1
|
Yeung JC, Koike T, Wagnetz D, Machuca TN, Bonato R, Liu M, Juvet S, Cypel M, Keshavjee S. Ex vivo delivery of recombinant IL-10 to human donor lungs. JHLT OPEN 2025; 7:100192. [PMID: 40144859 PMCID: PMC11935390 DOI: 10.1016/j.jhlto.2024.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Background The immunoregulatory cytokine interleukin-10 (IL-10) has been shown to be a promising therapy for donor lung injuries before transplantation. However, the very short half-life of IL-10 in vivo (∼2 hours) has necessitated the use of gene therapy in almost all animal models of lung transplantation. Because isolation of the donor lung on the ex vivo lung perfusion (EVLP) circuit removes it from the influence of renal and hepatic clearance mechanisms, a much-prolonged half-life of IL-10 is anticipated. Thus, we hypothesized that delivery of recombinant IL-10 (rIL-10) to injured donor lungs isolated on EVLP could be a clinically relevant and a logistically simpler method of employing IL-10 therapy in lung transplantation. Methods Injured human donor lungs clinically rejected for transplantation were split into single lungs and the better of the 2 subjected to 12 hours of EVLP and randomized (n = 5/group) to receive either saline (control), rIL-10 (5 µg in 2-liter perfusate), or rIL-10 (25 µg) aerosolized into the airways. Results Perfusate and intratracheal delivery of rIL-10 did not provide the therapeutic anti-inflammatory action that has been traditionally achieved with gene therapy. It appears that intratracheally delivered rIL-10 moves into the perfusate where it seems to be biologically inactive. Conclusions Gene therapy remains superior as it allows for continued production of IL-10 within the alveoli where it has the potential to continuously act on alveolar macrophages and epithelial cells in a paracrine fashion.
Collapse
Affiliation(s)
- Jonathan C. Yeung
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Terumoto Koike
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Dirk Wagnetz
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Tiago N. Machuca
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Riccardo Bonato
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Stephen Juvet
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Wong A, Duong A, Wilson G, Yeung J, MacParland S, Han H, Cypel M, Keshavjee S, Liu M. Ischemia-reperfusion responses in human lung transplants at the single-cell resolution. Am J Transplant 2024; 24:2199-2211. [PMID: 39197591 DOI: 10.1016/j.ajt.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Ischemia-reperfusion is an unavoidable step of organ transplantation. Development of therapeutics for lung injury during transplantation has proved challenging; understanding lung injury from human data at the single-cell resolution is required to accelerate the development of therapeutics. Donor lung biopsies from 6 human lung transplant cases were collected at the end of cold preservation and 2-hour reperfusion and underwent single-cell RNA sequencing. Donor and recipient origin of cells from the reperfusion timepoint were deconvolved. Gene expression profiles were: (1) compared between each donor cell type between timepoints and (2) compared between donor and recipient cells. Inflammatory responses from donor lung macrophages were found after reperfusion with upregulation of multiple cytokines and chemokines, especially IL-1β and IL-1α. Significant inflammatory responses were found in alveolar epithelial cells (featured by CXCL8) and lung endothelial cells (featured by IL-6 upregulation). Different inflammatory responses were noted between donor and recipient monocytes and CD8+ T cells. The inflammatory signals and differences between donor and recipient cells observed provide insight into the cellular and molecular mechanisms of ischemia-reperfusion induced lung injury. Further investigations may lead to the development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Aaron Wong
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allen Duong
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gavin Wilson
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Yeung
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sonya MacParland
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hong Han
- Centre for Discovery in Cancer Research and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Nykänen AI, Mariscal A, Duong A, Ali A, Takahagi A, Bai X, Zehong G, Joe B, Takahashi M, Chen M, Gokhale H, Shan H, Hwang DM, Estrada C, Yeung J, Waddell T, Martinu T, Juvet S, Cypel M, Liu M, Davies JE, Keshavjee S. Lung Transplant Immunomodulation with Genetically Engineered Mesenchymal Stromal Cells-Therapeutic Window for Interleukin-10. Cells 2024; 13:859. [PMID: 38786082 PMCID: PMC11119666 DOI: 10.3390/cells13100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Lung transplantation results are compromised by ischemia-reperfusion injury and alloimmune responses. Ex vivo lung perfusion (EVLP) is used to assess marginal donor lungs before transplantation but is also an excellent platform to apply novel therapeutics. We investigated donor lung immunomodulation using genetically engineered mesenchymal stromal cells with augmented production of human anti-inflammatory hIL-10 (MSCsIL-10). Pig lungs were placed on EVLP for 6 h and randomized to control (n = 7), intravascular delivery of 20 × 106 (n = 5, low dose) or 40 × 106 human MSCs IL-10 (n = 6, high dose). Subsequently, single-lung transplantation was performed, and recipient pigs were monitored for 3 days. hIL-10 secretion was measured during EVLP and after transplantation, and immunological effects were assessed by cytokine profile, T and myeloid cell characterization and mixed lymphocyte reaction. MSCIL-10 therapy rapidly increased hIL-10 during EVLP and resulted in transient hIL-10 elevation after lung transplantation. MSCIL-10 delivery did not affect lung function but was associated with dose-related immunomodulatory effects, with the low dose resulting in a beneficial decrease in apoptosis and lower macrophage activation, but the high MSCIL-10 dose resulting in inflammation and cytotoxic CD8+ T cell activation. MSCIL-10 therapy during EVLP results in a rapid and transient perioperative hIL-10 increase and has a therapeutic window for its immunomodulatory effects.
Collapse
Affiliation(s)
- Antti I. Nykänen
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrea Mariscal
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Allen Duong
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aadil Ali
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Akihiro Takahagi
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
| | - Xiaohui Bai
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
| | - Guan Zehong
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
| | - Betty Joe
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
| | - Mamoru Takahashi
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
| | - Manyin Chen
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Hemant Gokhale
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Hongchao Shan
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - David M. Hwang
- Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada;
| | - Catalina Estrada
- Tissue Regeneration Therapeutics, Toronto, ON M5G 1N8, Canada; (C.E.); (J.E.D.)
| | - Jonathan Yeung
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Tom Waddell
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Tereza Martinu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
- Division of Respirology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephen Juvet
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
- Division of Respirology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John E. Davies
- Tissue Regeneration Therapeutics, Toronto, ON M5G 1N8, Canada; (C.E.); (J.E.D.)
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.I.N.); (A.M.); (A.D.); (A.A.); (A.T.); (X.B.); (G.Z.); (B.J.); (M.T.); (M.C.); (H.G.); (H.S.); (J.Y.); (T.W.); (T.M.); (S.J.); (M.C.); (M.L.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| |
Collapse
|
4
|
Liu H, Zhang L, Liu Z, Lin J, He X, Wu S, Qin Y, Zhao C, Guo Y, Lin F. Galectin-3 as TREM2 upstream factor contributes to lung ischemia-reperfusion injury by regulating macrophage polarization. iScience 2023; 26:107496. [PMID: 37636061 PMCID: PMC10448077 DOI: 10.1016/j.isci.2023.107496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/31/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Lung ischemia-reperfusion injury (LIRI) is a complex "aseptic" inflammatory response, macrophage play a pivotal role in the pathogenesis of LIRI. Galectin-3 (Gal3), a lectin implicated inflammation, has received limited attention in LIRI. Studies have reported Gal3 as a ligand for triggering receptor expressed on myeloid cell 2 (TREM2) in macrophages in Alzheimer's disease. Hence, we established LIRI C57BL/6 mice model and hypoxia/glucose deprivation and reoxygenation (OGD/R) model to investigate the relationship among Gal3, TREM2, and macrophage polarization. Our result demonstrated inhibition of Gal3 significantly reduced M1-type macrophage polarization while markedly increased M2-type in LIRI. In addition, we observed colocalization of Gal3 and TREM2 in macrophages, inhibition of Gal3 could recover the downregulation of TREM2 induced by LIRI while promoting TREM2 expression could attenuate lung injury in LIRI. In summary, our findings suggest Gal3 as an upstream factor of TREM2, play a crucial role in LIRI by regulating macrophage polarization.
Collapse
Affiliation(s)
- Hao Liu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
- Guangxi Clinical Research Center for Anesthesiology(GK AD22035214), Nanning, Guangxi 530021, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, Guangxi 530021, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi 530021, China
| | - Lu Zhang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
- Guangxi Clinical Research Center for Anesthesiology(GK AD22035214), Nanning, Guangxi 530021, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, Guangxi 530021, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi 530021, China
| | - Zhen Liu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
- Guangxi Clinical Research Center for Anesthesiology(GK AD22035214), Nanning, Guangxi 530021, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, Guangxi 530021, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi 530021, China
| | - Jinyuan Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
- Guangxi Clinical Research Center for Anesthesiology(GK AD22035214), Nanning, Guangxi 530021, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, Guangxi 530021, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi 530021, China
| | - Xiaojing He
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
- Guangxi Clinical Research Center for Anesthesiology(GK AD22035214), Nanning, Guangxi 530021, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, Guangxi 530021, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi 530021, China
| | - Siyi Wu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
- Guangxi Clinical Research Center for Anesthesiology(GK AD22035214), Nanning, Guangxi 530021, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, Guangxi 530021, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi 530021, China
| | - Yi Qin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
- Guangxi Clinical Research Center for Anesthesiology(GK AD22035214), Nanning, Guangxi 530021, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, Guangxi 530021, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi 530021, China
| | - Chen Zhao
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
- Guangxi Clinical Research Center for Anesthesiology(GK AD22035214), Nanning, Guangxi 530021, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, Guangxi 530021, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi 530021, China
| | - Youyuan Guo
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
- Guangxi Clinical Research Center for Anesthesiology(GK AD22035214), Nanning, Guangxi 530021, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, Guangxi 530021, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi 530021, China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
- Guangxi Clinical Research Center for Anesthesiology(GK AD22035214), Nanning, Guangxi 530021, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, Guangxi 530021, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi 530021, China
| |
Collapse
|
5
|
Becerra D, Linge H, Jeffs S, Roberts S, O J, Ott HC. Liquid Ventilation Reconditions Isolated Rat Lungs Following Ischemia Reperfusion Injury. Tissue Eng Part A 2022; 28:918-928. [PMID: 35946070 DOI: 10.1089/ten.tea.2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lung transplantation remains the only curative treatment for end stage pulmonary disease. Lung ischemia-reperfusion injury (IRI) is a major contributor to primary allograft dysfunction and donor organ non-utilization. The alveolar macrophage is a key inflammatory mediator in IRI. Ex vivo lung perfusion (EVLP) has been investigated to rehabilitate lungs prior to transplant but has failed to provide significant improvements after IRI. We hypothesized that liquid ventilation could be utilized for ex vivo lung reconditioning in a rat IRI model. We compared EVLP to liquid ventilation in an isolated ex vivo rat lung with an aqueous ventilant using quantitative physiologic and immunologic parameters. We observed improved physiologic parameters and mechanical clearance of alveolar macrophages and cytokines halting the propagation of the inflammatory response in IRI. While the wide applicability to large animal or human transplantation have yet to be explored, these findings represent a method for lung reconditioning in the setting of significant IRI that could widen the lung organ donation pool and limit morbidity and mortality associated with ischemia induced primary graft dysfunction.
Collapse
Affiliation(s)
- David Becerra
- Duke University Medical Center, Surgery, 2301 Erwin Rd., Durham, North Carolina, United States, 27713.,109 Wood Valley CtDurham, North Carolina, United States, 27713;
| | - Helena Linge
- Otto von Guericke Universitat Magdeburg, Human Medicine, Magdeburg, Sachsen-Anhalt, Germany;
| | - Sydney Jeffs
- Duke University School of Medicine, Durham, North Carolina, United States;
| | - Steven Roberts
- Massachusetts General Hospital, Center for Regenerative Medicine, Boston, Massachusetts, United States;
| | - Jane O
- Massachusetts General Hospital, Center for Transplantation Sciences, Boston, Massachusetts, United States;
| | - Harald C Ott
- Harvard Medical School, Thoracic Surgery, 55 Fruit Street, Founders 7, Boston, Massachusetts, United States, 02115;
| |
Collapse
|
6
|
Miller CL, O JM, Allan JS, Madsen JC. Novel approaches for long-term lung transplant survival. Front Immunol 2022; 13:931251. [PMID: 35967365 PMCID: PMC9363671 DOI: 10.3389/fimmu.2022.931251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Allograft failure remains a major barrier in the field of lung transplantation and results primarily from acute and chronic rejection. To date, standard-of-care immunosuppressive regimens have proven unsuccessful in achieving acceptable long-term graft and patient survival. Recent insights into the unique immunologic properties of lung allografts provide an opportunity to develop more effective immunosuppressive strategies. Here we describe advances in our understanding of the mechanisms driving lung allograft rejection and highlight recent progress in the development of novel, lung-specific strategies aimed at promoting long-term allograft survival, including tolerance.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Jane M. O
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - James S. Allan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
7
|
Roesel MJ, Sharma NS, Schroeter A, Matsunaga T, Xiao Y, Zhou H, Tullius SG. Primary Graft Dysfunction: The Role of Aging in Lung Ischemia-Reperfusion Injury. Front Immunol 2022; 13:891564. [PMID: 35686120 PMCID: PMC9170999 DOI: 10.3389/fimmu.2022.891564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 01/14/2023] Open
Abstract
Transplant centers around the world have been using extended criteria donors to remedy the ongoing demand for lung transplantation. With a rapidly aging population, older donors are increasingly considered. Donor age, at the same time has been linked to higher rates of lung ischemia reperfusion injury (IRI). This process of acute, sterile inflammation occurring upon reperfusion is a key driver of primary graft dysfunction (PGD) leading to inferior short- and long-term survival. Understanding and improving the condition of older lungs is thus critical to optimize outcomes. Notably, ex vivo lung perfusion (EVLP) seems to have the potential of reconditioning ischemic lungs through ex-vivo perfusing and ventilation. Here, we aim to delineate mechanisms driving lung IRI and review both experimental and clinical data on the effects of aging in augmenting the consequences of IRI and PGD in lung transplantation.
Collapse
Affiliation(s)
- Maximilian J Roesel
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Nirmal S Sharma
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Andreas Schroeter
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Tomohisa Matsunaga
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Yao Xiao
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Zhou
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Belhaj A, Dewachter L, Hupkens E, Remmelink M, Galanti L, Rorive S, Melot C, Naeije R, Rondelet B. Tacrolimus Prevents Mechanical and Humoral Alterations in Brain Death-Induced Lung Injury in Pigs. Am J Respir Crit Care Med 2022; 206:584-595. [PMID: 35549669 DOI: 10.1164/rccm.202201-0033oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Donor brain death-induced lung injury may compromise graft function after transplantation. Establishing strategies to attenuate lung damage remains a challenge because the underlying mechanisms remain uncertain. OBJECTIVES The effects of tacrolimus pretreatment were evaluated in an experimental model of brain death-induced lung injury. METHODS Brain death was induced by slow intracranial infusion of blood in anesthetized pigs after randomization to tacrolimus (orally administered at 0.25 mg. kg-1 BID the day before the experiment and intravenously at 0.05 mg. kg-1 one hour before the experiment; n=8) or placebo (n=9) pretreatment. Hemodynamic measurements were performed 1, 3, 5 and 7 hours after brain death. After euthanasia of the animals, lung tissue was sampled for pathobiological and histological analysis, including lung injury scoring (LIS). MEASUREMENTS AND MAIN RESULTS Tacrolimus pretreatment prevented increases in pulmonary artery pressure, pulmonary vascular resistance and pulmonary capillary pressure and decreases in systemic artery pressure and thermodilution cardiac output associated with brain death. After brain death, the ratio of the partial arterial O2 pressure to the inspired O2 fraction (PaO2/FiO2) decreased, which was prevented by tacrolimus. Tacrolimus pretreatment prevented increases in the interleukin (IL)-6-to-IL-10 ratio, vascular cell adhesion molecule-1, circulating levels of IL-1β, IL-6-to-IL-10 ratio and glycocalyx-derived molecules. Tacrolimus partially decreased apoptosis [Bax-to-Bcl2 ratio (p=0.07) and the number of apoptotic cells in the lungs (p<0.05)] but failed to improve LIS. CONCLUSIONS Immunomodulation through tacrolimus pretreatment prevented pulmonary capillary hypertension as well as the activation of inflammatory and apoptotic processes in the lungs after brain death; however, LIS did not improve.
Collapse
Affiliation(s)
- Asmae Belhaj
- CHU UCL Namur, 82470, cardiovascular, thoracic surgery and lung transplantation, Yvoir, Belgium.,Université Libre de Bruxelles, 26659, Laboratory of Physiology and Pharmacology, Faculty of Medicine, Bruxelles, Belgium;
| | - Laurence Dewachter
- Université Libre de Bruxelles, 26659, Laboratory of Physiology and Pharmacology, Faculty of Medicine, Bruxelles, Belgium
| | - Emeline Hupkens
- Université Libre de Bruxelles, 26659, Laboratory of Physiology and Pharmacology, Faculty of Medicine, Bruxelles, Belgium
| | - Myriam Remmelink
- Université Libre de Bruxelles, 26659, Department of Pathology, Hôpital Erasme, Brussels, Belgium
| | - Laurence Galanti
- CHU UCL Namur, 82470, Department of Clinical Biology, Yvoir, Belgium
| | - Sandrine Rorive
- Université Libre de Bruxelles, 26659, Department of Pathology, Hôpital Erasme, Brussels, Belgium
| | - Christian Melot
- Université Libre de Bruxelles, 26659, Laboratory of Physiology and Pharmacology, Faculty of Medicine, Bruxelles, Belgium
| | - Robert Naeije
- Department of Pathophysiology, Free University of Brussels, Brussels, Belgium
| | - Benoît Rondelet
- CHU UCL Namur, 82470, cardiovascular, thoracic surgery and lung transplantation, Yvoir, Belgium.,Université Libre de Bruxelles, 26659, Laboratory of Physiology and Pharmacology, Faculty of Medicine, Bruxelles, Belgium
| |
Collapse
|
9
|
Lam TYW, Nguyen N, Peh HY, Shanmugasundaram M, Chandna R, Tee JH, Ong CB, Hossain MZ, Venugopal S, Zhang T, Xu S, Qiu T, Kong WT, Chakarov S, Srivastava S, Liao W, Kim JS, Teh M, Ginhoux F, Fred Wong WS, Ge R. ISM1 protects lung homeostasis via cell-surface GRP78-mediated alveolar macrophage apoptosis. Proc Natl Acad Sci U S A 2022; 119:e2019161119. [PMID: 35046017 PMCID: PMC8794848 DOI: 10.1073/pnas.2019161119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/20/2021] [Indexed: 12/18/2022] Open
Abstract
Alveolar macrophages (AMs) are critical for lung immune defense and homeostasis. They are orchestrators of chronic obstructive pulmonary disease (COPD), with their number significantly increased and functions altered in COPD. However, it is unclear how AM number and function are controlled in a healthy lung and if changes in AMs without environmental assault are sufficient to trigger lung inflammation and COPD. We report here that absence of isthmin 1 (ISM1) in mice (Ism1-/- ) leads to increase in both AM number and functional heterogeneity, with enduring lung inflammation, progressive emphysema, and significant lung function decline, phenotypes similar to human COPD. We reveal that ISM1 is a lung resident anti-inflammatory protein that selectively triggers the apoptosis of AMs that harbor high levels of its receptor cell-surface GRP78 (csGRP78). csGRP78 is present at a heterogeneous level in the AMs of a healthy lung, but csGRP78high AMs are expanded in Ism1-/- mice, cigarette smoke (CS)-induced COPD mice, and human COPD lung, making these cells the prime targets of ISM1-mediated apoptosis. We show that csGRP78high AMs mostly express MMP-12, hence proinflammatory. Intratracheal delivery of recombinant ISM1 (rISM1) depleted csGRP78high AMs in both Ism1-/- and CS-induced COPD mice, blocked emphysema development, and preserved lung function. Consistently, ISM1 expression in human lungs positively correlates with AM apoptosis, suggesting similar function of ISM1-csGRP78 in human lungs. Our findings reveal that AM apoptosis regulation is an important physiological mechanism for maintaining lung homeostasis and demonstrate the potential of pulmonary-delivered rISM1 to target csGRP78 as a therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Terence Y W Lam
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Ngan Nguyen
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Mahalakshmi Shanmugasundaram
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Ritu Chandna
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Jong Huat Tee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Chee Bing Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138673, Singapore
| | - Md Zakir Hossain
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shruthi Venugopal
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Tianyi Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Simin Xu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Tao Qiu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Wan Ting Kong
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - Svetoslav Chakarov
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - Supriya Srivastava
- Department of Medicine, National University Hospital, Singapore 119228, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul 08826, South Korea
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Ming Teh
- Department of Pathology, National University Hospital, Singapore 119228
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Immunology Program, Life Science Institute, National University of Singapore, Singapore 117456, Singapore
- Singapore-Hebrew University of Jerusalem Alliance for Research and Enterprise, National University of Singapore, Singapore 138602, Singapore
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore;
| |
Collapse
|
10
|
Nykänen AI, Mariscal A, Duong A, Estrada C, Ali A, Hough O, Sage A, Chao BT, Chen M, Gokhale H, Shan H, Bai X, Zehong G, Yeung J, Waddell T, Martinu T, Juvet S, Cypel M, Liu M, Davies JE, Keshavjee S. Engineered mesenchymal stromal cell therapy during human lung ex vivo lung perfusion is compromised by acidic lung microenvironment. Mol Ther Methods Clin Dev 2021; 23:184-197. [PMID: 34703841 PMCID: PMC8516994 DOI: 10.1016/j.omtm.2021.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/07/2021] [Indexed: 11/29/2022]
Abstract
Ex vivo lung perfusion (EVLP) is an excellent platform to apply novel therapeutics, such as gene and cell therapies, before lung transplantation. We investigated the concept of human donor lung engineering during EVLP by combining gene and cell therapies. Premodified cryopreserved mesenchymal stromal cells with augmented anti-inflammatory interleukin-10 production (MSCIL-10) were administered during EVLP to human lungs that had various degrees of underlying lung injury. Cryopreserved MSCIL-10 had excellent viability, and they immediately and efficiently elevated perfusate and lung tissue IL-10 levels during EVLP. However, MSCIL-10 function was compromised by the poor metabolic conditions present in the most damaged lungs. Similarly, exposing cultured MSCIL-10 to poor metabolic, and especially acidic, conditions decreased their IL-10 production. In conclusion, we found that "off-the-shelf" MSCIL-10 therapy of human lungs during EVLP is safe and feasible, and results in rapid IL-10 elevation, and that the acidic target-tissue microenvironment may compromise the efficacy of cell-based therapies.
Collapse
Affiliation(s)
- Antti I Nykänen
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Andrea Mariscal
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Allen Duong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Catalina Estrada
- Tissue Regeneration Therapeutics, 790 Bay Street, Toronto, ON M5G 1N8, Canada
| | - Aadil Ali
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Olivia Hough
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Andrew Sage
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Bonnie T Chao
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Manyin Chen
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Hemant Gokhale
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Hongchao Shan
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Guan Zehong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Jonathan Yeung
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Tom Waddell
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Tereza Martinu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Stephen Juvet
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - John E Davies
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON M5S 3G9, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
11
|
Iske J, Hinze CA, Salman J, Haverich A, Tullius SG, Ius F. The potential of ex vivo lung perfusion on improving organ quality and ameliorating ischemia reperfusion injury. Am J Transplant 2021; 21:3831-3839. [PMID: 34355495 PMCID: PMC8925042 DOI: 10.1111/ajt.16784] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023]
Abstract
Allogeneic lung transplantation (LuTx) is considered the treatment of choice for a broad range of advanced, progressive lung diseases resistant to conventional treatment regimens. Ischemia reperfusion injury (IRI) occurring upon reperfusion of the explanted, ischemic lung during implantation remains a crucial mediator of primary graft dysfunction (PGD) and early allo-immune responses. Ex vivo lung perfusion (EVLP) displays an advanced technique aiming at improving lung procurement and preservation. Indeed, previous clinical trials have demonstrated a reduced incidence of PGD following LuTx utilizing EVLP, while long-term outcomes are yet to be evaluated. Mechanistically, EVLP may alleviate donor lung inflammation through reconditioning the injured lung and diminishing IRI through storing the explanted lung in a non-ischemic, perfused, and ventilated status. In this work, we review potential mechanisms of EVLP that may attenuate IRI and improve organ quality. Moreover, we dissect experimental treatment approaches during EVLP that may further attenuate inflammatory events deriving from tissue ischemia, shear forces or allograft rejection associated with LuTx.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher A. Hinze
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Jawad Salman
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Axel Haverich
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fabio Ius
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Correspondence: Fabio Ius, MD, Department of Heart-, Thoracic-, Vascular-, and Transplant Surgery, Hannover Medical School, 1 Carl-Neuberg-Street, 30625 Hannover, Germany, Tel: +49 511 532 2125, Fax: +49 511 532 8436,
| |
Collapse
|
12
|
Matsunaga T, Iske J, Schroeter A, Azuma H, Zhou H, Tullius SG. The potential of Senolytics in transplantation. Mech Ageing Dev 2021; 200:111582. [PMID: 34606875 PMCID: PMC10655132 DOI: 10.1016/j.mad.2021.111582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022]
Abstract
Older organs provide a substantial unrealized potential with the capacity to close the gap between demand and supply in organ transplantation. The potential of senolytics in improving age-related conditions has been shown in various experimental studies and early clinical trials. Those encouraging data may also be of relevance for transplantation. As age-differences between donor and recipients are not uncommon, aging may be accelerated in recipients when transplanting older organs; young organs may, at least in theory, have the potential to 'rejuvenate' old recipients. Here, we review the relevance of senescent cells and the effects of senolytics on organ quality, alloimmune responses and outcomes in solid organ transplantation. This article is part of the Special Issue - Senolytics - Edited by Joao Passos and Diana Jurk.
Collapse
Affiliation(s)
- Tomohisa Matsunaga
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Jasper Iske
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Institute of Transplant Immunology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Andreas Schroeter
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Hao Zhou
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Patel PM, Connolly MR, Coe TM, Calhoun A, Pollok F, Markmann JF, Burdorf L, Azimzadeh A, Madsen JC, Pierson RN. Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Front Immunol 2021; 12:681504. [PMID: 34566955 PMCID: PMC8458821 DOI: 10.3389/fimmu.2021.681504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The recent dramatic advances in preventing "initial xenograft dysfunction" in pig-to-non-human primate heart transplantation achieved by minimizing ischemia suggests that ischemia reperfusion injury (IRI) plays an important role in cardiac xenotransplantation. Here we review the molecular, cellular, and immune mechanisms that characterize IRI and associated "primary graft dysfunction" in allotransplantation and consider how they correspond with "xeno-associated" injury mechanisms. Based on this analysis, we describe potential genetic modifications as well as novel technical strategies that may minimize IRI for heart and other organ xenografts and which could facilitate safe and effective clinical xenotransplantation.
Collapse
Affiliation(s)
- Parth M. Patel
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Margaret R. Connolly
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Taylor M. Coe
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anthony Calhoun
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Franziska Pollok
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - James F. Markmann
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lars Burdorf
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Agnes Azimzadeh
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joren C. Madsen
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Richard N. Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Natalini JG, Diamond JM. Primary Graft Dysfunction. Semin Respir Crit Care Med 2021; 42:368-379. [PMID: 34030200 DOI: 10.1055/s-0041-1728794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Primary graft dysfunction (PGD) is a form of acute lung injury after transplantation characterized by hypoxemia and the development of alveolar infiltrates on chest radiograph that occurs within 72 hours of reperfusion. PGD is among the most common early complications following lung transplantation and significantly contributes to increased short-term morbidity and mortality. In addition, severe PGD has been associated with higher 90-day and 1-year mortality rates compared with absent or less severe PGD and is a significant risk factor for the subsequent development of chronic lung allograft dysfunction. The International Society for Heart and Lung Transplantation released updated consensus guidelines in 2017, defining grade 3 PGD, the most severe form, by the presence of alveolar infiltrates and a ratio of PaO2:FiO2 less than 200. Multiple donor-related, recipient-related, and perioperative risk factors for PGD have been identified, many of which are potentially modifiable. Consistently identified risk factors include donor tobacco and alcohol use; increased recipient body mass index; recipient history of pulmonary hypertension, sarcoidosis, or pulmonary fibrosis; single lung transplantation; and use of cardiopulmonary bypass, among others. Several cellular pathways have been implicated in the pathogenesis of PGD, thus presenting several possible therapeutic targets for preventing and treating PGD. Notably, use of ex vivo lung perfusion (EVLP) has become more widespread and offers a potential platform to safely investigate novel PGD treatments while expanding the lung donor pool. Even in the presence of significantly prolonged ischemic times, EVLP has not been associated with an increased risk for PGD.
Collapse
Affiliation(s)
- Jake G Natalini
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua M Diamond
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Iske J, Matsunaga T, Zhou H, Tullius SG. Donor and Recipient Age-Mismatches: The Potential of Transferring Senescence. Front Immunol 2021; 12:671479. [PMID: 33995411 PMCID: PMC8113632 DOI: 10.3389/fimmu.2021.671479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022] Open
Abstract
In transplantation, donor and recipients frequently differ in age. Senescent cells accumulate in donor organs with aging and have the potential to promote senescence in adjacent cells when transferred into recipient animals. Characteristically, senescent cells secrete a myriad of pro-inflammatory, soluble molecules as part of their distinct secretory phenotype that have been shown to drive senescence and age-related co-morbidities. Preliminary own data show that the transplantation of old organs limits the physical reserve of recipient animals. Here, we review how organ age may affect transplant recipients and discuss the potential of accelerated aging.
Collapse
Affiliation(s)
- Jasper Iske
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, United States
| | - Tomohisa Matsunaga
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, United States.,Department of Urology, Osaka Medical College, Osaka, Japan
| | - Hao Zhou
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan G Tullius
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Zhou P, Guo H, Li Y, Liu Q, Qiao X, Lu Y, Mei PY, Zheng Z, Li J. Monocytes promote pyroptosis of endothelial cells during lung ischemia-reperfusion via IL-1R/NF-κB/NLRP3 signaling. Life Sci 2021; 276:119402. [PMID: 33785335 DOI: 10.1016/j.lfs.2021.119402] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
In our previous study, we observed that donor pulmonary intravascular nonclassical monocytes play a major role in early PGF, but the specific mechanism remained unclear. In this study, we investigated the mechanistic role of monocytes in inducing pyroptosis of human pulmonary microvascular endothelial cells (HPMECs) during IRI. A murine hilar ligation model of IRI was utilized whereby left lungs underwent 1 h of ischemia and 23 h of reperfusion. Monocyte depletion by intraperitoneal clodronate-liposome treatment on pulmonary edema and pyroptosis activation were determined. In vitro experiments, we performed the co-culture experiments under hypoxia-reoxygenation (H/R) conditions to mimic the IRI environment. We monitored the expression of NLRP3, caspase-1 and IL-1β in co-cultures of monocytes (U937 cells) and HPMECs under H/R conditions. NLRP3, IL-1β and IL-1R siRNA knockdown, caspase-1 and NF-κB pathway inhibitors were employed to elucidate the mechanism modulating HPMEC pyroptosis during H/R. Treatment of mice with clodronate-liposome attenuated IR-induced pulmonary edema, cytokine production and pyroptosis activation. In vitro, NLRP3 knockdown in monocytes reduced caspase-1 and IL-1β secretion in co-cultures of monocytes and HPMECs. Reduced HPMEC pyroptosis was also observed either containing HPMECs with genetically engineered IL-1R knockdown or in co-culture treated with a Triplotide inhibitor that disrupts NF-κB signaling. Monocytes play a vital role in the development of transplant-associated ischemia-reperfusion injury. A potential role is that monocytes secrete IL-1β to induce HPMEC pyroptosis via the IL-1R/NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Guo
- Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Liu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinwei Qiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Lu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-Yuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhikun Zheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jinsong Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Oshima Y, Otsuki A, Endo R, Nakasone M, Harada T, Takahashi S, Inagaki Y. The Effects of Volatile Anesthetics on Lung Ischemia-Reperfusion Injury: Basic to Clinical Studies. J Surg Res 2020; 260:325-344. [PMID: 33373852 DOI: 10.1016/j.jss.2020.11.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/01/2020] [Indexed: 02/08/2023]
Abstract
Case reports from as early as the 1970s have shown that intravenous injection of even a small dose of volatile anesthetics result in fatal lung injury. Direct contact between volatile anesthetics and pulmonary vasculature triggers chemical damage in the vessel walls. A wide variety of factors are involved in lung ischemia-reperfusion injury (LIRI), such as pulmonary endothelial cells, alveolar epithelial cells, alveolar macrophages, neutrophils, mast cells, platelets, proinflammatory cytokines, and surfactant. With a constellation of factors involved, the assessment of the protective effect of volatile anesthetics in LIRI is difficult. Multiple animal studies have reported that with regards to LIRI, sevoflurane demonstrates an anti-inflammatory effect in immunocompetent cells and an anti-apoptotic effect on lung tissue. Scattered studies have dismissed a protective effect of desflurane against LIRI. While a single-center randomized controlled trial (RCT) found that volatile anesthetics including desflurane demonstrated a lung-protective effect in thoracic surgery, a multicenter RCT did not demonstrate a lung-protective effect of desflurane. LIRI is common in lung transplantation. One study, although limited due to its small sample size, found that the use of volatile anesthetics in organ procurement surgery involving "death by neurologic criteria" donors did not improve lung graft survival. Future studies on the protective effect of volatile anesthetics against LIRI must examine not only the mechanism of the protective effect but also differences in the effects of different types of volatile anesthetics, their optimal dosage, and the appropriateness of their use in the event of marked alveolar capillary barrier damage.
Collapse
Affiliation(s)
- Yoshiaki Oshima
- Department of Anesthesiology, Yonago Medical Center, Yonago, Tottori, Japan.
| | - Akihiro Otsuki
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Ryo Endo
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Masato Nakasone
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Tomomi Harada
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Shunsaku Takahashi
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Yoshimi Inagaki
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| |
Collapse
|
18
|
Monticelli LA, Diamond JM, Saenz SA, Tait Wojno ED, Porteous MK, Cantu E, Artis D, Christie JD. Lung Innate Lymphoid Cell Composition Is Altered in Primary Graft Dysfunction. Am J Respir Crit Care Med 2020; 201:63-72. [PMID: 31394048 PMCID: PMC6938146 DOI: 10.1164/rccm.201906-1113oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/07/2019] [Indexed: 01/08/2023] Open
Abstract
Rationale: Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality after lung transplantation, but the immunologic mechanisms are poorly understood. Innate lymphoid cells (ILC) are a heterogeneous family of immune cells regulating pathologic inflammation and beneficial tissue repair. However, whether changes in donor-derived lung ILC populations are associated with PGD development has never been examined.Objectives: To determine whether PGD in chronic obstructive pulmonary disease or interstitial lung disease transplant recipients is associated with alterations in ILC subset composition within the allograft.Methods: We performed a single-center cohort study of lung transplantation patients with surgical biopsies of donor tissue taken before, and immediately after, allograft reperfusion. Donor immune cells from 18 patients were characterized phenotypically by flow cytometry for single-cell resolution of distinct ILC subsets. Changes in the percentage of ILC subsets with reperfusion or PGD (grade 3 within 72 h) were assessed.Measurements and Main Results: Allograft reperfusion resulted in significantly decreased frequencies of natural killer cells and a trend toward reduced ILC populations, regardless of diagnosis (interstitial lung disease or chronic obstructive pulmonary disease). Seven patients developed PGD (38.9%), and PGD development was associated with selective reduction of the ILC2 subset after reperfusion. Conversely, patients without PGD exhibited significantly higher ILC1 frequencies before reperfusion, accompanied by elevated ILC2 frequencies after allograft reperfusion.Conclusions: The composition of donor ILC subsets is altered after allograft reperfusion and is associated with PGD development, suggesting that ILCs may be involved in regulating lung injury in lung transplant recipients.
Collapse
Affiliation(s)
- Laurel A. Monticelli
- Division of Pulmonary and Critical Care Medicine and
- Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York; and
| | | | - Steven A. Saenz
- Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York; and
| | - Elia D. Tait Wojno
- Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York; and
| | | | - Edward Cantu
- Division of Cardiovascular Surgery, Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Artis
- Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York; and
| | | |
Collapse
|
19
|
Janicova A, Becker N, Xu B, Wutzler S, Vollrath JT, Hildebrand F, Ehnert S, Marzi I, Störmann P, Relja B. Endogenous Uteroglobin as Intrinsic Anti-inflammatory Signal Modulates Monocyte and Macrophage Subsets Distribution Upon Sepsis Induced Lung Injury. Front Immunol 2019; 10:2276. [PMID: 31632392 PMCID: PMC6779999 DOI: 10.3389/fimmu.2019.02276] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a serious clinical condition which can cause life-threatening organ dysfunction, and has limited therapeutic options. The paradigm of limiting excessive inflammation and promoting anti-inflammatory responses is a simplified concept. Yet, the absence of intrinsic anti-inflammatory signaling at the early stage of an infection can lead to an exaggerated activation of immune cells, including monocytes and macrophages. There is emerging evidence that endogenous molecules control those mechanisms. Here we aimed to identify and describe the dynamic changes in monocyte and macrophage subsets and lung damage in CL57BL/6N mice undergoing blunt chest trauma with subsequent cecal ligation and puncture. We showed that early an increase in systemic and activated Ly6C+CD11b+CD45+Ly6G- monocytes was paralleled by their increased emigration into lungs. The ratio of pro-inflammatory Ly6ChighCD11b+CD45+Ly6G- to patrolling Ly6ClowCD11b+CD45+Ly6G- monocytes significantly increased in blood, lungs and bronchoalveolar lavage fluid (BALF) suggesting an early transition to inflammatory phenotypes during early sepsis development. Similar to monocytes, the level of pro-inflammatory Ly6ChighCD45+F4/80+ macrophages increased in lungs and BALF, while tissue repairing Ly6ClowCD45+F4/80+ macrophages declined in BALF. Levels of inflammatory mediators TNF-α and MCP-1 in blood and RAGE in lungs and BALF were elevated, and besides their boosting of inflammation via the recruitment of cells, they may promote monocyte and macrophage polarization, respectively, toward the pro-inflammatory phenotype. Neutralization of uteroglobin increased pro-inflammatory cytokine levels, activation of inflammatory phenotypes and their recruitment to lungs; concurrent with increased pulmonary damage in septic mice. In in vitro experiments, the influence of uteroglobin on monocyte functions including migratory behavior, TGF-β1 expression, cytotoxicity and viability were proven. These results highlight an important role of endogenous uteroglobin as intrinsic anti-inflammatory signal upon sepsis-induced early lung injury, which modules the early monocyte/macrophages driven inflammation. Short Summary Blunt chest injury is the third largest cause of death following major trauma, and ongoing excessive pro-inflammatory immune response entails high risk for the development of secondary complications, such as sepsis, with limited therapeutic options. In murine double hit trauma consisting of thoracic trauma and subsequent cecal ligation and puncture, we investigated the cytokine profile, pulmonary epithelial integrity and phenotypic shift of patrolling Ly6ClowCD11b+CD45+Ly6G- monocytes and Ly6ClowCD45+F4/80+ macrophages to pro-inflammatory Ly6ChighCD11b+CD45+Ly6G- monocytes and Ly6ChighCD45+F4/80+ cells in blood, lungs and bronchoalveolar lavage fluid (BALF). Pro-inflammatory mediators and phenotypes were elevated and uteroglobin neutralization led to further increase. Enhanced total protein levels in BALF suggests leakage of respiratory epithelium. In vitro, uteroglobin inhibited the migratory capacity of monocytes and the TGF-β1 expression without affecting the viability. These results highlight an important role of endogenous uteroglobin as an intrinsic anti-inflammatory signal upon sepsis-induced early lung injury, which modulates the early monocyte/macrophages driven inflammation.
Collapse
Affiliation(s)
- Andrea Janicova
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany.,Department of Aquatic Ecotoxicology, Goethe University, Frankfurt, Germany.,Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Nils Becker
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Baolin Xu
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Sebastian Wutzler
- Orthopedic and Trauma Surgery, Helios Horst Schmidt Clinic, Wiesbaden, Germany
| | - Jan Tilmann Vollrath
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | | | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Philipp Störmann
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| |
Collapse
|
20
|
Potera RM, Cao M, Jordan LF, Hogg RT, Hook JS, Moreland JG. Alveolar Macrophage Chemokine Secretion Mediates Neutrophilic Lung Injury in Nox2-Deficient Mice. Inflammation 2019; 42:185-198. [PMID: 30288635 PMCID: PMC6775637 DOI: 10.1007/s10753-018-0883-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Acute lung injury (ALI), developing as a component of the systemic inflammatory response syndrome (SIRS), leads to significant morbidity and mortality. Reactive oxygen species (ROS), produced in part by the neutrophil NADPH oxidase 2 (Nox2), have been implicated in the pathogenesis of ALI. Previous studies in our laboratory demonstrated the development of pulmonary inflammation in Nox2-deficient (gp91phox-/y) mice that was absent in WT mice in a murine model of SIRS. Given this finding, we hypothesized that Nox2 in a resident cell in the lung, specifically the alveolar macrophage, has an essential anti-inflammatory role. Using a murine model of SIRS, we examined whole-lung digests and bronchoalveolar lavage fluid (BALf) from WT and gp91phox-/y mice. Both genotypes demonstrated neutrophil sequestration in the lung during SIRS, but neutrophil migration into the alveolar space was only present in the gp91phox-/y mice. Macrophage inflammatory protein (MIP)-1α gene expression and protein secretion were higher in whole-lung digest from uninjected gp91phox-/y mice compared to the WT mice. Gene expression of MIP-1α, MCP-1, and MIP-2 was upregulated in alveolar macrophages obtained from gp91phox-/y mice at baseline compared with WT mice. Further, ex vivo analysis of alveolar macrophages, but not bone marrow-derived macrophages or peritoneal macrophages, demonstrated higher gene expression of MIP-1α and MIP-2. Moreover, isolated lung polymorphonuclear neutrophils migrate to BALf obtained from gp91phox-/y mice, further providing evidence of a cell-specific anti-inflammatory role for Nox2 in alveolar macrophages. We speculate that Nox2 represses the development of inflammatory lung injury by modulating chemokine expression by the alveolar macrophage.
Collapse
Affiliation(s)
- Renee M Potera
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA.
| | - Mou Cao
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA
| | - Lin F Jordan
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA
| | - Richard T Hogg
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA
| | - Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9063, USA.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
21
|
Abstract
Primary graft dysfunction is a form of acute injury after lung transplantation that is associated with significant short- and long-term morbidity and mortality. Multiple mechanisms contribute to the pathogenesis of primary graft dysfunction, including ischemia reperfusion injury, epithelial cell death, endothelial cell dysfunction, innate immune activation, oxidative stress, and release of inflammatory cytokines and chemokines. This article reviews the epidemiology, pathogenesis, risk factors, prevention, and treatment of primary graft dysfunction.
Collapse
Affiliation(s)
- Mary K Porteous
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104, USA.
| | - James C Lee
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Role of monocytes and macrophages in regulating immune response following lung transplantation. Curr Opin Organ Transplant 2017; 21:239-45. [PMID: 26977996 DOI: 10.1097/mot.0000000000000313] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Advances in the field of monocyte and macrophage biology have dramatically changed our understanding of their role during homeostasis and inflammation. Here we review the role of these important innate immune effectors in the lung during inflammatory challenges including lung transplantation. RECENT FINDINGS Neutrophil extravasation into lung tissue and the alveolar space have been shown to be pathogenic during acute lung injury as well as primary graft dysfunction following lung transplantation. Recent advances in lung immunology have demonstrated the remarkable plasticity of both monocytes and macrophages and demonstrated their importance as mediators of neutrophil recruitment and transendothelial migration during inflammation. SUMMARY Monocytes and macrophages are emerging as key players in mediating both the pathogen response and sterile lung inflammation, including that arising from barotrauma and ischemia-reperfusion injury. Ongoing studies will establish the mechanisms by which these monocytes and macrophages initiate a variety of immune response that lay the fundamental basis of injury response in the lung.
Collapse
|
23
|
Gelman AE, Fisher AJ, Huang HJ, Baz MA, Shaver CM, Egan TM, Mulligan MS. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part III: Mechanisms: A 2016 Consensus Group Statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2017; 36:1114-1120. [PMID: 28818404 DOI: 10.1016/j.healun.2017.07.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/16/2017] [Indexed: 01/17/2023] Open
Affiliation(s)
- Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Andrew J Fisher
- Institute of Transplantation, Freeman Hospital and Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Howard J Huang
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Maher A Baz
- Departments of Medicine and Surgery, University of Kentucky, Lexington, Kentucky, USA
| | - Ciara M Shaver
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thomas M Egan
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Micheal S Mulligan
- Department of Surgery, Division of Cardiothoracic Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
24
|
Abbas AA, Diamond J, Chehoud C, Chang B, Kotzin J, Young J, Imai I, Haas A, Cantu E, Lederer D, Meyer K, Milewski R, Olthoff K, Shaked A, Christie J, Bushman F, Collman R. The Perioperative Lung Transplant Virome: Torque Teno Viruses Are Elevated in Donor Lungs and Show Divergent Dynamics in Primary Graft Dysfunction. Am J Transplant 2017; 17:1313-1324. [PMID: 27731934 PMCID: PMC5389935 DOI: 10.1111/ajt.14076] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 01/25/2023]
Abstract
Primary graft dysfunction (PGD) is a principal cause of early morbidity and mortality after lung transplantation, but its pathogenic mechanisms are not fully clarified. To date, studies using standard clinical assays have not linked microbial factors to PGD. We previously used comprehensive metagenomic methods to characterize viruses in lung allografts >1 mo after transplant and found that levels of Anellovirus, mainly torque teno viruses (TTVs), were significantly higher than in nontransplanted healthy controls. We used quantitative polymerase chain reaction to analyze TTV and shotgun metagenomics to characterize full viral communities in acellular bronchoalveolar lavage from donor organs and postreperfusion allografts in PGD and non-PGD lung transplant recipient pairs. Unexpectedly, TTV DNA levels were elevated 100-fold in donor lungs compared with healthy adults (p = 0.0026). Although absolute TTV levels did not differ by PGD status, PGD cases showed a smaller increase in TTV levels from before to after transplant than did control recipients (p = 0.041). Metagenomic sequencing revealed mainly TTV and bacteriophages of respiratory tract bacteria, but no viral taxa distinguished PGD cases from controls. These findings suggest that conditions associated with brain death promote TTV replication and that greater immune activation or tissue injury associated with PGD may restrict TTV abundance in the lung.
Collapse
Affiliation(s)
- A. A. Abbas
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J.M. Diamond
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - C. Chehoud
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - B. Chang
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J.J. Kotzin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J.C. Young
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - I. Imai
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - A.R. Haas
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - E. Cantu
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - D.J. Lederer
- Departments of Medicine and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - K. Meyer
- School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - R.K. Milewski
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - K.M. Olthoff
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - A. Shaked
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - J.D. Christie
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - F.D. Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Corresponding authors: Frederic Bushman: , Ronald Collman:
| | - R.G. Collman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Corresponding authors: Frederic Bushman: , Ronald Collman:
| |
Collapse
|
25
|
Jang JH, Yamada Y, Janker F, De Meester I, Baerts L, Vliegen G, Inci I, Chatterjee S, Weder W, Jungraithmayr W. Anti-inflammatory effects on ischemia/reperfusion-injured lung transplants by the cluster of differentiation 26/dipeptidylpeptidase 4 (CD26/DPP4) inhibitor vildagliptin. J Thorac Cardiovasc Surg 2017; 153:713-724.e4. [DOI: 10.1016/j.jtcvs.2016.10.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/24/2022]
|
26
|
Depletion of Alveolar Macrophages Does Not Prevent Hantavirus Disease Pathogenesis in Golden Syrian Hamsters. J Virol 2016; 90:6200-6215. [PMID: 27099308 PMCID: PMC4936146 DOI: 10.1128/jvi.00304-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, dysregulation of components of the immune response is often suggested as a possible cause. Alveolar macrophages are found in the alveoli of the lung and represent the first line of defense to many airborne pathogens. To determine whether alveolar macrophages play a role in HPS pathogenesis, alveolar macrophages were depleted in an adult rodent model of HPS that closely resembles human HPS. Syrian hamsters were treated, intratracheally, with clodronate-encapsulated liposomes or control liposomes and were then challenged with ANDV. Treatment with clodronate-encapsulated liposomes resulted in significant reduction in alveolar macrophages, but depletion did not prevent pathogenesis or prolong disease. Depletion also did not significantly reduce the amount of virus in the lung of ANDV-infected hamsters but altered neutrophil recruitment, MIP-1α and MIP-2 chemokine expression, and vascular endothelial growth factor (VEGF) levels in hamster bronchoalveolar lavage (BAL) fluid early after intranasal challenge. These data demonstrate that alveolar macrophages may play a limited protective role early after exposure to aerosolized ANDV but do not directly contribute to hantavirus disease pathogenesis in the hamster model of HPS. IMPORTANCE Hantaviruses continue to cause disease worldwide for which there are no FDA-licensed vaccines, effective postexposure prophylactics, or therapeutics. Much of this can be attributed to a poor understanding of the mechanism of hantavirus disease pathogenesis. Hantavirus disease has long been considered an immune-mediated disease; however, by directly manipulating the Syrian hamster model, we continue to eliminate individual immune cell types. As the most numerous immune cells present in the respiratory tract, alveolar macrophages are poised to defend against hantavirus infection, but those antiviral responses may also contribute to hantavirus disease. Here, we demonstrate that, like in our prior T and B cell studies, alveolar macrophages neither prevent hantavirus infection nor cause hantavirus disease. While these studies reflect pathogenesis in the hamster model, they should help us rule out specific cell types and prompt us to consider other potential mechanisms of disease in an effort to improve the outcome of human HPS.
Collapse
|
27
|
Prieto-Moure B, Lloris-Carsí JM, Barrios-Pitarque C, Toledo-Pereyra LH, Lajara-Romance JM, Berda-Antolí M, Lloris-Cejalvo JM, Cejalvo-Lapeña D. Pharmacology of Ischemia-Reperfusion. Translational Research Considerations. J INVEST SURG 2016; 29:234-49. [PMID: 27216877 DOI: 10.3109/08941939.2015.1119219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ischemia-reperfusion (IRI) is a complex physiopathological mechanism involving a large number of metabolic processes that can eventually lead to cell apoptosis and ultimately tissue necrosis. Treatment approaches intended to reduce or palliate the effects of IRI are varied, and are aimed basically at: inhibiting cell apoptosis and the complement system in the inflammatory process deriving from IRI, modulating calcium levels, maintaining mitochondrial membrane integrity, reducing the oxidative effects of IRI and levels of inflammatory cytokines, or minimizing the action of macrophages, neutrophils, and other cell types. This study involved an extensive, up-to-date review of the bibliography on the currently most widely used active products in the treatment and prevention of IRI, and their mechanisms of action, in an aim to obtain an overview of current and potential future treatments for this pathological process. The importance of IRI is clearly reflected by the large number of studies published year after year, and by the variety of pathophysiological processes involved in this major vascular problem. A quick study of the evolution of IRI-related publications in PubMed shows that in a single month in 2014, 263 articles were published, compared to 806 articles in the entire 1990.
Collapse
Affiliation(s)
| | | | | | - Luis-H Toledo-Pereyra
- c Western Michigan University, Homer Stryker M.D. School of Medicine and Michigan State University , College of Human Medicine , Kalamazoo , MI
| | | | - M Berda-Antolí
- b Experimental Surgery , Catholic University of Valencia , Valencia , Spain
| | - J M Lloris-Cejalvo
- b Experimental Surgery , Catholic University of Valencia , Valencia , Spain
| | | |
Collapse
|
28
|
Bigelovii A Protects against Lipopolysaccharide-Induced Acute Lung Injury by Blocking NF-κB and CCAAT/Enhancer-Binding Protein δ Pathways. Mediators Inflamm 2016; 2016:9201604. [PMID: 27194827 PMCID: PMC4853956 DOI: 10.1155/2016/9201604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/09/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022] Open
Abstract
Optimal methods are applied to acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS), but the mortality rate is still high. Accordingly, further studies dedicated to identify novel therapeutic approaches to ALI are urgently needed. Bigelovii A is a new natural product and may exhibit anti-inflammatory activity. Therefore, we sought to investigate its effect on lipopolysaccharide- (LPS-) induced ALI and the underlying mechanisms. We found that LPS-induced ALI was significantly alleviated by Bigelovii A treatment, characterized by reduction of proinflammatory mediator production, neutrophil infiltration, and lung permeability. Furthermore, Bigelovii A also downregulated LPS-stimulated inflammatory mediator expressions in vitro. Moreover, both NF-κB and CCAAT/enhancer-binding protein δ (C/EBPδ) activation were obviously attenuated by Bigelovii A treatment. Additionally, phosphorylation of both p38 MAPK and ERK1/2 (upstream signals of C/EBPδ activation) in response to LPS challenge was also inhibited by Bigelovii A. Therefore, Bigelovii A could attenuate LPS-induced inflammation by suppression of NF-κB, inflammatory mediators, and p38 MAPK/ERK1/2-C/EBPδ, inflammatory mediators signaling pathways, which provide a novel theoretical basis for the possible application of Bigelovii A in clinic.
Collapse
|
29
|
Merry HE, Phelan P, Hwang B, Mulligan MS. Validating the use of short interfering RNA as a novel technique for cell-specific target gene knockdown in lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2015; 151:499-506. [PMID: 26687890 DOI: 10.1016/j.jtcvs.2015.09.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Short interfering RNA is an effective method for target gene knockdown. However, concerns surround the design, administration, efficacy, specificity, and immunostimulatory potential. Although uptake by alveolar macrophages has been demonstrated, studies have not examined its use in lung ischemia-reperfusion injury. We describe the validation of short interference RNA as a novel technique for cell-specific target gene knockdown in our model of lung ischemia-reperfusion injury. METHODS Dose-response experiments were performed, and 3 distinct sequences of toll-like receptor-4, toll-like receptor-2, and myeloid differentiation factor-88 short interference RNA were tested for efficacy of knockdown. Saline, lipid vector, and noncoding short interference RNA controls were used. Similar experiments were performed in primary cultures of resident pulmonary cells. Target protein knockdown was assessed by Western blot. Rat serum and cell culture media were assessed for interferon and cytokine production. Biotin labeling was used to assess short interference RNA uptake. RESULTS Target protein expression was significantly reduced using short interference RNA. However, toll-like receptor-4 knockdown was isolated to alveolar macrophages, and biotin labeling confirmed toll-like receptor-4 short interference RNA localization to alveolar macrophages. There was significant knockdown of toll-like receptor-4 expression in cultured cells treated with toll-like receptor-4 short interference RNA. There was no significant change in interferon production after short interference RNA treatment. There was effective target protein knockdown with each sequence used. CONCLUSIONS Short interference RNA is a valid method for achieving target protein knockdown in alveolar macrophages and is an important tool in the evaluation of its role in the development of lung ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Heather E Merry
- Division of Thoracic Surgery, University of Washington, Seattle, Wash
| | - Patrick Phelan
- Division of Thoracic Surgery, University of Washington, Seattle, Wash
| | - Billanna Hwang
- Division of Thoracic Surgery, University of Washington, Seattle, Wash; University of Washington, Center for Lung Biology, Seattle, Wash.
| | - Michael S Mulligan
- Division of Thoracic Surgery, University of Washington, Seattle, Wash; University of Washington, Center for Lung Biology, Seattle, Wash
| |
Collapse
|
30
|
Porteous MK, Diamond JM, Christie JD. Primary graft dysfunction: lessons learned about the first 72 h after lung transplantation. Curr Opin Organ Transplant 2015; 20:506-14. [PMID: 26262465 PMCID: PMC4624097 DOI: 10.1097/mot.0000000000000232] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW In 2005, the International Society for Heart and Lung Transplantation published a standardized definition of primary graft dysfunction (PGD), facilitating new knowledge on this form of acute lung injury that occurs within 72 h of lung transplantation. PGD continues to be associated with significant morbidity and mortality. This article will summarize the current literature on the epidemiology of PGD, pathogenesis, risk factors, and preventive and treatment strategies. RECENT FINDINGS Since 2011, several manuscripts have been published that provide insight into the clinical risk factors and pathogenesis of PGD. In addition, several transplant centers have explored preventive and treatment strategies for PGD, including the use of extracorporeal strategies. More recently, results from several trials assessing the role of extracorporeal lung perfusion may allow for much-needed expansion of the donor pool, without raising PGD rates. SUMMARY This article will highlight the current state of the science regarding PGD, focusing on recent advances, and set a framework for future preventive and treatment strategies.
Collapse
Affiliation(s)
- Mary K Porteous
- aDepartment of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA bCenter for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
31
|
Ohashi W, Hattori K, Hattori Y. Control of Macrophage Dynamics as a Potential Therapeutic Approach for Clinical Disorders Involving Chronic Inflammation. J Pharmacol Exp Ther 2015; 354:240-50. [PMID: 26136420 DOI: 10.1124/jpet.115.225540] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/30/2015] [Indexed: 08/30/2023] Open
Abstract
Macrophages are a well recognized player of both innate and adaptive immunity and have emerged as a key regulator of systemicmetabolism, hematopoiesis, vasculogenesis, apoptosis, malignancy, and reproduction. Such pleiotropic roles of macrophages are mirrored by their protean features. Upon environmental. challenges, macrophages redistribute and differentiate in situ and contribute to the multiple disease states by exerting protective and pathogenic effects. The environmental challenges include cytokines, chemokines, lipid mediators, and extrinsic insults, such as food and pathogenic bacteria. In addition, homeostasis and the activation state of macrophages are influenced by various metabolites from a commensal microbe that colonizes epithelial and mucosal surfaces, such as the lungs, intestines, and skin. In this review, we describe macrophage differentiation, polarization, and various functions in chronic disease states, including chronic inflammatory bowel disease, tumorigenesis, metabolism and obesity, and central nervous system demyelinating disorders. Controlling the macrophage dynamics to affect the pathologic states is considered to be an important therapeutic approach for many clinical disorders involving chronic inflammation.
Collapse
Affiliation(s)
- Wakana Ohashi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (W.O., Y.H.); and Department of Anesthesiology and Pain Relief Center, University of Tokyo Hospital, Tokyo, Japan (K.H.)
| | - Kohshi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (W.O., Y.H.); and Department of Anesthesiology and Pain Relief Center, University of Tokyo Hospital, Tokyo, Japan (K.H.)
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (W.O., Y.H.); and Department of Anesthesiology and Pain Relief Center, University of Tokyo Hospital, Tokyo, Japan (K.H.)
| |
Collapse
|
32
|
Abstract
OBJECTIVES To study the impact of ex vivo lung perfusion (EVLP) on cytokines, chemokines, and growth factors and their correlation with graft performance either during perfusion or after transplantation. BACKGROUND EVLP is a modern technique that preserves lungs on normothermia in a metabolically active state. The identification of biomarkers during clinical EVLP can contribute to the safe expansion of the donor pool. METHODS High-risk brain death donors and donors after cardiac death underwent 4 to 6 hours EVLP. Using a multiplex magnetic bead array assay, we evaluated analytes in perfusate samples collected at 1 hour and 4 hours of EVLP. Donor lungs were divided into 3 groups: (I) Control: bilateral transplantation with good early outcome [absence of primary graft dysfunction- (PGD) grade 3]; (II) PGD3: bilateral transplantation with PGD grade 3 anytime within 72 hours; (III) Declined: lungs unsuitable for transplantation after EVLP. RESULTS Of 50 cases included in this study, 27 were in Control group, 7 in PGD3, and 16 in Declined. From a total of 51 analytes, 34 were measurable in perfusates. The best marker to differentiate declined lungs from control lungs was stem cell growth factor -β [P < 0.001, AUC (area under the curve) = 0.86] at 1 hour. The best markers to differentiate PGD3 cases from controls were interleukin-8 (P < 0.001, AUC = 0.93) and growth-regulated oncogene-α (P = 0.001, AUC = 0.89) at 4 hours of EVLP. CONCLUSIONS Perfusate protein expression during EVLP can differentiate lungs with good outcome from lungs PGD3 after transplantation. These perfusate biomarkers can be potentially used for more precise donor lung selection improving the outcomes of transplantation.
Collapse
|
33
|
Toll-like receptor 4 inhibition in lung ischemia-reperfusion injury: Time for a clinical trial? J Thorac Cardiovasc Surg 2015; 149:1662-3. [PMID: 25829183 DOI: 10.1016/j.jtcvs.2015.02.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 11/23/2022]
|
34
|
Merry HE, Phelan P, Doak MR, Zhao M, Hwang B, Mulligan MS. Role of toll-like receptor-4 in lung ischemia-reperfusion injury. Ann Thorac Surg 2015; 99:1193-9. [PMID: 25747278 DOI: 10.1016/j.athoracsur.2014.12.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Toll-like receptor-4 has been implicated in modulating ischemia-reperfusion injury in cardiac, hepatic, renal, and cerebral models. However, its role in lung ischemia-reperfusion injury is unknown. We hypothesize that toll-like receptor-4 has a key role in initiating the inflammatory cascade in lung ischemia-reperfusion injury. METHODS We used toll-like receptor-4 specific short interference RNA to achieve toll-like receptor-4 knockdown in rats prior to undergoing ischemia and reperfusion. Lungs were explanted and studied for protein expression and markers of lung injury. Additional animals were evaluated for cellular uptake of toll-like receptor-4 short interference RNA. Toll-like receptor-4 short interference RNA localized to the alveolar macrophage. RESULTS In animals pretreated with toll-like receptor-4 short interference RNA, toll-like receptor-4 expression and mitogen-activated protein kinase phosphorylation were suppressed. Markers of lung injury including permeability index, myeloperoxidase content, and bronchoalveolar lavage inflammatory cell counts were all reduced with toll-like receptor-4 knockdown. CONCLUSIONS Toll-like receptor-4 is critical in the development of lung ischemia-reperfusion injury and its activation in the alveolar macrophage may be the initiating step.
Collapse
Affiliation(s)
- Heather E Merry
- Department of Surgery, Division of Thoracic Surgery, University of Washington, Seattle, Washington
| | - Patrick Phelan
- Department of Surgery, Division of Thoracic Surgery, University of Washington, Seattle, Washington
| | - Mathew R Doak
- Department of Surgery, Division of Thoracic Surgery, University of Washington, Seattle, Washington
| | - Minqing Zhao
- Department of Surgery, Division of Thoracic Surgery, University of Washington, Seattle, Washington
| | - Billanna Hwang
- Department of Surgery, Division of Thoracic Surgery, University of Washington, Seattle, Washington
| | - Michael S Mulligan
- Department of Surgery, Division of Thoracic Surgery, University of Washington, Seattle, Washington.
| |
Collapse
|
35
|
Phelan P, Merry HE, Hwang B, Mulligan MS. Differential toll-like receptor activation in lung ischemia reperfusion injury. J Thorac Cardiovasc Surg 2015; 149:1653-61. [PMID: 25911179 DOI: 10.1016/j.jtcvs.2015.02.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The requirement for toll-like receptors (TLRs) in lung ischemia reperfusion injury (LIRI) has been demonstrated but not fully characterized. Previously, we reported that TLR-4 is required by alveolar macrophages but not pulmonary endothelial or epithelial cells for development of LIRI. Additionally, we demonstrated differential patterns of mitogen-activated protein kinase (MAPK) activation and cytokine release in these cell types during LIRI. Here, we sought to determine whether these differences in activation responses are related to cell-specific TLR activation requirements. METHODS Primary cultures of alveolar macrophages, pulmonary endothelial, and immortalized epithelial cells were pretreated with TLR-2 or TLR-4 short interference RNA (ribonucleic acid) before hypoxia and reoxygenation. Cell lysates and media were analyzed for receptor knockdown, MAPK activation, and cytokine production. Rats were pretreated with TLR-2 or TLR-4 short interference RNA before lung ischemia reperfusion and changes in lung vascular permeability were assessed. RESULTS Knockdown of TLR-2 in alveolar macrophages did not affect MAPK phosphorylation or cytokine secretion. Conversely, TLR-2 knockdown in pulmonary endothelial and epithelial cells demonstrated significant reductions in extracellular signal-regulated kinase 1/2 activation and cytokine secretion. The lung permeability index in LIRI was decreased by TLR-4 but not TLR-2. CONCLUSIONS Differential TLR signaling and MAPK activation in response to LIRI seem to be cell specific. Short interference RNA provides an outstanding tool for examination of the underlying mechanism.
Collapse
Affiliation(s)
- Patrick Phelan
- Department of Surgery, University of Washington School of Medicine, Seattle, Wash
| | - Heather E Merry
- Department of Surgery, University of Washington School of Medicine, Seattle, Wash
| | - Billanna Hwang
- Department of Surgery, University of Washington School of Medicine, Seattle, Wash; Center for Lung Biology, University of Washington, Seattle, Wash.
| | - Michael S Mulligan
- Department of Surgery, University of Washington School of Medicine, Seattle, Wash; Center for Lung Biology, University of Washington, Seattle, Wash
| |
Collapse
|
36
|
Merry HE, Phelan P, Doaks M, Zhao M, Mulligan MS. Functional roles of tumor necrosis factor-alpha and interleukin 1-Beta in hypoxia and reoxygenation. Ann Thorac Surg 2015; 99:1200-5. [PMID: 25686667 DOI: 10.1016/j.athoracsur.2014.11.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/23/2014] [Accepted: 11/17/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Intercellular signaling plays an important role in the development of lung ischemia-reperfusion injury. However, the role of specific mediators remains poorly characterized. Alveolar macrophages (AM) produce soluble mediators early in reperfusion, which modulate the responses of endothelial and epithelial cells to oxidative stress. There is a burst of proinflammatory cytokine production in a variety of cells; however, interleukin 1-beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) localize to the AM. We hypothesized that these cytokines account for the costimulatory effects that AM exert on endothelial and epithelial cells. METHODS Activated AM media was placed on cultured rat type 2 pneumocytes and pulmonary artery endothelial cells, which were then subjected to hypoxia and reoxygenation. To assess the contributions of IL-1β and TNF-α, the cells were treated with control media or media that had been depleted of IL-1β or TNF-α. To deplete specific cytokines, activated media was passed through a column with immobilized IL-1β or TNF-α antibodies. Nuclear translocation of transcription factors, mitogen-activated protein kinase activation, and cytokine and chemokine production were assessed. RESULTS Depletion of IL-1β or TNF-α effectively eliminated the ability of AM media to enhance the response of endothelial and epithelial cells to oxidative stress. There were significant reductions in monocyte chemotactic protein 1 and cytokine-induced neutrophil chemoattractant (CINC) production (p < 0.05) at 4 hours of reperfusion. Additionally there was decreased nuclear translocation of nuclear factor-kappa B, and extracellular signal-regulated kinase phosphorylation. CONCLUSIONS Interleukin 1-beta and TNF-α are critical mediators in the intercellular communication pathways that allow the AM to enhance the response of surrounding cells to oxidative stress.
Collapse
Affiliation(s)
- Heather E Merry
- Division of Thoracic Surgery, Department of Surgery, University of Washington, Seattle, Washington
| | - Patrick Phelan
- Division of Thoracic Surgery, Department of Surgery, University of Washington, Seattle, Washington
| | - Matthew Doaks
- Division of Thoracic Surgery, Department of Surgery, University of Washington, Seattle, Washington
| | - Minqing Zhao
- Division of Thoracic Surgery, Department of Surgery, University of Washington, Seattle, Washington
| | - Michael S Mulligan
- Division of Thoracic Surgery, Department of Surgery, University of Washington, Seattle, Washington.
| |
Collapse
|
37
|
Kambara K, Ohashi W, Tomita K, Takashina M, Fujisaka S, Hayashi R, Mori H, Tobe K, Hattori Y. In vivo depletion of CD206+ M2 macrophages exaggerates lung injury in endotoxemic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:162-71. [PMID: 25447055 DOI: 10.1016/j.ajpath.2014.09.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 11/30/2022]
Abstract
Although phenotypically polarized macrophages are now generally classified into two major subtypes termed proinflammatory M1 and anti-inflammatory M2 macrophages, a contributory role of lung M2 macrophages in the pathophysiological features of acute lung injury is not fully understood. Herein, we show in an endotoxemic murine model that M2 macrophages serve as key anti-inflammatory cells that play a regulatory role in the severity of lung injury. To study whether M2 macrophages can modify inflammation, we depleted M2 macrophages from lungs of CD206-diphtheria toxin (DT) receptor transgenic (Tg) mice during challenge with lipopolysaccharide. The i.p. administration of DT depleted CD206-positive cells in bronchoalveolar lavage fluid. The use of M2 macrophage markers Ym1 and arginase-1 identified pulmonary CD206-positive cells as M2 macrophages. A striking increase in neutrophils in bronchoalveolar lavage fluid cell contents was found in DT-treated CD206-DT receptor Tg mice. In CD206-DT receptor Tg mice given DT, endotoxin challenge exaggerated lung inflammation, including up-regulation of proinflammatory cytokines and increased histological lung damage, but the endotoxemia-induced increase in NF-κB activity was significantly reduced, suggesting that M2 phenotype-dependent counteraction of inflammatory insult cannot be attributed to the inhibition of the NF-κB pathway. Our results indicate a critical role of CD206-positive pulmonary macrophages in triggering inflammatory cascade during endotoxemic lung inflammation.
Collapse
Affiliation(s)
- Kenta Kambara
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Wakana Ohashi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kengo Tomita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Michinori Takashina
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ryuji Hayashi
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hisashi Mori
- Department of Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
38
|
Tang H, Liu Y, Yan C, Petasis NA, Serhan CN, Gao H. Protective actions of aspirin-triggered (17R) resolvin D1 and its analogue, 17R-hydroxy-19-para-fluorophenoxy-resolvin D1 methyl ester, in C5a-dependent IgG immune complex-induced inflammation and lung injury. THE JOURNAL OF IMMUNOLOGY 2014; 193:3769-78. [PMID: 25172497 DOI: 10.4049/jimmunol.1400942] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increasing evidence suggests that the novel anti-inflammatory and proresolving mediators such as the resolvins play an important role during inflammation. However, the functions of these lipid mediators in immune complex-induced lung injury remain unknown. In this study, we determined the role of aspirin-triggered resolvin D1 (AT-RvD1) and its metabolically stable analog, 17R-hydroxy-19-para-fluorophenoxy-resolvin D1 methyl ester (p-RvD1), in IgG immune complex-induced inflammatory responses in myeloid cells and injury in the lung. We show that lung vascular permeability in the AT-RvD1- or p-RvD1-treated mice was significantly reduced when compared with values in mice receiving control vesicle during the injury. Furthermore, i.v. administration of either AT-RvD1 or p-RvD1 caused significant decreases in the bronchoalveolar lavage fluid contents of neutrophils, inflammatory cytokines, and chemokines. Of interest, AT-RvD1 or p-RvD1 significantly reduced bronchoalveolar lavage fluid complement C5a level. By EMSA, we demonstrate that IgG immune complex-induced activation of NF-κB and C/EBPβ transcription factors in the lung was significantly inhibited by AT-RvD1 and p-RvD1. Moreover, AT-RvD1 dramatically mitigates IgG immune complex-induced NF-κB and C/EBP activity in alveolar macrophages. Also, secretion of TNF-α, IL-6, keratinocyte cell-derived chemokine, and MIP-1α from IgG immune complex-stimulated alveolar macrophages or neutrophils was significantly decreased by AT-RvD1. These results suggest a new approach to the blocking of immune complex-induced inflammation.
Collapse
Affiliation(s)
- Huifang Tang
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; Zhejiang Respiratory Drugs Research Laboratory of the State Food and Drug Administration of China, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanlan Liu
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Chunguang Yan
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Nicos A Petasis
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089; and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089
| | - Charles N Serhan
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
| | - Hongwei Gao
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
39
|
Jing H, Yao J, Liu X, Fan H, Zhang F, Li Z, Tian X, Zhou Y. Fish-oil emulsion (omega-3 polyunsaturated fatty acids) attenuates acute lung injury induced by intestinal ischemia-reperfusion through Adenosine 5'-monophosphate-activated protein kinase-sirtuin1 pathway. J Surg Res 2014; 187:252-261. [PMID: 24231522 DOI: 10.1016/j.jss.2013.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Activated macrophage infiltration into the lungs is paramount in the pathogenesis of acute lung injury (ALI) induced by intestinal ischemia-reperfusion (I/R). Omega-3 polyunsaturated fatty acid (ω-3 PUFA) is a potent activator of the Adenosine 5'-monophosphate-activated protein kinase-sirtuin1 (AMPK/SIRT1) pathway against macrophage inflammation. We aimed to evaluate whether ω-3 PUFAs may protect against ALI induced by intestinal I/R via the AMPK/SIRT1 pathway. METHODS Ischemia in male Wistar rats was induced by superior mesenteric artery occlusion for 60 min and reperfusion for 240 min. One milliliter per day of fish-oil emulsion (FO emulsion, containing major ingredients as ω-3 PUFAs) or normal saline (control) was administered by intraperitoneal injection for three consecutive days to each animal. All animals were sacrificed at the end of reperfusion. Blood and tissue samples were collected for analysis. RESULTS Intestinal I/R caused intestinal and lung injury, evidenced by severe lung tissue edema and macrophage infiltration. Pretreatment with FO emulsion improved the integrity of microscopic structures in the intestine and lungs. Intestinal I/R induced the expression of macrophage-derived mediators (macrophage migration inhibitory factor and macrophage chemoattractant protein-1), inflammatory factors (nuclear factor κB, tumor necrosis factor α, interleukin 6, and interleukin 1β), and proapoptosis factor p66shc. There was a decrease in the expression of AMPK, SIRT1, and claudin 5. FO emulsion significantly inhibited macrophage infiltration into the lungs, inflammatory factor expression, and p66shc phosphorylation. Importantly, FO emulsion restored AMPK, SIRT1, and claudin 5 in the lungs. CONCLUSIONS Pretreatment with ω-3 PUFAs effectively protects intestinal and lung injury induced by intestinal I/R, reduces macrophage infiltration, suppresses inflammation, inhibits lung apoptosis, and improves the lung endothelial barrier after intestinal I/R in a manner dependent on AMPK/SIRT1. Thus, there is a potential for developing AMPK/SIRT1 as a novel target for patients with intestinal I/R-induced ALI.
Collapse
Affiliation(s)
- Huirong Jing
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xingming Liu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Fan
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Zhang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenlu Li
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaofeng Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Yun Zhou
- Department of Nutrition, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
40
|
Parker JC. Acute lung injury and pulmonary vascular permeability: use of transgenic models. Compr Physiol 2013; 1:835-82. [PMID: 23737205 DOI: 10.1002/cphy.c100013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute lung injury is a general term that describes injurious conditions that can range from mild interstitial edema to massive inflammatory tissue destruction. This review will cover theoretical considerations and quantitative and semi-quantitative methods for assessing edema formation and increased vascular permeability during lung injury. Pulmonary edema can be quantitated directly using gravimetric methods, or indirectly by descriptive microscopy, quantitative morphometric microscopy, altered lung mechanics, high-resolution computed tomography, magnetic resonance imaging, positron emission tomography, or x-ray films. Lung vascular permeability to fluid can be evaluated by measuring the filtration coefficient (Kf) and permeability to solutes evaluated from their blood to lung clearances. Albumin clearances can then be used to calculate specific permeability-surface area products (PS) and reflection coefficients (σ). These methods as applied to a wide variety of transgenic mice subjected to acute lung injury by hyperoxic exposure, sepsis, ischemia-reperfusion, acid aspiration, oleic acid infusion, repeated lung lavage, and bleomycin are reviewed. These commonly used animal models simulate features of the acute respiratory distress syndrome, and the preparation of genetically modified mice and their use for defining specific pathways in these disease models are outlined. Although the initiating events differ widely, many of the subsequent inflammatory processes causing lung injury and increased vascular permeability are surprisingly similar for many etiologies.
Collapse
Affiliation(s)
- James C Parker
- Department of Physiology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
41
|
Tsushima Y, Jang JH, Yamada Y, Schwendener R, Suzuki K, Weder W, Jungraithmayr W. The depletion of donor macrophages reduces ischaemia-reperfusion injury after mouse lung transplantation. Eur J Cardiothorac Surg 2013; 45:703-9. [PMID: 24113322 DOI: 10.1093/ejcts/ezt489] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Macrophages (M) are one of the most important cells of the innate immune system for first line defense. Upon transplantation (Tx), M play a prominent role during lung ischaemia reperfusion (I/R) injury. Here, we hypothesize that the depletion of donor M ameliorates the post-transplant lung I/R injury. METHODS Orthotopic single-lung Tx was performed between syngeneic BALB/c mice after a cold ischaemic time of 8 h and a reperfusion time of 10 h. Prior to graft implantation, alveolar macrophages of donor lungs were selectively depleted applying the 'suicide technique' by intratracheal application of clodronate liposomes (experimental, n = 6) vs the application of empty liposomes (control, n = 6). Cell count (number of F4/80(+)-macrophages) and graft injury were evaluated by histology and immunohistochemistry, and levels of lactat dehydrogenase (LDH) (apoptosis assay), enzyme linked immunosorbent assay for nuclear protein high-mobility-group-protein B1 (HMGB1), tumor necrosis factor alpha (TNF-α) and transforming growth factor beta1 (TGF-β1) in plasma were analysed. RESULTS Clodronate liposomes successfully reduced 70% of M from donor lungs when compared with grafts treated with empty liposome only. M-depleted transplants showed improved histology and revealed considerably less graft damage when compared with control recipients (LDH, P = 0.03; HMGB1, P = 0.3). Oxygenation capacity was ameliorated in M-depleted transplants, if not significant (P = 0.114); however, wet/dry ratio did not differ between groups (P = 0.629). The inflammatory response was significantly reduced in M-depleted mice when compared with control recipients (TNF-α, P = 0.042; TGF-β1, P = 0.039). CONCLUSIONS The selective depletion of M in donor lung transplants can be successfully performed and results in a sustained anti-inflammatory response upon I/R-injury. The beneficial effect of this preconditioning method should be further evaluated as a promising tool for the attenuation of I/R prior to graft implantation in clinical Tx.
Collapse
Affiliation(s)
- Yukio Tsushima
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Primary graft dysfunction (PGD) is a syndrome encompassing a spectrum of mild to severe lung injury that occurs within the first 72 hours after lung transplantation. PGD is characterized by pulmonary edema with diffuse alveolar damage that manifests clinically as progressive hypoxemia with radiographic pulmonary infiltrates. In recent years, new knowledge has been generated on risks and mechanisms of PGD. Following ischemia and reperfusion, inflammatory and immunological injury-repair responses appear to be key controlling mechanisms. In addition, PGD has a significant impact on short- and long-term outcomes; therefore, the choice of donor organ is impacted by this potential adverse consequence. Improved methods of reducing PGD risk and efforts to safely expand the pool are being developed. Ex vivo lung perfusion is a strategy that may improve risk assessment and become a promising platform to implement treatment interventions to prevent PGD. This review details recent updates in the epidemiology, pathophysiology, molecular and genetic biomarkers, and state-of-the-art technical developments affecting PGD.
Collapse
Affiliation(s)
- Yoshikazu Suzuki
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Edward Cantu
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jason D Christie
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
43
|
Regulatory macrophages as therapeutic targets and therapeutic agents in solid organ transplantation. Curr Opin Organ Transplant 2013; 17:332-42. [PMID: 22790067 DOI: 10.1097/mot.0b013e328355a979] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW This review aims to provide a basic introduction to human macrophage biology and an appreciation of the diverse roles played by macrophage subsets in allograft damage and repair. Current and future strategies for therapeutically manipulating macrophage behaviour are discussed. RECENT FINDINGS Macrophages are extremely versatile effector cells that exert both immunostimulatory and immunosuppressive effects. This adaptability cannot be explained by differentiation into committed sublineages, but instead reflects the ability of macrophages to rapidly transition between states of functional polarisation. Consequently, categorisation of macrophage subpopulations is not straightforward and this, in turn, creates difficulties in studying their pathophysiology. Nevertheless, particular macrophage subpopulations have been implicated in exacerbating or attenuating ischaemia-reperfusion injury, rejection reactions and allograft fibrosis. Three general strategies for therapeutically targeting macrophages can be envisaged, namely, depletional approaches, in-situ repolarisation towards a regulatory or tissue-reparative phenotype, and ex-vivo generation of regulatory macrophages (M reg) as a cell-based therapy. SUMMARY As critical determinants of the local and systemic immune response to solid organ allografts, macrophage subpopulations represent attractive therapeutic targets. Rapid progress is being made in the implementation of novel macrophage-targeted therapies, particularly in the use of ex-vivo-generated M regs as a cell-based medicinal product.
Collapse
|
44
|
Watanabe K, Iwahara C, Nakayama H, Iwabuchi K, Matsukawa T, Yokoyama K, Yamaguchi K, Kamiyama Y, Inada E. Sevoflurane suppresses tumour necrosis factor-α-induced inflammatory responses in small airway epithelial cells after anoxia/reoxygenation. Br J Anaesth 2013; 110:637-45. [PMID: 23295714 DOI: 10.1093/bja/aes469] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Lung ischaemia-reperfusion (I/R) injury is correlated with poor clinical outcome. The inflammatory cytokines interleukin (IL)-6, IL-8, and monocyte chemotactic protein-1 (MCP-1) are produced by pulmonary epithelial cells during lung transplantation and are considered to be involved in I/R injury. The volatile anaesthetic sevoflurane has been shown to exert a protective effect on I/R injury in various organs. We investigated the effect of sevoflurane on the inflammatory functions of pulmonary epithelial cells in vitro. METHODS Human normal small airway epithelial cells (SAEC) were incubated under anoxic conditions for 24 h with or without sevoflurane and then stimulated with tumour necrosis factor (TNF)-α under hyperoxic conditions for 5 h with or without sevoflurane. After incubation, IL-6, IL-8, and MCP-1 mRNA expression was analysed by quantitative real-time RT-PCR. The production of IL-6, IL-8, and MCP-1 was assayed by enzyme-linked immunosorbent assay, the effects of sevoflurane on inflammatory gene expression were examined by DNA microarray analysis, and the effects of sevoflurane on NF-κB-mediated inflammatory cytokine production were examined by immunoblotting. RESULTS Sevoflurane suppressed TNF-α-induced IL-6, IL-8, and MCP-1 gene expression and the production of IL-6 and IL-8 in SAEC under anoxia/reoxygenation conditions. DNA microarray analysis indicated that sevoflurane modulated NF-κB-related gene expression. Sevoflurane significantly inhibited TNF-α-induced translocation of p65 NF-κB into the nucleus. Sevoflurane enhanced TNF-α-induced gene expression of inhibitor κB (IκB) but not of NF-κB. CONCLUSIONS Sevoflurane suppressed the NF-κB-mediated production of pulmonary epithelial cell-derived inflammatory cytokines, including IL-6 and IL-8, which are capable of causing I/R injury.
Collapse
Affiliation(s)
- K Watanabe
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Alveolar macrophages and Toll-like receptor 4 mediate ventilated lung ischemia reperfusion injury in mice. Anesthesiology 2012; 117:822-35. [PMID: 22890118 DOI: 10.1097/aln.0b013e31826a4ae3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I-R) injury is a sterile inflammatory process that is commonly associated with diverse clinical situations such as hemorrhage followed by resuscitation, transient embolic events, and organ transplantation. I-R injury can induce lung dysfunction whether the I-R occurs in the lung or in a remote organ. Recently, evidence has emerged that receptors and pathways of the innate immune system are involved in recognizing sterile inflammation and overlap considerably with those involved in the recognition of and response to pathogens. METHODS The authors used a mouse surgical model of transient unilateral left pulmonary artery occlusion without bronchial involvement to create ventilated lung I-R injury. In addition, they mimicked nutritional I-R injury in vitro by transiently depriving cells of all nutrients. RESULTS Compared with sham-operated mice, mice subjected to ventilated lung I-R injury had up-regulated lung expression of inflammatory mediator messenger RNA for interleukin-1β, interleukin-6, and chemokine (C-X-C motif) ligand-1 and -2, paralleled by histologic evidence of lung neutrophil recruitment and increased plasma concentrations of interleukin-1β, interleukin-6, and high-mobility group protein B1 proteins. This inflammatory response to I-R required toll-like receptor-4 (TLR4). In addition, the authors demonstrated in vitro cooperativity and cross-talk between human macrophages and endothelial cells, resulting in augmented inflammatory responses to I-R. Remarkably, the authors found that selective depletion of alveolar macrophages rendered mice resistant to ventilated lung I-R injury. CONCLUSIONS The data reveal that alveolar macrophages and the pattern recognition receptor toll-like receptor-4 are involved in the generation of the early inflammatory response to lung I-R injury.
Collapse
|
46
|
Weyker PD, Webb CAJ, Kiamanesh D, Flynn BC. Lung Ischemia Reperfusion Injury. Semin Cardiothorac Vasc Anesth 2012; 17:28-43. [DOI: 10.1177/1089253212458329] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lung ischemia reperfusion injury (LIRI) is a pathologic process occurring when oxygen supply to the lung has been compromised followed by a period of reperfusion. The disruption of oxygen supply can occur either via limited blood flow or decreased ventilation termed anoxic ischemia and ventilated ischemia, respectively. When reperfusion occurs, blood flow and oxygen are reintroduced to the ischemic lung parenchyma, facilitating a toxic environment through the creation of reactive oxygen species, activation of the immune and coagulation systems, endothelial dysfunction, and apoptotic cell death. This review will focus on the mechanisms of LIRI, the current supportive treatments used, and the many therapies currently under research for prevention and treatment of LIRI.
Collapse
Affiliation(s)
- Paul D. Weyker
- College of Physicians and Surgeons of Columbia Presbyterian Hospital, New York, NY, USA
| | | | - David Kiamanesh
- College of Physicians and Surgeons of Columbia Presbyterian Hospital, New York, NY, USA
| | - Brigid C. Flynn
- College of Physicians and Surgeons of Columbia Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
47
|
Kreisel D, Goldstein DR. Innate immunity and organ transplantation: focus on lung transplantation. Transpl Int 2012; 26:2-10. [PMID: 22909350 DOI: 10.1111/j.1432-2277.2012.01549.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ischemia reperfusion injury (IRI) that occurs with solid organ transplantation activates the innate immune system to induce inflammation. This leads to enhanced acute allograft rejection, impaired transplant tolerance and accelerated progression of chronic rejection. In this review, we discuss the innate immune signaling pathways that have been shown to play a role in organ transplantation. In particular, we focus on Toll-like receptor signaling pathways and how they have influenced outcomes after organ transplantation both experimentally and from clinical studies. Furthermore, we describe the substances that trigger the innate immune system after transplantation and several of the key cellular mediators of inflammation. We specifically point out unique aspects of activation of the innate immune system after lung transplantation. Finally, we discuss the areas that should be investigated in the future to more clearly understand the influence of the innate immune system after organ transplantation.
Collapse
Affiliation(s)
- Daniel Kreisel
- Department of Surgery, Washington University in St Louis, St. Louis, MO, USA
| | | |
Collapse
|
48
|
Abstract
CONTEXT Platelets have significant roles in initiating and mediating reduced alveolar blood flow, microvascular leak, and ventilation/perfusion mismatch caused by metabolic changes and altered signal transduction caused by ischemia-reperfusion. OBJECTIVE This review focuses on platelet mechanisms of vascular dysfunction in the lung and presents a hypothesis for interplay between platelet activation, endothelial damage and fibrinogen. The purpose is to discuss current knowledge regarding mechanisms of platelet-mediated endothelial injury and implications for new strategies to treat vascular dysfunction associated with acute lung injury (ALI). METHODS Literature from a number of fields was searched using Medline and Google Scholar. RESULTS Activated platelets contribute to redox imbalance through reactive oxygen species production, pro-leak molecules such as PAF and serotonin, and recruitment of inflammatory cytokines and leukocytes to the damaged endothelium. CONCLUSION Platelets are a critical component of pulmonary ALI, acting in conjunction with fibrinogen to mediate endothelial damage through multiple signal transduction pathways.
Collapse
Affiliation(s)
- James T Dixon
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY 40292, USA
| | | | | |
Collapse
|
49
|
Kvietys PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med 2012; 52:556-592. [PMID: 22154653 PMCID: PMC3348846 DOI: 10.1016/j.freeradbiomed.2011.11.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022]
Abstract
Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation.
Collapse
Affiliation(s)
- Peter R Kvietys
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| |
Collapse
|
50
|
Weissmann N, Sydykov A, Kalwa H, Storch U, Fuchs B, Mederos y Schnitzler M, Brandes RP, Grimminger F, Meissner M, Freichel M, Offermanns S, Veit F, Pak O, Krause KH, Schermuly RT, Brewer AC, Schmidt HHHW, Seeger W, Shah AM, Gudermann T, Ghofrani HA, Dietrich A. Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nat Commun 2012; 3:649. [PMID: 22337127 PMCID: PMC3272568 DOI: 10.1038/ncomms1660] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/21/2011] [Indexed: 02/07/2023] Open
Abstract
Lung ischaemia–reperfusion-induced oedema (LIRE) is a life-threatening condition that causes pulmonary oedema induced by endothelial dysfunction. Here we show that lungs from mice lacking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox2y/−) or the classical transient receptor potential channel 6 (TRPC6−/−) are protected from LIR-induced oedema (LIRE). Generation of chimeric mice by bone marrow cell transplantation and endothelial-specific Nox2 deletion showed that endothelial Nox2, but not leukocytic Nox2 or TRPC6, are responsible for LIRE. Lung endothelial cells from Nox2- or TRPC6-deficient mice showed attenuated ischaemia-induced Ca2+ influx, cellular shape changes and impaired barrier function. Production of reactive oxygen species was completely abolished in Nox2y/− cells. A novel mechanistic model comprising endothelial Nox2-derived production of superoxide, activation of phospholipase C-γ, inhibition of diacylglycerol (DAG) kinase, DAG-mediated activation of TRPC6 and ensuing LIRE is supported by pharmacological and molecular evidence. This mechanism highlights novel pharmacological targets for the treatment of LIRE. The signalling cascade involved in lung ischaemia–reperfusion-induced oedema is poorly understood. Using knockout mice, Weissmann et al. propose a model in which reactive oxygen species production by endothelial NOX2 leads to phospholipase C-γ activation, DAG kinase inhibition and subsequent TRPC6 activation.
Collapse
Affiliation(s)
- Norbert Weissmann
- Department of Internal Medicine II/V, University of Giessen Lung Center, Klinikstrasse 36, 35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|