1
|
Li Z, Lan D, Zhang H, Zhang H, Chen X, Sun J. Electroacupuncture Mitigates Skeletal Muscular Lipid Metabolism Disorder Related to High-Fat-Diet Induced Insulin Resistance through the AMPK/ACC Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:7925842. [PMID: 30524482 PMCID: PMC6247435 DOI: 10.1155/2018/7925842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/27/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
The aim of this work is to investigate the effect of electroacupuncture (EA) on insulin sensitivity in high-fat diet (HFD) induced insulin resistance (IR) rats and to evaluate expression of AMPK/ACC signaling components. Thirty-two male Sprague-Dawley rats were randomized into control group, HFD group, HFD+Pi (oral gavage of pioglitazone) group, and HFD+EA group. Acupuncture was subcutaneously applied to Zusanli (ST40) and Sanyinjiao (SP6). For Zusanli (ST40) and Sanyinjiao (SP6), needles were connected to an electroacupuncture (EA) apparatus. Fasting plasma glucose was measured by glucose oxidase method. Plasma fasting insulin (FINS) and adiponectin (ADP) were determined by ELISA. Triglyceride (TG) and cholesterol (TC) were determined by Gpo-pap. Proteins of adiponectin receptor 1 (adipoR1), AMP-activated Protein Kinase (AMPK), and acetyl-CoA carboxylase (ACC) were determined by Western blot, respectively. Compared with the control group, HFD group exhibits increased levels of FPG, FINS, and homeostatic model assessment of insulin resistance (HOMA-IR) and decreased level of ADP and insulin sensitivity index (ISI). These changes were reversed by both EA and pioglitazone. Proteins of adipoR1 and AMPK were decreased, while ACC were increased in HFD group compared to control group. Proteins of these molecules were restored back to normal levels upon EA and pioglitazone. EA can improve the insulin sensitivity of insulin resistance rats; the positive regulation of the AMPK/ACC pathway in the skeletal muscle may be a possible mechanism of EA in the treatment of IR.
Collapse
Affiliation(s)
- Zhixing Li
- Department of Soft Tissue Traumatology, Fourth Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Danchun Lan
- Department of Acu-Moxibustion, Foshan Hospital of Traditional Chinese Medicine, Foshan, Foshan 528000, China
| | - Haihua Zhang
- Massage Department, Fourth Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Hongtao Zhang
- Traditional Therapy Department of Fangchun, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Xiaozhuan Chen
- Department of Soft Tissue Traumatology, Fourth Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Jian Sun
- Traditional Therapy Department of Fangchun, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
2
|
Abstract
The beneficial effects of exercise on skeletal muscle and the cardiovascular system have long been known. Recent studies have focused on investigating the effects of exercise on adipose tissue and the effects that these exercise-induced adaptations have on overall metabolic health. Examination of exercise-induced adaptations in both white adipose tissue (WAT) and brown adipose tissue (BAT) has revealed marked differences in each tissue with exercise. In WAT, there are changes to both subcutaneous WAT (scWAT) and visceral WAT (vWAT), including decreased adipocyte size and lipid content, increased expression of metabolic genes, altered secretion of adipokines and increased mitochondrial activity. Adaptations specific to scWAT include lipidomic remodeling of phospholipids and, in rodents, the beiging of scWAT. The changes to BAT are less clear: studies evaluating the effect of exercise on the BAT of humans and rodents have revealed contradictory data, making this an important area of current investigation. In this Review, we discuss the exercise-induced changes to WAT and BAT that have been reported by different studies and highlight the current questions in this field.
Collapse
Affiliation(s)
- Adam C Lehnig
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| |
Collapse
|
3
|
Gupta A, Beg M, Kumar D, Shankar K, Varshney S, Rajan S, Srivastava A, Singh K, Sonkar S, Mahdi AA, Dikshit M, Gaikwad AN. Chronic hyper-leptinemia induces insulin signaling disruption in adipocytes: Implications of NOS2. Free Radic Biol Med 2017; 112:93-108. [PMID: 28739528 DOI: 10.1016/j.freeradbiomed.2017.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 07/11/2017] [Accepted: 07/20/2017] [Indexed: 01/12/2023]
Abstract
Leptin, following its discovery, has developed a formidable interest in the scientific community to delineate its contribution towards overall metabolic homeostasis. Contradictory reports have been published on leptin administration effects on whole body insulin sensitivity. Following late reports, we surveyed human serum leptin levels along with other metabolic parameters including BMI and HOMA-IR. We found a positive correlation between leptin levels and insulin resistance parameters. Considering the presence of the long form of leptin receptor on adipocytes, we explored the effects of chronic physiological hyper-leptinemic exposure on adipocyte insulin sensitivity. Chronic leptin (50ng/ml) treatment in 3T3-L1 adipocytes decreased insulin-induced phosphorylation of nodal insulin signaling proteins along with reduced glucose uptake. Metabolic flux studies indicated mitochondrial dysfunction and reduced oxygen consumption rate. Leptin treatment also increased both cellular and mitochondrial superoxide levels concomitant to increased expression of nitric oxide synthase-2 (NOS2). Further, pharmacological depletion of NOS2 reversed leptin mediated effects on insulin signaling. In-vivo implantation of leptin osmotic pumps in C57BL/6 mice also decreased insulin responsiveness. Interestingly, these effects were lacking in NOS2 knockout strain. In conclusion, our studies put forward a potential link between leptin and adipocyte insulin responsiveness in an NOS2 dependent manner.
Collapse
Affiliation(s)
- Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Muheeb Beg
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kalpana Singh
- Department of Biochemistry, King George's Medical University, Lucknow 226003, India
| | - Satyendra Sonkar
- Department of Internal Medicine, King George's Medical University, Lucknow 226003, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow 226003, India
| | - Madhu Dikshit
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Nilkanth Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
4
|
Dunford EC, Riddell MC. The Metabolic Implications of Glucocorticoids in a High-Fat Diet Setting and the Counter-Effects of Exercise. Metabolites 2016; 6:metabo6040044. [PMID: 27929385 PMCID: PMC5192450 DOI: 10.3390/metabo6040044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids (GCs) are steroid hormones, naturally produced by activation of the hypothalamic-pituitary-adrenal (HPA) axis, that mediate the immune and metabolic systems. Synthetic GCs are used to treat a number of inflammatory conditions and diseases including lupus and rheumatoid arthritis. Generally, chronic or high dose GC administration is associated with side effects such as steroid-induced skeletal muscle loss, visceral adiposity, and diabetes development. Patients who are taking exogenous GCs could also be more susceptible to poor food choices, but the effect that increasing fat consumption in combination with elevated exogenous GCs has only recently been investigated. Overall, these studies show that the damaging metabolic effects initiated through exogenous GC treatment are significantly amplified when combined with a high fat diet (HFD). Rodent studies of a HFD and elevated GCs demonstrate more glucose intolerance, hyperinsulinemia, visceral adiposity, and skeletal muscle lipid deposition when compared to rodents subjected to either treatment on its own. Exercise has recently been shown to be a viable therapeutic option for GC-treated, high-fat fed rodents, with the potential mechanisms still being examined. Clinically, these mechanistic studies underscore the importance of a low fat diet and increased physical activity levels when individuals are given a course of GC treatment.
Collapse
Affiliation(s)
- Emily C Dunford
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Michael C Riddell
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
5
|
Acupuncture Alters Expression of Insulin Signaling Related Molecules and Improves Insulin Resistance in OLETF Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9651592. [PMID: 27738449 PMCID: PMC5055976 DOI: 10.1155/2016/9651592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022]
Abstract
To determine effect of acupuncture on insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats and to evaluate expression of insulin signaling components. Rats were divided into three groups: Sprague-Dawley (SD) rats, OLETF rats, and acupuncture+OLETF rats. Acupuncture was subcutaneously applied to Neiguan (PC6), Zusanli (ST36), and Sanyinjiao (SP6); in contrast, acupuncture to Shenshu (BL23) was administered perpendicularly. For Neiguan (PC6) and Zusanli (ST36), needles were connected to an electroacupuncture (EA) apparatus. Fasting blood glucose (FPG) was measured by glucose oxidase method. Plasma fasting insulin (FINS) and serum C peptide (C-P) were determined by ELISA. Protein and mRNA expressions of insulin signaling molecules were determined by Western blot and real-time RT-PCR, respectively. OLETF rats exhibit increased levels of FPG, FINS, C-P, and homeostasis model assessment-estimated insulin resistance (HOMA-IR), which were effectively decreased by acupuncture treatment. mRNA expressions of several insulin signaling related molecules IRS1, IRS2, Akt2, aPKCζ, and GLUT4 were decreased in OLETF rats compared to SD controls. Expression of these molecules was restored back to normal levels upon acupuncture administration. PI3K-p85α was increased in OLETF rats; this increase was also reversed by acupuncture treatment. Acupuncture improves insulin resistance in OLETF rats, possibly via regulating expression of key insulin signaling related molecules.
Collapse
|
6
|
Doerner PG, Liao YH, Ding Z, Wang W, Ivy JL, Bernard JR. Chromium chloride increases insulin-stimulated glucose uptake in the perfused rat hindlimb. Acta Physiol (Oxf) 2014; 212:205-13. [PMID: 25195624 DOI: 10.1111/apha.12375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/31/2013] [Accepted: 08/26/2014] [Indexed: 11/30/2022]
Abstract
AIM To determine the effect of chromium chloride (CrCl3 ) on healthy skeletal muscle glucose uptake in the absence and presence of submaximal insulin using the rat hindlimb perfusion technique. METHODS Sprague-Dawley rats were randomly assigned to an experimental group: basal (Bas), chromium chloride (Cr), submaximal insulin (sIns) or chromium chloride plus submaximal insulin (Cr-sIns). RESULTS Insulin significantly increased [H(3)]-2 deoxyglucose (2-DG) uptake in the gastrocnemius muscles. Additionally, Cr-sIns displayed greater rates of 2-DG uptake than sIns (Cr-sIns 6.86 ± 0.74 μmol g h(-1) vs. sIns 4.83 ± 0.42 μmol g h(-1)). There was no difference between Cr and Bas treatment groups. It has been speculated that chromium works to increase glucose uptake by increasing insulin signalling. We found that Akt and AS160 phosphorylation was increased in the sINS treatment group, while chromium treatment had no additional effect on Akt or AS160 phosphorylation in the absence or presence of insulin. Cr-sIns significantly increased plasma membrane GLUT4 concentration above that of sIns (Cr-sIns 72.22 ± 12.7%, sIns 53.4 ± 6.1%), but in the absence of insulin, chromium had no effect. CONCLUSION Exposure of healthy skeletal muscle to chromium may increase skeletal muscle insulin-stimulated GLUT4 translocation and glucose uptake. However, these effects do not appear to result from enhanced insulin signalling proximal to AS160.
Collapse
Affiliation(s)
- P. G. Doerner
- Exercise Physiology and Metabolism Laboratory; Department of Kinesiology and Health Education; University of Texas at Austin; Austin TX USA
| | - Y.-H. Liao
- Department of Exercise and Health Science; National Taipei University of Nursing and Health Sciences; Taipei Taiwan
| | - Z. Ding
- Exercise Physiology and Metabolism Laboratory; Department of Kinesiology and Health Education; University of Texas at Austin; Austin TX USA
| | - W. Wang
- Exercise Physiology and Metabolism Laboratory; Department of Kinesiology and Health Education; University of Texas at Austin; Austin TX USA
| | - J. L. Ivy
- Exercise Physiology and Metabolism Laboratory; Department of Kinesiology and Health Education; University of Texas at Austin; Austin TX USA
| | - J. R. Bernard
- Department of Kinesiology; California State University, Stanislaus; Turlock CA USA
| |
Collapse
|
7
|
Aguer C, Harper ME. Skeletal muscle mitochondrial energetics in obesity and type 2 diabetes mellitus: endocrine aspects. Best Pract Res Clin Endocrinol Metab 2012; 26:805-19. [PMID: 23168281 DOI: 10.1016/j.beem.2012.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During the development of type 2 diabetes mellitus, skeletal muscle is a major site of insulin resistance. The latter has been linked to mitochondrial dysfunction and impaired fatty acid oxidation. Some hormones like insulin, thyroid hormones and adipokines (e.g., leptin, adiponectin) have positive effects on muscle mitochondrial bioenergetics through their direct or indirect effects on mitochondrial biogenesis, mitochondrial protein expression, mitochondrial enzyme activities and/or AMPK pathway activation--all of which can improve fatty acid oxidation. It is therefore not surprising that treatment with these hormones has been proposed to improve muscle and whole body insulin sensitivity. However, treatment of diabetic patients with leptin and adiponectin has no effect on muscle mitochondrial bioenergetics showing resistance to these hormones during type 2 diabetes. Furthermore, treatment with most thyroid hormones has unexpectedly revealed negative effects on muscle insulin sensitivity. Future research should focus on development of agents that improve metabolic dysfunction downstream of hormone receptors.
Collapse
Affiliation(s)
- Céline Aguer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, Canada K1H 8M5.
| | | |
Collapse
|
8
|
Zolotnik IA, Figueroa TY, Yaspelkis BB. Insulin receptor and IRS-1 co-immunoprecipitation with SOCS-3, and IKKα/β phosphorylation are increased in obese Zucker rat skeletal muscle. Life Sci 2012; 91:816-22. [PMID: 22982470 DOI: 10.1016/j.lfs.2012.08.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/27/2012] [Accepted: 08/27/2012] [Indexed: 01/21/2023]
Abstract
AIMS We evaluated if selected pro-inflammatory cytokines and/or the protein suppressor of cytokine signaling 3 (SOCS-3) could account for decreased insulin-stimulated phosphatidylinositol 3-kinase (PI3-K) activity in the skeletal muscle of the obese Zucker rat. MAIN METHODS Eight lean and eight obese Zucker rats ~4weeks of age were obtained and allowed to feed ad libitum for 4weeks before undergoing hind limb perfusion in the presence of 500μU/ml insulin. KEY FINDINGS Insulin-stimulated skeletal muscle PI3-K activity and 3-O-methylglucose transport rates were reduced (P<0.05) in obese compared to lean animals. IRS-1 concentration remained unchanged although IRS-1 tyrosine phosphorylation was decreased (P<0.05), and IRS-1 serine phosphorylation (pS) was increased (P<0.05) in obese animals compared to lean animals. IKKα/β pS and JNK theronine/tyrosine phosphorylation was increased (P<0.05) in the obese animals. IκBα concentration was decreased (P<0.05) and IκBα pS was increased (P<0.05) in the obese compared to lean Zucker animals. SOCS-3 concentration and SOCS-3 co-immunoprecipitation with both insulin receptor β-subunit (IR-β) and IRS-1 were elevated (P<0.05) in obese compared to lean animals. IRS-1 co-immunoprecipitation with IR-β was reduced 56% in the obese animals. SIGNIFICANCE Increased IKKα/β and JNK serine phosphorylation may contribute to increasing IRS-1 serine phosphorylation, while concurrent co-localization of SOCS-3 with both IR-β and IRS-1 may prevent IRS-1 from interacting with IR-β. These two mechanisms thusly may independently contribute to impairing insulin-stimulated PI3-K activation in the skeletal muscle of the obese Zucker rat.
Collapse
Affiliation(s)
- Ilya A Zolotnik
- Exercise Biochemistry Laboratory, Department of Kinesiology, California State University Northridge, CA 91330, USA
| | | | | |
Collapse
|
9
|
Bernard JR, Liao YH, Doerner PG, Ding Z, Hsieh M, Wang W, Nelson JL, Ivy JL. An amino acid mixture is essential to optimize insulin-stimulated glucose uptake and GLUT4 translocation in perfused rodent hindlimb muscle. J Appl Physiol (1985) 2012; 113:97-104. [DOI: 10.1152/japplphysiol.01484.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to investigate whether an amino acid mixture increases glucose uptake across perfused rodent hindlimb muscle in the presence and absence of a submaximal insulin concentration, and if the increase in glucose uptake is related to an increase in GLUT4 plasma membrane density. Sprague-Dawley rats were separated into one of four treatment groups: basal, amino acid mixture, submaximal insulin, or amino acid mixture with submaximal insulin. Glucose uptake was greater for both insulin-stimulated treatments compared with the non-insulin-stimulated treatment groups but amino acids only increased glucose uptake in the presence of insulin. Phosphatidylinositol 3-kinase (PI 3-kinase) activity was greater for both insulin-stimulated treatments with amino acids having no additional impact. Akt substrate of 160 kDa (AS160) phosphorylation, however, was increased by the amino acids in the presence of insulin, but not in the absence of insulin. AMPK was unaffected by insulin or amino acids. Plasma membrane GLUT4 protein concentration was greater in the rats treated with insulin compared with no insulin in the perfusate. In the presence of insulin, amino acids increased GLUT4 density in the plasma membrane but had no effect in the absence of insulin. AS160 phosphorylation and plasma membrane GLUT4 density accounted for 76% of the variability in muscle glucose uptake. Collectively, these findings suggest that the beneficial effects of an amino acid mixture on skeletal muscle glucose uptake, in the presence of a submaximal insulin concentration, are due to an increase in AS160 phosphorylation and plasma membrane-associated GLUT4, but independent of PI 3-kinase and AMPK activation.
Collapse
Affiliation(s)
- Jeffrey R. Bernard
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Yi-Hung Liao
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Phillip G. Doerner
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Zhenping Ding
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Ming Hsieh
- Taipei Sports University, Department of Sports Sciences, Taipei, Taiwan, Republic of China
| | - Wanyi Wang
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | | | - John L. Ivy
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| |
Collapse
|
10
|
Stefanyk LE, Gulli RA, Ritchie IR, Chabowski A, Snook LA, Bonen A, Dyck DJ. Recovered insulin response by 2 weeks of leptin administration in high-fat fed rats is associated with restored AS160 activation and decreased reactive lipid accumulation. Am J Physiol Regul Integr Comp Physiol 2011; 301:R159-71. [PMID: 21525176 DOI: 10.1152/ajpregu.00636.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leptin is an adipokine that increases fatty acid (FA) oxidation, decreases intramuscular lipid stores, and improves insulin response in skeletal muscle. In an attempt to elucidate the underlying mechanisms by which these metabolic changes occur, we administered leptin (Lep) or saline (Sal) by miniosmotic pumps to rats during the final 2 wk of a 6-wk low-fat (LF) or high-fat (HF) diet. Insulin-stimulated glucose transport was impaired by the HF diet (HF-Sal) but was restored with leptin administration (HF-Lep). This improvement was associated with restored phosphorylation of Akt and AS160 and decreased in reactive lipid species (ceramide, diacylglycerol), known inhibitors of the insulin-signaling cascade. Total muscle citrate synthase (CS) activity was increased by both leptin and HF diet, but was not additive. Leptin increased subsarcolemmal (SS) and intramyofibrillar (IMF) mitochondria CS activity. Total muscle, sarcolemmal, and mitochondrial (SS and IMF) FA transporter (FAT/CD36) protein content was significantly increased with the HF diet, but not altered by leptin. Therefore, the decrease in reactive lipid stores and subsequent improvement in insulin response, secondary to leptin administration in rats fed a HF diet was not due to a decrease in FA transport protein content or altered cellular distribution.
Collapse
Affiliation(s)
- Leslie E Stefanyk
- Dept. of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada, N1G 2W1
| | | | | | | | | | | | | |
Collapse
|
11
|
Alkhateeb H, Bonen A. Thujone, a component of medicinal herbs, rescues palmitate-induced insulin resistance in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2010; 299:R804-12. [DOI: 10.1152/ajpregu.00216.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thujone is thought to be the main constituent of medicinal herbs that have antidiabetic properties. Therefore, we examined whether thujone ameliorated palmitate-induced insulin resistance in skeletal muscle. Soleus muscles were incubated for ≤12 h without or with palmitate (2 mM). Thujone (0.01 mg/ml), in the presence of palmitate, was provided in the last 6 h of incubation. Palmitate oxidation, AMPK/acetyl-CoA carboxylase (ACC) phosphorylation and insulin-stimulated glucose transport, plasmalemmal GLUT4, and AS160 phosphorylation were examined at 0, 6, and 12 h. Palmitate treatment for 12 h reduced fatty acid oxidation (−47%), and insulin-stimulated glucose transport (−71%), GLUT4 translocation (−40%), and AS160 phosphorylation (−26%), but it increased AMPK (+51%) and ACC phosphorylations (+44%). Thujone (6–12 h) fully rescued palmitate oxidation and insulin-stimulated glucose transport, but only partially restored GLUT4 translocation and AS160 phosphorylation, raising the possibility that an increased GLUT4 intrinsic activity may also have contributed to the restoration of glucose transport. Thujone also further increased AMPK phosphorylation but had no further effect on ACC phosphorylation. Inhibition of AMPK phosphorylation with adenine 9-β-d-arabinofuranoside (Ara) (2.5 mM) or compound C (50 μM) inhibited the thujone-induced improvement in insulin-stimulated glucose transport, GLUT4 translocation, and AS160 phosphorylation. In contrast, the thujone-induced improvement in palmitate oxidation was only slightly inhibited (≤20%) by Ara or compound C. Thus, while thujone, a medicinal herb component, rescues palmitate-induced insulin resistance in muscle, the improvement in fatty acid oxidation cannot account for this thujone-mediated effect. Instead, the rescue of palmitate-induced insulin resistance appears to occur via an AMPK-dependent mechanism involving partial restoration of insulin-stimulated GLUT4 translocation.
Collapse
Affiliation(s)
- Hakam Alkhateeb
- Department of Laboratory Medical Sciences, Hashemite University, Zarqa, Jordan; and
| | - Arend Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Yaspelkis BB, Kvasha IA, Lessard SJ, Rivas DA, Hawley JA. Aerobic training reverses high-fat diet-induced pro-inflammatory signalling in rat skeletal muscle. Eur J Appl Physiol 2010; 110:779-88. [PMID: 20596724 DOI: 10.1007/s00421-010-1559-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2010] [Indexed: 12/16/2022]
Abstract
High-fat feeding activates components of the pro-inflammatory pathway and increases co-immunoprecipitation of suppressor of cytokine signalling (SOCS)-3 with both the insulin receptor (IR)-β subunit and IRS-1, which together contribute to keeping PI-3 kinase from being fully activated. However, whether aerobic training reverses these impairments is unknown. Sprague-Dawley rats were fed a chow (CON, n = 8) or saturated high-fat (n = 16) diets for 4 weeks. High-fat-fed rats were then allocated (n = 8/group) to either sedentary (HF) or aerobic exercise training (HFX) for an additional 4 weeks after which all animals underwent hind limb perfusions. Insulin-stimulated red quadriceps 3-O-methylglucose transport rates and PI-3 kinase activity were greater (p < 0.05) in CON and HFX compared to HF. IRS-1 tyrosine phosphorylation was increased (p < 0.05) and IRS-1 serine 307 phosphorylation was decreased (p < 0.05) in HFX compared to HF. IR-β subunit co-immunoprecipitation with IRS-1 was increased in HFX compared to HF. SOCS-3 co-immunoprecipitation with both the IR-β subunit and IRS-1 was decreased (p < 0.05) in HFX compared to HF. IKKα/β serine phosphorylation, and IκBα serine phosphorylation were decreased (p < 0.05) while IκBα protein concentration was increased in HFX compared to HF. By decreasing the association of SOCS-3 with both the IR-β subunit and IRS-1 the interaction between IRS-1 and the IR-β subunit was normalized in the HFX, and may have contributed to skeletal muscle PI-3 kinase being fully activated by insulin. Additionally, the reduction in IKKα/β serine phosphorylation in HFX may have contributed to decreasing IRS-1 serine phosphorylation, and in turn, promoted the normalization of insulin-stimulated activation of PI-3 kinase.
Collapse
Affiliation(s)
- Ben B Yaspelkis
- Exercise Biochemistry Laboratory, Department of Kinesiology, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8287, USA.
| | | | | | | | | |
Collapse
|
13
|
Cresser J, Bonen A, Chabowski A, Stefanyk LE, Gulli R, Ritchie I, Dyck DJ. Oral administration of a PPAR-delta agonist to rodents worsens, not improves, maximal insulin-stimulated glucose transport in skeletal muscle of different fibers. Am J Physiol Regul Integr Comp Physiol 2010; 299:R470-9. [PMID: 20538899 DOI: 10.1152/ajpregu.00431.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Agonists targeting the nuclear receptor peroxisome proliferator-activated receptors (PPAR)-delta may be potential therapeutic agents for insulin-resistant related conditions, as they may be able to stimulate fatty acid (FA) oxidation and attenuate the accumulation of harmful lipid species in skeletal muscle. Several reports have demonstrated that PPAR-delta agonists improve whole body insulin sensitivity. However, whether these agonists exert their direct effects on glucose and FA metabolism in skeletal muscle, and specifically with different fiber types, is unknown. This study was undertaken to determine the effects of oral treatment with the PPAR-delta agonist, GW 501516, in conjunction with the administration of a high-saturated-fat diet on insulin-stimulated glucose transport in isolated oxidative (soleus) and glycolytic (epitrochlearis) rodent skeletal muscle in vitro. High-fat feeding significantly decreased maximal insulin-stimulated glucose transport in soleus, but not epitrochlearis muscle, and was associated with increased skeletal muscle diacylglycerol and ceramide content. Unexpectedly, treatment with the PPAR-delta agonist significantly reduced insulin-stimulated glucose transport in both soleus and epitrochlearis muscles, regardless of dietary fat content. The reduction in insulin-stimulated glucose transport induced by the agonist was associated with large increases in total muscle fatty acid translocase (FAT)/CD36protein content, but not diacylglycerol or ceramide contents. Agonist treatment did not alter the protein content of PPAR-delta, GLUT4, or insulin-signaling proteins (IRS-1, p85 PI3-K, Akt). Agonist treatment led to a small, but significant increase, in the oxidative capacity of glycolytic but not oxidative muscle. We propose that chronic treatment with the PPAR-delta agonist GW 501516 may induce or worsen insulin resistance in rodent skeletal muscle by increasing the capacity for FA transport across the sarcolemma without a sufficient compensatory increase in FA oxidation. However, an accumulation of diacylglycerol and ceramide, while associated with diet-induced insulin resistance, does not appear to be responsible for the agonist-induced reduction in insulin-stimulated glucose transport.
Collapse
Affiliation(s)
- Justin Cresser
- Dept. of Human Health and Nutritional Sciences, Univ. of Guelph, Ontario, Canada, N1G 2W1
| | | | | | | | | | | | | |
Collapse
|
14
|
Sun X, Feng L, Tian L, Zhang J, Gao L, Zhao J. High-fat and low-carbohydrate diet feeding down-regulates the expression of the AMP-activated protein kinase pathway in rat cardiac muscle. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Basaranoglu M, Kayacetin S, Yilmaz N, Kayacetin E, Tarcin O, Sonsuz A. Understanding mechanisms of the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2010; 16:2223-6. [PMID: 20458758 PMCID: PMC2868214 DOI: 10.3748/wjg.v16.i18.2223] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A central issue in the understanding of the pathogenesis of nonalcoholic fatty liver disease is the problem of the underlying mechanisms which are not fully understood. In the setting of excessive central adiposity, insulin resistance is the major underlying cause of fat accumulation in hepatocytes. Because of the difficulties with human trials, several animal models have been developed for this purpose mainly characterized as follows: genetically disturbed or murine fatty liver, methionine-choline deficient diet fed or murine steatohepatitis, and high-fat or sucrose diet fed models. Although these animal models have provided useful information, none of them accurately reflect genetic, metabolic and biochemical characteristics of the human disease.
Collapse
|
16
|
Alkhateeb H, Chabowski A, Glatz JFC, Gurd B, Luiken JJFP, Bonen A. Restoring AS160 phosphorylation rescues skeletal muscle insulin resistance and fatty acid oxidation while not reducing intramuscular lipids. Am J Physiol Endocrinol Metab 2009; 297:E1056-66. [PMID: 19724017 DOI: 10.1152/ajpendo.90908.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We examined whether AICAR or leptin rapidly rescued skeletal muscle insulin resistance via increased palmitate oxidation, reductions in intramuscular lipids, and/or restoration of insulin-stimulated AS60 phosphorylation. Incubation with palmitate (2 mM, 0-18 h) induced insulin resistance in soleus muscle. From 12-18 h, palmitate was removed or AICAR or leptin was provided while 2 mM palmitate was maintained. Palmitate oxidation, intramuscular triacylglycerol, diacylglycerol, ceramide, AMPK phosphorylation, basal and insulin-stimulated glucose transport, plasmalemmal GLUT4, and Akt and AS160 phosphorylation were examined at 0, 6, 12, and 18 h. Palmitate treatment (12 h) increased intramuscular lipids (triacylglycerol +54%, diacylglycerol +11%, total ceramide +18%, C16:0 ceramide +60%) and AMPK phosphorylation (+118%), whereas it reduced fatty acid oxidation (-60%) and insulin-stimulated glucose transport (-70%), GLUT4 translocation (-50%), and AS160 phosphorylation (-40%). Palmitate removal did not rescue insulin resistance or associated parameters. The AICAR and leptin treatments did not consistently reduce intramuscular lipids, but they did rescue palmitate oxidation and insulin-stimulated glucose transport, GLUT4 translocation, and AS160 phosphorylation. Increased AMPK phosphorylation was associated with these improvements only when AICAR and leptin were present. Hence, across all experiments, AMPK phosphorylation did not correlate with any parameters. In contrast, palmitate oxidation and insulin-stimulated AS160 phosphorylation were highly correlated (r = 0.83). We speculate that AICAR and leptin activate both of these processes concomitantly, involving activation of unknown kinases in addition to AMPK. In conclusion, despite the maintenance of high concentrations of palmitate (2 mM), as well as increased concentrations of intramuscular lipids (triacylglycerol, diacylglycerol, and ceramide), the rapid AICAR- and leptin-mediated rescue of palmitate-induced insulin resistance is attributable to the restoration of insulin-stimulated AS160 phosphorylation and GLUT4 translocation.
Collapse
Affiliation(s)
- Hakam Alkhateeb
- Dept. of Human Health and Nutritional Sciences, Univ. of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Dyck DJ. Adipokines as regulators of muscle metabolism and insulin sensitivity. Appl Physiol Nutr Metab 2009; 34:396-402. [PMID: 19448705 DOI: 10.1139/h09-037] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal muscle is the largest tissue responsible for the insulin-stimulated disposal of glucose. However, identifying the link between excess body fat and impaired insulin sensitivity in skeletal muscle has been difficult. Several adipose-derived cytokines (adipokines) have been implicated in the impairment of insulin sensitivity, while adipokines such as leptin and adiponectin exert an insulin-sensitizing effect. Leptin and adiponectin have each been shown to increase fatty acid (FA) oxidation and decrease triglyceride storage in muscle, which may explain, in part, the insulin-sensitizing effect of these cytokines. Recent evidence strongly implicates an increased localization of the FA transporters to the plasma membrane (PM) as an important factor in the accumulation of intramuscular lipids with high-fat diets and obesity. Perhaps surprisingly, relatively little attention has been paid to the ability of insulin-sensitizing compounds, such as leptin and adiponectin, to decrease the abundance of FA transporters in the PM, thereby decreasing lipid accumulation. In the case of both adipokines, there is also evidence that a resistance to their ability to stimulate FA oxidation in skeletal muscle develops during obesity. One of our recent studies indicates that this development can be very rapid (i.e., within days), and precedes the increase in lipid uptake and accumulation that leads to insulin resistance. It is noteworthy that leptin resistance can be modulated by both diet and training in rodents. Further studies examining the underlying mechanisms of the development of leptin and adiponectin resistance are warranted.
Collapse
Affiliation(s)
- David J Dyck
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
18
|
Yaspelkis BB, Kvasha IA, Figueroa TY. High-fat feeding increases insulin receptor and IRS-1 coimmunoprecipitation with SOCS-3, IKKalpha/beta phosphorylation and decreases PI-3 kinase activity in muscle. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1709-15. [PMID: 19386987 DOI: 10.1152/ajpregu.00117.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Suppressor of cytokine signaling (SOCS) proteins and/or activation of the proinflammatory pathway have been postulated as possible mechanisms that may contribute to skeletal muscle insulin resistance. Thus, the aims of the present investigation were to determine in high-fat-fed skeletal muscle: 1) whether SOCS-3 protein concentration is increased, 2) whether coimmunoprecipitation of SOCS-3 with the insulin receptor-beta subunit and/or IRS-1 is increased, and 3) whether select components of the proinflammatory pathway are altered. Thirty-two male Sprague-Dawley rats were assigned to either control (CON, n = 16) or high-fat-fed (HF, n = 16) dietary groups for 12 wk and then subjected to hind limb perfusions in the presence (n = 8/group) or absence (n = 8/group) of insulin. Insulin-stimulated skeletal muscle 3-MG transport rates and PI-3 kinase activity were greater (P < 0.05) in CON. IRS-1 tyrosine phosphorylation was decreased (P < 0.05), and IRS-1 serine 307 phosphorylation was increased (P < 0.05) in HF. Insulin receptor-beta (IR-beta) subunit coimmunoprecipitation with IRS-1 was reduced in HF. SOCS-3 protein concentration and SOCS-3 coimmunoprecipitation with both the IR-beta subunit and IRS-1 was increased (P < 0.05) in HF. IKKalpha/beta serine phosphorylation was increased (P < 0.05), IkappaBalpha protein concentration was decreased (P < 0.05) and IkappaBalpha serine phosphorylation was increased (P < 0.05) in HF. Increased colocalization of SOCS-3 with both the IR-beta subunit and IRS-1 may provide steric hindrance that prevents IRS-1 from interacting with IR-beta, while increased IKKbeta serine phosphorylation may contribute to increasing IRS-1 serine phosphorylation, both of which independently can have deleterious effects on insulin-stimulated PI-3 kinase activation in high-fat-fed rodent skeletal muscle.
Collapse
Affiliation(s)
- Ben B Yaspelkis
- Exercise Biochemistry Laboratory, Department of Kinesiology, California State University Northridge, Northridge, 18111 Nordhoff St., Northridge, CA 91330-8287 USA.
| | | | | |
Collapse
|
19
|
Gomes FR, Rezende EL, Malisch JL, Lee SK, Rivas DA, Kelly SA, Lytle C, Yaspelkis BB, Garland T. Glycogen storage and muscle glucose transporters (GLUT-4) of mice selectively bred for high voluntary wheel running. J Exp Biol 2009; 212:238-48. [PMID: 19112143 PMCID: PMC2721000 DOI: 10.1242/jeb.025296] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2008] [Indexed: 01/09/2023]
Abstract
To examine the evolution of endurance-exercise behaviour, we have selectively bred four replicate lines of laboratory mice (Mus domesticus) for high voluntary wheel running (;high runner' or HR lines), while also maintaining four non-selected control (C) lines. By generation 16, HR mice ran approximately 2.7-fold more than C mice, mainly by running faster (especially in females), a differential maintained through subsequent generations, suggesting an evolutionary limit of unknown origin. We hypothesized that HR mice would have higher glycogen levels before nightly running, show greater depletion of those depots during their more intense wheel running, and have increased glycogen synthase activity and GLUT-4 protein in skeletal muscle. We sampled females from generation 35 at three times (photophase 07:00 h-19:00 h) during days 5-6 of wheel access, as in the routine selection protocol: Group 1, day 5, 16:00 h-17:30 h, wheels blocked from 13:00 h; Group 2, day 6, 02:00 h-03:30 h (immediately after peak running); and Group 3, day 6, 07:00 h-08:30 h. An additional Group 4, sampled 16:00 h-17:30 h, never had wheels. HR individuals with the mini-muscle phenotype (50% reduced hindlimb muscle mass) were distinguished for statistical analyses comparing C, HR normal, and HR mini. HR mini ran more than HR normal, and at higher speeds, which might explain why they have been favored by the selective-breeding protocol. Plasma glucose was higher in Group 1 than in Group 4, indicating a training effect (phenotypic plasticity). Without wheels, no differences in gastrocnemius GLUT-4 were observed. After 5 days with wheels, all mice showed elevated GLUT-4, but HR normal and mini were 2.5-fold higher than C. At all times and irrespective of wheel access, HR mini showed approximately three-fold higher [glycogen] in gastrocnemius and altered glycogen synthase activity. HR mini also showed elevated glycogen in soleus when sampled during peak running. All mice showed some glycogen depletion during nightly wheel running, in muscles and/or liver, but the magnitude of this depletion was not large and hence does not seem to be limiting to the evolution of even-higher wheel running.
Collapse
Affiliation(s)
- Fernando R Gomes
- Department of Biology, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Saito M, Lessard SJ, Rivas DA, Reeder DW, Hawley JA, Yaspelkis BB. Activation of atypical protein kinase Czeta toward TC10 is regulated by high-fat diet and aerobic exercise in skeletal muscle. Metabolism 2008; 57:1173-80. [PMID: 18702941 PMCID: PMC2597576 DOI: 10.1016/j.metabol.2008.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Accepted: 03/04/2008] [Indexed: 12/29/2022]
Abstract
We determined whether sustained aerobic exercise reverses high-fat diet-induced impairments in the c-Cbl associated protein (CAP)/Casitas b-lineage lymphoma (c-Cbl) signaling cascade in rodent skeletal muscle. Sprague-Dawley rats were placed into either control (n = 16) or high-fat-fed (n = 32) diet groups for 4 weeks. During a subsequent 4-week experimental period, 16 high-fat-fed rats remained sedentary, 16 high-fat-fed rats completed 4 weeks of exercise training, and control animals were sedentary and remained on the control diet. After the intervention period, animals were subjected to hind limb perfusions in the presence (n = 8 per group) or absence (n = 8 per group) of insulin. In the plasma membrane fractions, neither high-fat feeding nor exercise training altered adaptor protein with PH and SH2 domains, (APS), c-Cbl, or TC10 protein concentrations. In contrast, CAP protein concentration and insulin-stimulated plasma membrane c-Cbl tyrosine phosphorylation were reduced by high-fat feeding; but exercise training reversed these impairments. Of note was that insulin-stimulated atypical protein kinase Czeta kinase activity toward TC10 was reduced by high-fat feeding but normalized by exercise training. We conclude that sustained (4 weeks) exercise training can reverse high-fat diet-induced impairments on the CAP/c-Cbl pathway in high-fat-fed rodent skeletal muscle. We also provide the first evidence that the CAP/c-Cbl insulin signaling cascade in skeletal muscle may directly interact with components of the classic (phosphoinositide 3-kinase dependent) insulin signaling cascade.
Collapse
Affiliation(s)
- Misato Saito
- Exercise Biochemistry Laboratory, Department of Kinesiology, California State University Northridge, CA 91330-8287, USA
| | | | | | | | | | | |
Collapse
|
21
|
Bernard JR, Saito M, Liao YH, Yaspelkis BB, Ivy JL. Exercise training increases components of the c-Cbl-associated protein/c-Cbl signaling cascade in muscle of obese Zucker rats. Metabolism 2008; 57:858-66. [PMID: 18502271 DOI: 10.1016/j.metabol.2008.01.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 01/07/2008] [Indexed: 11/28/2022]
Abstract
The purpose of this investigation was to determine whether alterations in the c-Cbl-associated protein/c-Cbl pathway and/or p38-mitogen-activated protein kinase (p38 MAP kinase) were associated with improved skeletal muscle insulin responsiveness in exercise-trained obese Zucker rats. Obese Zucker rats ran 5 d/wk on a motorized treadmill for 90 minutes over a 7-week period. Age-matched obese Zucker rats (OB-SED) and their lean littermates (LN-SED) were obtained to serve as nontrained controls. Twenty-four (OB-EX-24 h) or 48 hours (OB-EX-48 h) after the last exercise bout, the trained rats were studied via the hind limb perfusion technique in the presence of insulin. Insulin-stimulated glucose uptake was significantly decreased across the skeletal muscle of OB-SED rats compared with LN-SED, but was normalized in the obese rats by 7 weeks of training. The insulin-stimulated plasma membrane protein concentrations of TC10 and glucose transporter 4 were reduced in the sedentary Zuckers, but both proteins were increased by the training protocol. Training did not increase insulin-stimulated p38 MAP kinase protein concentration, nor did it have an effect on insulin-stimulated p38 MAP kinase phosphorylation at the plasma membrane. These results suggest that skeletal muscle insulin resistance is associated with reduced expression of TC10 and that this deficiency can be corrected with exercise training.
Collapse
Affiliation(s)
- Jeffrey R Bernard
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
22
|
Yaspelkis BB, Lessard SJ, Reeder DW, Limon JJ, Saito M, Rivas DA, Kvasha I, Hawley JA. Exercise reverses high-fat diet-induced impairments on compartmentalization and activation of components of the insulin-signaling cascade in skeletal muscle. Am J Physiol Endocrinol Metab 2007; 293:E941-9. [PMID: 17623749 DOI: 10.1152/ajpendo.00230.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aims of this investigation were 1) to determine whether endurance exercise training could reverse impairments in insulin-stimulated compartmentalization and/or activation of aPKCzeta/lambda and Akt2 in skeletal muscle from high-fat-fed rodents and 2) to assess whether the PPARgamma agonist rosiglitazone could reverse impairments in skeletal muscle insulin signaling typically observed after high-fat feeding. Sprague-Dawley rats were placed on chow (NORCON, n = 16) or high-fat (n = 64) diets for 4 wk. During a subsequent 4-wk experimental period, high-fat-fed rats were allocated (n = 16/group) to either sedentary control (HFC), exercise training (HFX), rosiglitazone treatment (HFRSG), or a combination of both exercise training and rosiglitazone (HFRX). Following the 4-wk experimental period, animals underwent hindlimb perfusions. Insulin-stimulated plasma membrane-associated aPKCzeta and -lambda protein concentration, aPKCzeta/lambda activity, GLUT4 protein concentration, cytosolic Akt2, and aPKCzeta/lambda activities were reduced (P < 0.05) in HFC compared with NORCON. Cytosolic Akt2, aPKCzeta, and aPKClambda protein concentrations were not affected in HFC compared with NORCON. Exercise training reversed the deleterious effects of the high-fat diet such that insulin-stimulated compartmentalization and activation of components of the insulin-signaling cascade in HFX were normalized to NORCON. High-fat diet-induced impairments to skeletal muscle glucose metabolism were not reversed by rosiglitazone administration, nor did rosiglitazone augment the effect of exercise. Our findings indicate that chronic exercise training, but not rosiglitazone, reverses high-fat diet induced impairments in compartmentalization and activation of components of the insulin-signaling cascade in skeletal muscle.
Collapse
Affiliation(s)
- Ben B Yaspelkis
- Exercise Biochemistry Laboratory, Dept. of Kinesiology, California State University Northridge, 18111 Nordhoff St., Northridge, CA 91330-8287, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lessard SJ, Rivas DA, Chen ZP, Bonen A, Febbraio MA, Reeder DW, Kemp BE, Yaspelkis BB, Hawley JA. Tissue-specific effects of rosiglitazone and exercise in the treatment of lipid-induced insulin resistance. Diabetes 2007; 56:1856-64. [PMID: 17440174 DOI: 10.2337/db06-1065] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Both pharmacological intervention (i.e., thiazolidinediones [TZDs]) and lifestyle modification (i.e., exercise training) are clinically effective treatments for improving whole-body insulin sensitivity. However, the mechanism(s) by which these therapies reverse lipid-induced insulin resistance in skeletal muscle is unclear. We determined the effects of 4 weeks of rosiglitazone treatment and exercise training and their combined actions (rosiglitazone treatment and exercise training) on lipid and glucose metabolism in high-fat-fed rats. High-fat feeding resulted in decreased muscle insulin sensitivity, which was associated with increased rates of palmitate uptake and the accumulation of the fatty acid metabolites ceramide and diacylglycerol. Impairments in lipid metabolism were accompanied by defects in the Akt/AS160 signaling pathway. Exercise training, but not rosiglitazone treatment, reversed these impairments, resulting in improved insulin-stimulated glucose transport and increased rates of fatty acid oxidation in skeletal muscle. The improvements to glucose and lipid metabolism observed with exercise training were associated with increased AMP-activated protein kinase alpha1 activity; increased expression of Akt1, peroxisome proliferator-activated receptor gamma coactivator 1, and GLUT4; and a decrease in AS160 expression. In contrast, rosiglitazone treatment exacerbated lipid accumulation and decreased insulin-stimulated glucose transport in skeletal muscle. However, rosiglitazone, but not exercise training, increased adipose tissue GLUT4 and acetyl CoA carboxylase expression. Both exercise training and rosiglitazone decreased liver triacylglycerol content. Although both interventions can improve whole-body insulin sensitivity, our results show that they produce divergent effects on protein expression and triglyceride storage in different tissues. Accordingly, exercise training and rosiglitazone may act as complementary therapies for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Sarah J Lessard
- School of Medical Sciences, RMIT University, P.O. Box 71, Bundoora, Victoria 3083, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bernard JR, Reeder DW, Herr HJ, Rivas DA, Yaspelkis BB. High-fat feeding effects on components of the CAP/Cbl signaling cascade in Sprague-Dawley rat skeletal muscle. Metabolism 2006; 55:203-12. [PMID: 16423627 DOI: 10.1016/j.metabol.2005.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 08/21/2005] [Indexed: 10/25/2022]
Abstract
The aim of this investigation was to determine whether the CAP (Cbl-associated protein)/Cbl signaling cascade is present and responsive to insulin in skeletal muscle and if high-fat feeding impairs insulin-stimulated activation of this signaling cascade. Sprague-Dawley rats were assigned to either control (n = 16) or high fat-fed (n = 16) dietary groups. After a 12-week dietary period, animals were subjected to hind limb perfusions in the presence (n = 8 per group) or absence (n = 8 per group) of insulin. High-fat feeding reduced rates of insulin-stimulated skeletal muscle phosphatidylinositol 3-kinase activity and 3-O-methylglucose transport. In plasma membrane fractions, neither the high-fat diet nor insulin altered the insulin receptor beta subunit (IR-beta), APS (adaptor protein containing PH and SH2 domains), c-Cbl, or TC10 protein concentration, but high-fat feeding did decrease CAP protein concentration. APS, c-Cbl, CAP, and TC10 messenger RNA were present in the skeletal muscle and reflected the protein concentration of experimental groups. Despite insulin-stimulated plasma membrane IR-beta tyrosine phosphorylation being unaffected by high-fat feeding, c-Cbl tyrosine phosphorylation, the kinase activity of IR-beta toward APS, and glucose transporter 4 protein concentration were all significantly reduced in insulin-stimulated plasma membrane prepared from the skeletal muscle of high fat-fed animals. These findings suggest that the CAP/Cbl signaling cascade is present in skeletal muscle, activated by insulin, and impaired by high-fat feeding.
Collapse
Affiliation(s)
- Jeffrey R Bernard
- Department of Kinesiology, College of Health and Human Development, California State University Northridge, Northridge, CA 91330-8287, USA
| | | | | | | | | |
Collapse
|
25
|
Dyck DJ, Heigenhauser GJF, Bruce CR. The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity. Acta Physiol (Oxf) 2006; 186:5-16. [PMID: 16497175 DOI: 10.1111/j.1748-1716.2005.01502.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several adipose-derived cytokines (adipokines) have been suggested to act as a link between accumulated fat mass and altered insulin sensitivity. Resistin and tumour necrosis factor-alpha (TNF-alpha) have been implicated in impairing insulin sensitivity in rodents; conversely, two other adipokines, leptin and adiponectin, increase insulin sensitivity in lean and obese rodents. Currently, there is considerable focus on the concept that lipid accumulation in skeletal muscle leads to the development of insulin resistance. Adiponectin and leptin have each been demonstrated to increase rates of fatty acid (FA) oxidation and decrease muscle lipid content, which may in part be the underlying mechanism to their insulin sensitizing effect. These effects on FA metabolism appear to be mediated in part through the activation of AMP-activated protein kinase. Evidence derived from animal and human studies suggests that the ability of leptin and adiponectin to stimulate FA oxidation in muscle is impaired in the obese condition. Thus, leptin and adiponectin resistance may be an initiating factor in the accumulation of intramuscular lipids, such as diacylglycerol and ceramide, and the ensuing development of insulin resistance. Lifestyle factors such as diet and exercise are able to restore the sensitivity of muscle to leptin. The actual physiological roles of resistin and TNF-alpha in altering muscle lipid metabolism are more controversial, but each has been shown to directly impair insulin signalling and consequently, insulin stimulated glucose uptake in muscle. However, the possibility that resistin and TNF-alpha reduces insulin sensitivity in muscle by directly impairing FA metabolism in this tissue leading to lipid accumulation, has been virtually unexamined. Thus, the contribution of various adipokines to the development of insulin resistance is complex and not fully understood. Finally, the effects of these adipokines on metabolism and insulin sensitivity are generally studied in isolation, making it difficult to predict the interactive effects and the net impact on insulin sensitivity.
Collapse
Affiliation(s)
- D J Dyck
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada.
| | | | | |
Collapse
|
26
|
Abstract
Resistance training can improve glucose transport in both normal and insulin-resistant skeletal muscle by enhancing the activation of the insulin signaling cascade and increasing GLUT-4 protein concentration. These training-induced alterations improve the quality of the skeletal muscle and can occur independent of significant increases in skeletal muscle mass.
Collapse
Affiliation(s)
- Ben B Yaspelkis
- Exercise Biochemistry Laboratory, Department of Kinesiology, College of Health and Human Development, California State University Northridge, CA 91330-8287, USA.
| |
Collapse
|
27
|
Benomar Y, Wetzler S, Larue-Achagiotis C, Djiane J, Tomé D, Taouis M. In vivo leptin infusion impairs insulin and leptin signalling in liver and hypothalamus. Mol Cell Endocrinol 2005; 242:59-66. [PMID: 16150536 DOI: 10.1016/j.mce.2005.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/05/2005] [Accepted: 07/14/2005] [Indexed: 11/28/2022]
Abstract
Leptin resistance contributes to the pathogenesis of common obesity related metabolic diseases, including insulin resistance. However, the relationship between leptin and insulin resistance is not clearly established. Here, we show that induced hyperleptinemia by leptin infusion alters insulin signalling in rat liver. Leptin infusion clearly reduced the insulin or leptin dependent IRS-1/IRS-2 association to p85 regulatory subunit of PI 3-kinase. Leptin infusion also abolished STAT-3 phosphorylation in response to insulin or leptin and similar results were obtained for MAP-kinase phosphorylation. Hypothalamic leptin resistance was also induced by leptin infusion since leptin was unable to induce STAT-3 phosphorylation. These results provide evidence that induced hyperleptinemia can contribute to the onset of insulin resistance at least at the hepatic level.
Collapse
Affiliation(s)
- Yacir Benomar
- Neuroendocrinologie Moléculaire de la Prise Alimentaire INRA, Université Paris XI, IBAIC, Bat447, 91405 Orsay, France
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Leptin reduces intracellular lipid stores and improves insulin sensitivity. Thus, the development of leptin resistance in obesity may be an early event leading to elevated intramuscular lipids and insulin resistance. Recent data indicate that obesity-causing high-fat diets lead to leptin resistance in muscle, whereas supplementation with dietary fish oil and aerobic training can partially reverse this resistance.
Collapse
Affiliation(s)
- David J Dyck
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
29
|
Borst SE, Conover CF. High-fat diet induces increased tissue expression of TNF-alpha. Life Sci 2005; 77:2156-65. [PMID: 15935403 DOI: 10.1016/j.lfs.2005.03.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
In several strains of genetically obese and insulin resistant rodents, adipose tissue over expresses mRNA for tumor necrosis factor alpha (TNF-alpha). Our purpose was to determine whether tissue expression of TNF-alpha protein is elevated in rats that are made obese and insulin resistant by administration of a high-fat diet. Young Wistar rats weighing approximately 50 g were fed for 39 days with either normal rat chow (12.4% fat) or a high-fat diet (50% fat). After 33 days, glucose tolerance was assessed and after 39 days, insulin-stimulated transport of [3H]-2-deoxyglucose was assessed in isolated strips of soleus muscle. Rats on the high-fat diet consumed slightly fewer calories but became obese, displaying significant approximately 2-fold increases in the mass of both visceral and subcutaneous fat depots. High-fat feeding also caused a moderate degree of insulin resistance. Fasting serum insulin was significantly increased, as were insulin and glucose concentrations following glucose loading. In isolated strips of soleus muscle, the high-fat diet produced a trend toward a 33% decrease in the insulin-stimulated component of glucose transport (p=0.064). Western analysis of muscle, liver and fat revealed two forms of TNF-alpha, a soluble 17 Kd form (sTNF-alpha) and a 26 Kd membrane form (mTNF-alpha). Both sTNF-alpha and mTNF-alpha were relatively abundant in fat; whereas sTNF-alpha was the predominant form present in muscle and liver. High-fat feeding caused a significant 2-fold increase in muscle sTNF-alpha, along with a trend toward a 54% increase in visceral fat sTNF-alpha (p=0.055). TNF-alpha was undetectable in serum. We conclude that muscle over expression of TNF-alpha occurs during the development of diet-induced obesity and may, in part cause insulin resistance by an autocrine mechanism.
Collapse
Affiliation(s)
- Stephen E Borst
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32608-1197, USA
| | | |
Collapse
|
30
|
Todd MK, Yaspelkis BB, Turcotte LP. Short-term leptin treatment increases fatty acids uptake and oxidation in muscle of high fat-fed rats. Metabolism 2005; 54:1218-24. [PMID: 16125533 DOI: 10.1016/j.metabol.2005.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Accepted: 04/25/2005] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to measure the effects of short-term (10 days) leptin treatment on insulin sensitivity as it pertains to fatty acid (FA) uptake, oxidation, and muscle triglyceride (mTG) synthesis in animals that have been administered a high-fat (HF) diet for 3 months. Male Wistar rats were randomly assigned to 1 of 4 groups. One group was fed a control diet (CON) and 3 groups were fed a HF diet. The HF and HF-leptin (HF-LEP) groups were fed the HF diet ad libitum and the amount of food eaten by the HF-pair fed (HF-P) group was equal to that of the HF-LEP group. At the end of the dietary period, rats were injected daily either with saline (CON, HF, HF-P) or with leptin (HF-LEP; 10 mg.kg-1.d-1) for 10 days before hindlimb perfusion. The perfusate contained 600 micromol/L palmitate traced with [14C]palmitate, 9 mmol/L glucose, and 100 microU/mL insulin. As dictated by the protocol, energy expenditure was not significantly different (P>.05) between HF-LEP and HF-P. Palmitate uptake and oxidation as well as mTG synthesis were greater (P<.05) in HF (9.8+/-0.3, 2.0+/-0.1, and 1.9+/-0.2 nmol.min-1.g-1) than in CON (8.0+/-0.4, 1.4+/-0.1, and 1.1+/-0.1 nmol.min-1.g-1) and this was associated with higher levels of mTG in HF. Palmitate uptake and oxidation were higher (P<.05) in HF-LEP (10.3+/-0.6 and 2.0+/-0.1 nmol.min-1.g-1) than in HF-P (8.3+/-0.5 and 1.5+/-0.2 nmol.min-1.g-1, P<.05), but mTG synthesis and mTG levels were not changed significantly by leptin treatment (P>.05). High-fat feeding decreased glucose uptake by 41% when compared with CON (2.4+/-0.4 vs 4.1+/-0.4 micromol.h-1.g-1; P<.05) but pair feeding alone (4.7+/-0.4 micromol.h-1.g-1) or leptin treatment (3.8+/-0.3 micromol.h-1.g-1) similarly prevented the HF diet-induced decrease in glucose uptake. These data indicate that short-term leptin treatment in HF-fed rats alters muscle FA metabolism by increasing FA uptake and oxidation relative to pair feeding alone. This results in a decrease in the FA esterification-oxidation ratio.
Collapse
Affiliation(s)
- Mark K Todd
- Department of Kinesiology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
31
|
Bernard JR, Crain AM, Rivas DA, Herr HJ, Reeder DW, Yaspelkis BB. Chronic aerobic exercise enhances components of the classical and novel insulin signalling cascades in Sprague-Dawley rat skeletal muscle. ACTA ACUST UNITED AC 2005; 183:357-66. [PMID: 15799772 DOI: 10.1111/j.1365-201x.2005.01408.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AIM The aim of this study was to provide a more extensive evaluation of the effects of chronic aerobic exercise on various components of the insulin signalling cascade in normal rodent skeletal muscle because of the limited body of literature that exists in this area of investigation. METHODS Male Sprague-Dawley rats were assigned to either control (n = 7) or chronic aerobic exercise (n = 7) groups. Aerobic exercise animals were run 3 day week(1) for 45 min on a motor-driven treadmill (32 m min(1), 15% grade) for a 12 week period. Following the training period, all animals were subjected to hind limb perfusion in the presence of 500 microU mL(1) insulin to determine what effect chronic aerobic training had on various components of the insulin signalling cascade, c-Cbl protein concentration and c-Cbl phosphorylation. RESULTS Twelve weeks of aerobic training did not alter skeletal muscle Akt 1/2 protein concentration, Akt Ser 473 phosphorylation, Akt Thr 308 phosphorylation, Akt 1 activity, aPKC-zeta protein concentration, aPKC-lambda protein concentration or c-Cbl protein concentration. In contrast, chronic aerobic exercise increased insulin-stimulated phosphatidylinositol 3-kinase, Akt 2 kinase and aPKC-zeta/lambda kinase activities, as well as c-Cbl tyrosine phosphorylation, in a fibre type specific response to aerobic training. In addition, chronic aerobic exercise enhanced insulin-stimulated plasma membrane glucose transporter 4 (GLUT4) protein concentration. CONCLUSION Collectively, these findings suggest that chronic aerobic exercise enhances components of both the classical and novel insulin signalling cascades in normal rodent skeletal muscle, which may contribute to an increased insulin-stimulated plasma membrane GLUT4 protein concentration.
Collapse
Affiliation(s)
- J R Bernard
- Exercise Biochemistry Laboratory, Department of Kinesiology, College of Health and Human Development, California State University Northridge, 91330-8287, USA
| | | | | | | | | | | |
Collapse
|
32
|
Herr HJ, Bernard JR, Reeder DW, Rivas DA, Limon JJ, Yaspelkis BB. Insulin-stimulated plasma membrane association and activation of Akt2, aPKC zeta and aPKC lambda in high fat fed rodent skeletal muscle. J Physiol 2005; 565:627-36. [PMID: 15802290 PMCID: PMC1464539 DOI: 10.1113/jphysiol.2005.086694] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Several recent reports using cell lines have suggested that both Akt and atypical protein kinase C (aPKC) zeta/lambda are translocated to the plasma membrane (PM) in response to insulin. However, it has yet to be determined in skeletal muscle whether: (1) insulin increases PM-associated Akt2, aPKC zeta and/or lambda protein concentration, (2) the activity of these kinases is altered by insulin at the PM, and (3) high fat feeding alters the insulin-stimulated PM concentration and/or activity of Akt2 and aPKC zeta/lambda. Sprague-Dawley rats were randomly assigned to either normal (n=16) or high fat (n=16) dietary groups. Following a 12 week dietary period, animals were subjected to hind limb perfusions in the presence (n=8 per group) or absence (n=8 per group) of insulin. In normal skeletal muscle, total PI3-kinase, Akt2 and aPKC zeta/lambda activities were increased by insulin. PM-associated aPKC zeta and lambda, and aPKC zeta/lambda activity, but not Akt2 or Akt2 activity, were increased by insulin in normal muscle. High fat feeding did not alter total skeletal muscle Akt2, aPKC zeta or aPKC lambda protein concentration. Insulin-stimulated total PI3-kinase, Akt2 and aPKC zeta/lambda activities were reduced in the high fat fed animals. Insulin-stimulated PM aPKC zeta, aPKC lambda, aPKC zeta/lambda activity and GLUT4 protein concentration were also reduced in high fat fed animals. These findings suggest that in skeletal muscle, insulin stimulates translocation of aPKC zeta and lambda, but not Akt2, to the PM. In addition, high fat feeding impairs insulin-stimulated activation of total aPKC zeta/lambda and Akt2, as well as PM association and activation of aPKC zeta and lambda.
Collapse
Affiliation(s)
- Henry J Herr
- Department of Kinesiology, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8287, USA
| | | | | | | | | | | |
Collapse
|
33
|
Larkin EK, Elston RC, Patel SR, Tishler PV, Palmer LJ, Jenny NS, Redline S. Linkage of serum leptin levels in families with sleep apnea. Int J Obes (Lond) 2004; 29:260-7. [PMID: 15611783 DOI: 10.1038/sj.ijo.0802872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To identify regions on the genome linked to plasma leptin levels. DESIGN Full genome scan with 402 microsatellite markers, spaced approximately 10 cM apart. Data were analyzed using the Haseman-Elston regression linkage analysis. SUBJECTS A total of 160 sibling pairs from 59 predominantly African American, obese families recruited to participate in a genetic-epidemiological study of obstructive sleep apnea. MEASUREMENTS Serum leptin levels adjusted for age, sex, race and body mass index (BMI). RESULTS Suggestive linkage peaks were observed on chromosomes 2 (P=0.00170; marker D2S1384), 3 (P=0.00007; marker D3S3034), 4 (P=0.00020; marker D4S1652) and 21 (P=0.00053; marker D21s1411). CONCLUSION The peak on chromosome 3 is near the gene for glycogensynthase kinase 2 beta, an important factor in glucose homeostasis. Linkage was generally stronger after BMI adjustment, suggesting the potential influence of a number of metabolic pathways on leptin levels other than those that directly determine obesity levels. The evidence of linkage for leptin levels is consistent with prior linkage analyses for cholesterol, hypertension and other metabolic phenotypes.
Collapse
Affiliation(s)
- E K Larkin
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Yaspelkis BB, Singh MK, Krisan AD, Collins DE, Kwong CC, Bernard JR, Crain AM. Chronic leptin treatment enhances insulin-stimulated glucose disposal in skeletal muscle of high-fat fed rodents. Life Sci 2004; 74:1801-16. [PMID: 14741737 DOI: 10.1016/j.lfs.2003.08.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this investigation was to evaluate if chronic leptin administration corrects high fat diet-induced skeletal muscle insulin resistance, in part, by enhancing rates of glucose disposal and if the improvements are accounted for by alterations in components of the insulin-signaling cascade. Sprague-Dawley rats consumed normal (CON) or high fat diets for three months. After the dietary lead in, the high fat diet group was further subdivided into high fat (HF) and high fat, leptin treated (HF-LEP) animals. HF-LEP animals were injected twice daily with leptin (5 mg/100 g body weight) for 10 days, while the CON and HF animals were injected with vehicle. Following the treatment periods, all animals were prepared for and subjected to hind limb perfusion. The high fat diet decreased rates of insulin-stimulated skeletal muscle glucose uptake and glycogen synthesis in the red gastrocnemius (RG), but did not affect glycogen synthase activity, rates of glucose oxidation or nonoxidative disposal of glucose. Of interest, IRS-1-associated PI3-K activity and total GLUT4 protein concentration were reduced in the RG of the high fat-fed animals. Leptin treatment increased rates of insulin-stimulated glucose uptake and glucose oxidation, and normalized rates of glycogen synthesis. Leptin appeared to mediate these effects by normalizing insulin-stimulated PI3-K activation and GLUT4 protein concentration in the RG. Collectively, these data suggest that chronic leptin treatment reverses the effects of a high fat diet thereby allowing the insulin signaling cascade and glucose transport effector system to be fully activated which in turn affects the amount of glucose that is transported across the plasma membrane and made available for glycogen synthesis.
Collapse
Affiliation(s)
- Ben B Yaspelkis
- Exercise Biochemistry Laboratory, Department of Kinesiology, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8287, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Krisan AD, Collins DE, Crain AM, Kwong CC, Singh MK, Bernard JR, Yaspelkis BB. Resistance training enhances components of the insulin signaling cascade in normal and high-fat-fed rodent skeletal muscle. J Appl Physiol (1985) 2004; 96:1691-700. [PMID: 14707149 DOI: 10.1152/japplphysiol.01054.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our laboratory recently reported that chronic resistance training (RT) improved insulin-stimulated glucose transport in normal rodent skeletal muscle, owing, in part, to increased GLUT-4 protein concentration (Yaspelkis BB III, Singh MK, Trevino B, Krisan AD, and Collins DE. Acta Physiol Scand 175: 315-323, 2002). However, it remained to be determined whether these improvements resulted from alterations in the insulin signaling cascade as well. In addition, the possibility existed that RT might improve skeletal muscle insulin resistance. Thirty-two male Sprague-Dawley rats were assigned to four groups: control diet (Con)-sedentary (Sed); Con-RT; high-fat diet (HF)-Sed; and HF-RT. Animals consumed their respective diets for 9 wk; then RT animals performed 12 wk of training (3 sets, 10 repetitions at 75% one-repetition maximum, 3x/wk). Animals remained on their dietary treatments over the 12-wk period. After the training period, animals were subjected to hindlimb perfusions. Insulin-stimulated insulin receptor substrate-1-associated phosphatidylinositol-3 kinase activity was enhanced in the red gastrocnemius and quadriceps of Con-RT and HF-RT animals. Atypical PKC-zeta/lambda and Akt activities were reduced in HF-Sed and normalized in HF-RT animals. Resistance training increased GLUT-4 protein concentration in red gastrocnemius and quadriceps of Con-RT and HF-RT animals. No differences were observed in total protein concentrations of insulin receptor substrate-1, Akt, atypical PKC-zeta/lambda, or phosphorylation of Akt. Collectively, these findings suggest that resistance training increases insulin-stimulated carbohydrate metabolism in normal skeletal muscle and reverses high-fat diet-induced skeletal muscle insulin resistance by altering components of both the insulin signaling cascade and glucose transporter effector system.
Collapse
Affiliation(s)
- Adam D Krisan
- Exercise Biochemistry Laboratory, Department of Kinesiology, College of Health and Human Development, California State University Northridge, Northridge, CA 91330-8287, USA
| | | | | | | | | | | | | |
Collapse
|