1
|
Kao WH, Liao LZ, Chen YA, Lo UG, Pong RC, Hernandez E, Chen MC, Teng CLJ, Wang HY, Tsai SCS, Kapur P, Lai CH, Hsieh JT, Lin H. SPHK1 promotes bladder cancer metastasis via PD-L2/c-Src/FAK signaling cascade. Cell Death Dis 2024; 15:678. [PMID: 39284838 PMCID: PMC11405731 DOI: 10.1038/s41419-024-07044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
SPHK1 (sphingosine kinase type 1) is characterized as a rate-limiting enzyme in sphingolipid metabolism to phosphorylate sphingosine into sphingosine-1-phosphate (S1P) that can bind to S1P receptors (S1PRs) to initiate several signal transductions leading to cell proliferation and survival of normal cell. Many studies have indicated that SPHK1 is involved in several types of cancer development, however, a little is known in bladder cancer. The TCGA database analysis was utilized for analyzing the clinical relevance of SPHK1 in bladder cancer. Through CRISPR/Cas9 knockout (KO) and constitutive activation (CA) strategies on SPHK1 in the bladder cancer cells, we demonstrated the potential downstream target could be programmed cell death 1 ligand 2 (PD-L2). On the other hand, we demonstrated that FDA-approved SPHK1 inhibitor Gilenya® (FTY720) can successfully suppress bladder cancer metastasis by in vitro and in vivo approaches. This finding indicated that SPHK1 as a potent therapeutic target for metastatic bladder cancer by dissecting the mechanism of action, SPHK1/S1P-elicited Akt/β-catenin activation promoted the induction of PD-L2 that is a downstream effector in facilitating bladder cancer invasion and migration. Notably, PD-L2 interacted with c-Src that further activates FAK. Here, we unveil the clinical relevance of SPHK1 in bladder cancer progression and the driver role in bladder cancer metastasis. Moreover, we demonstrated the inhibitory effect of FDA-approved SPHK1 inhibitor FTY720 on bladder cancer metastasis from both in vitro and in vivo models.
Collapse
Affiliation(s)
- Wei-Hsiang Kao
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Li-Zhu Liao
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rey-Chen Pong
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mei-Chih Chen
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Yi Wang
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Stella Chin-Shaw Tsai
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Superintendent Office, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Payal Kapur
- Urology and Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Steinmetz AR, Mokkapati S, McConkey D, Dinney CP. The Evolution of Nadofaragene Firadenovec: A Review and the Path Forward. Bladder Cancer 2024; 10:105-112. [PMID: 39131870 PMCID: PMC11308647 DOI: 10.3233/blc-230083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/10/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND The intravesical gene therapy nadofaragene firadenovec (rAd-IFNα/Syn3) was FDA approved in 2022 for non-muscle invasive bladder cancer (NMIBC) unresponsive to frontline treatment with BCG, and the first gene therapy developed for bladder cancer. This non-replicating recombinant adenovirus vector delivers a copy of the human interferon alpha-2b gene into urothelial and tumor cells, causing them to express this pleotropic cytokine with potent antitumor effects. OBJECTIVE To provide a historical overview describing how several decades of preclinical and clinical studies investigating the role of interferon in the treatment of bladder cancer ultimately led to the development of gene therapy with nadofaragene for NMIBC. METHODS We conducted a review of the literature using PubMed, Google Scholar, and ClinicalTrials.gov to summarize our knowledge of the evolution of interferon-based therapy in NMIBC. RESULTS The FDA approval of this therapy represents an important landmark in urologic oncology and several decades of research dedicated to the study of interferon's direct and indirect antitumor properties in NMIBC. The data gathered from the phase 1, 2, and 3 clinical trials continue to provide additional insights into the precise mechanisms underlying both the efficacy of and resistance to nadofaragene. CONCLUSIONS Nadofaragene leverages the cytotoxic, anti-angiogenic, and immune-modulatory roles of interferon to effectively treat NMIBC that is resistant to BCG. Ongoing studies of resistance mechanisms and prognostic biomarkers have been promising; these will ultimately improve patient selection and allow for the modulation of factors in the tumor or immune microenvironment to further increase therapeutic response.
Collapse
Affiliation(s)
- Alexis R. Steinmetz
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharada Mokkapati
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Colin P. Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Sturgess V, Azubuike UF, Tanner K. Vascular regulation of disseminated tumor cells during metastatic spread. BIOPHYSICS REVIEWS 2023; 4:011310. [PMID: 38510161 PMCID: PMC10903479 DOI: 10.1063/5.0106675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/17/2023] [Indexed: 03/22/2024]
Abstract
Cancer cells can travel to other organs via interconnected vascular systems to form new lesions in a process known as metastatic spread. Unfortunately, metastasis remains the leading cause of patient lethality. In recent years, it has been demonstrated that physical cues are just as important as chemical and genetic perturbations in driving changes in gene expression, cell motility, and survival. In this concise review, we focus on the physical cues that cancer cells experience as they migrate through the lymphatic and blood vascular networks. We also present an overview of steps that may facilitate organ specific metastasis.
Collapse
Affiliation(s)
- Victoria Sturgess
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda MD 20892, USA
| | - Udochi F. Azubuike
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda MD 20892, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda MD 20892, USA
| |
Collapse
|
4
|
Bitaraf M, Muhammadnejad S, Azimzadeh A, Tanourlouee SB, Amini E, Zolbin MM, Kajbafzadeh A. Evaluation of direct intramural injection to the bladder wall as a method for developing orthotopic tumor models. Animal Model Exp Med 2022; 5:575-581. [PMID: 36451547 PMCID: PMC9773300 DOI: 10.1002/ame2.12293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Bladder cancer poses a great burden on society and its high rate of recurrence and treatment failure necessitates use of appropriate animal models to study its pathogenesis and test novel treatments. Orthotopic models are superior to other types since they provide a normal microenvironment. Four methods are described for developing bladder cancer models inside the animal's bladder. Direct intramural injection is one of these methods and is widely used. However, its efficacy in model development has not yet been studied. We aimed to evaluate the efficacy and success rate of the direct intramural injection method of developing an orthotopic model for the study of bladder cancer. METHOD Tumor cell lines were prepared in four microtubes. Aliquots of 200 × 103 cells were injected through a 27 gauge needle into the ventral wall of the bladders of 4 male and 4 female BALB/c mice following a midline 1 cm laparotomy incision. In addition, 1 million cells from each microtube were injected into the flanks of control mice. To prevent infection and alleviate pain, 5 mg/kg enrofloxacin and 2.5 mg/kg flunixin meglumine, respectively, were injected subcutaneously. RESULTS Tumors formed in all mice, resulting in 100% take rate and zero post-operation mortality. Surgery time was ≤15 min per mouse. In two mice, tumors were found in the peritoneal space as well. CONCLUSION Direct intramural injection is a rapid, reliable, and reproducible method for developing orthotopic models of bladder cancer. It can be done on both male and female mice and only requires readily available surgical tools. However, needle track can result in cell spillage and peritoneal tumors.
Collapse
Affiliation(s)
- Masoud Bitaraf
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research InstituteTehran University of Medical SciencesTehranIran
| | - Samad Muhammadnejad
- Gene Therapy Research CenterDigestive Diseases Research Institute, Tehran University of Medical SciencesTehranIran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research InstituteTehran University of Medical SciencesTehranIran
| | - Saman Behboodi Tanourlouee
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research InstituteTehran University of Medical SciencesTehranIran
| | - Erfan Amini
- Uro‐oncology Research CenterTehran University of Medical SciencesTehranIran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research InstituteTehran University of Medical SciencesTehranIran
| | - Abdol‐Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Cai J, Xie Z, Yan Y, Huang Z, Tang P, Cao X, Wang Z, Yang C, Tan M, Zhang F, Shen B. Establishment of an optimized orthotopic bladder cancer model in mice. BMC Urol 2022; 22:142. [PMID: 36057655 PMCID: PMC9441054 DOI: 10.1186/s12894-022-01093-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bladder cancer (BC) is one of the most common malignancies of the genitourinary system. Animal models offer an important tool to explore tumour initiation, progression, and therapeutic mechanisms. Our aim is to construct an optimized orthotopic BC model which is predictable, reproducible, and convenient. METHODS The optimized orthotopic BC model was constructed in male C57BL/6 mice utilizing microsyringes to inoculate them with a murine BC cell line (MB49). Anesthetised mice were inoculated with an MB49 cell suspension (10 µL) at approximately 5 × 106/mL. The whole process of modelling was observed and monitored every 3 days for 21 days utilizing HE staining and transabdominal ultrasonography (TUS). RESULTS In this study, the model showed excellent success rates for tumour formation (96.67%) and metastatic rate (89.66%). Compared to the control group (sham operation), mice in the modelling group had serous cachexia, visible haematuresis and weight loss (all P < 0.05). The lungs, liver, ureter and kidneys were found to have tumour metastasis. Moreover, the average survival time (19.73 ± 1.69 d) of modelling mice was significantly shorter than that of the control mice (P < 0.05), which remained alive. CONCLUSION Our study established a method using microsyringes to inject murine BC cells into the bladder wall, creating a stable transplantable BC model in mice.
Collapse
Affiliation(s)
- Jinming Cai
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 85 Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Zhiwen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 85 Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Yilin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 85 Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Zhengnan Huang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 85 Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Pengfei Tang
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, 200080, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 85 Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Zeyi Wang
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, 200080, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 85 Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Mingyue Tan
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China.
| | - Fang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 85 Wujin Road, Hongkou District, Shanghai, 200080, China.
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 85 Wujin Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
6
|
SOD2, a Potential Transcriptional Target Underpinning CD44-Promoted Breast Cancer Progression. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030811. [PMID: 35164076 PMCID: PMC8839817 DOI: 10.3390/molecules27030811] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
Abstract
CD44, a cell-adhesion molecule has a dual role in tumor growth and progression; it acts as a tumor suppressor as well as a tumor promoter. In our previous work, we developed a tetracycline-off regulated expression of CD44's gene in the breast cancer (BC) cell line MCF-7 (B5 clone). Using cDNA oligo gene expression microarray, we identified SOD2 (superoxide dismutase 2) as a potential CD44-downstream transcriptional target involved in BC metastasis. SOD2 gene belongs to the family of iron/manganese superoxide dismutase family and encodes a mitochondrial protein. SOD2 plays a role in cell proliferation and cell invasion via activation of different signaling pathways regulating angiogenic abilities of breast tumor cells. This review will focus on the findings supporting the underlying mechanisms associated with the oncogenic potential of SOD2 in the onset and progression of cancer, especially in BC and the potential clinical relevance of its various inhibitors.
Collapse
|
7
|
Ding H, Huang Y, Shi J, Wang L, Liu S, Zhao B, Liu Y, Yang J, Chen Z. Attenuated expression of SNF5 facilitates progression of bladder cancer via STAT3 activation. Cancer Cell Int 2021; 21:655. [PMID: 34876150 PMCID: PMC8650342 DOI: 10.1186/s12935-021-02363-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SWI/SNF, a well-known ATP-dependent chromatin-remodeling complex, plays an essential role in several biological processes. SNF5, the core subunit of the SWI/SNF remodeling complex, inactivated in 95% of malignant rhabdoid tumors (MRT), highlighting its significance in tumorigenesis. However, the role of SNF5 in bladder cancer (BC) remains unknown. In this study, we aimed to investigate the function and potential clinical applicability of SNF5 in BC. METHODS Data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Cancer Cell Line Encyclopedia (CCLE) databases were used to evaluate the clinical significance of SNF5 in BC. We performed Gene Set Enrichment Analysis (GSEA) and functional assays to investigate the role of SNF5 in BC. Genomics of Drug Sensitivity in Cancer (GDSC) and drug-susceptibility tests were performed to identify the potential value of SNF5 in the treatment of BC. RESULTS Low SNF5 expression conferred a poor prognosis and was significantly associated with the N-stage in BC. ROC curves indicated that SNF5 could distinguish BC from the normal tissues. In vitro and in vivo functional assays demonstrated that attenuated SNF5 expression could promote cell proliferation and enhance migration by STAT3 activation. We imputed that low SNF5 expression could confer greater resistance against conventional first-line drugs, including cisplatin and gemcitabine in BC. GDSC and drug-resistance assays suggested that low SNF5 expression renders T24 and 5637 cells high sensitivity to EGFR inhibitor gefitinib, and combination of EZH2 inhibitor GSK126 and cisplatin. CONCLUSIONS To the best of our knowledge, the present study, for the first time, showed that low SNF5 expression could promote cell proliferation and migration by activating STAT3 and confer poor prognosis in BC. Importantly, SNF5 expression may be a promising candidate for identifying BC patients who could benefit from EGFR-targeted chemotherapy or cisplatin in combination with EZH2 inhibitor treatment regimens.
Collapse
Affiliation(s)
- Hua Ding
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yaqin Huang
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiazhong Shi
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Liwei Wang
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Unit 32357 of People's Liberation Army, Pujiang, 611630, China
| | - Sha Liu
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Baixiong Zhao
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuting Liu
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Zhiwen Chen
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
8
|
Komura K, Inamoto T, Tsujino T, Matsui Y, Konuma T, Nishimura K, Uchimoto T, Tsutsumi T, Matsunaga T, Maenosono R, Yoshikawa Y, Taniguchi K, Tanaka T, Uehara H, Hirata K, Hirano H, Nomi H, Hirose Y, Ono F, Azuma H. Increased BUB1B/BUBR1 expression contributes to aberrant DNA repair activity leading to resistance to DNA-damaging agents. Oncogene 2021; 40:6210-6222. [PMID: 34545188 PMCID: PMC8553621 DOI: 10.1038/s41388-021-02021-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
There has been accumulating evidence for the clinical benefit of chemoradiation therapy (CRT), whereas mechanisms in CRT-recurrent clones derived from the primary tumor are still elusive. Herein, we identified an aberrant BUB1B/BUBR1 expression in CRT-recurrent clones in bladder cancer (BC) by comprehensive proteomic analysis. CRT-recurrent BC cells exhibited a cell-cycle-independent upregulation of BUB1B/BUBR1 expression rendering an enhanced DNA repair activity in response to DNA double-strand breaks (DSBs). With DNA repair analyses employing the CRISPR/cas9 system, we revealed that cells with aberrant BUB1B/BUBR1 expression dominantly exploit mutagenic nonhomologous end joining (NHEJ). We further found that phosphorylated ATM interacts with BUB1B/BUBR1 after ionizing radiation (IR) treatment, and the resistance to DSBs by increased BUB1B/BUBR1 depends on the functional ATM. In vivo, tumor growth of CRT-resistant T24R cells was abrogated by ATM inhibition using AZD0156. A dataset analysis identified FOXM1 as a putative BUB1B/BUBR1-targeting transcription factor causing its increased expression. These data collectively suggest a redundant role of BUB1B/BUBR1 underlying mutagenic NHEJ in an ATM-dependent manner, aside from the canonical activity of BUB1B/BUBR1 on the G2/M checkpoint, and offer novel clues to overcome CRT resistance.
Collapse
Affiliation(s)
- Kazumasa Komura
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan. .,Translational Research Program, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan.
| | - Teruo Inamoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Takuya Tsujino
- Division of Urology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Yusuke Matsui
- Biomedical and Health Informatics Unit, Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 461-8673, Japan
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Kazuki Nishimura
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Taizo Uchimoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Takeshi Tsutsumi
- Division of Urology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Tomohisa Matsunaga
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Ryoichi Maenosono
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Yuki Yoshikawa
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Kohei Taniguchi
- Translational Research Program, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Tomohito Tanaka
- Translational Research Program, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Hirofumi Uehara
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Koichi Hirata
- Department of Pathology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Hajime Hirano
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Hayahito Nomi
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Yoshinobu Hirose
- Department of Pathology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Fumihito Ono
- Translational Research Program, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan.,Department of Physiology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| |
Collapse
|
9
|
Identification of CNGB1 as a Predictor of Response to Neoadjuvant Chemotherapy in Muscle-Invasive Bladder Cancer. Cancers (Basel) 2021; 13:cancers13153903. [PMID: 34359804 PMCID: PMC8345622 DOI: 10.3390/cancers13153903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Chemotherapy is recommended prior to surgical removal of the bladder for muscle-invasive bladder cancer patients. Despite a survival benefit, some patients do not respond and experience substantial toxicity and delay in surgery. Therefore, the identification of chemotherapy responders before initiating therapy would be a helpful clinical asset. To date, there are no reliable biomarkers routinely used in clinical practice that identify patients most likely to benefit from chemotherapy and their identification is urgently required for more precise delivery of care. To address this issue, we compared gene expression profiles of biopsy materials from 30 chemotherapy-responder and -non-responder patients. This analysis revealed a novel signature gene set and CNGB1 as a simpler proxy as a promising biomarker to predict chemoresponsiveness of muscle-invasive bladder cancer patients. Our findings require further validation in larger patient cohorts and in a clinical trial setting. Abstract Cisplatin-based neoadjuvant chemotherapy (NAC) is recommended prior to radical cystectomy for muscle-invasive bladder cancer (MIBC) patients. Despite a 5–10% survival benefit, some patients do not respond and experience substantial toxicity and delay in surgery. To date, there are no clinically approved biomarkers predictive of response to NAC and their identification is urgently required for more precise delivery of care. To address this issue, a multi-methods analysis approach of machine learning and differential gene expression analysis was undertaken on a cohort of 30 MIBC cases highly selected for an exquisitely strong response to NAC or marked resistance and/or progression (discovery cohort). RGIFE (ranked guided iterative feature elimination) machine learning algorithm, previously demonstrated to have the ability to select biomarkers with high predictive power, identified a 9-gene signature (CNGB1, GGH, HIST1H4F, IDO1, KIF5A, MRPL4, NCDN, PRRT3, SLC35B3) able to select responders from non-responders with 100% predictive accuracy. This novel signature correlated with overall survival in meta-analysis performed using published NAC treated-MIBC microarray data (validation cohort 1, n = 26, Log rank test, p = 0.02). Corroboration with differential gene expression analysis revealed cyclic nucleotide-gated channel, CNGB1, as the top ranked upregulated gene in non-responders to NAC. A higher CNGB1 immunostaining score was seen in non-responders in tissue microarray analysis of the discovery cohort (n = 30, p = 0.02). Kaplan-Meier analysis of a further cohort of MIBC patients (validation cohort 2, n = 99) demonstrated that a high level of CNGB1 expression associated with shorter cancer specific survival (p < 0.001). Finally, in vitro studies showed siRNA-mediated CNGB1 knockdown enhanced cisplatin sensitivity of MIBC cell lines, J82 and 253JB-V. Overall, these data reveal a novel signature gene set and CNGB1 as a simpler proxy as a promising biomarker to predict chemoresponsiveness of MIBC patients.
Collapse
|
10
|
Shen C, Wu Z, Wang Y, Gao S, Da L, Xie L, Qie Y, Tian D, Hu H. Downregulated hsa_circ_0077837 and hsa_circ_0004826, facilitate bladder cancer progression and predict poor prognosis for bladder cancer patients. Cancer Med 2020; 9:3885-3903. [PMID: 32250047 PMCID: PMC7286451 DOI: 10.1002/cam4.3006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Growing evidence has indicated that circular RNAs (circRNAs) play crucial roles in multiple biological processes. However, alterations in circRNA profiles during bladder cancer progression and the clinical significance thereof remain unclear. Therefore, high‐throughput RNA sequencing was conducted to identify circRNA and mRNA profiles in five pairs of bladder cancer tissues and adjacent noncancerous tissues. A total of 87 differentially expressed circRNAs and 2756 mRNAs were detected in above bladder cancer samples compared with paired noncancerous samples. Functional enrichment analyses, circRNA‐microRNA‐mRNA, and protein‐protein interaction networks revealed that these dysregulated circRNAs were potentially involved in carcinogenesis and evolution of bladder cancer. Subsequently, the differential expression of eight circRNAs was detected by real‐time qPCR. Hsa_circ_0003141 and hsa_circ_0008039 were significantly upregulated as well as hsa_circ_0026782, hsa_circ_0077837, hsa_circ_0004826, and hsa_circ_0001946 were significantly downregulated among validation of 70 matched bladder cancer tissues (≥75%). Moreover, hsa_circ_0077837 and hsa_circ_0004826 were also verified as markedly downregulated in four bladder cancer cells (100%). Naturally, hsa_circ_0077837 and hsa_circ_0004826 were also demonstrated using RNase‐R+ resistance experiments. In addition, Fisherʹs exact test, Kaplan‐Meier plots, Cox regression analyses, and receiver operating characteristic curve was performed to assess their clinical value. Downregulation of hsa_circ_0077837 and hsa_circ_0004826 all was significantly correlated with worse clinicopathological features and poor prognosis of bladder cancer patients. The area under the receiver operating characteristic curve of them was 0.775 (P < .0001) and 0.790 (P < .0001), respectively. Not surprisingly, in vitro functional experiments also demonstrated that the overexpression of hsa_circ_0077837 and hsa_circ_0004826 significantly weakened the proliferation, migration, and invasion of bladder cancer cells. Overall, hsa_circ_0077837 and hsa_circ_0004826 might act as tumor suppressors in the bladder cancer progression and serve as a potential biomarker for the diagnosis, prognosis, and therapy of bladder cancer.
Collapse
Affiliation(s)
- Chong Shen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yujie Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shen Gao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - La Da
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Linguo Xie
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yunkai Qie
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Dawei Tian
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Brill-Karniely Y, Dror D, Duanis-Assaf T, Goldstein Y, Schwob O, Millo T, Orehov N, Stern T, Jaber M, Loyfer N, Vosk-Artzi M, Benyamini H, Bielenberg D, Kaplan T, Buganim Y, Reches M, Benny O. Triangular correlation (TrC) between cancer aggressiveness, cell uptake capability, and cell deformability. SCIENCE ADVANCES 2020; 6:eaax2861. [PMID: 31998832 PMCID: PMC6962040 DOI: 10.1126/sciadv.aax2861] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 11/18/2019] [Indexed: 05/14/2023]
Abstract
The malignancy potential is correlated with the mechanical deformability of the cancer cells. However, mechanical tests for clinical applications are limited. We present here a Triangular Correlation (TrC) between cell deformability, phagocytic capacity, and cancer aggressiveness, suggesting that phagocytic measurements can be a mechanical surrogate marker of malignancy. The TrC was proved in human prostate cancer cells with different malignancy potential, and in human bladder cancer and melanoma cells that were sorted into subpopulations based solely on their phagocytic capacity. The more phagocytic subpopulations showed elevated aggressiveness ex vivo and in vivo. The uptake potential was preserved, and differences in gene expression and in epigenetic signature were detected. In all cases, enhanced phagocytic and aggressiveness phenotypes were correlated with greater cell deformability and predicted by a computational model. Our multidisciplinary study provides the proof of concept that phagocytic measurements can be applied for cancer diagnostics and precision medicine.
Collapse
Affiliation(s)
- Yifat Brill-Karniely
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Corresponding author. (O.B.); (Y.B.-K.)
| | - Dvir Dror
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Tal Duanis-Assaf
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yoel Goldstein
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ouri Schwob
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Talya Millo
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Natalie Orehov
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Tal Stern
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Mohammad Jaber
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem 91120, Israel
| | - Netanel Loyfer
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Margarita Vosk-Artzi
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University and Hadassah Medical Center, Jerusalem 9112001, Israel
| | - Diane Bielenberg
- Department of Surgery, Harvard Medical School, Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem 91120, Israel
| | - Meital Reches
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ofra Benny
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Corresponding author. (O.B.); (Y.B.-K.)
| |
Collapse
|
12
|
Abstract
Urothelial bladder cancer is the most common malignancy of the urinary tract resulting in over 165,000 deaths worldwide. Immunotherapies targeting the programmed cell death protein-1 (PD-1) checkpoint pathway were recently approved for the treatment of bladder cancer, but favorable responses to this treatment are still limited to a minority of patients. This resistance to therapy has driven a need to optimize syngeneic models of bladder cancer that enable evaluation of the tumor immune microenvironment under varying conditions. Several models have been in place for many years, and we discuss in this chapter the optimization of an orthotopic model of bladder cancer that can be employed to study the anti-tumor immune response.
Collapse
Affiliation(s)
- Randy F Sweis
- Department of Medicine, Section of Hematology/Oncology, Comprehensive Cancer Center, University of Chicago, Chicago, IL, United States; Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL, United States; Committee on Immunology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
13
|
Lorenzatti Hiles G, Cates AL, El-Sawy L, Day KC, Broses LJ, Han AL, Briggs HL, Emamdjomeh A, Chou A, Abel EV, Liebert M, Palmbos PL, Udager AM, Keller ET, Day ML. A surgical orthotopic approach for studying the invasive progression of human bladder cancer. Nat Protoc 2019; 14:738-755. [PMID: 30683938 PMCID: PMC6463286 DOI: 10.1038/s41596-018-0112-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The invasion of bladder cancer into the sub-urothelial muscle and vasculature are key determinants leading to lethal metastatic progression. However, the molecular basis is poorly understood, partly because of the lack of uncomplicated and reliable models that recapitulate the biology of locally invasive disease. We developed a surgical grafting technique, characterized by a simple, rapid, reproducible and high-efficiency approach, to recapitulate the pathobiological events of human bladder cancer invasion in mice. This technique consists of a small laparotomy and direct implantation of human cancer cells into the bladder lumen. Unlike other protocols, it does not require debriding of the urothelial lining, injection into the bladder wall, specialized imaging equipment, bladder catheterization or costly surgical equipment. With minimal practice, the procedure can be executed in <10 min. Tumors develop with a high take rate, and most cell lines exhibit local invasion within 4 weeks of implantation.
Collapse
Affiliation(s)
- Guadalupe Lorenzatti Hiles
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Division of Head and Neck Surgery, Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Angelica L Cates
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Layla El-Sawy
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- European Egyptian Pharmaceutical Industries, Alexandria, Egypt
| | - Kathleen C Day
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Luke J Broses
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Amy L Han
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Hannah L Briggs
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
- Division of Head and Neck Surgery, Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Amir Emamdjomeh
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Andrew Chou
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ethan V Abel
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Monica Liebert
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Phillip L Palmbos
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Division of Haematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Aaron M Udager
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Evan T Keller
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| | - Mark L Day
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Gills J, Moret R, Zhang X, Nelson J, Maresh G, Hellmers L, Canter D, Hudson M, Halat S, Matrana M, Marino MP, Reiser J, Shuh M, Laborde E, Latsis M, Talwar S, Bardot S, Li L. A patient-derived orthotopic xenograft model enabling human high-grade urothelial cell carcinoma of the bladder tumor implantation, growth, angiogenesis, and metastasis. Oncotarget 2018; 9:32718-32729. [PMID: 30220977 PMCID: PMC6135689 DOI: 10.18632/oncotarget.26024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023] Open
Abstract
High-grade urothelial cell carcinoma of the bladder has a poor prognosis when lymph nodes are involved. Despite curative therapy for clinically-localized disease, over half of the muscle-invasive urothelial cell carcinoma patients will develop metastases and die within 5 years. There are currently no described xenograft models that consistently mimic urothelial cell carcinoma metastasis. To develop a patient-derived orthotopic xenograft model to mimic clinical urothelial cell carcinoma progression to metastatic disease, the urothelial cell carcinoma cell line UM-UC-3 and two urothelial cell carcinoma patient specimens were doubly tagged with Luciferase/RFP and were intra-vesically (IB) instilled into NOD/SCID mice with or without lymph node stromal cells (HK cells). Mice were monitored weekly with bioluminescence imaging to assess tumor growth and metastasis. Primary tumors and organs were harvested for bioluminescence imaging, weight, and formalin-fixed for hematoxylin and eosin and immunohistochemistry staining. In this patient-derived orthotopic xenograft model, xenograft tumors showed better implantation rates than currently reported using other models. Xenograft tumors histologically resembled pre-implanted primary specimens from patients, presenting muscle-invasive growth patterns. In the presence of HK cells, tumor formation, tumor angiogenesis, and distant organ metastasis were significantly enhanced in both UM-UC-3 cells and patient-derived specimens. Thus, we established a unique, reproducible patient-derived orthotopic xenograft model using human high-grade urothelial cell carcinoma cells and lymph node stromal cells. It allows for investigating the mechanism involved in tumor formation and metastasis, and therefore it is useful for future testing the optimal sequence of conventional drugs or the efficacy of novel therapeutic drugs.
Collapse
Affiliation(s)
- Jessie Gills
- Department of Urology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Ravan Moret
- Institution of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Xin Zhang
- Institution of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - John Nelson
- Department of Urology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Grace Maresh
- Institution of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Linh Hellmers
- Institution of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Daniel Canter
- Department of Urology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - M'Liss Hudson
- Department of Urology, Ochsner Clinic Foundation, New Orleans, LA, USA.,Current address: Memorial Urology Associates, Houston, TX, USA
| | - Shams Halat
- Department of Pathology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Marc Matrana
- Department of Hematology and Oncology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Michael P Marino
- Division of Cellular and Gene Therapies, The Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Jakob Reiser
- Division of Cellular and Gene Therapies, The Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Maureen Shuh
- Institution of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Eric Laborde
- Department of Urology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Maria Latsis
- Department of Urology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Sunil Talwar
- Department of Urology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Stephen Bardot
- Department of Urology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Li Li
- Institution of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| |
Collapse
|
15
|
Impact of Occupational Exposures and Genetic Polymorphisms on Recurrence and Progression of Non-Muscle-Invasive Bladder Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081563. [PMID: 30042310 PMCID: PMC6121504 DOI: 10.3390/ijerph15081563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/10/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
Introduction: Additional or better markers are needed to guide the clinical monitoring of patients with non-muscle-invasive bladder cancer (NMIBC). Aim: To investigate the influence of occupational exposures and genetic polymorphisms on recurrence and progression of NMIBC. Methods: The study includes 160 NMIBC patients. We collected on questionnaire information on demographic variables, lifetime smoking history, lifetime history of occupational exposure to aromatic amines and polycyclic aromatic hydrocarbons. Genetic polymorphism (glutathione S-transferase M1; T1; P1 (GSTM1; GSTT1; GSTP1); N-acetyltransferase 1; 2 (NAT1; NAT2); cytochrome P450 1B1 (CYP1B1); sulfotransferase 1A1 (SULT1A1); myeloperoxidase (MPO); catechol-O-methyltransferase (COMT); manganese superoxide dismutase (MnSOD); NAD(P)H:quinone oxidoreductase (NQO1); X-ray repair cross-complementing group 1; 3 (XRCC1; XRCC3) and xeroderma pigmentosum complementation group (XPD)) was assessed in peripheral blood lymphocytes. DNA adducts were evaluated by 32P-postlabeling. Predictors of recurrence (histological confirmation of a newly found bladder tumor) and progression (transition of tumor from low-grade to high-grade and/or increase in TNM stage) were identified by multivariate Cox proportional hazard regression with stepwise backward selection of independent variables. Hazard ratios (HR) with 95% confidence interval (95%CI) and two-tail probability of error (p-value) were estimated. Results: The risk of BC progression decreased with the homozygous genotype “ValVal” of both COMT and MnSOD (HR = 0.195; 95%CI = 0.060 to 0.623; p = 0.006). The results on BC recurrence were of borderline significance. No occupational exposure influenced recurrence or progression. Conclusion: Our results are supported by experimental evidence of a plausible mechanism between cause (ValVal genotype of both MnSOD and COMT) and effect (decreased progression of tumor in NMIBC patients). The genetic polymorphisms associated with better prognosis may be used in clinic to guide selection of treatment for patients initially diagnosed with NMIBC. However, external validation studies are required.
Collapse
|
16
|
Employing an orthotopic model to study the role of epithelial-mesenchymal transition in bladder cancer metastasis. Oncotarget 2018; 8:34205-34222. [PMID: 27494900 PMCID: PMC5470961 DOI: 10.18632/oncotarget.11009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) has been implicated in the progression of bladder cancer. To study its contribution to bladder cancer metastasis, we established new xenograft models derived from human bladder cancer cell lines utilizing an orthotopic “recycling” technique that allowed us to isolate and examine the primary tumor and its corresponding circulating tumor cells (CTC’s) and metastatic lesions. Using whole genome mRNA expression profiling, we found that a reversible epithelial-to-mesenchymal transition (EMT) characterized by TGFβ pathway activation and SNAIL expression was associated with the accumulation of CTCs. Finally, we observed that conditional silencing of SNAIL completely blocked CTC production and regional/distant metastasis. Using this unique bladder cancer xenograft model, we conclude that metastasis is dependent on a reversible EMT mediated by SNAIL.
Collapse
|
17
|
Jäger W, Moskalev I, Raven P, Goriki A, Bidnur S, Black PC. Orthotopic Mouse Models of Urothelial Cancer. Methods Mol Biol 2018; 1655:177-197. [PMID: 28889387 DOI: 10.1007/978-1-4939-7234-0_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Orthotopic mouse models of urothelial cancer are essential for testing novel therapies and molecular manipulations of cell lines in vivo. These models are either established by orthotopic inoculation of human (xenograft models) or murine tumor cells (syngeneic models) in immunocompromised or immune competent mice. Current techniques rely on inoculation by intravesical instillation or direct injection into the bladder wall. Alternative models include the induction of murine bladder tumors by chemical carcinogens (BBN) or genetic engineering (GEM).
Collapse
Affiliation(s)
- Wolfgang Jäger
- Department of Urology and Paediatric Urology, Johannes Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
| | - Igor Moskalev
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Peter Raven
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Akihiro Goriki
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Samir Bidnur
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Ma Y, Luo W, Bunch BL, Pratt RN, Trump DL, Johnson CS. 1,25D 3 differentially suppresses bladder cancer cell migration and invasion through the induction of miR-101-3p. Oncotarget 2017; 8:60080-60093. [PMID: 28947955 PMCID: PMC5601123 DOI: 10.18632/oncotarget.19629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Metastasis is the major cause of bladder cancer death. 1,25D3, the active metabolite of vitamin D, has shown anti-metastasis activity in several cancer model systems. However, the role of 1,25D3 in migration and invasion in bladder cancer is unknown. To investigate whether 1,25D3 affects migration and invasion, four human bladder cell lines with different reported invasiveness were selected: low-invasive T24 and 253J cells and highly invasive 253J-BV and TCCSUP cells. All of the four bladder cancer cells express endogenous and inducible vitamin D receptor (VDR) as examined by immunoblot analysis. 1,25D3 had no effect on the proliferation of bladder cancer cells as assessed by MTT assay. In contrast, 1,25D3 suppressed migration and invasion in the more invasive 253J-BV and TCCSUP cells, but not in the low-invasive 253J and T24 cells using "wound" healing, chemotactic migration and Matrigel-based invasion assays. 1,25D3 promoted the expression of miR-101-3p and miR-126-3p in 253J-BV cells as examined by qRT-PCR. miR-101-3p inhibitor partially abrogated and pre-miR-101-3p further suppressed the inhibition of 1,25D3 on migration and invasion in 253J-BV cells. Further, 1,25D3 enhanced VDR recruitment to the promoter region of miR-101-3p using ChIP-qPCR assay. 1,25D3 enhanced the promoter activity of miR-101-3p as evaluated by luciferase reporter assay. Taken together, 1,25D3 suppresses bladder cancer cell migration and invasion in two invasive/migration competent lines but not in two less invasive/motile lines, which is partially through the induction of miR-101-3p expression at the transcriptional level.
Collapse
Affiliation(s)
- Yingyu Ma
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Wei Luo
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brittany L. Bunch
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Rachel N. Pratt
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Candace S. Johnson
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
19
|
Baumgart S, Hölters S, Ohlmann CH, Bohle R, Stöckle M, Ostenfeld MS, Dyrskjøt L, Junker K, Heinzelmann J. Exosomes of invasive urothelial carcinoma cells are characterized by a specific miRNA expression signature. Oncotarget 2017; 8:58278-58291. [PMID: 28938555 PMCID: PMC5601651 DOI: 10.18632/oncotarget.17619] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/20/2017] [Indexed: 11/30/2022] Open
Abstract
Muscle-invasive bladder cancer (MIBC) represents a highly aggressive tumor type compared to non-muscle-invasive tumors. MIBC is characterized by specific molecular alterations, which may also modulate extracellular tumorigenic effects. Tumor-associated exosomes, especially exosomal miRNAs, are important regulators in the interaction between tumor cells and tumor microenvironment by affecting tumor-promoting processes in target cells. It is important to analyze whether their exosomal patterns also reflect the specific molecular characteristics of MIBC. The aim of this study was to compare the miRNA expression in secreted exosomes from urinary bladder cancer cells (UBC) with different degrees of invasiveness. By electron microscopy, nanotracking analysis and western blot we proofed a high quality of isolated exosomes. Microarray analysis identified an invasion-associated signature of 15 miRNAs, which is significantly altered in exosomes of invasive UBC compared to non-invasive counterparts. Therefrom, 9 miRNAs are consistent differently expressed in both, invasive cells and their secreted exosomes. The remaining 6 exosome-specific miRNAs are only deregulated in exosomes but not in their parental cells. MiRNA alterations were verified by qPCR in cell culture and urinary exosomes. In conclusion, we showed that exosomes from invasive UBC cells are characterized by a specific miRNA signature. Further analyses have to clarify the functional relevance of exosomal miRNAs secreted by invasive bladder cancer cells for modification of the tumor microenvironment and their putative role as molecular markers in liquid biopsies.
Collapse
Affiliation(s)
- Sophie Baumgart
- Department of Urology and Pediatric Urology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Sebastian Hölters
- Department of Urology and Pediatric Urology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Carsten-Henning Ohlmann
- Department of Urology and Pediatric Urology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Rainer Bohle
- Institute of Pathology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University Medical Center, 66424 Homburg, Germany
| | | | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Joana Heinzelmann
- Department of Urology and Pediatric Urology, Saarland University Medical Center, 66424 Homburg, Germany
| |
Collapse
|
20
|
McConkey DJ, Choi W, Ochoa A, Dinney CP. Intrinsic subtypes and bladder cancer metastasis. Asian J Urol 2016; 3:260-267. [PMID: 29264194 PMCID: PMC5730866 DOI: 10.1016/j.ajur.2016.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 01/12/2023] Open
Abstract
Recent studies demonstrated that bladder cancers can be grouped into basal and luminal molecular subtypes that possess distinct biological and clinical characteristics. Basal bladder cancers express biomarkers characteristic of cancer stem cells and epithelial-to-mesenchymal transition (EMT). Patients with basal cancers tend have more advanced stage and metastatic disease at presentation. In preclinical models basal human orthotopic xenografts are also more metastatic than luminal xenografts are, and they metastasize via an EMT-dependent mechanism. However, preclinical and clinical data suggest that basal cancers are also more sensitive to neoadjuvant chemotherapy (NAC), such that most patients with basal cancers who are aggressively managed with NAC have excellent outcomes. Importantly, luminal bladder cancers can also progress to become invasive and metastatic, but they appear to do so via mechanisms that are much less dependent on EMT and may involve help from stromal cells, particularly cancer-associated fibroblasts (CAFs). Although patients with luminal cancers do not appear to derive much clinical benefit from NAC, the luminal tumors that are infiltrated with stromal cells appear to be sensitive to anti-PDL1 antibodies and possibly other immune checkpoint inhibitors. Therefore, neoadjuvant and/or adjuvant immunotherapy may be the most effective approach in treating patients with advanced or metastatic infiltrated luminal bladder cancers.
Collapse
Affiliation(s)
- David J. McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD, USA
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Woonyoung Choi
- Department of Urology, U.T. M.D. Anderson Cancer Center, Houston, TX, USA
| | - Andrea Ochoa
- Department of Urology, U.T. M.D. Anderson Cancer Center, Houston, TX, USA
| | - Colin P.N. Dinney
- Department of Urology, U.T. M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
21
|
Vallo S, Michaelis M, Gust KM, Black PC, Rothweiler F, Kvasnicka HM, Blaheta RA, Brandt MP, Wezel F, Haferkamp A, Cinatl J. Dasatinib enhances tumor growth in gemcitabine-resistant orthotopic bladder cancer xenografts. BMC Res Notes 2016; 9:454. [PMID: 27677700 PMCID: PMC5039786 DOI: 10.1186/s13104-016-2256-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/20/2016] [Indexed: 01/04/2023] Open
Abstract
Background Systemic chemotherapy with gemcitabine and cisplatin is standard of care for patients with metastatic urothelial bladder cancer. However, resistance formation is common after initial response. The protein Src is known as a proto-oncogene, which is overexpressed in various human cancers. Since there are controversial reports about the role of Src in bladder cancer, we evaluated the efficacy of the Src kinase inhibitor dasatinib in the urothelial bladder cancer cell line RT112 and its gemcitabine-resistant sub-line RT112rGEMCI20 in vitro and in vivo. Methods RT112 urothelial cancer cells were adapted to growth in the presence of 20 ng/ml gemcitabine (RT112rGEMCI20) by continuous cultivation at increasing drug concentrations. Cell viability was determined by MTT assay, cell growth kinetics were determined by cell count, protein levels were measured by western blot, and cell migration was evaluated by scratch assays. In vivo tumor growth was tested in a murine orthotopic xenograft model using bioluminescent imaging. Results Dasatinib exerted similar effects on Src signaling in RT112 and RT112rGEMCI20 cells but RT112rGEMCI20 cells were less sensitive to dasatinib-induced anti-cancer effects (half maximal inhibitory concentration (IC50) of dasatinib in RT112 cells: 349.2 ± 67.2 nM; IC50 of dasatinib in RT112rGEMCI20 cells: 1081.1 ± 239.2 nM). Dasatinib inhibited migration of chemo-naive and gemcitabine-resistant cells. Most strikingly, dasatinib treatment reduced RT112 tumor growth and muscle invasion in orthotopic xenografts, while it was associated with increased size and muscle-invasive growth in RT112rGEMCI20 tumors. Conclusion Dasatinib should be considered with care for the treatment of urothelial cancer, in particular for therapy-refractory cases.
Collapse
Affiliation(s)
- Stefan Vallo
- Institute of Medical Virology, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596, Frankfurt am Main, Germany.,Department of Urology, Goethe University Frankfurt, Frankfurt, Germany
| | - Martin Michaelis
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, UK
| | - Kilian M Gust
- Department of Urology, Goethe University Frankfurt, Frankfurt, Germany.,Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Peter C Black
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Florian Rothweiler
- Institute of Medical Virology, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596, Frankfurt am Main, Germany
| | - Hans-Michael Kvasnicka
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Roman A Blaheta
- Department of Urology, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Felix Wezel
- Department of Urology, University Hospital Ulm, Ulm, Germany
| | - Axel Haferkamp
- Department of Urology, Goethe University Frankfurt, Frankfurt, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Garley M, Jabłońska E, Sawicka-Powierza J, Kłoczko J, Piszcz J, Kakareko M, Ratajczak-Wrona W, Charkiewicz A, Omeljaniuk W, Szpak A. Expression of IL-1 and IL-6 and their natural regulators in leukocytes of B-cell chronic lymphocytic leukaemia patients. Adv Med Sci 2016; 61:187-192. [PMID: 26876087 DOI: 10.1016/j.advms.2015.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/04/2015] [Accepted: 12/30/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE The purpose of the study was the assessment of the expression of IL-1β and IL-6, and the proteins regulating their biological activity, namely IL-1RII, IL-1Ra, as well as sIL-6Rα, sgp-130 in leukemic lymphocytes and autologous neutrophils of B-CLL patients. MATERIAL/METHODS The study involved a group of B-cell chronic lymphocytic leukemia patients and healthy volunteer blood donors. The presence of chosen proteins and their natural regulators was confirmed by Western blot. RESULTS Western blot analysis showed a decreased expression of IL-1β and IL-6 in the leukocytes of B-CLL patients. Decreased expression of sIL-6Rα has been observed in lymphocytes, with a simultaneous increase of expression in PMNs. Lower expression of sgp-130 was found in B cells while its expression was elevated in the neutrophils of patients in early stages of the disease. CONCLUSIONS The changes observed in the expression of IL-1 and IL-6 seem to exclude their immediate involvement in the progress of B-CLL. However, the presented changes in the expression of proteins regulating IL-1β and IL-6 in PMNs indicate a potential role of early immune response cells also in advanced stages of the disease.
Collapse
|
23
|
Shrivastava S, Mansure JJ, Almajed W, Cury F, Ferbeyre G, Popovic M, Seuntjens J, Kassouf W. The Role of HMGB1 in Radioresistance of Bladder Cancer. Mol Cancer Ther 2015; 15:471-9. [PMID: 26719575 DOI: 10.1158/1535-7163.mct-15-0581] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/15/2015] [Indexed: 11/16/2022]
Abstract
Although radical cystectomy surgery is the standard-of-care for muscle-invasive bladder cancer, it entails complete removal of the bladder and surrounding organs which leads to substantial loss in the quality-of-life of patients. Radiotherapy, which spares the bladder, would be a more appropriate treatment modality if we can utilize molecular markers to select patients with better response to radiation. In this study, we investigate a protein called high mobility group box protein 1 (HMGB1) as a predictive marker for radiotherapy response in bladder cancer. Our in vitro results indicate a positive correlation between higher levels of HMGB1 protein and resistance to radiation in various cell lines. Upon HMGB1 protein knockdown, highly significant (>1.5-fold) sensitization to radiotherapy was achieved. We saw that loss of HMGB1 was associated with at least two times higher (P < 0.001) DNA damage in cell lines postradiation. Our results also depicted that autophagy was inhibited more than 3-fold (P < 0.001) upon HMGB1 knockdown, implicating its role in autophagy as another cause of bladder cancer radioresistance. Further validation was done in vivo by conducting mouse tumor xenograft experiments, where HMGB1 knockdown tumors showed a significantly better (P < 0.001) response to radiotherapy and decreased autophagy (shown by P62 staining) as compared with controls. The cumulative findings of our in vitro and in vivo studies highlight the significance of HMGB1 as a radiation response marker as well as its utility in radiosensitization of bladder cancer.
Collapse
Affiliation(s)
- Sanhita Shrivastava
- Urologic Oncology Research Division, McGill University, Montréal, Quebec, Canada
| | - Jose Joao Mansure
- Urologic Oncology Research Division, McGill University, Montréal, Quebec, Canada
| | - Wael Almajed
- Urologic Oncology Research Division, McGill University, Montréal, Quebec, Canada
| | - Fabio Cury
- Department of Radiation Oncology, McGill University Health Center, Montréal, Quebec, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, University of Montreal, Montréal, Quebec, Canada
| | - Marija Popovic
- Department of Medical Physics, McGill University Health Center, Montréal, Quebec, Canada
| | - Jan Seuntjens
- Department of Medical Physics, McGill University Health Center, Montréal, Quebec, Canada
| | - Wassim Kassouf
- Urologic Oncology Research Division, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
24
|
Shin DH, Dier U, Melendez JA, Hempel N. Regulation of MMP-1 expression in response to hypoxia is dependent on the intracellular redox status of metastatic bladder cancer cells. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2593-602. [PMID: 26343184 DOI: 10.1016/j.bbadis.2015.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022]
Abstract
High steady-state reactive oxygen species (ROS) production has been implicated with metastatic disease progression. We provide new evidence that this increased intracellular ROS milieu uniquely predisposes metastatic tumor cells to hypoxia-mediated regulation of the matrix metalloproteinase MMP-1. Using a cell culture metastatic progression model we previously reported that steady-state intracellular H2O2 levels are elevated in highly metastatic 253J-BV bladder cancer cells compared to their non-metastatic 253J parental cells. 253J-BV cells display higher basal MMP-1 expression, which is further enhanced under hypoxic conditions (1% O2). This hypoxia-mediated MMP-1 increase was not observed in the non-metastatic 253J cells. Hypoxia-induced MMP-1 increases are accompanied by the stabilization of hypoxia-inducible transcription factors (HIFs)-1α and HIF-2α, and a rise in intracellular ROS in metastatic 253J-BV cells. RNA interference studies show that hypoxia-mediated MMP-1 expression is primarily dependent on the presence of HIF-2α. Further, hypoxia promotes migration and spheroid outgrowth of only the metastatic 253J-BV cells and not the parental 253J cells. The observed HIF stabilization, MMP-1 expression and migration under hypoxia are dependent on increases in intracellular ROS, as these effects are attenuated by treatment with the antioxidant N-acetyl-L-cysteine. These data show that ROS play an important role in hypoxia-mediated MMP-1 expression and that an elevated intracellular redox environment, as observed in metastasis, predisposes tumor cells to an enhanced hypoxic response. It further supports the notion that metastatic tumor cells are uniquely able to utilize intracellular increases in ROS to drive pro-metastatic signaling events and highlights the important interplay between ROS and hypoxia in malignancy.
Collapse
Affiliation(s)
- Dong Hui Shin
- Department of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Usawadee Dier
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, NY, USA
| | - Juan Andres Melendez
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, State University of New York, Albany, NY, USA
| | - Nadine Hempel
- Department of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA.
| |
Collapse
|
25
|
Hensel J, Duex JE, Owens C, Dancik GM, Edwards MG, Frierson HF, Theodorescu D. Patient Mutation Directed shRNA Screen Uncovers Novel Bladder Tumor Growth Suppressors. Mol Cancer Res 2015; 13:1306-15. [PMID: 26078295 DOI: 10.1158/1541-7786.mcr-15-0130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/03/2015] [Indexed: 12/25/2022]
Abstract
UNLABELLED Next-generation sequencing (NGS) of human bladder cancer has revealed many gene alterations compared with normal tissue, with most being predicted to be "loss of function." However, given the high number of alterations, evaluating the functional impact of each is impractical. Here, we develop and use a high-throughput, in vivo strategy to determine which alterations are loss of function in tumor growth suppressors. Genes reported as altered by NGS in bladder cancer patients were bioinformatically processed by MutationTaster and MutationAssessor, with 283 predicted as loss of function. An shRNA lentiviral library targeting these genes was transduced into T24 cells, a nontumorigenic human bladder cancer cell line, followed by injection into mice. Tumors that arose were sequenced and the dominant shRNA constructs were found to target IQGAP1, SAMD9L, PCIF1, MED1, and KATNAL1 genes. In vitro validation experiments revealed that shRNA molecules directed at IQGAP1 showed the most profound increase in anchorage-independent growth of T24 cells. The clinical relevance of IQGAP1 as a tumor growth suppressor is supported by the finding that its expression is lower in bladder cancer compared with benign patient urothelium in multiple independent datasets. Lower IQGAP1 protein expression associated with higher tumor grade and decreased patient survival. Finally, depletion of IQGAP1 leads to increased TGFBR2 with TGFβ signaling, explaining in part how reduced IQGAP1 promotes tumor growth. These findings suggest IQGAP1 is a bladder tumor growth suppressor that works via modulating TGFβ signaling and is a potentially clinically useful biomarker. IMPLICATIONS This study used gene mutation information from patient-derived bladder tumor specimens to inform the development of a screen used to identify novel tumor growth suppressors. This included identification of the protein IQGAP1 as a potent bladder cancer growth suppressor.
Collapse
Affiliation(s)
- Jonathan Hensel
- Departments of Surgery (Urology) and Pharmacology, University of Colorado, Aurora, Colorado
| | - Jason E Duex
- Departments of Surgery (Urology) and Pharmacology, University of Colorado, Aurora, Colorado
| | - Charles Owens
- Departments of Surgery (Urology) and Pharmacology, University of Colorado, Aurora, Colorado
| | - Garrett M Dancik
- Department of Mathematics and Computer Science, Eastern Connecticut State University, Willimantic, Connecticut
| | - Michael G Edwards
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado
| | - Henry F Frierson
- Department of Pathology, University of Virginia, Charlottesville, Virginia
| | - Dan Theodorescu
- Departments of Surgery (Urology) and Pharmacology, University of Colorado, Aurora, Colorado. University of Colorado Comprehensive Cancer Center, Aurora, Colorado.
| |
Collapse
|
26
|
Simmons JK, Hildreth BE, Supsavhad W, Elshafae SM, Hassan BB, Dirksen WP, Toribio RE, Rosol TJ. Animal Models of Bone Metastasis. Vet Pathol 2015; 52:827-41. [PMID: 26021553 DOI: 10.1177/0300985815586223] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone.
Collapse
Affiliation(s)
- J K Simmons
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - B E Hildreth
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - W Supsavhad
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - S M Elshafae
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - B B Hassan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - W P Dirksen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - R E Toribio
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - T J Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
27
|
Ma Y, Hu Q, Luo W, Pratt RN, Glenn ST, Liu S, Trump DL, Johnson CS. 1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells. J Steroid Biochem Mol Biol 2015; 148:166-71. [PMID: 25263658 PMCID: PMC4361310 DOI: 10.1016/j.jsbmb.2014.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 12/16/2022]
Abstract
Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. miRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253J and 253J-BV cells express endogenous vitamin D receptor (VDR), which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Yingyu Ma
- Department of Pharmacology and Therapeutics, Elm and Carlton Streets, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Qiang Hu
- Department of Cancer Genetics, Elm and Carlton Streets, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Wei Luo
- Department of Pharmacology and Therapeutics, Elm and Carlton Streets, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Rachel N Pratt
- Department of Pharmacology and Therapeutics, Elm and Carlton Streets, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Sean T Glenn
- Department of Cancer Genetics, Elm and Carlton Streets, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Elm and Carlton Streets, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Donald L Trump
- Department of Medicine, Elm and Carlton Streets, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Candace S Johnson
- Department of Pharmacology and Therapeutics, Elm and Carlton Streets, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
28
|
Iuliano JN, Kutscha PD, Biderman NJ, Subbaram S, Groves TR, Tenenbaum SA, Hempel N. Metastatic bladder cancer cells distinctively sense and respond to physical cues of collagen fibril-mimetic nanotopography. Exp Biol Med (Maywood) 2014; 240:601-10. [PMID: 25465204 DOI: 10.1177/1535370214560973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/08/2014] [Indexed: 01/17/2023] Open
Abstract
Tumor metastasis is characterized by enhanced invasiveness and migration of tumor cells through the extracellular matrix (ECM), resulting in extravasation into the blood and lymph and colonization at secondary sites. The ECM provides a physical scaffold consisting of components such as collagen fibrils, which have distinct dimensions at the nanoscale. In addition to the interaction of peptide moieties with tumor cell integrin clusters, the ECM provides a physical guide for tumor cell migration. Using nanolithography we set out to mimic the physical dimensions of collagen fibrils using lined nanotopographical silicon surfaces and to explore whether metastatic tumor cells are uniquely able to respond to these physical dimensions. Etched silicon surfaces containing nanoscale lined patterns with varying trench and ridge sizes (65-500 nm) were evaluated for their ability to distinguish between a non-metastatic (253 J) and a highly metastatic (253 J-BV) derivative bladder cancer cell line. Enhanced alignment was distinctively observed for the metastatic cell lines on feature sizes that mimic the dimensions of collagen fibrils (65-100 nm lines, 1:1-1:1.5 pitch). Further, these sub-100 nm lines acted as guides for migration of metastatic cancer cells. Interestingly, even at this subcellular scale, metastatic cell migration was abrogated when cells were forced to move perpendicular to these lines. Compared to flat surfaces, 65 nm lines enhanced the formation of actin stress fibers and filopodia of metastatic cells. This was accompanied by increased formation of focal contacts, visualized by immunofluorescent staining of phospho-focal adhesion kinase along the protruding lamellipodia. Simple lined nanotopography appears to be an informative platform for studying the physical cues of the ECM in a pseudo-3D format and likely mimics physical aspects of collagen fibrils. Metastatic cancer cells appear distinctively well adapted to sense these features using filopodia protrusions to enhance their alignment and migration.
Collapse
Affiliation(s)
- James N Iuliano
- Nanobioscience Constellation, College of Nanoscale Science, SUNY Polytechnic Institute, State University of New York, Albany, NY 12203, USA University at Albany, State University of New York, Albany, NY 12203, USA
| | - Paul D Kutscha
- Nanobioscience Constellation, College of Nanoscale Science, SUNY Polytechnic Institute, State University of New York, Albany, NY 12203, USA University at Albany, State University of New York, Albany, NY 12203, USA
| | - N J Biderman
- Nanoengineering Constellation, College of Nanoscale Engineering, SUNY Polytechnic Institute, State University of New York, Albany, NY 12203, USA University at Albany, State University of New York, Albany, NY 12203, USA
| | - Sita Subbaram
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12209, USA
| | - Timothy R Groves
- Nanoengineering Constellation, College of Nanoscale Engineering, SUNY Polytechnic Institute, State University of New York, Albany, NY 12203, USA
| | - Scott A Tenenbaum
- Nanobioscience Constellation, College of Nanoscale Science, SUNY Polytechnic Institute, State University of New York, Albany, NY 12203, USA
| | - Nadine Hempel
- Nanobioscience Constellation, College of Nanoscale Science, SUNY Polytechnic Institute, State University of New York, Albany, NY 12203, USA
| |
Collapse
|
29
|
Ding J, Xu D, Pan C, Ye M, Kang J, Bai Q, Qi J. Current animal models of bladder cancer: Awareness of translatability (Review). Exp Ther Med 2014; 8:691-699. [PMID: 25120584 PMCID: PMC4113637 DOI: 10.3892/etm.2014.1837] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 06/19/2014] [Indexed: 12/14/2022] Open
Abstract
Experimental animal models are crucial in the study of biological behavior and pathological development of cancer, and evaluation of the efficacy of novel therapeutic or preventive agents. A variety of animal models that recapitulate human urothelial cell carcinoma have thus far been established and described, while models generated by novel techniques are emerging. At present a number of reviews on animal models of bladder cancer comprise the introduction of one type of method, as opposed to commenting on and comparing all classifications, with the merits of a certain method being explicit but the shortcomings not fully clarified. Thus the aim of the present study was to provide a summary of the currently available animal models of bladder cancer including transplantable (which could be divided into xenogeneic or syngeneic, heterotopic or orthotopic), carcinogen-induced and genetically engineered models in order to introduce their materials and methods and compare their merits as well as focus on the weaknesses, difficulties in operation, associated problems and translational potential of the respective models. Findings of these models would provide information for authors and clinicians to select an appropriate model or to judge relevant preclinical study findings. Pertinent detection methods are therefore briefly introduced and compared.
Collapse
Affiliation(s)
- Jie Ding
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, P.R. China
| | - Ding Xu
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, P.R. China
| | - Chunwu Pan
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, P.R. China
| | - Min Ye
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, P.R. China
| | - Jian Kang
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, P.R. China
| | - Qiang Bai
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, P.R. China
| | - Jun Qi
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, P.R. China
| |
Collapse
|
30
|
Oliveira PA, Arantes-Rodrigues R, Vasconcelos-Nóbrega C. Animal models of urinary bladder cancer and their application to novel drug discovery. Expert Opin Drug Discov 2014; 9:485-503. [DOI: 10.1517/17460441.2014.902930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Hempel N, Melendez JA. Intracellular redox status controls membrane localization of pro- and anti-migratory signaling molecules. Redox Biol 2014; 2:245-50. [PMID: 24494199 PMCID: PMC3909818 DOI: 10.1016/j.redox.2014.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/09/2014] [Indexed: 01/07/2023] Open
Abstract
Shifts in intracellular Reactive Oxygen Species (ROS) have been shown to contribute to carcinogenesis and to tumor progression. In addition to DNA and cell damage by surges in ROS, sub-lethal increases in ROS are implicated in regulating cellular signaling that enhances pro-metastatic behavior. We previously showed that subtle increases in endogenous H2O2 regulate migratory and invasive behavior of metastatic bladder cancer cells through phosphatase inhibition and consequential phosphorylation of p130cas, an adapter of the FAK signaling pathway. We further showed that enhanced redox status contributed to enhanced localization of p130cas to the membrane of metastatic cells. Here we show that this signaling complex can similarly be induced in a redox-engineered cell culture model that enables regulation of intracellular steady state H2O2 level by enforced expression of superoxide dismutase 2 (Sod2) and catalase. Expression of Sod2 leads to enhanced p130cas phosphorylation in HT-1080 fibrosarcoma and UM-UC-6 bladder cancer cells. These changes are mediated by H2O2, as co-expression of Catalase abrogates p130cas phosphorylation and its interaction with the adapter protein Crk. Importantly, we establish that the redox environment influence the localization of the tumor suppressor and phosphatase PTEN, in both redox-engineered and metastatic bladder cancer cells that display endogenous increases in H2O2. Importantly, PTEN oxidation leads to its dissociation from the plasma membrane. This indicates that oxidation of PTEN not only influences its activity, but also regulates its cellular localization, effectively removing it from its primary site of lipid phosphatase activity. These data introduce hitherto unappreciated paradigms whereby ROS can reciprocally regulate the cellular localization of pro- and anti-migratory signaling molecules, p130cas and PTEN, respectively. These data further confirm that altering antioxidant status and the intracellular ROS environment can have profound effects on pro-metastatic signaling pathways. Sod2-mediated increases in steady state H2O2 enhance phosphorylation of the focal adhesion adapter protein p130cas, which regulates migration. Sod2-dependent changes in steady state H2O2 increase membrane recruitment of p130cas. H2O2 controls the oxidation-dependent recruitment of PTEN from the plasma membrane to the cytosol. Intracellular shifts in ROS can reciprocally regulate the cellular localization of pro- and anti-migratory signaling molecules, p130cas and PTEN respectively.
Collapse
Key Words
- CAT, catalase
- FAK, focal adhesion kinase
- H2O2, hydrogen peroxide
- MMP, matrix metalloproteinase
- Nox, NADPH oxidase
- PIP3, phosphatidylinositol (3,4,5)-trisphosphate
- PTEN
- PTEN, phosphatase and tensin homolog
- PTP, protein tyrosine phosphatase
- ROS, reactive oxygen species
- Redox signaling
- Sod2
- Sod2, manganese superoxide dismutase
- p130cas
- p130cas, Crk-associated substrate
Collapse
Affiliation(s)
- Nadine Hempel
- Nanobioscience Constellation, SUNY College of Nanoscale Sciences and Engineering, 257 Fuller Rd., NFE-4313, Albany, NY 12203, USA
| | - J Andres Melendez
- Nanobioscience Constellation, SUNY College of Nanoscale Sciences and Engineering, 257 Fuller Rd., NFE-4313, Albany, NY 12203, USA
| |
Collapse
|
32
|
Coughlin MF, Fredberg JJ. Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines. Phys Biol 2013; 10:065001. [PMID: 24304722 DOI: 10.1088/1478-3975/10/6/065001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metastatic outcome is impacted by the biophysical state of the primary tumor cell. To determine if changes in cancer cell biophysical properties facilitate metastasis, we quantified cytoskeletal biophysics in well-characterized human skin, bladder, prostate and kidney cell line pairs that differ in metastatic ability. Using magnetic twisting cytometry with optical detection, cytoskeletal dynamics was observed through spontaneous motion of surface bound marker beads and nonlinear rheology was characterized through large amplitude forced oscillations of probe beads. Measurements of cytoskeletal dynamics and nonlinear rheology differed between strongly and weakly metastatic cells. However, no set of biophysical parameters changed systematically with metastatic ability across all cell lines. Compared to their weakly metastatic counterparts, the strongly metastatic kidney cancer cells exhibited both increased cytoskeletal dynamics and stiffness at large deformation which are thought to facilitate the process of vascular invasion.
Collapse
|
33
|
Qi W, White MC, Choi W, Guo C, Dinney C, McConkey DJ, Siefker-Radtke A. Inhibition of inducible heat shock protein-70 (hsp72) enhances bortezomib-induced cell death in human bladder cancer cells. PLoS One 2013; 8:e69509. [PMID: 23874968 PMCID: PMC3715471 DOI: 10.1371/journal.pone.0069509] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
The proteasome inhibitor bortezomib (Velcade) is a promising new agent for bladder cancer therapy, but inducible cytoprotective mechanisms may limit its potential efficacy. We used whole genome mRNA expression profiling to study the effects of bortezomib on stress-induced gene expression in a panel of human bladder cancer cell lines. Bortezomib induced strong upregulation of the inducible HSP70 isoforms HSPA1A and HSPA1B isoforms of Hsp72 in 253J B-V and SW780 (HSPA1A(high)) cells, but only induced the HSPA1B isoform in UM-UC10 and UM-UC13 (HSPA1A(low)) cells. Bortezomib stimulated the binding of heat shock factor-1 (HSF1) to the HSPA1A promoter in 253JB-V but not in UM-UC13 cells. Methylation-specific PCR revealed that the HSPA1A promoter was methylated in the HSPA1A(low) cell lines (UM-UC10 and UM-UC13), and exposure to the chromatin demethylating agent 5-aza-2'-deoxycytidine restored HSPA1A expression. Overexpression of Hsp72 promoted bortezomib resistance in the UM-UC10 and UM-UC13 cells, whereas transient knockdown of HSPA1B further sensitized these cells to bortezomib, and exposure to the chemical HSF1 inhibitor KNK-437 promoted bortezomib sensitivity in the 253J B-V cells. Finally, shRNA-mediated stable knockdown of Hsp72 in 253J B-V promoted sensitivity to bortezomib in vitro and in tumor xenografts in vivo. Together, our results provide proof-of-concept for using Hsp72 inhibitors to promote bortezomib sensitivity in bladder cancers and suggest that selective targeting of HSPA1B could produce synthetic lethality in tumors that display HSPA1A promoter methylation.
Collapse
Affiliation(s)
- Wei Qi
- Department of Urology, U. T. M. D. Anderson Cancer Center Houston, Texas, United States of America
| | - Matthew C. White
- Department of Urology, U. T. M. D. Anderson Cancer Center Houston, Texas, United States of America
- Department of Cancer Biology, U. T. M. D. Anderson Cancer Center Houston, Texas, United States of America
- The Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, Texas, United States of America
| | - Woonyoung Choi
- Department of Cancer Biology, U. T. M. D. Anderson Cancer Center Houston, Texas, United States of America
| | - Charles Guo
- Department of Pathology, U. T. M. D. Anderson Cancer Center Houston, Texas, United States of America
| | - Colin Dinney
- Department of Cancer Biology, U. T. M. D. Anderson Cancer Center Houston, Texas, United States of America
| | - David J. McConkey
- Department of Urology, U. T. M. D. Anderson Cancer Center Houston, Texas, United States of America
- Department of Cancer Biology, U. T. M. D. Anderson Cancer Center Houston, Texas, United States of America
- * E-mail: (DM); (ASR)
| | - Arlene Siefker-Radtke
- Department of Genitourinary Medical Oncology, U. T. M. D. Anderson Cancer Center Houston, Texas, United States of America
- * E-mail: (DM); (ASR)
| |
Collapse
|
34
|
Nassim R, Mansure JJ, Chevalier S, Cury F, Kassouf W. Combining mTOR inhibition with radiation improves antitumor activity in bladder cancer cells in vitro and in vivo: a novel strategy for treatment. PLoS One 2013; 8:e65257. [PMID: 23799002 PMCID: PMC3684614 DOI: 10.1371/journal.pone.0065257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 04/24/2013] [Indexed: 12/14/2022] Open
Abstract
Purpose Radiation therapy for invasive bladder cancer allows for organ preservation but toxicity and local control remain problematic. As such, improving efficacy of treatment requires radiosensitization of tumor cells. The aim of study is to investigate if the mammalian Target of Rapamycin (mTOR), a downstream kinase of the phosphatidylinositol 3-kinase (PI3K)/AKT survival pathway, may be a target for radiation sensitization. Experimental Design Clonogenic assays were performed using 6 bladder cancer cell lines (UM-UC3, UM-UC5, UM-UC6, KU7, 253J-BV, and 253-JP) in order to examine the effects of ionizing radiation (IR) alone and in combination with RAD001, an mTOR inhibitor. Cell cycle analysis was performed using flow cytometry. In vivo, athymic mice were subcutaneously injected with 2 bladder cancer cell lines. Treatment response with RAD001 (1.5 mg/kg, daily), fractionated IR (total 9Gy = 3Gy×3), and combination of RAD001 and IR was followed over 4 weeks. Tumor weight was measured at experimental endpoint. Results Clonogenic assays revealed that in all bladder cell lines tested, an additive effect was observed in the combined treatment when compared to either treatment alone. Our data indicates that this effect is due to arrest in both G1 and G2 phases of cell cycle when treatments are combined. Furthermore, our data show that this arrest is primarily regulated by changes in levels of cyclin D1, p27 and p21 following treatments. In vivo, a significant decrease in tumor weight was observed in the combined treatment compared to either treatment alone or control. Conclusions Altering cell cycle by inhibiting the mTOR signaling pathway in combination with radiation have favorable outcomes and is a promising therapeutic modality for bladder cancer.
Collapse
Affiliation(s)
- Roland Nassim
- McGill Urologic Oncology Research, Division of Urology, McGill University, Montreal, Quebec, Canada
| | - Jose Joao Mansure
- McGill Urologic Oncology Research, Division of Urology, McGill University, Montreal, Quebec, Canada
| | - Simone Chevalier
- McGill Urologic Oncology Research, Division of Urology, McGill University, Montreal, Quebec, Canada
| | - Fabio Cury
- Radiation Oncology, Medical Physics Unit, McGill University Health Center and Research Institute, Montreal, Quebec, Canada
| | - Wassim Kassouf
- McGill Urologic Oncology Research, Division of Urology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
35
|
Hurst RE, Hauser PJ, Kyker KD, Heinlen JE, Hodde JP, Hiles MC, Kosanke SD, Dozmorov M, Ihnat MA. Suppression and activation of the malignant phenotype by extracellular matrix in xenograft models of bladder cancer: a model for tumor cell "dormancy". PLoS One 2013; 8:e64181. [PMID: 23717563 PMCID: PMC3663841 DOI: 10.1371/journal.pone.0064181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 04/12/2013] [Indexed: 01/08/2023] Open
Abstract
A major problem in cancer research is the lack of a tractable model for delayed metastasis. Herein we show that cancer cells suppressed by SISgel, a gel-forming normal ECM material derived from Small Intestine Submucosa (SIS), in flank xenografts show properties of suppression and re-activation that are very similar to normal delayed metastasis and suggest these suppressed cells can serve as a novel model for developing therapeutics to target micrometastases or suppressed cancer cells. Co-injection with SISgel suppressed the malignant phenotype of highly invasive J82 bladder cancer cells and highly metastatic JB-V bladder cancer cells in nude mouse flank xenografts. Cells could remain viable up to 120 days without forming tumors and appeared much more highly differentiated and less atypical than tumors from cells co-injected with Matrigel. In 40% of SISgel xenografts, growth resumed in the malignant phenotype after a period of suppression or dormancy for at least 30 days and was more likely with implantation of 3 million or more cells. Ordinary Type I collagen did not suppress malignant growth, and tumors developed about as well with collagen as with Matrigel. A clear signal in gene expression over different cell lines was not seen by transcriptome microarray analysis, but in contrast, Reverse Phase Protein Analysis of 250 proteins across 4 cell lines identified Integrin Linked Kinase (ILK) signaling that was functionally confirmed by an ILK inhibitor. We suggest that cancer cells suppressed on SISgel could serve as a model for dormancy and re-awakening to allow for the identification of therapeutic targets for treating micrometastases.
Collapse
Affiliation(s)
- Robert E Hurst
- Department of Urology, College of Medicine, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gust KM, McConkey DJ, Awrey S, Hegarty PK, Qing J, Bondaruk J, Ashkenazi A, Czerniak B, Dinney CP, Black PC. Fibroblast growth factor receptor 3 is a rational therapeutic target in bladder cancer. Mol Cancer Ther 2013; 12:1245-54. [PMID: 23657946 DOI: 10.1158/1535-7163.mct-12-1150] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activating mutations of fibroblast growth factor receptor-3 (FGFR3) have been described in approximately 75% of low-grade papillary bladder tumors. In muscle-invasive disease, FGFR3 mutations are found in 20% of tumors, but overexpression of FGFR3 is observed in about half of cases. Therefore, FGFR3 is a particularly promising target for therapy in bladder cancer. Up to now, most drugs tested for inhibition of FGFR3 have been small molecule, multityrosine kinase inhibitors. More recently, a specific inhibitory monoclonal antibody targeting FGFR3 (R3Mab) has been described and tested preclinically. In this study, we have evaluated mutation and expression status of FGFR3 in 19 urothelial cancer cell lines and a cohort of 170 American patients with bladder cancer. We have shown inhibitory activity of R3Mab on tumor growth and corresponding cell signaling in three different orthotopic xenografts of bladder cancer. Our results provide the preclinical proof of principle necessary to translate FGFR3 inhibition with R3Mab into clinical trials in patients with bladder cancer.
Collapse
Affiliation(s)
- Kilian M Gust
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Inoue K, Fukuhara H, Kurabayashi A, Furihata M, Tsuda M, Nagakawa K, Fujita H, Utsumi K, Shuin T. Photodynamic therapy involves an antiangiogenic mechanism and is enhanced by ferrochelatase inhibitor in urothelial carcinoma. Cancer Sci 2013; 104:765-72. [PMID: 23480042 DOI: 10.1111/cas.12147] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 12/30/2022] Open
Abstract
The purpose of the present study was to investigate the mechanism of photodynamic therapy (PDT) supplemented with exogenously added 5-aminolevulinic acid (ALA) on human urothelial cancer (UC). Moreover, we aimed to determine whether the therapeutic effects of ALA-based PDT (ALA-PDT) for UC could be enhanced by deferoxamine (DFX), an inhibitor of ferrochelatase. The efficiency of ALA-PDT on these cells was analyzed using flow cytometry and the type of cell death was also assessed. The ALA-PDT promoting effect of DFX was examined on both UC cells and human umbilical vein endothelial cells (HUVEC). The ALA-PDT decreased levels of mitochondrial membrane potential and induced cell death mainly via apoptosis in these cells. Moreover, inhibition of ferrochelatase by DFX led to an increase of protoporphyrin IX (PpIX) accumulation and enhanced the effect of ALA-PDT on UC cells. We further investigated the effect of DFX on in vivo PDT with a tumor-bearing animal model and found that DFX efficiently enhanced tumor cell apoptosis. ALA-PDT induced death of neovascular endothelial cells in tumors but did not affect small vessel endothelial cells in normal tissues surrounding the tumor. Furthermore, DFX enhanced inhibition of neovascularization. These results demonstrated ALA-PDT dominantly induced apoptosis over necrosis by direct action on UC as well as via antiangiogenic action on neovacular endothelial cells, suggesting that the therapeutic damage by ALA-PDT could be kept to a minimum in the surrounding normal tissues. In addition, increased accumulation of PpIX by DFX could enhance this effectiveness of ALA-PDT.
Collapse
Affiliation(s)
- Keiji Inoue
- Department of Urology, Kochi Medical School, Kochi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ultrasound-guided intramural inoculation of orthotopic bladder cancer xenografts: a novel high-precision approach. PLoS One 2013; 8:e59536. [PMID: 23555699 PMCID: PMC3608695 DOI: 10.1371/journal.pone.0059536] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/15/2013] [Indexed: 11/19/2022] Open
Abstract
Orthotopic bladder cancer xenografts are essential for testing novel therapies and molecular manipulations of cell lines in vivo. Current xenografts rely on tumor cell inoculation by intravesical instillation or direct injection into the bladder wall. Instillation is limited by the lack of cell lines that are tumorigenic when delivered in this manner. The invasive model inflicts morbidity on the mice by the need for laparotomy and mobilization of the bladder. Furthermore this procedure is complex and time-consuming. Three bladder cancer cell lines (UM-UC1, UM-UC3, UM-UC13) were inoculated into 50 athymic nude mice by percutaneous injection under ultrasound guidance. PBS was first injected between the muscle wall and the mucosa to separate these layers, and tumor cells were subsequently injected into this space. Bioluminescence and ultrasound were used to monitor tumor growth. Contrast-enhanced ultrasound was used to study changes in tumor perfusion after systemic gemcitabine/cisplatin treatment. To demonstrate proof of principle that therapeutic agents can be injected into established xenografts under ultrasound guidance, oncolytic virus (VSV) was injected into UM-UC3 tumors. Xenograft tissue was harvested for immunohistochemistry after 23–37 days. Percutaneous injection of tumor cells into the bladder wall was performed efficiently (mean time: 5.7 min) and without complications in all 50 animals. Ultrasound and bioluminescence confirmed presence of tumor in the anterior bladder wall in all animals 3 days later. The average tumor volumes increased steadily over the study period. UM-UC13 tumors showed a marked decrease in volume and perfusion after chemotherapy. Immunohistochemical staining for VSV-G demonstrated virus uptake in all UM-UC3 tumors after intratumoral injection. We have developed a novel method for creating orthotopic bladder cancer xenograft in a minimally invasive fashion. In our hands this has replaced the traditional model requiring laparotomy, because this model is more time efficient, more precise and associated with less morbidity for the mice.
Collapse
|
39
|
Cheng T, Roth B, Choi W, Black PC, Dinney C, McConkey DJ. Fibroblast growth factor receptors-1 and -3 play distinct roles in the regulation of bladder cancer growth and metastasis: implications for therapeutic targeting. PLoS One 2013; 8:e57284. [PMID: 23468956 PMCID: PMC3582560 DOI: 10.1371/journal.pone.0057284] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/21/2013] [Indexed: 12/17/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are activated by mutation and overexpressed in bladder cancers (BCs), and FGFR inhibitors are currently being evaluated in clinical trials in BC patients. However, BC cells display marked heterogeneity in their responses to FGFR inhibitors, and the biological mechanisms underlying this heterogeneity are not well defined. Here we used a novel inhibitor of FGFRs 1–3 and RNAi to determine the effects of inhibiting FGFR1 or FGFR3 in a panel of human BC cell lines. We observed that FGFR1 was expressed in BC cells that also expressed the “mesenchymal” markers ZEB1 and vimentin, whereas FGFR3 expression was restricted to the E-cadherin- and p63-positive “epithelial” subset. Sensitivity to the growth-inhibitory effects of BGJ-398 was also restricted to the “epithelial” BC cells and it correlated directly with FGFR3 mRNA levels but not with the presence of activating FGFR3 mutations. In contrast, BGJ-398 did not strongly inhibit proliferation but did block invasion in the “mesenchymal” BC cells in vitro. Similarly, BGJ-398 did not inhibit primary tumor growth but blocked the production of circulating tumor cells (CTCs) and the formation of lymph node and distant metastases in mice bearing orthotopically implanted “mesenchymal” UM-UC3 cells. Together, our data demonstrate that FGFR1 and FGFR3 have largely non-overlapping roles in regulating invasion/metastasis and proliferation in distinct “mesenchymal” and “epithelial” subsets of human BC cells. The results suggest that the tumor EMT phenotype will be an important determinant of the biological effects of FGFR inhibitors in patients.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Western
- Cell Division/drug effects
- Cell Division/physiology
- Cell Line, Tumor
- DNA Primers
- Female
- Gene Expression Profiling
- Humans
- Mice
- Mice, Nude
- Mutation
- Neoplasm Metastasis
- RNA Interference
- Real-Time Polymerase Chain Reaction
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Urinary Bladder Neoplasms/pathology
Collapse
Affiliation(s)
- Tiewei Cheng
- Department of Urology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Experimental Therapeutics Academic Program, The University of Texas-Graduate School of Biomedical Sciences (GSBS) at Houston, Houston, Texas, United States of America
| | - Beat Roth
- Department of Urology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Woonyoung Choi
- Department of Urology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Peter C. Black
- Department of Urologic Science, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin Dinney
- Department of Urology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - David J. McConkey
- Department of Urology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Experimental Therapeutics Academic Program, The University of Texas-Graduate School of Biomedical Sciences (GSBS) at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
40
|
Mansure JJ, Nassim R, Chevalier S, Szymanski K, Rocha J, Aldousari S, Kassouf W. A novel mechanism of PPAR gamma induction via EGFR signalling constitutes rational for combination therapy in bladder cancer. PLoS One 2013; 8:e55997. [PMID: 23409107 PMCID: PMC3568080 DOI: 10.1371/journal.pone.0055997] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/03/2013] [Indexed: 11/19/2022] Open
Abstract
Background Two signalling molecules that are attractive for targeted therapy are the epidermal growth factor receptor (EGFR) and the peroxisome proliferator-activated receptor gamma (PPARγ). We investigated possible crosstalk between these 2 pathways, particularly in light of the recent evidence implicating PPARγ for anticancer therapy. Principal Findings As evaluated by MTT assays, gefitinib (EGFR inhibitor) and DIM-C (PPARγ agonist) inhibited growth of 9 bladder cancer cell lines in a dose-dependent manner but with variable sensitivity. In addition, combination of gefitinib and DIM-C demonstrated maximal inhibition of cell proliferation compared to each drug alone. These findings were confirmed in vivo, where combination therapy maximally inhibited tumor growth in contrast to each treatment alone when compared to control (p<0.04). Induction of PPARγ expression along with nuclear accumulation was observed in response to increasing concentrations of gefitinib via activation of the transcription factor CCAT/enhancer-binding protein-β (CEBP-β). In these cell lines, DIM-C significantly sensitized bladder cancer cell lines that were resistant to EGFR inhibition in a schedule-specific manner. Conclusion These results suggest that PPARγ agonist DIM-C can be an excellent alternative to bladder tumors resistant to EGFR inhibition and combination efficacy might be achieved in a schedule-specific manner.
Collapse
Affiliation(s)
- Jose Joao Mansure
- McGill Urologic Oncology Research, Division of Urology, McGill University Health Center, Montreal, Quebec, Canada
| | - Roland Nassim
- McGill Urologic Oncology Research, Division of Urology, McGill University Health Center, Montreal, Quebec, Canada
| | - Simone Chevalier
- McGill Urologic Oncology Research, Division of Urology, McGill University Health Center, Montreal, Quebec, Canada
| | - Konrad Szymanski
- McGill Urologic Oncology Research, Division of Urology, McGill University Health Center, Montreal, Quebec, Canada
| | - Joice Rocha
- McGill Urologic Oncology Research, Division of Urology, McGill University Health Center, Montreal, Quebec, Canada
| | - Saad Aldousari
- McGill Urologic Oncology Research, Division of Urology, McGill University Health Center, Montreal, Quebec, Canada
| | - Wassim Kassouf
- McGill Urologic Oncology Research, Division of Urology, McGill University Health Center, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
41
|
SHINNOH MASAHIDE, HORINAKA MANO, YASUDA TAKASHI, YOSHIKAWA SAE, MORITA MIE, YAMADA TAKESHI, MIKI TSUNEHARU, SAKAI TOSHIYUKI. Clostridium butyricum MIYAIRI 588 shows antitumor effects by enhancing the release of TRAIL from neutrophils through MMP-8. Int J Oncol 2013; 42:903-11. [DOI: 10.3892/ijo.2013.1790] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/14/2012] [Indexed: 11/06/2022] Open
|
42
|
Hempel N, Bartling TR, Mian B, Melendez JA. Acquisition of the metastatic phenotype is accompanied by H2O2-dependent activation of the p130Cas signaling complex. Mol Cancer Res 2013; 11:303-12. [PMID: 23345605 DOI: 10.1158/1541-7786.mcr-12-0478] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species (ROS) have emerged as cellular signaling molecules and are implicated in metastatic disease by their ability to drive invasion and migration. Here, we define the signaling adaptor protein p130Cas (Crk-associated substrate) as a key redox-responsive molecular trigger that is engaged in highly invasive metastatic bladder tumor cell lines. Endogenous shifts in steady-state hydrogen peroxide (H2O2) that accompany the metastatic phenotype increase p130Cas phosphorylation, membrane recruitment and association with the scaffolding protein Crk, and subsequent Rac1 activation and actin reorganization. Both enzymatic and nonenzymatic scavenging of H2O2 abrogates p130Cas-dependent signaling and the migratory and invasive activity of the metastatic bladder tumor cells. Disruption of p130Cas attenuates both invasion and migration of the metastatic variant (253J-BV). 253J-BV cells displayed an increase in global thiol oxidation and a concomitant decrease in total phosphatase activity, common target proteins of active-site cysteine oxidation. The dependence of phosphatases on regulation of p130Cas was highlighted when depletion of PTPN12 enhanced p130cas phosphorylation and the migratory behavior of a noninvasive parental bladder tumor control (253J). These data show that the metastatic phenotype is accompanied by increases in steady-state H2O2 production that drive promigratory signaling and suggest that antioxidant-based therapeutics may prove useful in limiting bladder tumor invasiveness.
Collapse
Affiliation(s)
- Nadine Hempel
- College of Nanoscale Sciences and Engineering, University at Albany, SUNY, Albany, NY 12203, USA
| | | | | | | |
Collapse
|
43
|
DeGraff DJ, Robinson VL, Shah JB, Brandt WD, Sonpavde G, Kang Y, Liebert M, Wu XR, Taylor JA. Current preclinical models for the advancement of translational bladder cancer research. Mol Cancer Ther 2012; 12:121-30. [PMID: 23269072 DOI: 10.1158/1535-7163.mct-12-0508] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bladder cancer is a common disease representing the fifth most diagnosed solid tumor in the United States. Despite this, advances in our understanding of the molecular etiology and treatment of bladder cancer have been relatively lacking. This is especially apparent when recent advances in other cancers, such as breast and prostate, are taken into consideration. The field of bladder cancer research is ready and poised for a series of paradigm-shifting discoveries that will greatly impact the way this disease is clinically managed. Future preclinical discoveries with translational potential will require investigators to take full advantage of recent advances in molecular and animal modeling methodologies. We present an overview of current preclinical models and their potential roles in advancing our understanding of this deadly disease and for advancing care.
Collapse
Affiliation(s)
- David J DeGraff
- 1Vanderbilt University Medical Center, Nashville,Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hepburn AC, Veeratterapillay R, Williamson SC, El-Sherif A, Sahay N, Thomas HD, Mantilla A, Pickard RS, Robson CN, Heer R. Side population in human non-muscle invasive bladder cancer enriches for cancer stem cells that are maintained by MAPK signalling. PLoS One 2012; 7:e50690. [PMID: 23226356 PMCID: PMC3511341 DOI: 10.1371/journal.pone.0050690] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/23/2012] [Indexed: 12/20/2022] Open
Abstract
Side population (SP) and ABC transporter expression enrich for stem cells in numerous tissues. We explored if this phenotype characterised human bladder cancer stem cells (CSCs) and attempted to identify regulatory mechanisms. Focusing on non-muscle invasive bladder cancer (NMIBC), multiple human cell lines were used to characterise SP and ABC transporter expression. In vitro and in vivo phenotypic and functional assessments of CSC behaviour were undertaken. Expression of putative CSC marker ABCG2 was assessed in clinical NMIBC samples (n = 148), and a role for MAPK signalling, a central mechanism of bladder tumourigenesis, was investigated. Results showed that the ABCG2 transporter was predominantly expressed and was up-regulated in the SP fraction by 3-fold (ABCG2(hi)) relative to the non-SP (NSP) fraction (ABCG2(low)). ABCG2(hi) SP cells displayed enrichment of stem cell markers (Nanog, Notch1 and SOX2) and a three-fold increase in colony forming efficiency (CFE) in comparison to ABCG2(low) NSP cells. In vivo, ABCG2(hi) SP cells enriched for tumour growth compared with ABCG2(low) NSP cells, consistent with CSCs. pERK was constitutively active in ABCG2(hi) SP cells and MEK inhibition also inhibited the ABCG2(hi) SP phenotype and significantly suppressed CFE. Furthermore, on examining clinical NMIBC samples, ABCG2 expression correlated with increased recurrence and decreased progression free survival. Additionally, pERK expression also correlated with decreased progression free survival, whilst a positive correlation was further demonstrated between ABCG2 and pERK expression. In conclusion, we confirm ABCG2(hi) SP enriches for CSCs in human NMIBC and MAPK/ERK pathway is a suitable therapeutic target.
Collapse
Affiliation(s)
- Anastasia C. Hepburn
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Rajan Veeratterapillay
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Stuart C. Williamson
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Amira El-Sherif
- Department of Pathology, Royal Victoria Infirmary, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Neha Sahay
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Huw D. Thomas
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Alejandra Mantilla
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Robert S. Pickard
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Craig N. Robson
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Rakesh Heer
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
45
|
Coughlin MF, Bielenberg DR, Lenormand G, Marinkovic M, Waghorne CG, Zetter BR, Fredberg JJ. Cytoskeletal stiffness, friction, and fluidity of cancer cell lines with different metastatic potential. Clin Exp Metastasis 2012; 30:237-50. [PMID: 22961212 DOI: 10.1007/s10585-012-9531-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 08/27/2012] [Indexed: 12/26/2022]
Abstract
We quantified mechanical properties of cancer cells differing in metastatic potential. These cells included normal and H-ras-transformed NIH3T3 fibroblast cells, normal and oncoprotein-overexpressing MCF10A breast cancer cells, and weakly and strongly metastatic cancer cell line pairs originating from human cancers of the skin (A375P and A375SM cells), kidney (SN12C and SN12PM6 cells), prostate (PC3M and PC3MLN4 cells), and bladder (253J and 253JB5 cells). Using magnetic twisting cytometry, cytoskeletal stiffness (g') and internal friction (g″) were measured over a wide frequency range. The dependencies of g' and g″ upon frequency were used to determine the power law exponent x which is a direct measure of cytoskeletal fluidity and quantifies where the cytoskeleton resides along the spectrum of solid-like (x = 1) to fluid-like (x = 2) states. Cytoskeletal fluidity x increased following transformation by H-ras oncogene expression in NIH3T3 cells, overexpression of ErbB2 and 14-3-3-ζ in MCF10A cells, and implantation and growth of PC3M and 253J cells in the prostate and bladder, respectively. Each of these perturbations that had previously been shown to enhance cancer cell motility and invasion are shown here to shift the cytoskeleton towards a more fluid-like state. In contrast, strongly metastatic A375SM and SN12PM6 cells that disseminate by lodging in the microcirculation of peripheral organs had smaller x than did their weakly metastatic cell line pairs A375P and SN12C, respectively. Thus, enhanced hematological dissemination was associated with decreased x and a shift towards a more solid-like cytoskeleton. Taken together, these results are consistent with the notion that adaptations known to enhance metastatic ability in cancer cell lines define a spectrum of fluid-like versus solid-like states, and the position of the cancer cell within this spectrum may be a determinant of cancer progression.
Collapse
Affiliation(s)
- Mark F Coughlin
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Wu K, Fan J, Zhang L, Ning Z, Zeng J, Zhou J, Li L, Chen Y, Zhang T, Wang X, Hsieh JT, He D. PI3K/Akt to GSK3β/β-catenin signaling cascade coordinates cell colonization for bladder cancer bone metastasis through regulating ZEB1 transcription. Cell Signal 2012; 24:2273-82. [PMID: 22906492 DOI: 10.1016/j.cellsig.2012.08.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/12/2012] [Indexed: 11/29/2022]
Abstract
Muscle-invasive bladder cancer is associated with a high frequency of metastasis, and bone is the most common metastatic site outside the pelvis. To clarify its organ-specific characteristics, we generated a successive bone metastatic T24-B bladder cancer subline following tail vein injection of metastatic T24-L cells. Compared with parental T24-L cells, epithelial-like T24-B cells displayed increased adhesion but decreased migration or invasion abilities as well as up-regulation of cytokeratins and down-regulation of vimentin, N-cadherin and MMP2. Mechanically, phosphatidylinositol 3-kinase (PI3K)/Akt targets glycogen synthase kinase-3β (GSK3β)/β-catenin to control ZEB1 gene transcription, and then subsequently regulates the expression of cytokeratins, vimentin and MMP2. Importantly, ZEB1 is essential for bladder cancer invasion in vitro and distant metastasis in vivo, and ZEB1 overexpression was highly correlated with the expression of those downstream markers in clinical tumor samples. Overall, this study reveals a novel mechanism facilitating metastatic bladder cancer cell re-colonization into bone, and confirms the significance of mesenchymal-to-epithelial transition (MET) in formation of bone metastasis.
Collapse
Affiliation(s)
- Kaijie Wu
- Department of Urology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710061, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dickstein RJ, Nitti G, Dinney CP, Davies BR, Kamat AM, McConkey DJ. Autophagy limits the cytotoxic effects of the AKT inhibitor AZ7328 in human bladder cancer cells. Cancer Biol Ther 2012; 13:1325-38. [PMID: 22895070 DOI: 10.4161/cbt.21793] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mutations that activate the PI3K/AKT/mTOR pathway are relatively common in urothelial (bladder) cancers, but how these pathway mutations affect AKT dependency is not known. We characterized the relationship between AKT pathway mutational status and sensitivity to the effects of the selective AKT kinase inhibitor AZ7328 using a panel of 12 well-characterized human bladder cancer cell lines. METHODS Sequenome DNA sequencing was performed to identify mutations in a panel of 12 urothelial cancer cell lines. Drug-induced proliferative inhibition and apoptosis were quantified using MTT assays and propidium iodide staining with FACS analyses. Protein activation via phosphorylation was measured by immunoblotting. Autophagy was measured by LC3 immunofluorescence and immunoblotting. RESULTS AZ7328 inhibited proliferation and AKT substrate phosphorylation in a concentration-dependent manner but had minimal effects on apoptosis. Proliferative inhibition correlated loosely with the presence of activating PIK3CA mutations and was strengthened in combination with the mTOR inhibitor rapamycin. AZ7328 induced autophagy in some of the lines, and in the cells exposed to a combination of AZ7328 and chemical autophagy inhibitors apoptosis was induced. CONCLUSIONS The cytostatic effects of AZ7328 correlate with PIK3CA mutations and are greatly enhanced by dual pathway inhibition using an mTOR inhibitor. Furthermore, AZ7328 can interact with autophagy inhibitors to induce apoptosis in some cell lines. Overall, our results support the further evaluation of combinations of PI3K/AKT/mTOR pathway and autophagy inhibitors in pre-clinical in vivo models and ultimately in patients with PIK3CA mutant bladder cancers.
Collapse
Affiliation(s)
- Rian J Dickstein
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
48
|
Hirano T, Hagiya Y, Fukuhara H, Inoue K, Shuin T, Matsumoto K, Inoue K, Tanaka T, Okura I, Ogura SI. Improvement of aminolevulinic acid (ALA)-mediated photodynamic diagnosis using n-propyl gallate. Photodiagnosis Photodyn Ther 2012; 10:28-32. [PMID: 23465369 DOI: 10.1016/j.pdpdt.2012.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/07/2012] [Accepted: 06/18/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Photodynamic diagnosis (PDD) using aminolevulinic acid (ALA) is widely used in clinical fields. In PDD, protoporphyrin IX (PpIX) is generated from ALA in tumors, allowing the detection of the tumors by PpIX fluorescence. However, it is well known that PpIX is bleached by light irradiation (photobleaching) resulting in reduced PDD efficiency. In this study, n-propyl gallate (NPG) was investigated as an enhancer of PDD efficiency. METHODS Tumor cells were incubated with NPG after treatment with ALA, and reactive oxygen species and PpIX fluorescence were measured. RESULTS The antioxidant NPG suppressed the production of reactive oxygen species from light-irradiated porphyrins and ameliorated photobleaching of PpIX generated from ALA in vitro and in vivo. CONCLUSION Incubation with NPG decreased the production of reactive oxygen species from PpIX and suppressed PpIX photobleaching. These results indicate that the antioxidant NPG may significantly improve PDD efficiency.
Collapse
Affiliation(s)
- Tomohisa Hirano
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B102 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee EJ, Park SS, Kim WJ, Moon SK. IL-5-induced migration via ERK1/2-mediated MMP-9 expression by inducing activation of NF-κB in HT1376 cells. Oncol Rep 2012; 28:1084-90. [PMID: 22710862 DOI: 10.3892/or.2012.1857] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/20/2012] [Indexed: 11/05/2022] Open
Abstract
Interleukin-5 (IL-5) plays an important role in the growth and differentiation of human B cells and eosinophils. However, little is known about the effect of IL-5 on cancer cells. In this study, we investigated the molecular mechanisms involved in the IL-5-induced migration of HT1376 bladder cancer cells. Our results indicated that IL-5 significantly enhanced migration and MMP-9 expression in HT1376 cells. We also found that IL-5 induces transcriptional activation of the binding of NF-κB and AP-1, which are two important nuclear transcription factors that are linked to MMP-9 expression in HT1376 cells. In subsequent experiments, we found activation of ERK1/2 in IL-5-treated HT1376 cells. To examine the involvement of the ERK1/2 signaling pathway on IL-5-induced cell responses, we pretreated HT1376 cells with the ERK1/2 inhibitor U0126 followed by IL-5 treatment. The results showed that U0126 treatment inhibited migration of IL-5-treated HT1376 cells. Moreover, IL-5-stimulated MMP-9 expression was suppressed by the addition of U0126. Inhibition of ERK1/2 function consistently rescued transcriptional activity of NF-κB, without altering AP-1 activation, in IL-5-treated cells. Finally, inhibition of the IL-5-specific receptor IL-5Rα by small interfering RNA (siRNA) suppressed migration, ERK1/2 activation, MMP-9 expression and binding activation of NF-κB in IL-5-treated HT1376 cells. The results of the present study indicate that the IL-28A/IL-28AR1 dyad induces cell migration through ERK1/2-mediated expression of MMP-9 by binding activation of NF-κB in bladder cancer cells. In conclusion, these novel findings indicate that binding of IL-5 to IL-5Rα plays a critical role in MMP-9 expression, which may be involved in the migration of bladder cancer.
Collapse
Affiliation(s)
- Eo-Jin Lee
- Department of Biotechnology, Chungju National University, Chungju, Chungbuk 380-702, Republic of Korea
| | | | | | | |
Collapse
|
50
|
DeGraff DJ, Clark PE, Cates JM, Yamashita H, Robinson VL, Yu X, Smolkin ME, Chang SS, Cookson MS, Herrick MK, Shariat SF, Steinberg GD, Frierson HF, Wu XR, Theodorescu D, Matusik RJ. Loss of the urothelial differentiation marker FOXA1 is associated with high grade, late stage bladder cancer and increased tumor proliferation. PLoS One 2012; 7:e36669. [PMID: 22590586 PMCID: PMC3349679 DOI: 10.1371/journal.pone.0036669] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/09/2012] [Indexed: 12/31/2022] Open
Abstract
Approximately 50% of patients with muscle-invasive bladder cancer (MIBC) develop metastatic disease, which is almost invariably lethal. However, our understanding of pathways that drive aggressive behavior of MIBC is incomplete. Members of the FOXA subfamily of transcription factors are implicated in normal urogenital development and urologic malignancies. FOXA proteins are implicated in normal urothelial differentiation, but their role in bladder cancer is unknown. We examined FOXA expression in commonly used in vitro models of bladder cancer and in human bladder cancer specimens, and used a novel in vivo tissue recombination system to determine the functional significance of FOXA1 expression in bladder cancer. Logistic regression analysis showed decreased FOXA1 expression is associated with increasing tumor stage (p<0.001), and loss of FOXA1 is associated with high histologic grade (p<0.001). Also, we found that bladder urothelium that has undergone keratinizing squamous metaplasia, a precursor to the development of squamous cell carcinoma (SCC) exhibited loss of FOXA1 expression. Furthermore, 81% of cases of SCC of the bladder were negative for FOXA1 staining compared to only 40% of urothelial cell carcinomas. In addition, we showed that a subpopulation of FOXA1 negative urothelial tumor cells are highly proliferative. Knockdown of FOXA1 in RT4 bladder cancer cells resulted in increased expression of UPK1B, UPK2, UPK3A, and UPK3B, decreased E-cadherin expression and significantly increased cell proliferation, while overexpression of FOXA1 in T24 cells increased E-cadherin expression and significantly decreased cell growth and invasion. In vivo recombination of bladder cancer cells engineered to exhibit reduced FOXA1 expression with embryonic rat bladder mesenchyme and subsequent renal capsule engraftment resulted in enhanced tumor proliferation. These findings provide the first evidence linking loss of FOXA1 expression with histological subtypes of MIBC and urothelial cell proliferation, and suggest an important role for FOXA1 in the malignant phenotype of MIBC.
Collapse
Affiliation(s)
- David J DeGraff
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|