elderly.
Collapse
Affiliation(s)
- Heather S Smallwood
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | | |
Collapse
|
42
|
Oh S, Kwon D, Lee E. Cytoprotective activity of elevated static pressure against oxidative stress in normal human fibroblasts. Mol Cell Toxicol 2011. [DOI: 10.1007/s13273-011-0038-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Lane N. Mitonuclear match: optimizing fitness and fertility over generations drives ageing within generations. Bioessays 2011; 33:860-9. [PMID: 21922504 DOI: 10.1002/bies.201100051] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Many conserved eukaryotic traits, including apoptosis, two sexes, speciation and ageing, can be causally linked to a bioenergetic requirement for mitochondrial genes. Mitochondrial genes encode proteins involved in cell respiration, which interact closely with proteins encoded by nuclear genes. Functional respiration requires the coadaptation of mitochondrial and nuclear genes, despite divergent tempi and modes of evolution. Free-radical signals emerge directly from the biophysics of mosaic respiratory chains encoded by two genomes prone to mismatch, with apoptosis being the default penalty for compromised respiration. Selection for genomic matching is facilitated by two sexes, and optimizes fitness, adaptability and fertility in youth. Mismatches cause infertility, low fitness, hybrid breakdown, and potentially speciation. The dynamics of selection for mitonuclear function optimize fitness over generations, but the same selective processes also operate within generations, driving ageing and age-related diseases. This coherent view of eukaryotic energetics offers striking insights into infertility and age-related diseases.
Collapse
Affiliation(s)
- Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
44
|
Andrades MÉ, Morina A, Spasić S, Spasojević I. Bench-to-bedside review: sepsis - from the redox point of view. Crit Care 2011; 15:230. [PMID: 21996422 PMCID: PMC3334726 DOI: 10.1186/cc10334] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of sepsis and its progression to multiple organ dysfunction syndrome and septic shock have been the subject of investigations for nearly half a century. Controversies still exist with regard to understanding the molecular pathophysiology of sepsis in relation to the complex roles played by reactive oxygen species, nitric oxide, complements and cytokines. In the present review we categorise the key turning points in sepsis development and outline the most probable sequence of events leading to cellular dysfunction and organ failure under septic conditions. We have applied an integrative approach in order to fuse current state-of-the-art knowledge about redox processes involving hydrogen peroxide, nitric oxide, superoxide, peroxynitrite and hydroxyl radical, which lead to mitochondrial respiratory dysfunction. Finally, from this point of view, the potential of redox therapy targeting sepsis is discussed.
Collapse
Affiliation(s)
- Michael Éverton Andrades
- Cardiovascular Research Laboratory, Research Centre, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, Brazil
| | - Arian Morina
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Snežana Spasić
- IChTM, University of Belgrade, Njegoševa 12, PO Box 473, 11001 Belgrade, Serbia
| | - Ivan Spasojević
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| |
Collapse
|
45
|
Spasojević I. Free radicals and antioxidants at a glance using EPR spectroscopy. Crit Rev Clin Lab Sci 2011; 48:114-42. [DOI: 10.3109/10408363.2011.591772] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Datta HS, Mitra SK, Paramesh R, Patwardhan B. Theories and management of aging: modern and ayurveda perspectives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:528527. [PMID: 19233879 PMCID: PMC3136561 DOI: 10.1093/ecam/nep005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 01/13/2009] [Indexed: 01/25/2023]
Abstract
Aging is a complex phenomenon, a sum total of changes that occur in a living organism with the passage of time and lead to decreasing ability to survive stress, increasing functional impairment and growing probability of death. There are many theories of aging and skin remains the largest organ of the study. Skin aging is described as a consequence of intrinsic and extrinsic factors. The most common amongst visible signs of skin aging are wrinkles and there are various therapies including antiaging cosmeceuticals, sunscreens, chemical peeling, injectable agents, such as botox, fibrel, autologous fat grafting as also few surgical procedures have been used. Ayurveda, the Indian traditional medicine, describes aging with great details. This review provides modern and Ayurvedic perspectives on theories and management of aging.
Collapse
Affiliation(s)
- Hema Sharma Datta
- Interdisciplinary School of Health Sciences, University of Pune, Pune-411007, India
| | - S. K. Mitra
- Himalaya Health Care, Research & Development, Makali, Bangalore 562 123, India
| | - Rangesh Paramesh
- Himalaya Health Care, Research & Development, Makali, Bangalore 562 123, India
| | - Bhushan Patwardhan
- Interdisciplinary School of Health Sciences, University of Pune, Pune-411007, India
| |
Collapse
|
47
|
Gil del Valle L. Oxidative stress in aging: Theoretical outcomes and clinical evidences in humans. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.biomag.2011.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
The role of EPR spectroscopy in studies of the oxidative status of biological systems and the antioxidative properties of various compounds. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2011. [DOI: 10.2298/jsc101015064s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this era of intense study of free radicals and antioxidants, electron
paramagnetic resonance (EPR) is arguably the best-suited technique for such
research, particularly when considering biochemical and biological systems.
No attempt was made to cover all the topics of EPR application but instead
attention was restricted to two areas that are both novel and received less
attention in previous reviews. In the first section, the application of EPR
in assessing the oxidative status of various biological systems, using
endogenous stabile paramagnetic species, such as the ascorbyl radical,
semiquinone, melanin, and oxidized pigments, is addressed. The second section
covers the use of EPR in the emerging field of antioxidant development, using
EPR spin-trapping and spin-probing techniques. In both sections, in addition
to giving an overview of the available literature, examples (mostly from the
authors? recent work) are also presented in sufficient detail to illustrate
how to explore the full potential of EPR. This review aims at encouraging
biologists, chemists and pharmacologists interested in the redox metabolism
of living systems, free radical chemistry or antioxidative properties of new
drugs and natural products to take advantage of this technique for their
investigations.
Collapse
|
49
|
Abstract
Cell survival and death are complex matters. Too much survival may lead to cancer and too much cell death may result in tissue degeneration. In this chapter, we will first of all focus on the cellular survival mechanisms that promote correct folding and maintenance of protein function. These mechanisms include protein quality control (PQC) systems comprising molecular chaperones and intracellular proteases in the cytosol, endoplasmatic reticulum (ER) and in the mitochondria. In addition to the PQC systems, mechanisms elicited by misfolded proteins, known as unfolded protein responses (UPRs), including induction/activation of antioxidant systems are also present in the three compartments of the cell. Second, we will discuss the mechanisms by which misfolded proteins lead to the generation of oxidative stress in the form of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These species are produced mainly from superoxide (O2-) generated in the mitochondrial respiratory chain and from nitrogen oxide (NO) produced by the mitochondrial nitrogen oxide synthetase (mtNOS). Third, the effects of oxidative stress will be discussed, both with respect to mitochondrial dynamics, i.e., fission and fusion, and the related elimination of dysfunctional mitochondria by cellular cleaning systems, i.e., mitophagy or mitoptosis, and related to the generation and cellular effects of oxidatively modified proteins, which closes a vicious cycle of protein misfolding and oxidative stress.
Collapse
|
50
|
Gil Del Valle L. WITHDRAWN: Oxidative stress in aging: Theoretical outcomes and clinical evidences in humans. Biomed Pharmacother 2010:S0753-3322(10)00146-0. [PMID: 20950991 DOI: 10.1016/j.biopha.2010.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 09/05/2010] [Indexed: 11/24/2022] Open
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.biomag.2011.03.001. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Lizette Gil Del Valle
- Clinical Pharmacology Laboratory, Hospital of the Institute "Pedro Kourí", Institute of Tropical Medecine "Pedro Kourí", P.O. Box 601, Marianao 13, Ciudad de La Habana, Havana City, Cuba
| |
Collapse
|