1
|
Pakkhesal S, Shakouri M, Mosaddeghi-Heris R, Kiani Nasab S, Salehi N, Sharafi A, Ahmadalipour A. Bridging the gap: The endocannabinoid system as a functional fulcrum for benzodiazepines in a novel frontier of anxiety pharmacotherapy. Pharmacol Ther 2025; 267:108799. [PMID: 39862927 DOI: 10.1016/j.pharmthera.2025.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
While benzodiazepines have been a mainstay of the pharmacotherapy of anxiety disorders, their short-term efficacy and risk of abuse have driven the exploration of alternative treatment approaches. The endocannabinoid (eCB) system has emerged as a key modulator of anxiety-related processes, with evidence suggesting dynamic interactions between the eCB system and the GABAergic system, the primary target of benzodiazepines. According to the existing literature, the activation of the cannabinoid receptors has been shown to exert anxiolytic effects, while their blockade or genetic deletion results in heightened anxiety-like responses. Moreover, studies have provided evidence of interactions between the eCB system and benzodiazepines in anxiety modulation. For instance, the attenuation of benzodiazepine-induced anxiolysis by cannabinoid receptor antagonism or genetic variations in the eCB system components in animal studies, have been associated with variations in benzodiazepine response and susceptibility to anxiety disorders. The combined use of cannabinoid-based medications, such as cannabinoid receptor agonists and benzodiazepine co-administration, has shown promise in augmenting anxiolytic effects and reducing benzodiazepine dosage requirements. This article aims to comprehensively review and discuss the current evidence on the involvement of the eCB system as a key modulator of benzodiazepine-related anxiolytic effects, and further, the possible mechanisms by which the region-specific eCB system-GABAergic connectivity modulates the neuro-endocrine/behavioral stress response, providing an inclusive understanding of the complex interplay between the eCB system and benzodiazepines in the context of anxiety regulation, to inform future research and clinical practice.
Collapse
Affiliation(s)
- Sina Pakkhesal
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Shakouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mosaddeghi-Heris
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Kiani Nasab
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Salehi
- Student Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - AmirMohammad Sharafi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
2
|
Kesner AJ, Lovinger DM. Cannabis use, abuse, and withdrawal: Cannabinergic mechanisms, clinical, and preclinical findings. J Neurochem 2021; 157:1674-1696. [PMID: 33891706 PMCID: PMC9291571 DOI: 10.1111/jnc.15369] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
Cannabis sativa is the most widely used illicit drug in the world. Its main psychoactive component is delta-9-tetrahydrocannabinol (THC), one of over 100 phytocannabinoid compounds produced by the cannabis plant. THC is the primary compound that drives cannabis abuse potential and is also used and prescribed medically for therapeutic qualities. Despite its therapeutic potential, a significant subpopulation of frequent cannabis or THC users will develop a drug use syndrome termed cannabis use disorder. Individuals suffering from cannabis use disorder exhibit many of the hallmarks of classical addictions including cravings, tolerance, and withdrawal symptoms. Currently, there are no efficacious treatments for cannabis use disorder or withdrawal symptoms. This makes both clinical and preclinical research on the neurobiological mechanisms of these syndromes ever more pertinent. Indeed, basic research using animal models has provided valuable evidence of the neural molecular and cellular actions of cannabis that mediate its behavioral effects. One of the main components being central action on the cannabinoid type-one receptor and downstream intracellular signaling related to the endogenous cannabinoid system. Back-translational studies have provided insight linking preclinical basic and behavioral biology research to better understand symptoms observed at the clinical level. This narrative review aims to summarize major research elucidating the molecular, cellular, and behavioral manifestations of cannabis/THC use that play a role in cannabis use disorder and withdrawal.
Collapse
Affiliation(s)
- Andrew J. Kesner
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismCenter on Compulsive BehaviorsNational Institutes of HealthBethesdaMDUSA
| | - David M. Lovinger
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismCenter on Compulsive BehaviorsNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
3
|
Slivicki RA, Iyer V, Mali SS, Garai S, Thakur GA, Crystal JD, Hohmann AG. Positive Allosteric Modulation of CB 1 Cannabinoid Receptor Signaling Enhances Morphine Antinociception and Attenuates Morphine Tolerance Without Enhancing Morphine- Induced Dependence or Reward. Front Mol Neurosci 2020; 13:54. [PMID: 32410959 PMCID: PMC7199816 DOI: 10.3389/fnmol.2020.00054] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/17/2020] [Indexed: 01/09/2023] Open
Abstract
Opioid analgesics represent a critical treatment for chronic pain in the analgesic ladder of the World Health Organization. However, their use can result in a number of unwanted side-effects including incomplete efficacy, constipation, physical dependence, and overdose liability. Cannabinoids enhance the pain-relieving effects of opioids in preclinical studies and dampen unwanted side-effects resulting from excessive opioid intake. We recently reported that a CB1 positive allosteric modulator (PAM) exhibits antinociceptive efficacy in models of pathological pain and lacks the adverse side effects of direct CB1 receptor activation. In the present study, we evaluated whether a CB1 PAM would enhance morphine’s therapeutic efficacy in an animal model of chemotherapy-induced neuropathic pain and characterized its impact on unwanted side-effects associated with chronic opioid administration. In paclitaxel-treated mice, both the CB1 PAM GAT211 and the opioid analgesic morphine reduced paclitaxel-induced behavioral hypersensitivities to mechanical and cold stimulation in a dose-dependent manner. Isobolographic analysis revealed that combinations of GAT211 and morphine resulted in anti-allodynic synergism. In paclitaxel-treated mice, a sub-threshold dose of GAT211 prevented the development of tolerance to the anti-allodynic effects of morphine over 20 days of once daily dosing. However, GAT211 did not reliably alter somatic withdrawal signs (i.e., jumps, paw tremors) in morphine-dependent neuropathic mice challenged with naloxone. In otherwise naïve mice, GAT211 also prolonged antinociceptive efficacy of morphine in the tail-flick test and reduced the overall right-ward shift in the ED50 for morphine to produce antinociception in the tail-flick test, consistent with attenuation of morphine tolerance. Pretreatment with GAT211 did not alter somatic signs of μ opioid receptor dependence in mice rendered dependent upon morphine via subcutaneous implantation of a morphine pellet. Moreover, GAT211 did not reliably alter μ-opioid receptor-mediated reward as measured by conditioned place preference to morphine. Our results suggest that a CB1 PAM may be beneficial in enhancing and prolonging the therapeutic properties of opioids while potentially sparing unwanted side-effects (e.g., tolerance) that occur with repeated opioid treatment.
Collapse
Affiliation(s)
- Richard A Slivicki
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sonali S Mali
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sumanta Garai
- Center for Drug Discovery, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Ganesh A Thakur
- Center for Drug Discovery, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Jonathon D Crystal
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States.,Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
| |
Collapse
|
4
|
Abstract
Given the aging Baby Boomer generation, changes in cannabis legislation, and the growing acknowledgment of cannabis for its therapeutic potential, it is predicted that cannabis use in the older population will escalate. It is, therefore, important to determine the interaction between the effects of cannabis and aging. The aim of this report is to describe the link between cannabis use and the aging brain. Our review of the literature found few and inconsistent empirical studies that directly address the impact of cannabis use on the aging brain. However, research focused on long-term cannabis use points toward cumulative effects on multimodal systems in the brain that are similarly affected during aging. Specifically, the effects of cannabis and aging converge on overlapping networks in the endocannabinoid, opioid, and dopamine systems that may affect functional decline particularly in the hippocampus and prefrontal cortex, which are critical areas for memory and executive functioning. To conclude, despite the limited current knowledge on the potential interactive effects between cannabis and aging, evidence from the literature suggests that cannabis and aging effects are concurrently present across several neurotransmitter systems. There is a great need for future research to directly test the interactions between cannabis and aging.
Collapse
Affiliation(s)
- Hye Bin Yoo
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Jennifer DiMuzio
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
5
|
Chye Y, Christensen E, Solowij N, Yücel M. The Endocannabinoid System and Cannabidiol's Promise for the Treatment of Substance Use Disorder. Front Psychiatry 2019; 10:63. [PMID: 30837904 PMCID: PMC6390812 DOI: 10.3389/fpsyt.2019.00063] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/28/2019] [Indexed: 11/16/2022] Open
Abstract
Substance use disorder is characterized by repeated use of a substance, leading to clinically significant distress, making it a serious public health concern. The endocannabinoid system plays an important role in common neurobiological processes underlying substance use disorder, in particular by mediating the rewarding and motivational effects of substances and substance-related cues. In turn, a number of cannabinoid drugs (e.g., rimonabant, nabiximols) have been suggested for potential pharmacological treatment for substance dependence. Recently, cannabidiol (CBD), a non-psychoactive phytocannabinoid found in the cannabis plant, has also been proposed as a potentially effective treatment for the management of substance use disorder. Animal and human studies suggest that these cannabinoids have the potential to reduce craving and relapse in abstinent substance users, by impairing reconsolidation of drug-reward memory, salience of drug cues, and inhibiting the reward-facilitating effect of drugs. Such functions likely arise through the targeting of the endocannabinoid and serotonergic systems, although the exact mechanism is yet to be elucidated. This article seeks to review the role of the endocannabinoid system in substance use disorder and the proposed pharmacological action supporting cannabinoid drugs' therapeutic potential in addictions, with a focus on CBD. Subsequently, this article will evaluate the underlying evidence for CBD as a potential treatment for substance use disorder, across a range of substances including nicotine, alcohol, psychostimulants, opioids, and cannabis. While early research supports CBD's promise, further investigation and validation of CBD's efficacy, across preclinical and clinical trials will be necessary.
Collapse
Affiliation(s)
- Yann Chye
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Erynn Christensen
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,The Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW, Australia
| | - Murat Yücel
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Richards JR. Cannabinoid hyperemesis syndrome: A disorder of the HPA axis and sympathetic nervous system? Med Hypotheses 2017; 103:90-95. [PMID: 28571820 DOI: 10.1016/j.mehy.2017.04.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/22/2017] [Indexed: 12/26/2022]
|
7
|
Klumpers LE, Cole DM, Khalili-Mahani N, Soeter RP, Te Beek ET, Rombouts SARB, van Gerven JMA. Manipulating brain connectivity with δ⁹-tetrahydrocannabinol: a pharmacological resting state FMRI study. Neuroimage 2012; 63:1701-11. [PMID: 22885247 DOI: 10.1016/j.neuroimage.2012.07.051] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 07/21/2012] [Accepted: 07/23/2012] [Indexed: 01/22/2023] Open
Abstract
Resting state-functional magnetic resonance imaging (RS-FMRI) is a neuroimaging technique that allows repeated assessments of functional connectivity in resting state. While task-related FMRI is limited to indirectly measured drug effects in areas affected by the task, resting state can show direct CNS effects across all brain networks. Hence, RS-FMRI could be an objective measure for compounds affecting the CNS. Several studies on the effects of cannabinoid receptor type 1 (CB(1))-receptor agonist δ(9)-tetrahydrocannabinol (THC) on task-dependent FMRI have been performed. However, no studies on the effects of cannabinoids on resting state networks using RS-FMRI have been published. Therefore, we investigated the effects of THC on functional brain connectivity using RS-FMRI. Twelve healthy volunteers (9 male, 3 female) inhaled 2, 6 and 6 mg THC or placebo with 90-minute intervals in a randomized, double blind, cross-over trial. Eight RS-FMRI scans of 8 min were obtained per occasion. Subjects rated subjective psychedelic effects on a visual analog scale after each scan, as pharmacodynamic effect measures. Drug-induced effects on functional connectivity were examined using dual regression with FSL software (FMRIB Analysis Group, Oxford). Eight maps of voxel-wise connectivity throughout the entire brain were provided per RS-FMRI series with eight predefined resting-state networks of interest. These maps were used in a mixed effects model group analysis to determine brain regions with a statistically significant drug-by-time interaction. Statistical images were cluster-corrected, and results were Bonferroni-corrected across multiple contrasts. THC administration increased functional connectivity in the sensorimotor network, and was associated with dissociable lateralized connectivity changes in the right and left dorsal visual stream networks. The brain regions showing connectivity changes included the cerebellum and dorsal frontal cortical regions. Clear increases were found for feeling high, external perception, heart rate and cortisol, whereas prolactin decreased. This study shows that THC induces both increases and (to a lesser extent) decreases in functional brain connectivity, mainly in brain regions with high densities of CB(1)-receptors. Some of the involved regions could be functionally related to robust THC-induced CNS-effects that have been found in previous studies (Zuurman et al., 2008), such as postural stability, feeling high and altered time perception.
Collapse
|
8
|
Avdesh A, Cornelisse V, Martin-Iverson MT. Corticosteroid dependent and independent effects of a cannabinoid agonist on core temperature, motor activity, and prepulse inhibition of the acoustic startle reflex in Wistar rats. Psychopharmacology (Berl) 2012; 220:405-15. [PMID: 21947354 DOI: 10.1007/s00213-011-2493-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 09/03/2011] [Indexed: 10/17/2022]
Abstract
RATIONALE There are inconsistent reports on the effects of cannabinoid agonists on prepulse inhibition of the startle reflex (PPI) with increases, decreases, and no effects. It has been hypothesized that the conflicting observations may be as a result of modulation of the effects of cannabinoid agonists by the regulation of corticosteroid release. OBJECTIVE The purpose of the present study was to determine the effects of CP55940, a cannabinoid agonist, and metyrapone, a corticosteroid synthesis inhibitor on core temperature, motor activity, the startle reflex, and PPI. METHODS Startle responses were measured in 64 male Wistar rats while varying startling stimulus intensities, analogous to dose-response curves. A stimulus potency measure (ES(50)) and a response measure, the maximal achievable response (R (MAX)) were derived from the stimulus-response curves. RESULTS CP55940 reduced core temperature and motor activity; these effects were potentiated by metyrapone. CP55940 increased R (MAX) of startle in the absence of a prepulse by a corticosteroid-dependent mechanism but decreased it when metyrapone was administered before CP55940, a corticosteroid-independent mechanism. The inverse of stimulus potency (ES(50)) was not affected by either drug alone but was increased by the combined drugs. CP55940 increased the prepulse motor gating effects and decreased the prepulse sensory gating effects of the same prepulses but only when given after metyrapone. CONCLUSIONS The most parsimonious interpretation of these effects is that CP55940 has some effects through corticosteroid-dependent actions and opposite effects by corticosteroid-independent actions. These two putative sites of actions affect stimulus gating opposite to their effects on response gating.
Collapse
Affiliation(s)
- Avdesh Avdesh
- Centre for Clinical Research in Neuropsychiatry, Graylands Hospital, The University of Western Australia, Perth, Western Australia, Australia
| | | | | |
Collapse
|
9
|
Llorente-Berzal A, Fuentes S, Gagliano H, López-Gallardo M, Armario A, Viveros MP, Nadal R. Sex-dependent effects of maternal deprivation and adolescent cannabinoid treatment on adult rat behaviour. Addict Biol 2011; 16:624-37. [PMID: 21521421 DOI: 10.1111/j.1369-1600.2011.00318.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Early life experiences such as maternal deprivation (MD) exert long-lasting changes in adult behaviour and reactivity to stressors. Adolescent exposure to cannabinoids is a predisposing factor in developing certain psychiatric disorders. Therefore, the combination of the two factors could exacerbate the negative consequences of each factor when evaluated at adulthood. The objective of this study was to investigate the long-term effects of early MD [24 hours at postnatal day (PND) 9] and/or an adolescent chronic treatment with the cannabinoid agonist CP-55,940 (0.4 mg/kg, PND 28-42) on diverse behavioural and physiological responses of adult male and female Wistar rats. We tested them in the prepulse inhibition (PPI) of the startle response and analysed their exploratory activity (holeboard) and anxiety (elevated plus maze, EPM). In addition, we evaluated their adrenocortical reactivity in response to stress and plasma leptin levels. Maternal behaviour was measured before and after deprivation. MD induced a transient increase of maternal behaviour on reuniting. In adulthood, maternally deprived males showed anxiolytic-like behaviour (or increased risk-taking behaviour) in the EPM. Adolescent exposure to the cannabinoid agonist induced an impairment of the PPI in females and increased adrenocortical responsiveness to the PPI test in males. Both, MD and adolescent cannabinoid exposure also induced sex-dependent changes in plasma leptin levels and body weights. The present results indicate that early MD and adolescent cannabinoid exposure exerted distinct sex-dependent long-term behavioural and physiological modifications that could predispose to the development of certain neuropsychiatric disorders, though no synergistic effects were found.
Collapse
Affiliation(s)
- Alvaro Llorente-Berzal
- Department of Physiology, School of Biological Sciences, Complutense University, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
García-Gutiérrez MS, Manzanares J. Overexpression of CB2 cannabinoid receptors decreased vulnerability to anxiety and impaired anxiolytic action of alprazolam in mice. J Psychopharmacol 2011; 25:111-20. [PMID: 20837564 DOI: 10.1177/0269881110379507] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mice overexpressing CB2r (CB2xP) were exposed to open field (OF), light-dark box (LDB) and elevated plus maze (EPM) tests. Corticotropin-releasing factor (CRF) and pro-opiomelanocortin (POMC) mRNA were measured in paraventricular (PVN) and arcuate (ARC) nuclei of the hypothalamus after 30 minutes of restraint stress (RS). Anxiolytic effects of alprazolam (45 or 70 µg/kg, ip) were evaluated. GABA(A)α(2) and GABA(A)γ(2) mRNA were measured in the hippocampus (HIPP) and amygdala (AMY) of CB2xP and wild type (WT) mice. No differences were observed in the total distance travelled by CB2xP and WT mice in OF. Central and peripheral distances travelled significantly increased and decreased in CB2xP mice. Overexpression of CB2r reduced anxiety-like behaviours in LDB and EPM. In WT mice, RS increased CRF (82%) and POMC (42%) mRNA in the PVN and ARC nuclei, respectively. In CB2xP mice, RS also increased POMC (22%) mRNA in the ARC nucleus, but had no effect on CRF mRNA in the PVN nucleus. Administration of alprazolam was without effect in CB2xP mice. An increase of GABA(A)α(2) and GABA(A)γ(2) mRNA in the hippocampus and amygdala of CB2xP mice was observed. Our findings revealed that increased expression of CB2r significantly reduced anxiogenic-related behaviours, modified the response to stress and impaired the action of anxiolytic drugs.
Collapse
|
11
|
García-Gutiérrez MS, Manzanares J. The cannabinoid CB1 receptor is involved in the anxiolytic, sedative and amnesic actions of benzodiazepines. J Psychopharmacol 2010; 24:757-65. [PMID: 19825899 DOI: 10.1177/0269881109106910] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Previous studies in our laboratory showed that cannabinoid CB1 receptor knockout mice (CB1-/-) presented increased anxiety-like behaviours that did not respond to the anxiolytic actions of benzodiazepines. These results suggest that the pharmacological effects of benzodiazepines may involve the participation of cannabinoid CB1 receptors. Therefore, the purpose of this study was to examine the effects of alprazolam and the cannabinoid CB1 receptor antagonist AM251 on behavioural assays (light-dark box test, neurological severity score and step-down inhibitory avoidance test) and on the functional activity of the CB1 receptor (WIN-55,212-stimulated [(35)S] guanosine triphosphate (GTP) gamma binding autoradiography).The administration of alprazolam (40 microg/kg, intraperitoneal (i.p.)) decreased anxiety-like behaviours in the light-dark box test and significantly reduced WIN-55,212-stimulated [(35)S]GTPgamma binding autoradiography in the amygdala and in the CA1 field of the hippocampus, but was without effects on CA2, CA3 and the dentate gyrus (DG) of the hippocampus. The administration of AM251 (3 mg/kg, i.p.) blocked the anxiolytic action of alprazolam (40 microg/kg, i.p.), significantly reduced the sedative (ataxia, neurological severity score in the 0.5 cm bar) and the amnesic actions (short time term memory (1 h after electric shock)) of alprazolam (0.5 mg/kg, i.p.).Taken together, these findings revealed that cannabinoid CB1 receptor plays a pivotal role in the pharmacological actions of benzodiazepines. Furthermore, these results suggest that blockade of cannabinoid CB1 receptors may be useful in the treatment of patients with problems related to the consumption of benzodiazepines. Further clinical trials are needed to test this hypothesis.
Collapse
Affiliation(s)
- María S García-Gutiérrez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain
| | | |
Collapse
|
12
|
Abstract
Obesity and the associated metabolic syndrome have been suggested to be the consequence of a maladaptation to chronic stress exposure mediated by a dysregulation of neuroendocrine axes. The hypothalamic-pituitary-adrenal (HPA) axis represents the major hormone system responsible for maintenance of the homeostatic balance in response to stress. The brainstem nuclei and the limbic regions are strongly involved in stressor neural processing and represent a regulatory network for the HPA axis. Moreover, the same neuroendocrine stress centers are involved in the regulation of feeding behavior following acute and chronic stress exposure. Studies performed in experimental animals suggest that consumption of so-called comfort foods, while favoring an adaptation to the detrimental impact of chronic stress on the reward system, may, in turn, lead to the rapid development of obesity. Available data also indicate that the endocannabinoid system modulates the HPA axis and that its type 1 receptors, which are extensively localized in the hypothalamus and in limbic structures, are involved in the regulation of the stress response and the reward mechanisms. Based on extensive clinical experience and studies performed in experimental animals, we developed the concept that there is a specific phenotype of individuals who may become obese as a result of exposure to major stressful events.
Collapse
Affiliation(s)
- Renato Pasquali
- a Division of Endocrinology, Department of Clinical Medicine, S. Orsola-Malpighi Hospital, University Alma Mater Studiorum, Via Massarenti 9, 40138 Bologna, Italy
- b
| | - Valentina Vicennati
- a Division of Endocrinology, Department of Clinical Medicine, S. Orsola-Malpighi Hospital, University Alma Mater Studiorum, Via Massarenti 9, 40138 Bologna, Italy
| | - Alessandro Agostini
- a Division of Endocrinology, Department of Clinical Medicine, S. Orsola-Malpighi Hospital, University Alma Mater Studiorum, Via Massarenti 9, 40138 Bologna, Italy
| | - Uberto Pagotto
- a Division of Endocrinology, Department of Clinical Medicine, S. Orsola-Malpighi Hospital, University Alma Mater Studiorum, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
13
|
Femenía T, García-Gutiérrez MS, Manzanares J. CB1 receptor blockade decreases ethanol intake and associated neurochemical changes in fawn-hooded rats. Alcohol Clin Exp Res 2009; 34:131-41. [PMID: 19860799 DOI: 10.1111/j.1530-0277.2009.01074.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND This study was undertaken to identify the neurochemical changes underlying the attenuation of voluntary ethanol intake induced by the cannabinoid CB1 receptor antagonist AM251 in fawn-hooded rats. METHODS Rats were exposed to the 2-bottle-choice paradigm (ethanol 10% v/v or water) for 15 days. After this period, rats received AM251 (3 to 6 mg/kg, i.p.) or vehicle. RESULTS Voluntary ethanol intake decreased (30%) with the administration of incremental dosages of AM251 (3 mg/kg, 5 days and 6 mg/kg, 5 days) in rats with acquired high preferring ethanol consumption (>3.5 g of ethanol/kg/d). Ethanol intake significantly decreased proopiomelanocortin expression in the arcuate nucleus (38.31%) and micro-opioid-DAMGO-stimulated [(35)S]-GTPgamma binding in the caudate-putamen (40%), nucleus accumbens core (AccC) (32.87%), and shell (AccS) (34.21%). Moreover, ethanol intake increased tyrosine hydroxylase (TH) gene expression in the substantia nigra (24%) and ventral tegmental area (23%) and corticotrophin-releasing gene expression in the paraventricular hypothalamic nucleus (41.6%). The reduction of ethanol intake induced by AM251 was associated with blockade or significant reduction of the changes produced by ethanol in the expression of these genes in key regions related to drug dependence. Interestingly, treatment with AM251 reduced (20%) TH gene expression in rats drinking only water. In this respect, the action of AM251 in reducing TH gene expression may not be specific. CONCLUSION Taken together, these results revealed that blockade of cannabinoid CB1 receptors (CB1r) decreased voluntary ethanol intake in ethanol-habituated rats by normalizing the neurochemical alterations induced by ethanol.
Collapse
Affiliation(s)
- Teresa Femenía
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | | | | |
Collapse
|
14
|
McLaughlin RJ, Hill MN, Gorzalka BB. Monoaminergic neurotransmission contributes to cannabinoid-induced activation of the hypothalamic-pituitary-adrenal axis. Eur J Pharmacol 2009; 624:71-6. [PMID: 19818759 DOI: 10.1016/j.ejphar.2009.09.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 09/18/2009] [Accepted: 09/28/2009] [Indexed: 11/19/2022]
Abstract
Administration of high doses of cannabinoid CB(1) receptor agonists activates the hypothalamic-pituitary-adrenal (HPA) axis; however, the mechanism by which this occurs has not been well characterized. Both monoaminergic and glutamatergic neurotransmission are known to activate the HPA axis and cannabinoids have been found to modify levels of these neurotransmitters. Employing pharmacological antagonists to specific serotonergic, noradrenergic and glutamatergic receptor subtypes, we examined whether activation of these receptors is involved in the ability of a high dose of a cannabinoid CB(1) receptor agonist to activate the HPA axis. We characterized a robust induction of corticosterone secretion following administration of a 100 microg/kg dose of HU-210, a potent cannabinoid CB(1) receptor agonist. Pre-treatment with antagonists to the serotonergic type 1A (5-HT(1A); WAY100635; 0.5mg/kg) and 5-HT(2A/2C) (ketanserin; 1mg/kg) receptors significantly attenuated the HU-210-induced increase in corticosterone secretion. Similarly, the increase in corticosterone secretion following HU-210 administration was significantly reduced by pre-treatment with antagonists to the alpha(1)-adrenoceptor (prazosin; 1mg/kg) and beta-adrenoceptor (propanolol; 2.5mg/kg). However, pre-treatment with antagonists to the NMDA (MK-801; 0.1mg/kg) and AMPA/Kainate (DNQX; 10mg/kg) receptors did not modify activation of adrenocortical secretion evoked by HU-210. These data suggest that acute administration of exogenous cannabinoid ligands activates the HPA axis indirectly through an increase in serotonergic and noradrenergic neurotransmission.
Collapse
Affiliation(s)
- Ryan J McLaughlin
- Department of Psychology, University of British Columbia, Vancouver, B.C. V6T1Z4, Canada
| | | | | |
Collapse
|
15
|
Cota D. The role of the endocannabinoid system in the regulation of hypothalamic-pituitary-adrenal axis activity. J Neuroendocrinol 2008; 20 Suppl 1:35-8. [PMID: 18426497 DOI: 10.1111/j.1365-2826.2008.01673.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The endocannabinoid system (ECS) is a recently identified neuromodulatory system, which is involved in several physiological processes and in disease. For example, the ECS not only represents the biological substrate of marijuana's effects, but also is known to modulate several neuroendocrine axes, including the hypothalamic-pituitary-adrenal (HPA) axis. Although previous pharmacological studies using plant-derived or synthetic cannabinoids have implied a stimulating action on the HPA axis, more recent findings have led to the conclusion that an endogenous cannabinoid tone might exist, which is actually inhibiting the release of both adrenocorticotrophic hormone and glucocorticoids. Studies using mice lacking cannabinoid receptor CB(1) have demonstrated that presence and activity of these receptors is essential for the regulation of HPA axis activity. Interestingly, the effects of endocannabinoids on the HPA axis are consistent with their neuromodulatory action on brain neurotransmitter systems. Endocannabinoids have been found to mediate the nongenomic glucocorticoid-induced inhibition of the release of corticotrophin-releasing factor within the paraventricular nucleus of the hypothalamus. Altogether, these observations suggest that alterations of the endocannabinoid tone might be associated with the development of stress-related diseases, including anxiety, depression and obesity.
Collapse
Affiliation(s)
- D Cota
- Department of Psychiatry, Obesity Research Center, Genome Research Institute, University of Cincinnati, Cincinnati, OH 45237, USA.
| |
Collapse
|
16
|
Economidou D, Mattioli L, Ubaldi M, Lourdusamy A, Soverchia L, Hardiman G, Campolongo P, Cuomo V, Ciccocioppo R. Role of cannabinoidergic mechanisms in ethanol self-administration and ethanol seeking in rat adult offspring following perinatal exposure to Delta9-tetrahydrocannabinol. Toxicol Appl Pharmacol 2007; 223:73-85. [PMID: 17618662 DOI: 10.1016/j.taap.2007.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 05/04/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
The present study evaluated the consequences of perinatal Delta(9)-tetrahydrocannabinol (Delta(9)-THC) treatment (5 mg/kg/day by gavage), either alone or combined with ethanol (3% v/v as the only fluid available), on ethanol self-administration and alcohol-seeking behavior in rat adult offspring. Furthermore, the effect of the selective cannabinoid CB(1) receptor antagonist, SR-141716A, on ethanol self-administration and on reinstatement of ethanol-seeking behavior induced either by stress or conditioned drug-paired cues was evaluated in adult offspring of rats exposed to the same perinatal treatment. Lastly, microarray experiments were conducted to evaluate if perinatal treatment with Delta(9)-tetrahydrocannabinol, ethanol or their combination causes long-term changes in brain gene expression profile in rats. The results of microarray data analysis showed that 139, 112 and 170 genes were differentially expressed in the EtOH, Delta(9)-THC, or EtOH+Delta(9)-THC group, respectively. No differences in alcohol self-administration and alcohol seeking were observed between rat groups. Intraperitoneal (IP) administration of SR-141716A (0.3-3.0 mg/kg) significantly reduced lever pressing for ethanol and blocked conditioned reinstatement of alcohol seeking. At the same doses SR-141716A failed to block foot-shock stress-induced reinstatement of alcohol seeking. The results reveal that perinatal exposure to Delta(9)-THC ethanol or their combination results in evident changes in gene expression patterns. However, these treatments do not significantly affect vulnerability to ethanol abuse in adult offspring. On the other hand, the results obtained with SR-141716A emphasize that endocannabinoid mechanisms play a major role in ethanol self-administration, as well as in the reinstatement of ethanol-seeking behavior induced by conditioned cues, supporting the idea that cannabinoid CB(1) receptor antagonists may represent interesting agents for the pharmacotherapy of alcoholism.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Animals, Newborn
- Behavior, Animal/drug effects
- Central Nervous System Depressants/administration & dosage
- Choice Behavior/drug effects
- Conditioning, Operant/drug effects
- Dronabinol/toxicity
- Drug Therapy, Combination
- Ethanol/administration & dosage
- Female
- Gene Expression Profiling
- Oligonucleotide Array Sequence Analysis/methods
- Piperidines/pharmacology
- Pregnancy
- Psychotropic Drugs/toxicity
- Pyrazoles/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Rimonabant
- Self Administration
Collapse
Affiliation(s)
- Daina Economidou
- Department of Experimental Medicine and Public Health, University of Camerino, Via Scalzino 3, 62032 Camerino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cota D, Steiner MA, Marsicano G, Cervino C, Herman JP, Grübler Y, Stalla J, Pasquali R, Lutz B, Stalla GK, Pagotto U. Requirement of cannabinoid receptor type 1 for the basal modulation of hypothalamic-pituitary-adrenal axis function. Endocrinology 2007; 148:1574-81. [PMID: 17194743 DOI: 10.1210/en.2005-1649] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The endocannabinoid system affects the neuroendocrine regulation of hormone secretion, including the activity of the hypothalamus-pituitary-adrenal (HPA) axis. However, the mechanisms by which endocannabinoids regulate HPA axis function have remained unclear. Here we demonstrate that mice lacking cannabinoid receptor type 1 (CB1-/-) display a significant dysregulation of the HPA axis. Although circadian HPA axis responsiveness is preserved, CB1-/- mice are characterized by an enhanced circadian drive on the HPA axis, resulting in elevated plasma corticosterone concentrations at the onset of the dark as compared with wild-type (CB1+/+) littermates. Moreover, CB1-/--derived pituitary cells respond with a significantly higher ACTH secretion to CRH and forskolin challenges as compared with pituitary cells derived from CB1+/+ mice. Both CBL-/- and CB1+/+ mice properly respond to a high-dose dexamethasone test, but response to low-dose dexamethasone is influenced by genotype. In addition, CB1-/- mice show increased CRH mRNA levels in the paraventricular nucleus of the hypothalamus but not in other extrahypothalamic areas, such as the amygdala and piriform cortex, in which CB1 and CRH mRNA have been colocalized. Finally, CB1-/- mice have selective glucocorticoid receptor mRNA down-regulation in the CA1 region of the hippocampus but not in the dentate gyrus or paraventricular nucleus. Conversely, mineralocorticoid receptor mRNA expression levels were found unchanged in these brain areas. In conclusion, our findings indicate that CB1 deficiency enhances the circadian HPA axis activity peak and leads to central impairment of glucocorticoid feedback, thus further outlining the essential role of the endocannabinoid system in the modulation of neuroendocrine functions.
Collapse
Affiliation(s)
- Daniela Cota
- Group of Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 2006; 27:73-100. [PMID: 16306385 DOI: 10.1210/er.2005-0009] [Citation(s) in RCA: 606] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During the last few years, the endocannabinoid system has emerged as a highly relevant topic in the scientific community. Many different regulatory actions have been attributed to endocannabinoids, and their involvement in several pathophysiological conditions is under intense scrutiny. Cannabinoid receptors, named CB1 receptor and CB2 receptor, first discovered as the molecular targets of the psychotropic component of the plant Cannabis sativa, participate in the physiological modulation of many central and peripheral functions. CB2 receptor is mainly expressed in immune cells, whereas CB1 receptor is the most abundant G protein-coupled receptor expressed in the brain. CB1 receptor is expressed in the hypothalamus and the pituitary gland, and its activation is known to modulate all the endocrine hypothalamic-peripheral endocrine axes. An increasing amount of data highlights the role of the system in the stress response by influencing the hypothalamic-pituitary-adrenal axis and in the control of reproduction by modifying gonadotropin release, fertility, and sexual behavior. The ability of the endocannabinoid system to control appetite, food intake, and energy balance has recently received great attention, particularly in the light of the different modes of action underlying these functions. The endocannabinoid system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, CB1 receptor and endocannabinoids are integrated components of the networks controlling appetite and food intake. Interestingly, the endocannabinoid system was recently shown to control metabolic functions by acting on peripheral tissues, such as adipocytes, hepatocytes, the gastrointestinal tract, and, possibly, skeletal muscle. The relevance of the system is further strenghtened by the notion that drugs interfering with the activity of the endocannabinoid system are considered as promising candidates for the treatment of various diseases, including obesity.
Collapse
Affiliation(s)
- Uberto Pagotto
- Endocrinology Unit, Department of Internal Medicine and Gastroenterology, Sant' Orsola-Malpighi Hospital, Bologna, Italy, and Department of Physiological Chemistry, Johannes Gutenberg-University Mainz, Germany.
| | | | | | | | | |
Collapse
|
19
|
Economidou D, Mattioli L, Cifani C, Perfumi M, Massi M, Cuomo V, Trabace L, Ciccocioppo R. Effect of the cannabinoid CB1 receptor antagonist SR-141716A on ethanol self-administration and ethanol-seeking behaviour in rats. Psychopharmacology (Berl) 2006; 183:394-403. [PMID: 16261315 DOI: 10.1007/s00213-005-0199-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/05/2005] [Indexed: 11/25/2022]
Abstract
RATIONALE It has been suggested that endocannabinoid mechanisms are involved in the control of ethanol consumption. OBJECTIVES The aims of the present study were (1) to evaluate the role of the endocannabinoid system in the control of operant ethanol self-administration and in the reinstatement of ethanol seeking, when induced by stress or conditioned stimuli and (2) to offer new insights on the specificity of such a role. METHODS Rats were administered intraperitoneally with the selective cannabinoid CB1 receptor antagonist, SR-141716A, 30 min before operant self-administration or reinstatement sessions. Two schedules of reinforcement, the fixed-ratio 1 (FR1) and the progressive ratio (PR), were used to study 10% (w/v) alcohol and 5.0% sucrose self-administration. NaCl (2% w/v) intake in sodium-depleted rats was studied only under the FR1 program. RESULTS Treatment with SR-141716A (0.3-3.0 mg/kg) significantly attenuated FR1 alcohol self-administration and lowered the break point for ethanol under PR. SR-141716A also markedly inhibited the reinstatement of alcohol seeking elicited by presentation of cues predictive of drug availability. Conversely, the cannabinoid antagonist did not prevent the reinstatement of alcohol seeking induced by foot-shock stress. Lever pressing for sucrose under FR1 and PR schedules was also significantly decreased by SR-141716A treatment, whereas the drug modestly and only at the highest dose decreased 2% NaCl self-administration. CONCLUSIONS Results emphasize that endocannabinoid mechanisms play a major role in the control of ethanol self-administration and in the reinstatement of conditioned ethanol seeking. However, these effects extend to the control of operant behaviours motivated by natural rewards (i.e. sucrose). On the other hand, SR-141716A only weakly reduces NaCl self-administration in sodium-depleted rats, in which salt intake is largely controlled by homeostatic mechanisms. Overall, these observations demonstrate that the inhibition of operant behaviour following blockade of CB1 receptors by SR-141716A is linked to a reduction of reward-related responding and is not related to drug-induced motor deficits.
Collapse
Affiliation(s)
- Daina Economidou
- Department of Experimental Medicine and Public Health, University of Camerino, Via Scalzino 3, 62032, Camerino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nguyen QH, Wagner EJ. Estrogen differentially modulates the cannabinoid- induced presynaptic inhibition of amino acid neurotransmission in proopiomelanocortin neurons of the arcuate nucleus. Neuroendocrinology 2006; 84:123-37. [PMID: 17106183 DOI: 10.1159/000096996] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 09/26/2006] [Indexed: 11/19/2022]
Abstract
The present study sought to determine whether cannabinoids inhibit glutamatergic and GABAergic synaptic input onto neurons of the hypothalamic arcuate nucleus (ARC), and whether estrogen modulates this process. Whole-cell patch clamp recordings were performed in hypothalamic slices prepared from ovariectomized female guinea pigs. CB1 receptor activation reduced the amplitude of excitatory postsynaptic currents (EPSCs) evoked by electrical stimulation that were sensitive to ionotropic glutamate receptor antagonists. The CB1 receptor antagonist AM251 increased evoked EPSC (eEPSC) amplitude, and reversed the agonist-induced decrease. CB1 receptor activation similarly decreased the amplitude of evoked inhibitory postsynaptic currents (eIPSCs). The cannabinoid-induced reduction in eEPSC and eIPSC amplitude correlated with a decrease in the frequency of miniature EPSCs (mEPSCs) and IPSCs (mIPSCs) that were abolished by ionotropic glutamate and GABA(A) receptor antagonists, respectively. AM251 increased mEPSC frequency, and antagonized the agonist-induced decrease. Compared to neurons obtained from vehicle-treated controls, estradiol benzoate (25 mug; s.c.) given 24 h prior to experimentation increased mEPSC frequency, and markedly decreased the potency of CB1 receptor agonists to decrease mEPSC frequency. Conversely, the steroid potentiated the cannabinoid-induced decrease in mIPSC frequency. These effects were observed in neurons subsequently identified as proopiomelanocortin (POMC) neurons. These data reveal that ARC neurons, including POMC neurons, receive glutamatergic and GABAergic synaptic inputs that are presynaptically inhibited by cannabinoids, and differentially modulated by estrogen. These opposing effects of estrogen on the cannabinoid regulation of amino acid neurotransmission excite POMC neurons, and lend additional insight into the mechanisms underlying estrogen-induced anorexia and negative feedback of the reproductive axis.
Collapse
Affiliation(s)
- Que Huong Nguyen
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | | |
Collapse
|
21
|
Oliva JM, Urigüen L, Pérez-Rial S, Manzanares J. Time course of opioid and cannabinoid gene transcription alterations induced by repeated administration with fluoxetine in the rat brain. Neuropharmacology 2005; 49:618-26. [PMID: 15936043 DOI: 10.1016/j.neuropharm.2005.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/05/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
This study examined the time course effects (8, 16 and 31 days) of fluoxetine administration (1 mg/kg, p.o./day) on serotonin transporter (5-HTT), opioid, tyrosine hydroxylase (TH) and cannabinoid CB1 receptor gene expressions in selected regions of the rat brain. Treatment with fluoxetine progressively decreased (35-55%) 5-HTT gene expression in dorsal raphe nucleus at 8, 16 and 31 days. The results revealed that fluoxetine administration decreased (30%) proenkephalin gene expression in nucleus accumbens shell (AcbS) and caudate-putamen (CPu) (31 days) but was without effect in nucleus accumbens core AcbC. A pronounced and time related decrease (25-65%) in prodynorphin gene expression was detected in AcbC, AcbS, CPu, hypothalamic supraoptic and paraventricular nuclei at all time points as well as in proopiomelanocortin gene expression (20-30%) in the arcuate nucleus (ARC) of the hypothalamus. On days 16 and 31, tyrosine hydroxylase gene expression in ventral tegmental area and substantia nigra and cannabinoid CB1 receptor gene expression in the CPu decreased (approximately 45-50% from vehicle). In conclusion, fluoxetine by inhibiting the reuptake of serotonin produced pronounced and time related alterations in genes involved in the regulation of emotional behaviour, suggesting that these neuroplastic changes may be involved, at least in part, in the clinical efficacy of this drug in neuropsychiatric disorders.
Collapse
Affiliation(s)
- José M Oliva
- Servicio de Psiquiatría y Unidad de Investigación, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Verty ANA, McFarlane JR, McGregor IS, Mallet PE. Evidence for an interaction between CB1 cannabinoid and melanocortin MCR-4 receptors in regulating food intake. Endocrinology 2004; 145:3224-31. [PMID: 15033920 DOI: 10.1210/en.2004-0059] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Melanocortin receptor 4 (MCR4) and CB(1) cannabinoid receptors independently modulate food intake. Although an interaction between the cannabinoid and melanocortin systems has been found in recovery from hemorrhagic shock, the interaction between these systems in modulating food intake has not yet been examined. The present study had two primary purposes: 1) to examine whether the cannabinoid and melanocortin systems act independently or synergistically in suppressing food intake; and 2) to determine the relative position of the CB(1) receptors in the chain of control of food intake in relation to the melanocortin system. Rats were habituated to the test environment and injection procedure and then received intracerebroventicular injections of various combinations of the MCR4 receptor antagonist JKC-363, the CB(1) receptor agonist Delta(9)-tetrahydrocannabinol, the MCR4 receptor agonist alpha-MSH, or the cannabinoid CB(1) receptor antagonist SR 141716. Food intake and locomotor activity were then recorded for 120 min. When administrated alone, SR 141716 and alpha-MSH dose-dependently attenuated baseline feeding, whereas sub-anorectic doses of SR 141716 and alpha-MSH synergistically attenuated baseline feeding when combined. Delta(9)-Tetrahydrocannabinol-induced feeding was not blocked by alpha-MSH, whereas SR 141716 dose-dependently attenuated JKC-363-induced feeding. Locomotor activity was not significantly affected by any drug treatment, suggesting that the observed effects on feeding were not due to a nonspecific reduction in motivated behavior. These findings revealed a synergistic interaction between the cannabinoid and melanocortin systems in feeding behavior. These results further suggested that CB(1) receptors are located downstream from melanocortin receptors and CB(1) receptor signaling is necessary to prevent the melanocortin system from altering food intake.
Collapse
MESH Headings
- Animals
- Drug Interactions
- Eating/physiology
- Male
- Peptides, Cyclic/pharmacology
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/metabolism
- Rimonabant
- alpha-MSH/pharmacology
- beta-MSH/analogs & derivatives
- beta-MSH/pharmacology
Collapse
Affiliation(s)
- A N A Verty
- School of Psychology, University of New England, Armidale, New South Wales 2351, Australia
| | | | | | | |
Collapse
|
23
|
Urigüen L, Pérez-Rial S, Ledent C, Palomo T, Manzanares J. Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors. Neuropharmacology 2004; 46:966-73. [PMID: 15081793 DOI: 10.1016/j.neuropharm.2004.01.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Revised: 11/11/2003] [Accepted: 01/07/2004] [Indexed: 11/16/2022]
Abstract
The role of cannabinoid CB(1) receptors in the action of anxiolytics was examined. Deletion of CB(1) receptors resulted in increased anxiety-like behaviours in light/dark box, elevated plus maze and social interaction tests. Mutant mice presented basal low corticosterone concentrations and low proopiomelanocortin gene expression in the anterior lobe of the pituitary gland compared to wild-type mice. Ten minutes of restraint stress resulted in a twofold increase in corticosterone concentrations in the plasma of mutant mice, compared to wild-type mice. Bromazepam (50 or 100 microg/kg) markedly increased the time spent in light area in wild-type animals, though both doses were without effect in mutant mice. Administration of buspirone (1 or 2 mg/kg) produced anxiolytic effects in wild-type mice. In contrast, only the highest dose of buspirone had anxiolytic results in mutant mice. Our findings reveal that CB(1) receptors are involved in the regulation of emotional responses, and play a pivotal role in the action mechanism of anxiolytics. They suggest that alterations in the functional activity of the CB(1) receptor may be related to the emergence of anxiety disorders, and may affect treatment with anxiolytics.
Collapse
Affiliation(s)
- Leyre Urigüen
- Servicio de Psiquiatría y Unidad de Investigación, Pabellón de Medicina Comunitaria, Hospital Universitario 12 de Octubre, Avda Córdoba s/n, 28041 Madrid, Spain
| | | | | | | | | |
Collapse
|
24
|
Manzanares J, Urigüen L, Rubio G, Palomo T. Role of endocannabinoid system in mental diseases. Neurotox Res 2004; 6:213-24. [PMID: 15325960 DOI: 10.1007/bf03033223] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the last decade, a large number of studies using Delta9-tetrahydrocannabinol (THC), the main active principle derivative of the marijuana plant, or cannabinoid synthetic derivatives have substantially contributed to advance the understanding of the pharmacology and neurobiological mechanisms produced by cannabinoid receptor activation. Cannabis has been historically used to relieve some of the symptoms associated with central nervous system disorders. Nowadays, there are anecdotal evidences for the use of cannabis in many patients suffering from multiple sclerosis or chronic pain. Following the historical reports of the use of cannabis for medicinal purposes, recent research has highlighted the potential of cannabinoids to treat a wide variety of clinical disorders. Some of these disorders that are being investigated are pain, motor dysfunctions or psychiatric illness. On the other hand, cannabis abuse has been related to several psychiatric disorders such as dependence, anxiety, depression, cognitive impairment, and psychosis. Considering that cannabis or cannabinoid pharmaceutical preparations may no longer be exclusively recreational drugs but may also present potential therapeutic uses, it has become of great interest to analyze the neurobiological and behavioral consequences of their administration. This review attempts to link current understanding of the basic neurobiology of the endocannabinoid system to novel opportunities for therapeutic intervention and its effects on the central nervous system.
Collapse
Affiliation(s)
- Jorge Manzanares
- Servicio de Psiquiatría y Unidad de Investigación, Hospital 12 de Octubre, Edificio Materno-Infantil, Planta 6a, 613-A, Avenida de Córdoba s/n. 28041 Madrid, Spain.
| | | | | | | |
Collapse
|
25
|
Caberlotto L, Rimondini R, Hansson A, Eriksson S, Heilig M. Corticotropin-releasing hormone (CRH) mRNA expression in rat central amygdala in cannabinoid tolerance and withdrawal: evidence for an allostatic shift? Neuropsychopharmacology 2004; 29:15-22. [PMID: 12968131 DOI: 10.1038/sj.npp.1300296] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic treatment with cannabinoid agonists leads to tolerance. One possible mechanism for this is receptor internalization, but tolerance has also been reported with compounds that only cause internalization to a low degree. Furthermore, cannabinoid antagonist administration precipitates a characteristic withdrawal syndrome in tolerant subjects, accompanied by neuronal activation and enhanced release of corticotropin-releasing hormone (CRH) in the central amygdala. The underlying molecular mechanisms are unknown. We examined the role of cannabinoid tolerance and withdrawal for the expression of the cannabinoid 1 (CB1) receptor and of CRH in rats. Tolerance was first established functionally. An acute dose (100 microg/kg) of the CB1 agonist HU-210 suppressed locomotor activity, and had an anxiogenic-like effect on the elevated plus-maze. Both effects were absent following daily treatment with the same agonist or a lower (40 microg/kg) dose for 14 days. Next, withdrawal was reliably precipitated by a single dose (3 mg/kg) of the CB1 antagonist SR141716A in rats treated subchronically with 14-day HU-210. Using in situ hybridization, a robust suppression of CB1 mRNA expression was found in the caudate-putamen, indicating a downregulation of CB1 expression levels as one mechanism for tolerance to the locomotor suppressant effects of HU-210. The CRH transcript was upregulated in the central amygdala in precipitated withdrawal compared to nonwithdrawn tolerant subjects, suggesting that increased gene expression contributes to the previously reported CRH release in withdrawal. Most importantly, this increase occurred from a suppressed level in tolerant subjects, and behavioral signs of withdrawal, presumably mediated by CRH, were seen at the CRH expression that had only returned to normal nontolerant levels. This suggests the possibility of an allostatic shift, as previously proposed on theoretical grounds. The expression of CRH-R1, CRH-R2alpha, NPY, and its Y1 receptor mRNA was analyzed in search of neural substrates for the allostatic shift observed, but did not seem to contribute to the dysregulated state.
Collapse
Affiliation(s)
- Laura Caberlotto
- Division of Psychiatry, NEUROTEC, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
26
|
Caminos JE, Nogueiras R, Blanco M, Seoane LM, Bravo S, Alvarez CV, García-Caballero T, Casanueva FF, Diéguez C. Cellular distribution and regulation of ghrelin messenger ribonucleic acid in the rat pituitary gland. Endocrinology 2003; 144:5089-97. [PMID: 12959995 DOI: 10.1210/en.2003-0529] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ghrelin, a 28-amino-acid acylated peptide, strongly stimulates GH release and food intake. In the present study, we found that ghrelin is expressed in somatotrophs, lactotrophs, and thyrotrophs but not in corticotrophs or gonadotrophs of rat pituitary. Persistent expression of the ghrelin gene is found during postnatal development in male and female rats, although the levels significantly decrease in both cases from pituitaries of 20-d-old rats onward, but at 60 d old, the levels were higher in male than female rats. This sexually dimorphic pattern appears to be mediated by estrogens because ovariectomy, but not orchidectomy, increases pituitary ghrelin mRNA levels. Taking into account that somatotroph cell function is markedly influenced by thyroid hormones, glucocorticoids, GH, and metabolic status, we also assessed such influence. We found that ghrelin mRNA levels decrease in hypothyroid- and glucocorticoid-treated rats, increase in GH-deficient rats (dwarf rats), and remain unaffected by food deprivation. In conclusion, we have defined the specific cell types that express ghrelin in the rat anterior pituitary gland. These data provide direct morphological evidence that ghrelin may well be acting in a paracrine-like fashion in the regulation of anterior pituitary cell function. In addition, we clearly demonstrate that pituitary ghrelin mRNA levels are age and gender dependent. Finally, we show that pituitary ghrelin mRNA levels are influenced by alteration on thyroid hormone, glucocorticoids, and GH levels but not by fasting, which indicates that the regulation of ghrelin gene expression is tissue specific.
Collapse
Affiliation(s)
- J E Caminos
- Department of Physiology, University of Santiago de Compostela, School of Medicine, 15705 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Corchero J, Fuentes JA, Manzanares J. Gender differences in proenkephalin gene expression response to delta9-tetrahydrocannabinol in the hypothalamus of the rat. J Psychopharmacol 2002; 16:283-9. [PMID: 12503826 DOI: 10.1177/026988110201600401] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic exposure to delta9-tetrahydrocannabinol (delta9-THC) produces an activation of preproenkephalin (PENK) gene expression in the rat hypothalamus. The levels of circulating gonadal steroids concurrently modulate this neuropeptide in male and female rats. However, whether gonadal steroids regulate delta9-THC effects on PENK gene expression in the hypothalamus of male and female rats remains unknown. To test this hypothesis, experiments were carried out on intact, 2-week-gonadectomized, 1-week-gonadectomized, 1-week-dihydrotestosterone (DHT) replaced male rats, and 2-week-gonadectomized, 1-week-gonadectomized, 1-week-oestradiol replaced female rats. One week after hormonal replacement, animals were treated with vehicle or delta9-THC (5 mg/kg/day, i.p. 7 days). In males, delta9-THC administration to intact animals induced PENK mRNA in the paraventricular nucleus (PVN) and ventromedial nucleus (VMN) of the hypothalamus. Orchidectomy did not affect basal PENK mRNA levels in the PVN, but reduced PENK mRNA levels in the VMN. However, delta9-THC treatment induced PENK gene expression to the same extent in both hypothalamic nuclei of intact, castrated and DHT-replaced males. In females, ovariectomy decreased PENK gene expression in PVN and VMN. delta9-THC administration increased PENK gene expression in castrated females, but had no effect in the oestradiol-replaced group. Taken together, these results suggest gender differences in the response of chronic exposure to cannabinoids on PENK gene expression in the hypothalamus. Furthermore, it appears that alterations in opioid gene expression induced by cannabinoids in female rats depend upon the presence or absence of circulating oestradiol.
Collapse
Affiliation(s)
- Javier Corchero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | |
Collapse
|
28
|
Korbonits M, Bustin SA, Kojima M, Jordan S, Adams EF, Lowe DG, Kangawa K, Grossman AB. The expression of the growth hormone secretagogue receptor ligand ghrelin in normal and abnormal human pituitary and other neuroendocrine tumors. J Clin Endocrinol Metab 2001; 86:881-7. [PMID: 11158061 DOI: 10.1210/jcem.86.2.7190] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ghrelin is a recently identified endogenous ligand of the GH secretagogue (GHS) receptor. It was originally isolated from the stomach, but has also been shown to be present in the rat hypothalamus. It is a 28-amino acid peptide with an unusual octanoylated serine 3 at the N-terminal end of the molecule, which is crucial for its biological activity. Synthetic GHSs stimulate GH release via both the hypothalamus and the pituitary, and the GHS receptor (GHS-R) has been shown by us and others to be present in the pituitary. We investigated whether ghrelin messenger ribonucleic acid (mRNA) and peptide are present in the normal human hypothalamus and in normal and adenomatous human pituitary. RNA was extracted from pituitary tissue removed at autopsy and transsphenoidal surgery (n = 62), and ghrelin and GHS-R type 1a and 1b mRNA levels were investigated using real-time RT-PCR. Both ghrelin and GHS-R mRNA were detected in all samples. Corticotroph tumors showed significantly less expression of ghrelin mRNA, whereas GHS-R mRNA levels were similar to those in normal pituitary tissue. Gonadotroph tumors showed a particularly low level of expression of GHS-R mRNA. Immunohistochemistry, using a polyclonal antibody against the C-terminal end of the ghrelin molecule, revealed positive staining in the homolog of the arcuate nucleus in the human hypothalamus and in both normal and abnormal human pituitary. Pituitary tumor ghrelin peptide content was demonstrated using two separate RIA reactions for the N-terminal and C-terminal ends of the molecule. Both forms were present in normal and abnormal pituitaries, with 5 +/- 2.5% octanoylated (active) ghrelin (mean +/- SD) present as a percentage of the total. We suggest that the presence of ghrelin mRNA and peptide in the pituitary implies that the locally synthesized hormone may have an autocrine/paracrine modulatory effect on pituitary hormone release.
Collapse
Affiliation(s)
- M Korbonits
- Department of Endocrinology, St. Bartholomew's and the Royal London School of Medicine and Dentistry, London, United Kingdom EC1A 7BE
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
This paper is the twenty-second installment of the annual review of research concerning the opiate system. It summarizes papers published during 1999 that studied the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress; tolerance and dependence; learning, memory, and reward; eating and drinking; alcohol and other drugs of abuse; sexual activity, pregnancy, and development; mental illness and mood; seizures and other neurologic disorders; electrical-related activity; general activity and locomotion; gastrointestinal, renal, and hepatic function; cardiovascular responses; respiration and thermoregulation; and immunologic responses.
Collapse
Affiliation(s)
- A L Vaccarino
- Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA.
| | | |
Collapse
|