1
|
Rodriguez S, Sharma S, Tiarks G, Peterson Z, Jackson K, Thedens D, Wong A, Keffala-Gerhard D, Mahajan VB, Ferguson PJ, Newell EA, Glykys J, Nickl-Jockschat T, Bassuk AG. Neuroprotective effects of naltrexone in a mouse model of post-traumatic seizures. Sci Rep 2024; 14:13507. [PMID: 38867062 PMCID: PMC11169394 DOI: 10.1038/s41598-024-63942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Traumatic Brain Injury (TBI) induces neuroinflammatory response that can initiate epileptogenesis, which develops into epilepsy. Recently, we identified anti-convulsive effects of naltrexone, a mu-opioid receptor (MOR) antagonist, used to treat drug addiction. While blocking opioid receptors can reduce inflammation, it is unclear if post-TBI seizures can be prevented by blocking MORs. Here, we tested if naltrexone prevents neuroinflammation and/or seizures post-TBI. TBI was induced by a modified Marmarou Weight-Drop (WD) method on 4-week-old C57BL/6J male mice. Mice were placed in two groups: non-telemetry assessing the acute effects or in telemetry monitoring for interictal events and spontaneous seizures both following TBI and naltrexone. Molecular, histological and neuroimaging techniques were used to evaluate neuroinflammation, neurodegeneration and fiber track integrity at 8 days and 3 months post-TBI. Peripheral immune responses were assessed through serum chemokine/cytokine measurements. Our results show an increase in MOR expression, nitro-oxidative stress, mRNA expression of inflammatory cytokines, microgliosis, neurodegeneration, and white matter damage in the neocortex of TBI mice. Video-EEG revealed increased interictal events in TBI mice, with 71% mice developing post-traumatic seizures (PTS). Naltrexone treatment ameliorated neuroinflammation, neurodegeneration, reduced interictal events and prevented seizures in all TBI mice, which makes naltrexone a promising candidate against PTS, TBI-associated neuroinflammation and epileptogenesis in a WD model of TBI.
Collapse
Affiliation(s)
- Saul Rodriguez
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Shaunik Sharma
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Grant Tiarks
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Zeru Peterson
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Kyle Jackson
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Daniel Thedens
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Angela Wong
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - David Keffala-Gerhard
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University, Palo Alto, CA, USA
| | - Polly J Ferguson
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Elizabeth A Newell
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Joseph Glykys
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Alexander G Bassuk
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
- Department of Neurology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Yu Q, Shu S, Ju XY, Peng W, Ren XQ, Si SH, Song SZ, Xie XY, Fang BJ, Zhou S. Electroacupuncture Promotes Angiogenesis in Mice with Cerebral Ischemia by Inhibiting miR-7. Chin J Integr Med 2024; 30:543-550. [PMID: 38532151 DOI: 10.1007/s11655-023-3715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 03/28/2024]
Abstract
OBJECTIVE To observe the angiogenesis effect of electroacupuncture (EA) at Shuigou acupoint (GV 26) in the treatment of cerebral ischemia, and explore the value of miRNA-7 (miR-7) in it. METHODS First, 48 mice were randomly divided into sham operation, middle cerebral artery occlusion (MCAO) model, and EA treatment groups. Then 9 mice were divided into carrier control group, miR-7 knockout group and miR-7 overexpression group (n=3 each group). Finally, 20 mice were divided into model and carrier control group, model and miR-7 knockout group, EA treatment and carrier control group and EA treatment and miR-7 overexpression group, with 3-6 mice in each group. The MCAO model was established in the MCAO and EA groups. Neurological deficit score and 2,3,5-triphenyltetrazolium chloride (TTC) staining were used to evaluate the severity of cerebral ischemia. Hematoxylin-eosin staining was used to describe basic pathological changes. Immunohistochemistry was used to quantify cerebral microvessel density. Real-time PCR and Western blot were used to detect the expression of miR-7 and its downstream target genes Krüppel-like factor 4/vascular endothelial growth factor (KLF4/VEGF) and angiopoietin-2 (ANG-2) in the ischemic cerebral cortex. RESULTS After EA, neurological deficit scores and infarction volumes decreased, and the density of cerebral microvessels increased. In the MCAO group, miR-7 expression was higher than that in the sham group (P<0.01). After EA at GV 26, miR-7 expression decreased (P<0.01) and the expression of downstream target genes KLF4/VEGF and ANG-2 increased as compared with the MCAO group (P<0.01). After EA combined with overexpression of miR-7, the expression of downstream target genes KLF4/VEGF and ANG-2 decreased compared to the control EA group (P<0.01). After miR-7 knockdown, the expression of KLF4/VEGF and ANG-2 increased (P<0.05 or P<0.01). CONCLUSIONS EA could promote angiogenesis in MCAO mice likely by inhibiting the expression of miR-7 and relieving inhibition of downstream target genes KLF4/VEGF and ANG-2.
Collapse
Affiliation(s)
- Qian Yu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shi Shu
- College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin-Yao Ju
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Peng
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xue-Qi Ren
- College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shu-Han Si
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shi-Zhen Song
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xue-Yun Xie
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bang-Jiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shuang Zhou
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Yilmaz E, Acar G, Onal U, Erdogan E, Baltaci AK, Mogulkoc R. Effect of 2-Week Naringin Supplementation on Neurogenesis and BDNF Levels in Ischemia-Reperfusion Model of Rats. Neuromolecular Med 2024; 26:4. [PMID: 38457013 PMCID: PMC10924031 DOI: 10.1007/s12017-023-08771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/23/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Ischemic stroke is the leading cause of mortality and disability worldwide with more than half of survivors living with serious neurological sequelae; thus, it has recently attracted a lot of attention in the field of medical study. PURPOSE The aim of this study was to determine the effect of naringin supplementation on neurogenesis and brain-derived neurotrophic factor (BDNF) levels in the brain in experimental brain ischemia-reperfusion. STUDY DESIGN The research was carried out on 40 male Wistar-type rats (10-12 weeks old) obtained from the Experimental Animals Research and Application Center of Selçuk University. Experimental groups were as follows: (1) Control group, (2) Sham group, (3) Brain ischemia-reperfusion group, (4) Brain ischemia-reperfusion + vehicle group (administered for 14 days), and (5) Brain ischemia-reperfusion + Naringin group (100 mg/kg/day administered for 14 days). METHODS In the ischemia-reperfusion groups, global ischemia was performed in the brain by ligation of the right and left carotid arteries for 30 min. Naringin was administered to experimental animals by intragastric route for 14 days following reperfusion. The training phase of the rotarod test was started 4 days before ischemia-reperfusion, and the test phase together with neurological scoring was performed the day before and 1, 7, and 14 days after the operation. At the end of the experiment, animals were sacrificed, and then hippocampus and frontal cortex tissues were taken from the brain. Double cortin marker (DCX), neuronal nuclear antigen marker (NeuN), and BDNF were evaluated in hippocampus and frontal cortex tissues by Real-Time qPCR analysis and immunohistochemistry methods. RESULTS While ischemia-reperfusion increased the neurological score values, DCX, NeuN, and BDNF levels decreased significantly after ischemia in the hippocampus and frontal cortex tissues. However, naringin supplementation restored the deterioration to a certain extent. CONCLUSION The results of the study show that 2 weeks of naringin supplementation may have protective effects on impaired neurogenesis and BDNF levels after brain ischemia and reperfusion in rats.
Collapse
Affiliation(s)
- Esen Yilmaz
- Department of Medical Physiology, Selcuk University, 42250, Konya, Turkey
| | - Gozde Acar
- Department of Medical Physiology, Selcuk University, 42250, Konya, Turkey
| | - Ummugulsum Onal
- Department of Histology, Selcuk University, 42250, Konya, Turkey
| | - Ender Erdogan
- Department of Histology, Selcuk University, 42250, Konya, Turkey
| | | | - Rasim Mogulkoc
- Department of Medical Physiology, Selcuk University, 42250, Konya, Turkey.
| |
Collapse
|
4
|
Rodríguez A, Amaya-Pascasio L, Gutiérrez-Fernández M, García-Pinteño J, Moreno M, Martínez-Sánchez P. Non-invasive brain stimulation for functional recovery in animal models of stroke: A systematic review. Neurosci Biobehav Rev 2024; 156:105485. [PMID: 38042359 DOI: 10.1016/j.neubiorev.2023.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Motor and cognitive dysfunction occur frequently after stroke, severely affecting a patient´s quality of life. Recently, non-invasive brain stimulation (NIBS) has emerged as a promising treatment option for improving stroke recovery. In this context, animal models are needed to improve the therapeutic use of NIBS after stroke. A systematic review was conducted based on the PRISMA statement. Data from 26 studies comprising rodent models of ischemic stroke treated with different NIBS techniques were included. The SYRCLE tool was used to assess study bias. The results suggest that both repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) improved overall neurological, motor, and cognitive functions and reduced infarct size both in the short- and long-term. For tDCS, it was observed that either ipsilesional inhibition or contralesional stimulation consistently led to functional recovery. Additionally, the application of early tDCS appeared to be more effective than late stimulation, and tDCS may be slightly superior to rTMS. The optimal stimulation protocol and the ideal time window for intervention remain unresolved. Future directions are discussed for improving study quality and increasing their translational potential.
Collapse
Affiliation(s)
- Antonio Rodríguez
- Fundación para la Investigación Biosanitaria de Andalucía Oriental (FIBAO), Torrecárdenas University Hospital, Almería, Spain; Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain
| | - Laura Amaya-Pascasio
- Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - José García-Pinteño
- Fundación para la Investigación Biosanitaria de Andalucía Oriental (FIBAO), Torrecárdenas University Hospital, Almería, Spain; Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain
| | - Margarita Moreno
- Department of Psychology, Faculty of Health Science, University of Almería, Spain; Health Research Center (CEINSA), University of Almería, Spain.
| | - Patricia Martínez-Sánchez
- Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain; Health Research Center (CEINSA), University of Almería, Spain; Department of Nursing, Physiotherapy and Medicine, Faculty of Health Science, University of Almería, Spain.
| |
Collapse
|
5
|
Geiseler SJ, Phan KD, Brox C, Nguyen TD, Tartanoglu C, Doosje HL, Christiansen CL, Liesz A, Morland C. Pre-stroke exercise does not reduce atrophy in healthy young adult mice. Neurosci Lett 2023; 814:137447. [PMID: 37604388 DOI: 10.1016/j.neulet.2023.137447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Stroke is the main cause of acquired disability in adults. Exercise reduces the risk for stroke and protects against functional loss after stroke. An exercise-induced reduction in key risk factors probably contributes to the protective effect, but direct effects on the brain may also contribute to stroke protection. We previously reported that exercise increases angiogenesis and neurogenesis through activation of the lactate receptor HCA1. Here we exposed young adult wild-type mice and HCA1 knockout mice to interval exercise at high or medium intensity, or to intraperitoneal injections of L-lactate or saline for seven weeks before we induced experimental stroke by permanent occlusion of the distal medial cerebral artery (dMCA). The resulting cortical atrophy measured three weeks after stroke was unaffected by exercise or L-lactate pre-treatments, and independent of HCA1 activation. Our results suggest that the beneficial effect of exercise prior to stroke where no reperfusion occurs is limited in individuals who do not carry risk factors.
Collapse
Affiliation(s)
- Samuel J Geiseler
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | - Kimberly D Phan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Camilla Brox
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Teresa D Nguyen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Can Tartanoglu
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hanne-Lise Doosje
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway; Institute for Life Science and Technology, Hanzehogeschool, Groningen, the Netherlands
| | - Cathrine L Christiansen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Artur Liesz
- Institute for Stroke and Dementia Research, Ludwig-Maximilians University Munich, Munich, Germany; Munich Cluster for Systems Neurology SyNergy, Munich, Germany
| | - Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Dzirkale Z, Pilipenko V, Pijet B, Klimaviciusa L, Upite J, Protokowicz K, Kaczmarek L, Jansone B. Long-term behavioural alterations in mice following transient cerebral ischemia. Behav Brain Res 2023; 452:114589. [PMID: 37481076 DOI: 10.1016/j.bbr.2023.114589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Ischemic stroke is one of the leading causes of disability and mortality worldwide. Acute and chronic post-stroke changes have variable effects on the functional outcomes of the disease. Therefore, it is imperative to identify what daily activities are altered after stroke and to what extent, keeping in mind that ischemic stroke patients often have long-term post-stroke complications. Translational studies in stroke have also been challenging due to inconsistent study design of animal experiments. The objective of this study was to clarify whether and to what extent mouse behaviour was altered during a 6 months period after cerebral stroke. Experimental stroke was induced in mice by intraluminal filament insertion into the middle cerebral artery (fMCAo). Neurological deficits, recovery rate, motor performance, and circadian activity were evaluated following ischemia. We observed severe neurological deficits, motor impairments, and delay in the recovery rate of mice during the first 14 days after fMCAo. Aberrant circadian activity and distorted space map were seen in fMCAo mice starting one month after ischemia, similarly to altered new and familiar cage activity and sucrose preference using the IntelliCage, and was still evident 60- and 180- days following stroke in the voluntary running wheel using the PhenoMaster system. A preference towards ipsilateral side turns was observed in fMCAo mice both acutely and chronically after the stroke induction. Overall, our study shows the importance of determining time-dependent differences in the long-term post-stroke recovery (over 180 days after fMCAo) using multiple behavioural assessments.
Collapse
Affiliation(s)
- Zane Dzirkale
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 3 Jelgavas Street, LV-1004 Riga, Latvia.
| | - Vladimirs Pilipenko
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 3 Jelgavas Street, LV-1004 Riga, Latvia
| | - Barbara Pijet
- Laboratory of Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Linda Klimaviciusa
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 3 Jelgavas Street, LV-1004 Riga, Latvia
| | - Jolanta Upite
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 3 Jelgavas Street, LV-1004 Riga, Latvia
| | - Karolina Protokowicz
- Laboratory of Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Baiba Jansone
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 3 Jelgavas Street, LV-1004 Riga, Latvia.
| |
Collapse
|
7
|
Fukuta T, Ikeda-Imafuku M, Iwao Y. Development of Edaravone Ionic Liquids and Their Application for the Treatment of Cerebral Ischemia/Reperfusion Injury. Mol Pharm 2023. [PMID: 37155370 DOI: 10.1021/acs.molpharmaceut.3c00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Preparation of the ionic liquid (IL) form of active pharmaceutical ingredients (APIs), termed API-IL, has attracted attention because it can improve upon certain disadvantages of APIs, such as poor water solubility and low stability. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a clinically approved cerebroprotective agent against ischemic stroke and amyotrophic lateral sclerosis, while new formulations that enable improvement of its physicochemical properties and biodistribution are desired. Herein, we report a newly developed API-IL of edaravone (edaravone-IL), in which edaravone is used as an anionic molecule. We investigated the physicochemical properties of edaravone-IL and its therapeutic effect against cerebral ischemia/reperfusion (I/R) injury, a secondary injury after an ischemic stroke. Among the cationic molecules used for edaravone-IL preparation, the IL prepared with tetrabutylphosphonium cation existed as a liquid at room temperature, and significantly increased the water solubility of edaravone without decreasing its antioxidative activity. Importantly, edaravone-IL formed negatively charged nanoparticles upon suspension in water. Intravenous administration of edaravone-IL showed significantly higher blood circulation time and lower distribution in the kidney compared with edaravone solution. Moreover, edaravone-IL significantly suppressed brain cell damage and motor functional deficits in model rats of cerebral I/R injury and showed comparable cerebroprotective effect to edaravone. Taken together, these results suggest that edaravone-IL could be a new form of edaravone with superior physicochemical properties and could be useful for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Mayumi Ikeda-Imafuku
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Yasunori Iwao
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| |
Collapse
|
8
|
Ji Y, Gao Q, Ma Y, Wang F, Tan X, Song D, Hoo RL, Wang Z, Ge X, Han H, Guo F, Chang J. An MMP-9 exclusive neutralizing antibody attenuates blood-brain barrier breakdown in mice with stroke and reduces stroke patient-derived MMP-9 activity. Pharmacol Res 2023; 190:106720. [PMID: 36893823 PMCID: PMC11934118 DOI: 10.1016/j.phrs.2023.106720] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Rapid upregulation of matrix metalloproteinase 9 (MMP-9) leads to blood-brain barrier (BBB) breakdown following stroke, but no MMP-9 inhibitors have been approved in clinic largely due to their low specificities and side effects. Here, we explored the therapeutic potential of a human IgG monoclonal antibody (mAb), L13, which was recently developed with exclusive neutralizing specificity to MMP-9, nanomolar potency, and biological function, using mouse stroke models and stroke patient samples. We found that L13 treatment at the onset of reperfusion following cerebral ischemia or after intracranial hemorrhage (ICH) significantly reduced brain tissue injury and improved the neurological outcomes of mice. Compared to control IgG, L13 substantially attenuated BBB breakdown in both types of stroke model by inhibiting MMP-9 activity-mediated degradations of basement membrane and endothelial tight junction proteins. Importantly, these BBB-protective and neuroprotective effects of L13 in wild-type mice were comparable to Mmp9 genetic deletion and fully abolished in Mmp9 knockout mice, highlighting the in vivo target specificity of L13. Meanwhile, ex vivo co-incubation with L13 significantly neutralized the enzymatic activities of human MMP-9 in the sera of ischemic and hemorrhagic stroke patients, or in the peri-hematoma brain tissues from hemorrhagic stroke patients. Overall, we demonstrated that MMP-9 exclusive neutralizing mAbs constitute a potential feasible therapeutic approach for both ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Yabin Ji
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiang Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
- Department of Neurosurgery, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Yinzhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fang Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Xixi Tan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Neurology, Yangjiang People’s Hospital, Yangjiang 529500, China
| | - Dengpan Song
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Ruby L.C. Hoo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Zening Wang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Hongjien Han
- Department of Neurosurgery, Pingdingshan Second People’s Hospital, Pingdingshan 467000, China
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
9
|
A Novel Improved Thromboembolism-Based Rat Stroke Model That Meets the Latest Standards in Preclinical Studies. Brain Sci 2022; 12:brainsci12121671. [PMID: 36552131 PMCID: PMC9776070 DOI: 10.3390/brainsci12121671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
The animal thromboembolic model of ischemia perfectly mimics human ischemic stroke which remains the leading cause of disability and mortality in humans. The development of new treatment strategies was therefore imperative. The purpose of this study is to improve the thromboembolic stroke model in rats in order to design experiments that use motor tests, and are in accordance with the 3R principles to prevent complications and maintain the same size of the infarct repeatedly. Tail vein dye application, a protective skull mask and a stress minimization protocol were used as additional modifications to the animal stroke model. These modifications significantly minimized the pain and stress severity of the procedures in this model. In our experimental group of Long-Evans rats, a photo-induced stroke was caused by the application of a photosensitive dye (Rose Bengal) activated with white-light irradiation, thus eliminating the need to perform a craniotomy. The animals' neurological status was evaluated using a runway elevated test. Histological examination of the brain tissue was performed at 12, 24 and 48 h, and seven days post-stroke. Tissue examination revealed necrotic foci in the cortex and the subcortical regions of the ipsilateral hemisphere in all experimental groups. Changes in the area, width and depth of the necrotic focus were observed over time. All the experimental groups showed motor disturbances after stroke survival. In the proposed model, photochemically-induced stroke caused long-term motor deficits, showed high reproducibility and low mortality rates. Consequently, the animals could participate in motor tests which are particularly suitable for assessing the efficacy of neuro-regenerative therapies, while remaining in line with the latest trends in animal experimental design.
Collapse
|
10
|
Onufriev MV, Stepanichev MY, Moiseeva YV, Zhanina MY, Nedogreeva OA, Kostryukov PA, Lazareva NA, Gulyaeva NV. A Comparative Study of Two Models of Intraluminal Filament Middle Cerebral Artery Occlusion in Rats: Long-Lasting Accumulation of Corticosterone and Interleukins in the Hippocampus and Frontal Cortex in Koizumi Model. Biomedicines 2022; 10:biomedicines10123119. [PMID: 36551875 PMCID: PMC9775077 DOI: 10.3390/biomedicines10123119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/10/2022] Open
Abstract
Recently, we have shown the differences in the early response of corticosterone and inflammatory cytokines in the hippocampus and frontal cortex (FC) of rats with middle cerebral artery occlusion (MCAO), according to the methods of Longa et al. (LM) and Koizumi et al. (KM) which were used as alternatives in preclinical studies to induce stroke in rodents. In the present study, corticosterone and proinflammatory cytokines were assessed 3 months after MCAO. The most relevant changes detected during the first days after MCAO became even more obvious after 3 months. In particular, the MCAO-KM (but not the MCAO-LM) group showed significant accumulation of corticosterone and IL1β in both the ipsilateral and contralateral hippocampus and FC. An accumulation of TNFα was detected in the ipsilateral hippocampus and FC in the MCAO-KM group. Thus, unlike the MCAO-LM, the MCAO-KM may predispose the hippocampus and FC of rats to long-lasting bilateral corticosterone-dependent distant neuroinflammatory damage. Unexpectedly, only the MCAO-LM rats demonstrated some memory deficit in a one-trial step-through passive avoidance test. The differences between the two MCAO models, particularly associated with the long-lasting increase in glucocorticoid and proinflammatory cytokine accumulation in the limbic structures in the MCAO-KM, should be considered in the planning of preclinical experiments, and the interpretation and translation of received results.
Collapse
Affiliation(s)
- Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Mikhail Y. Stepanichev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Marina Y. Zhanina
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Olga A. Nedogreeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Pavel A. Kostryukov
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Natalia A. Lazareva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-952-4007
| |
Collapse
|
11
|
Jorda A, Campos-Campos J, Aldasoro C, Colmena C, Aldasoro M, Alvarez K, Valles SL. Protective action of ultrasound-guided electrolysis technique on the muscle damage induced by notexin in rats. PLoS One 2022; 17:e0276634. [PMID: 36441673 PMCID: PMC9704622 DOI: 10.1371/journal.pone.0276634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
It is known that exercise can be one of the causes of muscular damage. In recent times, physiotherapists and medical professionals have been employing USGET techniques to stimulate muscle recovery to improve its performance after the injury. We pretend to analyse if the Ultrasound-guided electrolysis (USGET) technique could reduce muscle damage, inflammation, and pain in the present study. Female Wistar rats were assigned to one of three different groups: control (C), notexin (NOT) and notexin with USGET (electrolysis at 6mA) (NOT+USGET). We used the USGT technique, based on electrical stimulation with a continuous current of 4 pulses at an intensity of 6 mA for 5 seconds, conveyed to the muscle. The response was tested with motor function tests. In these tests, we could observe an increase in time and foot faults when crossing a beam in the NOT group compared to C group rats. On the other hand, a significant decrease in both variables was detected in the NOT+USGET compared to the NOT group. Muscle power was measured with a grip strength test, obtaining far better performances in NOT+USGET rats when compared to NOT rats. Moreover, the USGET technique prevented the increase of pro-inflammatory proteins IL-6 and chemokines CCL3 (Chemokine (C-C motif) ligand 3), CCL4 (Chemokine (C-C motif) ligand 4), and CCL5 (Chemokine (C-C motif) ligand 5) with their receptor CCR5 (C-C chemokine receptor type 5), induced by notexin in the quadriceps. At the same time, the study evidenced a decrease in both CCR8 (C-C chemokine receptor type 5,) and NF-ᴋB (nuclear factor- ᴋB) expressions after USGET treatment. On the other hand, we obtained evidence that demonstrated anti-inflammatory properties of the USGET technique, thus being the increase in IL-10 (Interleukin 10) and IL-13 (Interleukin 13) in the NOT+USGET group compared to the NOT group. Furthermore, when applying NSGET after damage, an increase in anti-inflammatory mediators and reduction of pro-inflammatory mediators, which, overall, promoted muscle regeneration, was observed. These results support the idea that the NSGET technique improves muscle recovery after toxic damages, which would justify its employment.
Collapse
Affiliation(s)
- Adrian Jorda
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
- Faculty of Nursing and Podiatry, Department of Nursing, University of Valencia, Valencia, Spain
| | - Juan Campos-Campos
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
- Faculty of Nursing and Podiatry, Department of Nursing, University of Valencia, Valencia, Spain
| | - Constanza Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Carlos Colmena
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Kenia Alvarez
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Soraya L. Valles
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
12
|
Earnest DJ, Burns S, Pandey S, Mani KK, Sohrabji F. Sex differences in the diathetic effects of shift work schedules on circulating cytokine levels and pathological outcomes of ischemic stroke during middle age. Neurobiol Sleep Circadian Rhythms 2022; 13:100079. [PMID: 35800977 PMCID: PMC9253906 DOI: 10.1016/j.nbscr.2022.100079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022] Open
Abstract
Shift work is associated with increased risk for vascular disease, including stroke- and cardiovascular-related mortality. However, evidence from these studies is inadequate to distinguish the effect of altered circadian rhythms in isolation from other risk factors for stroke associated with shift work (e.g., smoking, poor diet, lower socioeconomic status). Thus, the present study examined the diathetic effects of exposure to shifted LD cycles during early adulthood on circadian rhythmicity, inflammatory signaling and ischemic stroke pathology during middle age, when stroke risk is high and outcomes are more severe. Entrainment of circadian activity was stable in all animals maintained on a fixed light:dark 12:12 cycle but was severely disrupted during exposure to shifted LD cycles (12hr advance/5d). Following treatment, circadian entrainment in the shifted LD group was distinguished by increased daytime activity and decreased rhythm amplitude that persisted into middle-age. Circadian rhythm desynchronization in shifted LD males and females was accompanied by significant elevations in circulating levels of the inflammatory cytokine IL-17A and gut-derived inflammatory mediator lipopolysaccharide (LPS) during the post-treatment period. Middle-cerebral artery occlusion, 3 months after exposure to shifted LD cycles, resulted in greater post-stroke mortality in shifted LD females. In surviving subjects, sensorimotor performance, assessed 2- and 5-days post-stroke, was impaired in males of both treatment groups, whereas in females, recovery of function was observed in fixed but not shifted LD rats. Overall, these results indicate that early exposure to shifted LD cycles promotes an inflammatory phenotype that amplifies stroke impairments, specifically in females, later in life. Early exposure to shifted LD cycles alters circadian entrainment of the activity rhythm that persists into middle age. In conjunction with circadian dysregulation, shift work-like schedules promote the induction of key inflammatory mediators. In females, exposure to shift work-like schedules amplifies functional impairments caused by strokes arising later in life. Circadian dysregulation during shift work is a hysteretic risk factor in the overall severity of ischemic strokes. Shift work-related circadian dysregulation affects stroke outcomes independent of lifestyle vascular disease risk factors.
Collapse
|
13
|
Guy R, Herman S, Benyamini H, Ben-Zur T, Kobo H, Pasmanik-Chor M, Yaacobi D, Barel E, Yagil C, Yagil Y, Offen D. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Proposed Therapy in a Rat Model of Cerebral Small Vessel Disease. Int J Mol Sci 2022; 23:ijms231911211. [PMID: 36232513 PMCID: PMC9569832 DOI: 10.3390/ijms231911211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been employed in the past decade as therapeutic agents in various diseases, including central nervous system (CNS) disorders. We currently aimed to use MSC-EVs as potential treatment for cerebral small vessel disease (CSVD), a complex disorder with a variety of manifestations. MSC-EVs were intranasally administrated to salt-sensitive hypertension prone SBH/y rats that were DOCA-salt loaded (SBH/y-DS), which we have previously shown is a model of CSVD. MSC-EVs accumulated within brain lesion sites of SBH/y-DS. An in vitro model of an inflammatory environment in the brain demonstrated anti-inflammatory properties of MSC-EVs. Following in vivo MSC-EV treatment, gene set enrichment analysis (GSEA) of SBH/y-DS cortices revealed downregulation of immune system response-related gene sets. In addition, MSC-EVs downregulated gene sets related to apoptosis, wound healing and coagulation, and upregulated gene sets associated with synaptic signaling and cognition. While no specific gene was markedly altered upon treatment, the synergistic effect of all gene alternations was sufficient to increase animal survival and improve the neurological state of affected SBH/y-DS rats. Our data suggest MSC-EVs act as microenvironment modulators, through various molecular pathways. We conclude that MSC-EVs may serve as beneficial therapeutic measure for multifactorial disorders, such as CSVD.
Collapse
Affiliation(s)
- Reut Guy
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shay Herman
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University, Jerusalem 9103401, Israel
| | - Tali Ben-Zur
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hila Kobo
- Genomics Research Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dafna Yaacobi
- Department of Plastic and Reconstructive Surgery, Rabin Medical Center, Petah-Tikva 49100, Israel
| | - Eric Barel
- Department of Plastic and Reconstructive Surgery, Rabin Medical Center, Petah-Tikva 49100, Israel
| | - Chana Yagil
- Israeli Rat Genome Center, Laboratory for Molecular Medicine, Barzilai University Medical Center, Ashkelon 78306, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yoram Yagil
- Israeli Rat Genome Center, Laboratory for Molecular Medicine, Barzilai University Medical Center, Ashkelon 78306, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Daniel Offen
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence: ; Tel.: +972-523-342-737
| |
Collapse
|
14
|
Liu W, Wang L, Liu C, Dai Z, Li T, Tang B. Edaravone Ameliorates Cerebral Ischemia–Reperfusion Injury by Downregulating Ferroptosis <i>via</i> the Nrf2/FPN Pathway in Rats. Biol Pharm Bull 2022; 45:1269-1275. [DOI: 10.1248/bpb.b22-00186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wenpeng Liu
- Medical School, Hunan University of Chinese Medicine
| | - Linlin Wang
- Medical School, Hunan University of Chinese Medicine
| | - Canwen Liu
- Medical School, Hunan University of Chinese Medicine
| | - Ziwei Dai
- Medical School, Hunan University of Chinese Medicine
| | - Tenglong Li
- The Second Affiliated Hospital of Hunan University of Chinese Medicine
| | - Biao Tang
- Medical School, Hunan University of Chinese Medicine
| |
Collapse
|
15
|
A Novel Rodent Model of Hypertensive Cerebral Small Vessel Disease with White Matter Hyperintensities and Peripheral Oxidative Stress. Int J Mol Sci 2022; 23:ijms23115915. [PMID: 35682594 PMCID: PMC9180536 DOI: 10.3390/ijms23115915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is the second most common cause of stroke and a major contributor to dementia. Manifestations of CSVD include cerebral microbleeds, intracerebral hemorrhages (ICH), lacunar infarcts, white matter hyperintensities (WMH) and enlarged perivascular spaces. Chronic hypertensive models have been found to reproduce most key features of the disease. Nevertheless, no animal models have been identified to reflect all different aspects of the human disease. Here, we described a novel model for CSVD using salt-sensitive ‘Sabra’ hypertension-prone rats (SBH/y), which display chronic hypertension and enhanced peripheral oxidative stress. SBH/y rats were either administered deoxycorticosteroid acetate (DOCA) (referred to as SBH/y-DOCA rats) or sham-operated and provided with 1% NaCl in drinking water. Rats underwent neurological assessment and behavioral testing, followed by ex vivo MRI and biochemical and histological analyses. SBH/y-DOCA rats show a neurological decline and cognitive impairment and present multiple cerebrovascular pathologies associated with CSVD, such as ICH, lacunes, enlarged perivascular spaces, blood vessel stenosis, BBB permeability and inflammation. Remarkably, SBH/y-DOCA rats show severe white matter pathology as well as WMH, which are rarely reported in commonly used models. Our model may serve as a novel platform for further understanding the mechanisms underlying CSVD and for testing novel therapeutics.
Collapse
|
16
|
Yoneda S, Fukuta T, Ozono M, Kogure K. Enhancement of cerebroprotective effects of lipid nanoparticles encapsulating FK506 on cerebral ischemia/reperfusion injury by particle size regulation. Biochem Biophys Res Commun 2022; 611:53-59. [PMID: 35477093 DOI: 10.1016/j.bbrc.2022.04.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/02/2022]
Abstract
Delivery of cerebroprotective agents using liposomes has been demonstrated to be useful for treating cerebral ischemia/reperfusion (I/R) injury. We previously reported that intravenous administration of liposomes with diameters of 100 nm showed higher accumulation in the I/R region compared with larger liposomes (>200 nm) by passage through the disintegrated blood-brain barrier, suggesting a size-dependence for liposome-mediated drug delivery. Based on these findings, we hypothesized that regulation of liposomal particle size (<100 nm) may enhance the therapeutic efficacy of encapsulated drugs on cerebral I/R injury. Herein, we prepared lipid nanoparticles (LNP) with particle sizes <100 nm by the microfluidics method and compared their therapeutic potential with LNP exhibiting sizes >100 nm in cerebral I/R model rats. Intravenously administered smaller LNP (ca. 60 nm) exhibited wider accumulation and diffusivity in the brain parenchyma of the I/R region compared with larger LNP (>100 nm). Importantly, treatment with LNP encapsulating the cerebroprotective agent FK506 (FK-LNP) with particle sizes <100 nm showed greater cerebroprotective effects than FK-LNP with sizes >100 nm, and also significantly ameliorated brain injury. These results suggest that particle size regulation of LNP to sizes <100 nm can enhance the therapeutic effect of encapsulated drugs for treatment of cerebral I/R injury, and that FK-LNP could be a promising cerebroprotective agent.
Collapse
Affiliation(s)
- Shintaro Yoneda
- Department of Pharmaceutical Health Chemistry, Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi 1, Tokushima, 770-8505, Japan
| | - Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama, 640-8156, Japan.
| | - Mizune Ozono
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima, 770-8505, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima, 770-8505, Japan
| |
Collapse
|
17
|
Pinto R, Magalhães A, Sousa M, Melo L, Lobo A, Barros P, Gomes JR. Bridging the Transient Intraluminal Stroke Preclinical Model to Clinical Practice: From Improved Surgical Procedures to a Workflow of Functional Tests. Front Neurol 2022; 13:846735. [PMID: 35359638 PMCID: PMC8963503 DOI: 10.3389/fneur.2022.846735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
Acute ischemic stroke (AIS) remains a leading cause of mortality, despite significant advances in therapy (endovascular thrombectomy). Failure in developing novel effective therapies is associated with unsuccessful translation from preclinical studies to clinical practice, associated to inconsistent and highly variable infarct areas and lack of relevant post-stroke functional evaluation in preclinical research. To outreach these limitations, we optimized the intraluminal transient middle cerebral occlusion, a widely used mouse stroke model, in two key parameters, selection of appropriate occlusion filaments and time of occlusion, which show a significant variation in the literature. We demonstrate that commercially available filaments with short coating length (1–2 mm), together with 45-min occlusion, results in a consistent affected brain region, similar to what is observed in most patients with AIS. Importantly, a dedicated post-stroke care protocol, based on clinical practice applied to patients who had stroke, resulted in lower mortality and improved mice welfare. Finally, a battery of tests covering relevant fine motor skills, sensory functions, and learning/memory behaviors revealed a significant effect of tMCAO brain infarction, which is parallel to patient symptomatology as measured by relevant clinical scales (NIH Stroke Scale, NIHSS and modified Rankin Scale, mRS). Thus, in order to enhance translation to clinical practice, future preclinical stroke research must consider the methodology described in this study, which includes improved reproducible surgical procedure, postoperative care, and the battery of functional tests. This will be a major step s closing the gap from bench to bedside, rendering the development of novel effective therapeutic approaches.
Collapse
Affiliation(s)
- Raquel Pinto
- Molecular Neurobiology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Magalhães
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Addiction Biology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Mafalda Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Advanced Light Microscopy Unit, I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Lúcia Melo
- Molecular Neurobiology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Andrea Lobo
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Addiction Biology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Pedro Barros
- Neurology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal.,Stroke Unit, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - João R Gomes
- Molecular Neurobiology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
18
|
Fu Y, Zhao W, Lin K, Lv A, Tian L, Wang Z, Li S, Yan Y. USPIO-SWI Shows Fingolimod Enhanced Alteplase Action on Angiographic Reperfusion in eMCAO Rats. J Magn Reson Imaging 2022; 55:1095-1106. [PMID: 34480787 DOI: 10.1002/jmri.27914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Noninvasive evaluation of the status of cerebral arteriole perfusion remains a practical challenge in murine stroke models, because conventional magnetic resonance imaging (MRI) is no longer capable of capturing these very small vessels. PURPOSE To investigate the feasibility of ultrasmall superparamagnetic iron oxide particles (USPIO)-based susceptibility weighted imaging (SWI)-MRI (USPIO-SWI) and T2* map-MRI (USPIO-T2* map) for monitoring angiographic perfusion in stroke rats. STUDY TYPE A preclinical randomized controlled trial. ANIMAL MODEL Normal rats (N = 9), embolic middle cerebral artery occlusion (eMCAO) rats (N = 66). FIELD STRENGTH/SEQUENCE 7 T; T2* map (multigradient echo), SWI (3D gradient echo). ASSESSMENT Experiment 1: To develop a method for angiographic reperfusion evaluation with USPIO-SWI. Normal rats were used to optimize the USPIO dosage (5.6, 16.8, and 56 mg/kg ferumoxytol) as well as scan time points for cerebral arterioles. Contrast-to-noise ratio (CNR) was measured. Stroke rats were further used and the number of visual cortical vessels were counted. Experiment 2: To examine whether fingolimod (lymphocytes inhibitor) enhances the action of tissue plasminogen activator (tPA) in eMCAO rats on cerebral angiographic reperfusion. STATISTICAL TESTS Mann-Whitney test and two way-ANOVA were used. P < 0.05 was considered statistically significant. RESULTS CNR values of cerebral cortical penetrating arteries in normal rats were significantly increased to 4.4 ± 0.5 (5.6 mg/kg), 6.1 ± 0.5 (16.8 mg/kg), and 3.4 ± 0.9 (56 mg/kg) after USPIO injection. The number of visual cortical vessels on USPIO-SWI images in ischemic regions was significantly less than in control regions (5 ± 2 vs. 56 ± 20) of eMCAO rats. Compared with eMCAO rats who received tPA only, eMCAO rats who received the combination of fingolimod and tPA exhibited significantly higher proportion of complete angiographic reperfusion (69% vs. 17%). DATA CONCLUSION This study supports the feasibility of angiographic perfusion evaluation with USPIO-SWI in stroke rats. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Ying Fu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Wenlong Zhao
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Kunxin Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Aowei Lv
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Lili Tian
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhen Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shaowu Li
- Department of Function Neuroimaging, Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
19
|
Dandekar MP, Yin X, Peng T, Devaraj S, Morales R, McPherson DD, Huang SL. Repetitive xenon treatment improves post-stroke sensorimotor and neuropsychiatric dysfunction. J Affect Disord 2022; 301:315-330. [PMID: 34990636 DOI: 10.1016/j.jad.2022.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/21/2021] [Accepted: 01/02/2022] [Indexed: 12/20/2022]
Abstract
Stroke is a life-changing event as stroke survivors experience changes in personality, emotions and mood. We investigated the effect of xenon gas encapsulated in liposomes on stroke-generated sensorimotor impairments, and anxiety- and depression-like phenotypes. Ischemic stroke was created by the intraluminal middle cerebral artery occlusion (MCAO) for 6 h followed by reperfusion in rats. Xenon-liposome (6 mg/kg, intravenous) treatment was given multiple times starting at 2 h post-ischemia through 6 h (5X), and once-daily for next 3 days. Rats underwent ischemic injury displayed sensorimotor deficits in the adhesive removal, vibrissae-evoked forelimb placement and rotarod tests. These animals also made lesser entries and spent less time on open arms of the elevated-plus maze and swam more in passive mode in the forced swimming test, indicating anxiety- and depression-like behaviors at 28- and 35-days post-injury, respectively. Repeated intravenous treatment with xenon-liposomes ameliorated these behavioral aberrations (p < 0.05). Gut microbiome analysis (16S ribosomal-RNA gene sequencing) showed a decrease in the Clostridium clusters XI, XIVa, XVIII and Lactobacillus bacterium, and increase of the Prevotella in the xenon-liposome group. No microbiota communities were majorly affected across the treatments. Moreover, xenon treatment group showed augmented plasma levels of IL-6 cytokines (∼5 fold) on day-35 post-ischemia, while no change was noticed in the IL-1β, IL-4, IL-10, IL-13 and MCP-1 levels. Our data highlights the safety, behavioral recovery and reversal of post-stroke brain injury following xenon-liposome treatment in an extended ischemic model. These results show the potential for this treatment strategy to be translated to patients with stroke.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA; presently Manoj P. Dandekar is affiliated with Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Xing Yin
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA
| | - Tao Peng
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA
| | - Sridevi Devaraj
- Department of Pathology & Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA; CIBQA, Universidad Bernardo O'Higgins. Santiago, Chile
| | - David D McPherson
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA; Center for Clinical and Translational Sciences at The University of Texas Health Science Center at Houston, TX, USA
| | - Shao-Ling Huang
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
20
|
Wang J, Zhou Y, He L. Appropriate supplementation of testosterone alleviates post-stroke damage via decreasing inflammation and oxidative stress in aged male C57BL/6 mice. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221116739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stroke injury is closely related to testosterone levels. Testosterone supplementation in elderly men is seen to protect the cardiovascular system and reduce the risk of stroke. But this medication method is controversial. This study aims to investigate the effect of long-term testosterone supplementation on brain injury after stroke in aged mice. 60 male C57BL/6 mice,12-months of age were divided into 3 groups: low-dose group, high-dose group, and control group, each group was injected subcutaneously with 100 μL of sesame oil or 5 mg/kg or 50 mg/kg of testosterone (in 100 μL of sesame oil) twice per week, respectively. One week after the injection, stroke was induced by light. After the stroke, the injection continued for 6 weeks. The motion ability was measured by rotating rod and tail suspension. The brain injury was observed by naked eyes and TTC staining. In addition, we measured the inflammation ( Tnf-α, Il-6, and Mcp-1) and oxidative stress (Malondialdehyde (MDA) and T-AOC) in the injured tissue 72 h post-stroke. Low-dose testosterone supplementation improved the motion ability and decreased brain injury. It also decreased the inflammatory factors ( Tnf-α, Il-6, and Mcp-1), decreased MDA product, and increased T-AOC. High-dose testosterone supplementation not only reduced the motion ability and aggravated stroke injury, but also increased the inflammation, MDA level and decreased T-AOC level. In summary, supplementation of testosterone at normal levels in elderly mice can alleviate post-stroke injury by reducing inflammation and oxidative stress; however, excessive supplementation may cause unexpected injuries. This study has important implications for the application of testosterone replacement therapy.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of Neurosurgery, Shenmu City Hospital, Shenmu, China
| | - Yuefei Zhou
- Department of Neurosurgery, Xijing Hospital of Fourth Military Medical University, Xi’an, China
| | - Lijun He
- Department of Neurosurgery, Shenmu City Hospital, Shenmu, China
| |
Collapse
|
21
|
Onufriev MV, Moiseeva YV, Zhanina MY, Lazareva NA, Gulyaeva NV. A Comparative Study of Koizumi and Longa Methods of Intraluminal Filament Middle Cerebral Artery Occlusion in Rats: Early Corticosterone and Inflammatory Response in the Hippocampus and Frontal Cortex. Int J Mol Sci 2021; 22:13544. [PMID: 34948340 PMCID: PMC8703333 DOI: 10.3390/ijms222413544] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
Two classical surgical approaches for intraluminal filament middle cerebral artery occlusion (MCAO), the Longa et al. (LM) and Koizumi et al. methods (KM), are used as alternatives in preclinical studies to induce stroke in rodents. Comparisons of these MCAO models in mice showed critical differences between them along with similarities (Smith et al. 2015; Morris et al. 2016). In this study, a direct comparison of MCAO-KM and MCAO-LM in rats was performed. Three days after MCAO, infarct volume, mortality rate, neurological deficit, and weight loss were similar in these models. MCAO-LM rats showed an increase in ACTH levels, while MCAO-KM rats demonstrated elevated corticosterone and interleukin-1β in blood serum. Corticosterone accumulation was detected in the frontal cortex (FC) and the hippocampus of the MCAO-KM group. IL1β beta increased in the ipsilateral hippocampus in the MCAO-KM group and decreased in the contralateral FC of MCAO-LM rats. Differences revealed between MCAO-KM and MCAO-LM suggest that corticosterone and interleukin-1β release as well as hippocampal accumulation is more expressed in MCAO-KM rats, predisposing them to corticosterone-dependent distant neuroinflammatory hippocampal damage. The differences between two models, particularly, malfunction of the hypothalamic-pituitary-adrenal axis, should be considered in the interpretation, comparison, and translation of pre-clinical experimental results.
Collapse
Affiliation(s)
- Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
| | - Marina Y. Zhanina
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| | - Natalia A. Lazareva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| |
Collapse
|
22
|
Shishkina GT, Gulyaeva NV, Lanshakov DA, Kalinina TS, Onufriev MV, Moiseeva YV, Sukhareva EV, Babenko VN, Dygalo NN. Identifying the Involvement of Pro-Inflammatory Signal in Hippocampal Gene Expression Changes after Experimental Ischemia: Transcriptome-Wide Analysis. Biomedicines 2021; 9:1840. [PMID: 34944656 PMCID: PMC8698395 DOI: 10.3390/biomedicines9121840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022] Open
Abstract
Acute cerebral ischemia induces distant inflammation in the hippocampus; however, molecular mechanisms of this phenomenon remain obscure. Here, hippocampal gene expression profiles were compared in two experimental paradigms in rats: middle cerebral artery occlusion (MCAO) and intracerebral administration of lipopolysaccharide (LPS). The main finding is that 10 genes (Clec5a, CD14, Fgr, Hck, Anxa1, Lgals3, Irf1, Lbp, Ptx3, Serping1) may represent key molecular links underlying acute activation of immune cells in the hippocampus in response to experimental ischemia. Functional annotation clustering revealed that these genes built the same clusters related to innate immunity/immunity/innate immune response in all MCAO differentially expressed genes and responded to the direct pro-inflammatory stimulus group. The gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses also indicate that LPS-responding genes were the most abundant among the genes related to "positive regulation of tumor necrosis factor biosynthetic process", "cell adhesion", "TNF signaling pathway", and "phagosome" as compared with non-responding ones. In contrast, positive and negative "regulation of cell proliferation" and "HIF-1 signaling pathway" mostly enriched with genes that did not respond to LPS. These results contribute to understanding genomic mechanisms of the impact of immune/inflammatory activation on expression of hippocampal genes after focal brain ischemia.
Collapse
Affiliation(s)
- Galina T. Shishkina
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (N.V.G.); (M.V.O.); (Y.V.M.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Dmitriy A. Lanshakov
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| | - Tatyana S. Kalinina
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| | - Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (N.V.G.); (M.V.O.); (Y.V.M.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (N.V.G.); (M.V.O.); (Y.V.M.)
| | - Ekaterina V. Sukhareva
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| | - Vladimir N. Babenko
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| | - Nikolay N. Dygalo
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| |
Collapse
|
23
|
A Novel Thromboplastin-Based Rat Model of Ischemic Stroke. Brain Sci 2021; 11:brainsci11111475. [PMID: 34827474 PMCID: PMC8615413 DOI: 10.3390/brainsci11111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
The thromboembolic ischemia model is one of the most applicable for studying ischemic stroke in humans. The aim of this study was to develop a novel thromboembolic stroke model, allowing, by affordable tools, to reproduce cerebral infarction in rats. In the experimental group, the left common carotid artery, external carotid artery, and pterygopalatine branch of maxillary artery were ligated. A blood clot that was previously formed (during a 20 min period, in a catheter and syringe, by mixing with a thromboplastin solution and CaCl2) was injected into the left internal carotid artery. After 10 min, the catheter was removed, and the incision was sutured. The neurological status of the animals was evaluated using a 20-point scale. Histological examination of brain tissue was performed 6, 24, 72 h, and 6 days post-stroke. All groups showed motor and behavioral disturbances 24 h after surgery, which persisted throughout the study period. A histological examination revealed necrotic foci of varying severity in the cortex and subcortical regions of the ipsilateral hemisphere, for all experimental groups. A decrease in the density of hippocampal pyramidal neurons was revealed. Compared with existing models, the proposed ischemic stroke model significantly reduces surgical time, does not require an expensive operating microscope, and consistently reproduces brain infarction in the area of the middle cerebral artery supply.
Collapse
|
24
|
Wang Y, Zhang S, Ni H, Zhang Y, Yan X, Gao Y, He B, Wang W, Liu C, Guo M. Autophagy is involved in the neuroprotective effect of nicotiflorin. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114279. [PMID: 34087402 DOI: 10.1016/j.jep.2021.114279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nicotiflorin is a flavonoid glycoside derived from the traditional Chinese medicine FlosCarthami, dried petals of Carthamus tinctorius L., and has been confirmed to be a promising novel drug candidate for ischemic stroke. Yet, the exact role of nicotiflorin in cerebral I/R injury is uncharacterized and the possible mechanisms have not been clearly expounded. AIM OF THE STUDY The present study was designed to determine the effect of nicotiflorin on cerebral ischemia/reperfusion (I/R) injury and its relationship with autophagy. MATERIALS AND METHODS Middle cerebral artery occlusion (MCAO) in rats and oxygen-glucose deprivation and reintroduction (OGD/R) in SH-SY5Y cells were established in in vivo and in vitro models, respectively. The severity of MCAO was assessed by brain infarct size, neurological scores and survival rate. The severity of OGD/R was evaluated by cell viability, lactate dehydrogenase (LDH) release and cell apoptosis. The level of autophagy was evaluated both in vivo and in vitro. Autophagosomes were observed using transmission electron microscopy and autophagic flux was measured using mRFP-GFP-tandem fluorescent LC3 adenovirus. Autophagy-related proteins (LC3-II/I, SQSTM1, beclin-1, Phospho-mTOR/mTOR) were measured by immunoblot. Autophagy-related mRNA levels (Becn1, Atg7) were detected by Real-Time PCR. Inhibition of autophagy was implemented by 3-Methyladenine (3-MA) or chloroquine in vitro. RESULTS In vivo, nicotiflorin treatment alleviated brain damage and neurological deficit while it dramatically increased 72 h survival rate in rats. In vitro, nicotiflorin treatment also ameliorated the severity of OGD/R. Moreover, nicotiflorin treatment increased ischemic penumbra autophagy (autophagosomes, BECN1, LC3-II/I ratio, SQSTM1, Phospho-mTOR/mTOR, Atg7). In vitro, nicotiflorin likewise enhanced autophagy and promoted autophagy flux. Furthermore, the blockade of autophagy by 3-MA or chloroquine disabled the efficacic of nicotiflorin in preventing cell damage upon OGD/R insult. CONCLUSION These findings suggest that autophagy plays a significant role in the protective effect of nicotiflorin against ischemic stroke.
Collapse
Affiliation(s)
- Yeqing Wang
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Shanshan Zhang
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Hailai Ni
- Department of Health Care, Changhai Hospital,Naval Medical University, Shanghai, 200433, China
| | - Yanjie Zhang
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xiaodong Yan
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yue Gao
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Beixuan He
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Wenzheng Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chong Liu
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Meili Guo
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
25
|
Onufriev MV, Moiseeva YV, Volobueva MN, Kvichansky AA, Tret’yakova LV, Gulyaeva NV. Neuroplastic Changes in Rat Hippocampus after Ischemic Stroke in the Neocortex: The Involvement of the Hypothalamic-Pituitary-Adrenal Axis System and the Neurotrophin System. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Khan MM, Badruddeen, Ahmad U, Akhtar J, Khan MI, Khan MF. Cerebroprotective effect of pterostilbene against global cerebral ischemia in rats. Heliyon 2021; 7:e07083. [PMID: 34095578 PMCID: PMC8150920 DOI: 10.1016/j.heliyon.2021.e07083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/26/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
AIM OF THE STUDY The role of pterostilbene against induced neurobehavioral alterations in global cerebral ischemia-reperfusion and oxidative damage was studied. MATERIALS AND METHODS Male SD rats (180-200 g) were exposed for 30 min to bilateral carotid artery occlusion accompanied by 60 min reperfusion to cause cerebral injury. Pretreatment with pterostilbene (200 and 400 mg/kg, orally) was given to the animals for ten days followed by ischemia-reperfusion injury. Various behavioral tests (locomotor activity, neurological score, transfer latency, hanging wire test) were studied. The brain tissues of animals were used for both the biochemical parameters (lipid peroxidation, reduced glutathione, superoxide dismutase, catalase activity) and histopathological study. RESULT The pterostilbene as given orally significantly improved neurobehavioral alterations compared to control ischemia-reperfusion. Treatment with pterostilbene (200, and 400 mg/kg, orally) also significantly attenuated oxidative damage as indicated by reduced lipid peroxidation, nitrite concentration, restored reduced glutathione, and catalase activity as compared to control (ischemia-reperfusion) animals. Overall, pterostilbene treated animals showed non significant histological alteration as compared to ischemia-reperfusion control. CONCLUSION This work suggests the beneficial effect of pterostilbene and its therapeutic potential against reperfusion-induced ischemia and associated behavioral changes in rats due to the stabilization of DNA damage with significant free radical scavenging properties.
Collapse
Affiliation(s)
- Mohd Muazzam Khan
- Faculty of Pharmacy, Integral University, Lucknow, 226020, Uttar Pradesh, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Lucknow, 226020, Uttar Pradesh, India
| | - Usama Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, 226020, Uttar Pradesh, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, 226020, Uttar Pradesh, India
| | - Mohammad Irfan Khan
- Faculty of Pharmacy, Integral University, Lucknow, 226020, Uttar Pradesh, India
| | - Mohd Faiyaz Khan
- Department of Clinical Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
27
|
Kim TR, Kim HY, Kim IH, Kim KC, Ko Y, Park JH, Yun S, Lee IC, Kim SH, Park HO. Safety pharmacology of self-assembled-micelle inhibitory RNA-targeting amphiregulin (SAMiRNA-AREG), a novel siRNA nanoparticle platform. Toxicol Rep 2021; 8:839-845. [PMID: 33912399 PMCID: PMC8065257 DOI: 10.1016/j.toxrep.2021.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 01/07/2023] Open
Abstract
The present safety pharmacology core battery studies (neurobehavior, respiratory, cardiovascular system, and human ether a-go-go (hERG) channel current) investigated the potential harmful effects of self-assembled-micelle inhibitory RNA-targeting amphiregulin (SAMiRNA-AREG). The SAMiRNA-AREG was administered by single intravenous injection at up to 300 mg/kg and 100 mg/kg in mice and monkeys, respectively. The hERG assay was performed in Chinese hamster ovary (CHO) cells at SAMiRNA-AREG concentrations of up to 200 μg/mL. In the evaluation on neurobehavior, a transient decrease in body temperature was found at 0.5 h (30 min) post-dose at both sexes in mice, with a single 300 mg/kg dose of SAMiRNA-AREG. However, these effects had returned to normal at 1 h post-dose. In the evaluation on hERG channel current, there were statistically significant differences in the inhibition of peak hERG potassium channel current between the 20, 100, and 200 μg/mL SAMiRNA-AREG treatment groups and the vehicle control group. However, these effects were less potent than that of E-4031, a positive control article. For the respiratory and cardiovascular systems, no treatment-related changes were observed in mice or monkeys. Thus, under these experimental conditions, these studies suggest that SAMiRNA-AREG showed no adverse effects on the neurobehavior, respiratory, and cardiovascular function.
Collapse
Affiliation(s)
- Tae Rim Kim
- siRNAgen Therapeutics and Bioneer Corporation, Daejeon, 34302, Republic of Korea
| | - Hyeon-Young Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea
| | - In-Hyeon Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea
| | - Ki Cheon Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea
| | - Youngho Ko
- siRNAgen Therapeutics and Bioneer Corporation, Daejeon, 34302, Republic of Korea
| | - Jun Hong Park
- siRNAgen Therapeutics and Bioneer Corporation, Daejeon, 34302, Republic of Korea
| | - Sungil Yun
- siRNAgen Therapeutics and Bioneer Corporation, Daejeon, 34302, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea
| | - Han-Oh Park
- siRNAgen Therapeutics and Bioneer Corporation, Daejeon, 34302, Republic of Korea
| |
Collapse
|
28
|
Lipoxin A4 regulates microglial M1/M2 polarization after cerebral ischemia-reperfusion injury via the Notch signaling pathway. Exp Neurol 2021; 339:113645. [PMID: 33600815 DOI: 10.1016/j.expneurol.2021.113645] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/30/2021] [Accepted: 02/12/2021] [Indexed: 11/23/2022]
Abstract
Microglia are rapidly activated after acute ischemic stroke, and the polarization of microglial is associated with the prognosis of acute ischemic stroke. Lipoxin A4 (LXA4), an anti-inflammatory agent, has a protective effect against ischemic stroke. However, the role of LXA4 on the polarization of microglial after acute ischemic stroke remains undetermined. We hypothesized that LXA4 may exert the neuroprotective effect though regulating the polarization of microglial. In this study, clinical features of acute ischemic stroke were simulated using a rat model of model of middle cerebral artery occlusion (MCAO) in vivo and the BV2 microglia oxygen-glucose deprivation/reoxygenation model (OGD/R) in vitro. The protective effects of LXA4 on cerebral ischemia-reperfusion injury were determined using TTC staining, HE staining, and TUNEL staining. The expression of targeted genes was assayed using quantitative real-time PCR (qRT-PCR), immunofluorescence, and western blot to investigated the regulation of LXA4 on microglia polarization after acute ischemic stroke. We found that LXA4 exerted protective effects on focal cerebral ischemia-reperfusion injury and reduced the expression of the pro-inflammatory cytokines IL-1β and TNF-α. Furthermore, LXA4 inhibited the expression of Notch-1, Hes1, iNOS and CD32 all of which are associated with the differentiation into M1 microglia. By contrast, LXA4 upregulated the expression of Hes5, Arg-1 and CD206 all of which are associated with M2 phenotype in microglia. In addition, blocking the Notch signaling pathway with the inhibitor DAPT significantly mitigated the effect of LXA4 on microglia differentiation. These data suggest that LXA4 may regulate the polarization of microglia after cerebral ischemia-reperfusion injury through the Notch signaling pathway.
Collapse
|
29
|
Dettori I, Gaviano L, Ugolini F, Lana D, Bulli I, Magni G, Rossi F, Giovannini MG, Pedata F. Protective Effect of Adenosine A 2B Receptor Agonist, BAY60-6583, Against Transient Focal Brain Ischemia in Rat. Front Pharmacol 2021; 11:588757. [PMID: 33643036 PMCID: PMC7905306 DOI: 10.3389/fphar.2020.588757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is a multifactorial pathology characterized first by an acute injury, due to excitotoxicity, followed by a secondary brain injury that develops hours to days after ischemia. During ischemia, adenosine acts as an endogenous neuroprotectant. Few studies have investigated the role of A2B receptor in brain ischemia because of the low potency of adenosine for it and the few selective ligands developed so far. A2B receptors are scarcely but widely distributed in the brain on neurons, glial and endothelial cells and on hematopoietic cells, lymphocytes and neutrophils, where they exert mainly anti-inflammatory effects, inhibiting vascular adhesion and inflammatory cells migration. Aim of this work was to verify whether chronic administration of the A2B agonist, BAY60-6583 (0.1 mg/kg i.p., twice/day), starting 4 h after focal ischemia induced by transient (1 h) Middle Cerebral Artery occlusion (tMCAo) in the rat, was protective after the ischemic insult. BAY60-6583 improved the neurological deficit up to 7 days after tMCAo. Seven days after ischemia BAY60-6583 reduced significantly the ischemic brain damage in cortex and striatum, counteracted ischemia-induced neuronal death, reduced microglia activation and astrocytes alteration. Moreover, it decreased the expression of TNF-α and increased that of IL-10 in peripheral plasma. Two days after ischemia BAY60-6583 reduced blood cell infiltration in the ischemic cortex. The present study indicates that A2B receptors stimulation can attenuate the neuroinflammation that develops after ischemia, suggesting that A2B receptors may represent a new interesting pharmacological target to protect from degeneration after brain ischemia.
Collapse
Affiliation(s)
- Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lisa Gaviano
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Giada Magni
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Florence, Italy
| | - Francesca Rossi
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
30
|
Ji YB, Gao Q, Tan XX, Huang XW, Ma YZ, Fang C, Wang SN, Qiu LH, Cheng YX, Guo FY, Chang J. Lithium alleviates blood-brain barrier breakdown after cerebral ischemia and reperfusion by upregulating endothelial Wnt/β-catenin signaling in mice. Neuropharmacology 2021; 186:108474. [PMID: 33524408 DOI: 10.1016/j.neuropharm.2021.108474] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
Although upregulation of endothelial Wnt/β-catenin signaling may be used to treat blood-brain barrier (BBB) breakdown caused by cerebral ischemia/reperfusion injury, no agents based on this mechanism are available clinically. Lithium, a medication used for treating bipolar mood disorders, upregulates Wnt/β-catenin signaling, but whether lithium alleviates BBB breakdown after ischemic stroke by upregulating endothelial Wnt/β-catenin signaling is unclear. Here, we evaluated the BBB-protective effect of lithium in adult mice with 1-h middle cerebral artery occlusion and 48-h reperfusion (MCAO/R) by determining neurological outcomes, BBB function and related molecular components. Furthermore, we assessed the effect and dependence of lithium on Wnt/β-catenin signaling in brain microvascular endothelial cells in cell culture and in mice with conditional endothelial knockout of Wnt7 co-receptor Gpr124. Our data show that lithium treatment (3 mmol/kg) significantly decreased infarct volume (34.1 ± 1.8% versus 58.3 ± 2.8% in vehicle controls, P < 0.0001) and improved neurological outcomes of mice following MCAO/R. Importantly, lithium significantly increased BBB integrity shown by reduction of Evans blue leakage (by 45.7%, P = 0.0064) and blood IgG extravasation (by 65.8%, P < 0.0001) into infarcted brain tissue. Mechanistically, lithium upregulated the activity of endothelial Wnt/β-catenin signaling in vivo and in vitro, increased the protein levels of tight junctions (Claudin-5 and ZO-1), and reduced MMP-9 expression. Furthermore, the protective effect of lithium on cerebral damage and BBB integrity was abolished in endothelial Gpr124 knockout mice, indicating the protection of lithium on BBB was mainly dependent on the Gpr124-mediated endothelial Wnt/β-catenin signaling. Taken together, our findings indicate that lithium may serve as a therapeutic candidate for treating the BBB breakdown in the early stage of ischemic stroke following reperfusion therapy.
Collapse
Affiliation(s)
- Ya-Bin Ji
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiang Gao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Xi-Xi Tan
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Neurology, Yangjiang People's Hospital, Yangjiang, 529500, China
| | - Xiao-Wen Huang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yin-Zhong Ma
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Cheng Fang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Sheng-Nan Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lin-Hui Qiu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518061, China
| | - Fu-You Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
31
|
Saikosaponin A improved depression-like behavior and inhibited hippocampal neuronal apoptosis after cerebral ischemia through p-CREB/BDNF pathway. Behav Brain Res 2021; 403:113138. [PMID: 33493495 DOI: 10.1016/j.bbr.2021.113138] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/31/2022]
Abstract
Post-stroke depression(PSD) is a common complication and associates with poor physical recovery, low quality of life and high mortality after cerebral infarction. However, the pathogenesis of PSD have not been elucidated thoroughly now, and there is a lack of effective therapy in clinic. It reported that Saikosaponin A, one of the main constituents from Chinese herb Bupleurum chinense, has pharmacological activity in anti-depression. Thus, this study aimed to elucidate the potential effects and mechanisms of Saikosaponin A on the depression-like behavior after cerebral ischemic injury in rats. The rat model of PSD was induced by middle cerebral artery occlusion(MCAO) combined with chronic unpredictable mild stress(CUMS) and isolation. Behavior tests including open field test, beam-walking test, sucrose preference and forced swimming tests were performed. Western blot and immunohistochemistry were adopted to evaluate expression of phosphorylated cAMP response element binding protein(p-CREB), brain derived neurotrophic factor(BDNF) and apoptosis-related molecules in the dentate gyrus region of rat hippocampus. The TUNEL assay was used to determine neuronal apoptosis. We found that the rats subjected to MCAO combined with CUMS and isolation experienced significant depressive-like behavior. Administration of Saikosaponin A significantly ameliorated depressive-like behavior, and inhibited neuronal apoptosis, enhanced the level of p-CREB, BDNF and Bcl-2, reduced the level of Bax, Caspase-3 in the hippocampus of PSD rats. These results revealed that Saikosaponin A improved depression-like behavior and inhibited hippocampal neuronal apoptosis after cerebral ischemia, presumably through increasing the expression of BDNF, p-CREB and Bcl-2, as well as decreasing the level of Bax, Caspase-3.
Collapse
|
32
|
Liu M, Beckett TL, Thomason LAM, Dorr A, Stefanovic B, McLaurin J. Covert strokes prior to Alzheimer's disease onset accelerate peri-lesional pathology but not cognitive deficits in an inducible APP mouse model. Brain Res 2021; 1754:147233. [PMID: 33412147 DOI: 10.1016/j.brainres.2020.147233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
It is estimated that up to 1 in 3 healthy middle-aged adults will have had a covert stroke during their lifetime. Furthermore, post-stroke, survivors are more than twice as likely to develop dementia. In the present study, we aimed to model the impact of focal subclinical ischemia prior to the onset of AD pathogenesis in a preclinical model. We utilized endothelin-1 to induce ischemia in an iducible transgenic mouse model of Alzheimer's disease, APPsi:tTA, allowing for temporal control of APP gene expression. We induced the focal subclinical ischemic events in the absence of APP expression, thus prior to AD onset. T2 structural magnetic resonance imaging confirmed the volume and location of focal subclinical ischemic lesions to the medial prefrontal cortex. Following recovery from surgery and 7 weeks of APP expression, we found that two subclinical ischemic lesions resulted in a significant localized increase in amyloid load and in microglial activation proximal to the lesion. However, no differences were found in astrogliosis. A battery of behaviour tests was conducted, in which no significant differences were detected in activities of daily living and cognitive function between stroked and sham cohorts. Overall, our results demonstrated that APP expression was the sole driving force behind behavioural deficits. In conclusion, our results suggest that a history of two subclinical strokes prior to AD onset does not worsen early disease trajectory in a mouse model.
Collapse
Affiliation(s)
- Mingzhe Liu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Tina L Beckett
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Adrienne Dorr
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Bojana Stefanovic
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - JoAnne McLaurin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
33
|
Tsai LC, Wu YN, Liu SQ, Zhang LQ. Changes in Muscle Stress and Sarcomere Adaptation in Mice Following Ischemic Stroke. Front Physiol 2020; 11:581846. [PMID: 33408638 PMCID: PMC7781356 DOI: 10.3389/fphys.2020.581846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
While abnormal muscle tone has been observed in people with stroke, how these changes in muscle tension affect sarcomere morphology remains unclear. The purpose of this study was to examine time-course changes in passive muscle fiber tension and sarcomeric adaptation to these changes post-ischemic stroke in a mouse model by using a novel in-vivo force microscope. Twenty-one mice were evenly divided into three groups based on the time point of testing: 3 days (D3), 10 days (D10), and 20 days (D20) following right middle cerebral artery ligation. At each testing time, the muscle length, width, and estimated volume of the isolated soleus muscle were recorded, subsequently followed by in-vivo muscle tension and sarcomere length measurement. The mass of the soleus muscle was measured at the end of testing to calculate muscle density. Two-way ANOVA with repeated measures was used to examine the differences in each of the dependent variable among the three time-point groups and between the two legs. The passive muscle stress of the impaired limbs in the D3 group (27.65 ± 8.37 kPa) was significantly lower than the less involved limbs (42.03 ± 18.61 kPa; p = 0.05) and the impaired limbs of the D10 (48.92 ± 14.73; p = 0.03) and D20 (53.28 ± 20.54 kPa; p = 0.01) groups. The soleus muscle density of the impaired limbs in the D3 group (0.69 ± 0.12 g/cm3) was significantly lower than the less involved limbs (0.80 ± 0.09 g/cm3; p = 0.04) and the impaired limbs of the D10 (0.87 ± 0.12 g/cm3; p = 0.02) and D20 (1.00 ± 0.14 g/cm3; p < 0.01) groups. The D3 group had a shorter sarcomere length (2.55 ± 0.26 μm) than the D10 (2.83 ± 0.20 μm; p = 0.03) and D20 group (2.81 ± 0.15 μm; p = 0.04). These results suggest that, while ischemic stroke may cause considerable changes in muscle tension and stress, sarcomere additions under increased mechanical loadings may be absent or disrupted post-stroke, which may contribute to muscle spasticity and/or joint contracture commonly observed in patients following stroke.
Collapse
Affiliation(s)
- Liang-Ching Tsai
- Department of Physical Therapy, Georgia State University, Atlanta, GA, United States
| | - Yi-Ning Wu
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States
| | - Shu Q. Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Li-Qun Zhang
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, MD, United States
- Department of Orthopaedics, University of Maryland, Baltimore, MD, United States
- Department of Bioengineering, University of Maryland, College Park, MD, United States
| |
Collapse
|
34
|
Zaghmi A, Dopico-López A, Pérez-Mato M, Iglesias-Rey R, Hervella P, Greschner AA, Bugallo-Casal A, da Silva A, Gutiérrez-Fernández M, Castillo J, Pérez FC, Gauthier MA. Sustained blood glutamate scavenging enhances protection in ischemic stroke. Commun Biol 2020; 3:729. [PMID: 33273696 PMCID: PMC7713697 DOI: 10.1038/s42003-020-01406-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Stroke is a major cause of morbidity, mortality, and disability. During ischemic stroke, a marked and prolonged rise of glutamate concentration in the brain causes neuronal cell death. This study explores the protective effect of a bioconjugate form of glutamate oxaloacetate transaminase (hrGOT), which catalyzes the depletion of blood glutamate in the bloodstream for ~6 days following a single administration. When treated with this bioconjugate, a significant reduction of the infarct volume and a better retention of sensorimotor function was observed for ischemic rats compared to those treated with saline. Moreover, the equivalent dose of native hrGOT yielded similar results to the saline treated group for some tests. Targeting the bioconjugate to the blood-brain-barrier did not improve its performance. The data suggest that the bioconjugates draw glutamate out of the brain by displacing homeostasis between the different glutamate pools of the body.
Collapse
Affiliation(s)
- Ahlem Zaghmi
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Qc, J3X 1S2, Canada
| | - Antonio Dopico-López
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Pérez-Mato
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ramón Iglesias-Rey
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Andrea A Greschner
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Qc, J3X 1S2, Canada
| | - Ana Bugallo-Casal
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Andrés da Silva
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Gutiérrez-Fernández
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Castillo
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos Pérez
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Qc, J3X 1S2, Canada.
| |
Collapse
|
35
|
Lee CH, Sapkota A, Gaire BP, Choi JW. NLRP3 Inflammasome Activation Is Involved in LPA 1-Mediated Brain Injury after Transient Focal Cerebral Ischemia. Int J Mol Sci 2020; 21:ijms21228595. [PMID: 33202644 PMCID: PMC7697439 DOI: 10.3390/ijms21228595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Lysophosphatidic acid receptor 1 (LPA1) contributes to brain injury following transient focal cerebral ischemia. However, the mechanism remains unclear. Here, we investigated whether nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation might be an underlying mechanism involved in the pathogenesis of brain injury associated with LPA1 following ischemic challenge with transient middle cerebral artery occlusion (tMCAO). Suppressing LPA1 activity by its antagonist attenuated NLRP3 upregulation in the penumbra and ischemic core regions, particularly in ionized calcium-binding adapter molecule 1 (Iba1)-expressing cells like macrophages of mouse after tMCAO challenge. It also suppressed NLRP3 inflammasome activation, such as caspase-1 activation, interleukin 1β (IL-1β) maturation, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) speck formation, in a post-ischemic brain. The role of LPA1 in NLRP3 inflammasome activation was confirmed in vitro using lipopolysaccharide-primed bone marrow-derived macrophages, followed by LPA exposure. Suppressing LPA1 activity by either pharmacological antagonism or genetic knockdown attenuated NLRP3 upregulation, caspase-1 activation, IL-1β maturation, and IL-1β secretion in these cells. Furthermore, nuclear factor-κB (NF-κB), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 were found to be LPA1-dependent effector pathways in these cells. Collectively, results of the current study first demonstrate that LPA1 could contribute to ischemic brain injury by activating NLRP3 inflammasome with underlying effector mechanisms.
Collapse
|
36
|
Martinez-Tapia RJ, Estrada-Rojo F, Lopez-Aceves TG, Rodríguez-Mata V, Perez-Torres A, Barajas-Martinez A, Garcia-Velasco S, Ugalde-Muñiz P, Navarro L. Diurnal Variation Induces Neurobehavioral and Neuropathological Differences in a Rat Model of Traumatic Brain Injury. Front Neurosci 2020; 14:564992. [PMID: 33132827 PMCID: PMC7550533 DOI: 10.3389/fnins.2020.564992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023] Open
Abstract
Traumatic brain injury (TBI) induces two types of brain damage: primary and secondary. Damage initiates a series of pathophysiological processes, such as metabolic crisis, excitotoxicity with oxidative stress-induced damage, and neuroinflammation. The long-term perpetuation of these processes has deleterious consequences for neuronal function. However, it remains to be elucidated further whether physiological variation in the brain microenvironment, depending on diurnal variations, influences the damage, and consequently, exerts a neuroprotective effect. Here, we established an experimental rat model of TBI and evaluated the effects of TBI induced at two different time points of the light–dark cycle. Behavioral responses were assessed using a 21-point neurobehavioral scale and the cylinder test. Morphological damage was assessed in different regions of the central nervous system. We found that rats that experienced a TBI during the dark hours had better behavioral performance than those injured during the light hours. Differences in behavioral performance correlated with less morphological damage in the perilesional zone. Moreover, certain brain areas (CA1 and dentate gyrus subregions of the hippocampus) were less prone to damage in rats that experienced a TBI during the dark hours. Our results suggest that diurnal variation is a crucial determinant of TBI outcome, and the hour of the day at which an injury occurs should be considered for future research.
Collapse
Affiliation(s)
| | - Francisco Estrada-Rojo
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Teresita Guadalupe Lopez-Aceves
- Programa Regional de Posgrado en Biotecnologia, Facultad de Ciencias Quimico Biologicas, Universidad Autonoma de Sinaloa, Culiacán, Mexico
| | - Veronica Rodríguez-Mata
- Departamento de Biologia Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de México, Mexico City, Mexico
| | - Armando Perez-Torres
- Departamento de Biologia Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de México, Mexico City, Mexico
| | - Antonio Barajas-Martinez
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Stephany Garcia-Velasco
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Perla Ugalde-Muñiz
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Luz Navarro
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| |
Collapse
|
37
|
Dapagliflozin improves behavioral dysfunction of Huntington's disease in rats via inhibiting apoptosis-related glycolysis. Life Sci 2020; 257:118076. [PMID: 32659371 DOI: 10.1016/j.lfs.2020.118076] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
AIMS Huntington's disease is a rare neurodegenerative disorder which is associated with defected glucose metabolism with consequent behavioral disturbance including memory and locomotion. 3-nitropropionic acid (3-NP) can cause, in high single dose, an acute striatal injury/Huntington's disease. Dapagliflozin, which is one of the longest duration of action of SGLTIs family, may be able to diminish that injury and its resultant behavioral disturbances. MATERIAL AND METHODS Forty rats were divided into four groups (n = 10 in each group): normal control group (CTRL), dapagliflozin (CTRL + DAPA) group, 3-nitropropionic acid (3-NP) group, and dapagliflozin plus 3-nitropropionic acid (DAPA + 3-NP) group. Behavioral tests (beam walking test, hanging wire test, limb withdrawal test, Y-maze spontaneous alteration, elevated plus maze) were performed with evaluating neurological scoring. In striatum, neurotransmitters (glutamate, aspartate, GABA, ACh and AChE activity) were measured. In addition, apoptosis and glycolysis markers (NF-κB, Cyt-c, lactate, HK-II activity, P53, calpain, PEA15 and TIGAR) were determined. Inflammation (IL-1β, IL-6, IL-8 and TNF-α) and autophagy (beclin-1, LC3 and DRAM) indicators were measured. Additionally, histopathological screening was conducted. KEY FINDINGS 3-Nitropropionic acid had the ability to perturb the neurotransmission which was reflected in impaired behavioral outcome. All of glycolysis, apoptosis and inflammation markers were elevated after 3-NP acute intoxication but autophagy parameters, except DRAM, were reduced. However, DAPA markedly reversed the abovementioned parameters. SIGNIFICANCE Dapagliflozin demonstrated anti-glycolytic, anti-apoptotic, anti-inflammatory and autophagic effects on 3-NP-damaged striatal cells and promoted the behavioral outcome.
Collapse
|
38
|
Akinmoladun AC, Obadaye TS, Olaleye MT, Akindahunsi AA. Prophylaxis with a multicomponent nutraceutical abates transient cerebral ischemia/reperfusion injury. J Food Biochem 2020; 45:e13351. [PMID: 32614085 DOI: 10.1111/jfbc.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/01/2022]
Abstract
The effect of a multicomponent nutraceutical on cerebral ischemia/reperfusion injury in male Wistar rats was investigated. Animals were administered with the nutraceutical, Trévo™, for 7 days before 30 min of bilateral common carotid artery occlusion-induced cerebral ischemia and 24 hr of reperfusion. Behavioral assessment, biochemical estimations in the brain cortex, striatum, and hippocampus, and hippocampal histopathological evaluation were carried out after treatments. Results showed that ischemia/reperfusion-induced motor and cognitive deficits were abated in rats pretreated with Trévo™. Additionally, prophylaxis with Trévo™ blunted ischemia/reperfusion-induced redox stress, proinflammatory events, disturbances in neurotransmitter metabolism, mitochondrial dysfunction, and histoarchitectural aberrations in the discreet brain regions. In summary, supplementation with Trévo™ provided neuroprotection to rats against transient cerebral ischemia/reperfusion injury and could be explored as a promising approach in stroke prevention. PRACTICAL APPLICATIONS: There is a worldwide increase in the incidence of cerebral ischemia or stroke. Although an advanced health care system and effective control of risk factors have led to the declining incidence in developed nations, a definitive cure for stroke remains elusive and the situation is growing worse in developing nations. The results of the present study revealed that supplementation with Trévo™ ameliorated neurobehavioral, neurochemical, and histopathological consequences of brain ischemia/reperfusion injury and could, therefore, be beneficial in stroke prevention and management.
Collapse
Affiliation(s)
| | - Tobi S Obadaye
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Mary T Olaleye
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | | |
Collapse
|
39
|
Mohammadzadeh L, Latifi H, Khaksar S, Feiz MS, Motamedi F, Asadollahi A, Ezzatpour M. Measuring the Frequency-Specific Functional Connectivity Using Wavelet Coherence Analysis in Stroke Rats Based on Intrinsic Signals. Sci Rep 2020; 10:9429. [PMID: 32523058 PMCID: PMC7286921 DOI: 10.1038/s41598-020-66246-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/17/2020] [Indexed: 12/28/2022] Open
Abstract
Optical intrinsic signal imaging (OISi) method is an optical technique to evaluate the functional connectivity (FC) of the cortex in animals. Already, using OISi, the FC of the cortex has been measured in time or frequency domain separately, and at frequencies below 0.08 Hz, which is not in the frequency range of hemodynamic oscillations which are able to track fast cortical events, including neurogenic, myogenic, cardiac and respiratory activities. In the current work, we calculated the wavelet coherence (WC) transform of the OISi time series to evaluate the cerebral response changes in the stroke rats. Utilizing WC, we measured FC at frequencies up to 4.5 Hz, and could monitor the time and frequency dependency of the FC simultaneously. The results showed that the WC of the brain diminished significantly in ischemic motor and somatosensory cortices. According to the statistical results, the signal amplitude, responsive area size, correlation, and wavelet coherence of the motor and the somatosensory cortices for stroke hemisphere were found to be significantly lower compared to the healthy hemisphere. The obtained results confirm that the OISi-based WC analysis is an efficient method to diagnose the relative severity of infarction and the size of the infarcted region after ischemic stroke.
Collapse
Affiliation(s)
- Leila Mohammadzadeh
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran. .,Department of Physics, Shahid Beheshti University, Tehran, 1983963113, Iran.
| | - Sepideh Khaksar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, 1993893973, Iran
| | - Mohammad-Sadegh Feiz
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran
| | - Amir Asadollahi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Marzieh Ezzatpour
- Department of Physics, Shahid Beheshti University, Tehran, 1983963113, Iran
| |
Collapse
|
40
|
Protective effects of Corbrin Capsule against permanent cerebral ischemia in mice. Biomed Pharmacother 2020; 121:109646. [DOI: 10.1016/j.biopha.2019.109646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/19/2019] [Accepted: 10/31/2019] [Indexed: 01/31/2023] Open
|
41
|
Pablos A, Ceca D, Jorda A, Rivera P, Colmena C, Elvira L, Martínez-Arnau FM, Valles SL. Protective Effects of Foam Rolling against Inflammation and Notexin Induced Muscle Damage in Rats. Int J Med Sci 2020; 17:71-81. [PMID: 31929740 PMCID: PMC6945557 DOI: 10.7150/ijms.37981] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/14/2019] [Indexed: 01/05/2023] Open
Abstract
It is known that high-intensity exercise can cause inflammation and damage in muscle tissue, and in recent years, physical therapists and fitness professionals have begun to use foam rolling as a recovery method to improve performance. Despite the lack of basic science studies to support or refute the efficacy of foam rolling, the technique is very widely used in the sports world. In this respect, we investigated whether foam rolling could attenuate muscle damage and inflammation. Female Wistar rats were assigned to control (C), foam rolling (FR), notexin without foam rolling (N) and notexin with foam rolling (NFR) groups. A 4.5 x 2 cm foam roller was used to massage their hind legs (two 60-second repetitions twice a day for 3 days). Motor function tests (Balance Beam Test and Grip strength) were used. We detected an increase in time and foot faults when crossing a beam in the N group compared to C and FR rats. In contrast, a significant decrease was detected in both tests in NFR compared to N rats. Muscle power was measured with a grip strength test and better performance was detected in NFR rats compared to N rats. Furthermore, an increase of pro-inflammatory proteins was noted in the N group, while there was a decrease in the NFR group. On the contrary, an increase in PPAR-γ (anti-inflammatory protein) in the NFR group compared to the N group demonstrates the anti-inflammatory properties of the foam rolling technique. In summary, applying foam rolling after damage has benefits such as an increase in anti-inflammatory proteins and a reduction of pro-inflammatory proteins, resulting in muscle recovery and better performance.
Collapse
Affiliation(s)
- Ana Pablos
- Faculty of Physical Activity and Sport Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Diego Ceca
- Department of Education, Universidad Internacional de Valencia, Valencia, Spain.,Faculty of Physical Activity and Sport Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Adrián Jorda
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Pilar Rivera
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Carlos Colmena
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Laura Elvira
- Faculty of Physical Activity and Sport Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Francisco M Martínez-Arnau
- Faculty of Nursing, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Departament of Physiotherapy, University of Valencia, Valencia, Spain
| | - Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
42
|
Ermine CM, Somaa F, Wang TY, Kagan BJ, Parish CL, Thompson LH. Long-Term Motor Deficit and Diffuse Cortical Atrophy Following Focal Cortical Ischemia in Athymic Rats. Front Cell Neurosci 2019; 13:552. [PMID: 31920553 PMCID: PMC6927997 DOI: 10.3389/fncel.2019.00552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
Development of new stroke therapies requires animal models that recapitulate the pathophysiological and functional consequences of ischemic brain damage over time-frames relevant to the therapeutic intervention. This is particularly relevant for the rapidly developing area of stem cell therapies, where functional replacement of circuitry will require maturation of transplanted human cells over months. An additional challenge is the establishment of models of ischemia with stable behavioral phenotypes in chronically immune-suppressed animals to allow for long-term survival of human cell grafts. Here we report that microinjection of endothelin-1 into the sensorimotor cortex of athymic rats results in ischemic damage with a sustained deficit in function of the contralateral forepaw that persists for up to 9 months. The histological post-mortem analysis revealed chronic and diffuse atrophy of the ischemic cortical hemisphere that continued to progress over 9 months. Secondary atrophy remote to the primary site of injury and its relationship with long-term cognitive and functional decline is now recognized in human populations. Thus, focal cortical infarction in athymic rats mirrors important pathophysiological and functional features relevant to human stroke, and will be valuable for assessing efficacy of stem cell based therapies.
Collapse
Affiliation(s)
- Charlotte M Ermine
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Fahad Somaa
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ting-Yi Wang
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Brett J Kagan
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Clare L Parish
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Lachlan H Thompson
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
43
|
Kwon JI, Woo CW, Kim KW, Choi Y, Kim ST, Kim YJ, Kang J, Lee DW, Tak E, Kim JK, Jung SC, Kim TH, Woo DC. Does the Apparent Diffusion Coefficient Value Predict Permanent Cerebral Ischemia/Reperfusion Injury in Rats? Acad Radiol 2019; 26:e348-e354. [PMID: 30661976 DOI: 10.1016/j.acra.2018.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
RATIONALE AND OBJECTIVES Variation in tissue damage after cerebral ischemia/reperfusion (I/R) can cause uncertainty in stroke-related studies, which can be reduced if the damage can be predicted early after ischemia by measuring the apparent diffusion coefficient (ADC). We investigated whether ADC measurement in the acute phase can predict permanent cerebral I/R injury. MATERIALS AND METHODS The middle cerebral artery occlusion model was established using the intraluminal suture method to induce 60 minutes of ischemia followed by reperfusion in rats. T2-weighted images and diffusion-weighted images were obtained at 30 minutes and 24 hours after ischemia. Neuronal cell survival was assessed by neuronal nuclei (NeuN) immunofluorescence staining. The correlation between relative ADC (rADC) values at 30 minutes and I/R injury at 24 hours after ischemia was analyzed. Magnetic resonance imaging results were confirmed by histologic analysis. RESULTS The correlation between rADC values at 30 minutes and 24 hours was strong in the ischemic core and peri-infarct region but moderate in the anterior choroidal and hypothalamic region. Histologic analysis revealed that the correlation between rADC values at 30 minutes and the number of NeuN-positive cells at 24 hours was strong in the ischemic core and peri-infarct region but moderate in the anterior choroidal and hypothalamic region. Furthermore, there was a strong positive correlation between the sum of rADC values of three regions at 30 minutes and the infarct volume at 24 hours. CONCLUSION ADC measurement in the acute phase can predict permanent cerebral I/R injury and provide important information for the evaluation of ischemic stroke.
Collapse
|
44
|
Wen Z, Jiang Y, Zhang L, Xu X, Zhao N, Xu X, Wang F, Gao J, Yang GY, Liu X. The effect of anterior communicating artery flow on neurovascular injury and neurobehavioral outcomes in mice with recurrent stroke. Brain Res 2019; 1724:146440. [PMID: 31513789 DOI: 10.1016/j.brainres.2019.146440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Previous studies have estimated that the risk of recurrent stroke was nearly 20% shortly after a transient ischemic attack (TIA) or minor stroke. A missing or hypoplastic (<0.5 mm) anterior communicating artery can have deleterious effects on the brain. Our study aimed to investigate the effect of anterior communicating artery flow on neurovascular injury and neurobehavioral outcomes in mice with recurrent stroke and to identify its underlying mechanisms. METHODS A recurrent stroke model was established by an initial cortical infarction followed by a corticostriatal infarction 3 days later. The vascular structure was visualized using synchrotron radiation angiography & magnetic resonance angiography in vivo and transparent endovascular perfusion imaging in vitro. Microvessel perfusion was assessed via fluorescein isothiocyanate perfusion. The infarct volume was measured by magnetic resonance imaging. RESULTS The finding that anterior communicating artery flow facilitates pial artery patency in the ipsilateral hemisphere in mice with recurrent stroke suggests that compensatory collateral patency contributes to increased regional cerebral blood flow, enhanced microcirculatory perfusion, improved neurological function and reduced infarct volume. CONCLUSIONS The results of this study demonstrate that anterior communicating artery flow alleviates recurrent stroke-induced neurovascular injury and improves neurobehavioral outcomes by promoting the establishment of collateral circulation.
Collapse
Affiliation(s)
- Zhuoyu Wen
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China; Department of Neurology, Shanghai Fifth People's Hospital Affiliated with Fudan University, Shanghai, China
| | - Yongjun Jiang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China; Department of Neurology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linyuan Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomeng Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Nan Zhao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaohui Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Fang Wang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jie Gao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
45
|
Crofts A, Kelly ME, Gibson CL. Imaging Functional Recovery Following Ischemic Stroke: Clinical and Preclinical fMRI Studies. J Neuroimaging 2019; 30:5-14. [PMID: 31608550 PMCID: PMC7003729 DOI: 10.1111/jon.12668] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022] Open
Abstract
Disability and effectiveness of physical therapy are highly variable following ischemic stroke due to different brain regions being affected. Functional magnetic resonance imaging (fMRI) studies of patients in the months and years following stroke have given some insight into how the brain recovers lost functions. Initially, new pathways are recruited to compensate for the lost region, showing as a brighter blood oxygen‐level‐dependent (BOLD) signal over a larger area during a task than in healthy controls. Subsequently, activity is reduced to baseline levels as pathways become more efficient, mimicking the process of learning typically seen during development. Preclinical models of ischemic stroke aim to enhance understanding of the biology underlying recovery following stroke. However, the pattern of recruitment and focusing seen in humans has not been observed in preclinical fMRI studies that are highly variable methodologically. Resting‐state fMRI studies show more consistency; however, there are still confounding factors to address. Anesthesia and method of stroke induction are the two main sources of variability in preclinical studies; improvements here can reduce variability and increase the intensity and reproducibility of the BOLD response detected by fMRI. Differences in task or stimulus and differences in analysis method also present a source of variability. This review compares clinical and preclinical fMRI studies of recovery following stroke and focuses on how refinement of preclinical models and MRI methods may obtain more representative fMRI data in relation to human studies.
Collapse
Affiliation(s)
- Andrew Crofts
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Michael E Kelly
- Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Claire L Gibson
- School of Psychology, University of Nottingham, Nottingham, UK
| |
Collapse
|
46
|
Kikuchi T, Fukuta T, Agato Y, Yanagida Y, Ishii T, Koide H, Shimizu K, Oku N, Asai T. Suppression of Cerebral Ischemia/Reperfusion Injury by Efficient Release of Encapsulated Ifenprodil From Liposomes Under Weakly Acidic pH Conditions. J Pharm Sci 2019; 108:3823-3830. [PMID: 31520645 DOI: 10.1016/j.xphs.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 01/19/2023]
Abstract
Although N-methyl-d-aspartate receptor antagonists are hopeful therapeutic agents against cerebral ischemia/reperfusion (I/R) injury, effective approaches are needed to allow such agents to pass through the blood-brain barrier, thus increasing bioavailability of the antagonists to realize secure treatment. We previously demonstrated the usefulness of liposomal delivery of neuroprotectants via spaces between the disrupted blood-brain barrier induced after cerebral I/R. In the present study, a liposomal formulation of an N-methyl-d-aspartate receptor antagonist, ifenprodil, was newly designed; and the potential of liposomal ifenprodil was evaluated in transient middle cerebral artery occlusion rats. Ifenprodil was encapsulated into liposomes by a remote loading method using pH gradient between internal and external water phases of liposomes, focusing on differences of its solubility in water depending on pH. The encapsulated ifenprodil could be quickly released from the liposomes in vitro under a weakly acidic pH condition, which is a distinctive condition after cerebral I/R. Liposomal ifenprodil treatment significantly alleviated I/R-induced increase in permeability of the BBB by inhibiting superoxide anion production, resulting in ameliorating ischemic brain damage. Taken together, these results suggest that Ifen-Lip could become a hopeful neuroprotectant for cerebral I/R injury via efficient release of the encapsulated ifenprodil under weakly acidic pH conditions.
Collapse
Affiliation(s)
- Takashi Kikuchi
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tatsuya Fukuta
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yurika Agato
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yosuke Yanagida
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takayuki Ishii
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Koide
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kosuke Shimizu
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
47
|
The diabetes drug semaglutide reduces infarct size, inflammation, and apoptosis, and normalizes neurogenesis in a rat model of stroke. Neuropharmacology 2019; 158:107748. [PMID: 31465784 DOI: 10.1016/j.neuropharm.2019.107748] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/18/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
Stroke is a condition with few medical treatments available. Semaglutide, a novel Glucagon-like peptide-1 (GLP-1) analogue, has been brought to the market as a treatment for diabetes. We tested the protective effects of semaglutide against middle cerebral artery occlusion injury in rats. Animals were treated with 10 nmol/kg bw ip. starting 2 h after surgery and every second day for either 1, 7, 14 or 21 days. Semaglutide-treated animals showed significantly reduced scores of neurological impairments in several motor and grip strength tasks. The cerebral infarction size was also reduced, and the loss of neurons in the hippocampal areas CA1, CA3 and the dentate gyrus was much reduced. Chronic inflammation as seen in levels of activated microglia and in the activity of the p38 MAPK - MKK - c-Jun- NF-κB p65 inflammation signaling pathway was reduced. In addition, improved growth factor signaling as shown in levels of activated ERK1 and IRS-1, and a reduction in the apoptosis signaling pathway C-raf, ERK2, Bcl-2/BAX and Caspase-3 was observed. Neurogenesis had also been normalized by the drug treatment as seen in increased neurogenesis (DCX-positive cells) in the dentate gyrus and a normalization of biomarkers for neurogenesis. In conclusion, semaglutide is a promising candidate for re-purposing as a stroke treatment.
Collapse
|
48
|
Drews HJ, Yenkoyan K, Lourhmati A, Buadze M, Kabisch D, Verleysdonk S, Petschak S, Beer-Hammer S, Davtyan T, Frey WH, Gleiter CH, Schwab M, Danielyan L. Intranasal Losartan Decreases Perivascular Beta Amyloid, Inflammation, and the Decline of Neurogenesis in Hypertensive Rats. Neurotherapeutics 2019; 16:725-740. [PMID: 30796737 PMCID: PMC6694377 DOI: 10.1007/s13311-019-00723-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The contribution of the local angiotensin receptor system to neuroinflammation, impaired neurogenesis, and amyloid beta (Aβ) accumulation in Alzheimer's disease (AD) and in hypertension is consistent with the remarkable neuroprotection provided by angiotensin receptor blockers (ARBs) independent of their blood pressure-lowering effect. Considering the causal relationship between hypertension and AD and that targeting cerebrovascular pathology with ARBs does not necessarily require their systemic effects, we tested intranasal losartan in the rat model of chronic hypertension (spontaneously hypertensive stroke-prone rats, SHRSP). Intranasal losartan at a subdepressor dose decreased mortality, neuroinflammation, and perivascular content of Aβ by enhancing key players in its metabolism and clearance, including insulin-degrading enzyme, neprilysin, and transthyretin. Furthermore, this treatment improved neurologic deficits and increased brain IL-10 concentration, hippocampal cell survival, neurogenesis, and choroid plexus cell proliferation in SHRSP. Losartan (1 μM) also reduced LDH release from cultured astroglial cells in response to toxic glutamate concentrations. This effect was completely blunted by IL-10 antibodies. These findings suggest that intranasal ARB treatment is a neuroprotective, neurogenesis-inducing, and Aβ-decreasing strategy for the treatment of hypertensive stroke and cerebral amyloid angiopathy acting at least partly through the IL-10 pathway.
Collapse
Affiliation(s)
- Henning J Drews
- Department of Clinical Pharmacology, University Hospital of Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Konstantin Yenkoyan
- Departments of Biochemistry and of Clinical Pharmacology, Yerevan State Medical University, 0025, Yerevan, Armenia
- Neuroscience Laboratory, Yerevan State Medical University, 0025, Yerevan, Armenia
| | - Ali Lourhmati
- Department of Clinical Pharmacology, University Hospital of Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Marine Buadze
- Department of Clinical Pharmacology, University Hospital of Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Daniela Kabisch
- Department of Clinical Pharmacology, University Hospital of Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Stephan Verleysdonk
- Interfaculty Institute of Biochemistry (IFIB), Eberhard Karls Universität Tübingen, 72076, Tuebingen, Germany
| | - Stefan Petschak
- Department of Clinical Pharmacology, University Hospital of Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), University of Tuebingen, 72074, Tuebingen, Germany
| | - Tigran Davtyan
- Analytical Laboratory Branch of E. Gabriyelian Scientific Center of Drug and Medical Technology Expertise of Ministry Health of Armenia, 0051, Yerevan, Armenia
| | - William H Frey
- Center for Memory & Aging, HealthPartners Institute, St. Paul, MN, USA
| | - Christoph H Gleiter
- Department of Clinical Pharmacology, University Hospital of Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital of Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
- Departments of Biochemistry and of Clinical Pharmacology, Yerevan State Medical University, 0025, Yerevan, Armenia
- Neuroscience Laboratory, Yerevan State Medical University, 0025, Yerevan, Armenia
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- Department of Pharmacy and Biochemistry, University of Tuebingen, 72076, Tuebingen, Germany
| | - Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital of Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany.
- Departments of Biochemistry and of Clinical Pharmacology, Yerevan State Medical University, 0025, Yerevan, Armenia.
- Neuroscience Laboratory, Yerevan State Medical University, 0025, Yerevan, Armenia.
| |
Collapse
|
49
|
Yang S, Wang H, Yang Y, Wang R, Wang Y, Wu C, Du G. Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage. Biomed Pharmacother 2019; 117:109102. [PMID: 31228802 DOI: 10.1016/j.biopha.2019.109102] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 01/08/2023] Open
Abstract
Ischemic stroke is a cerebrovascular disease with high morbidity, high mortality, and high disability, representing a serious threat to human life and health. Clinically, the extensive injury caused by ischemic stroke results from ischemia-reperfusion (I/R) injury thrombolytic treatment. However, there are few reports on the use of medications in the subacute stage of cerebral I/R. Baicalein (5,6,7-trihydroxyflavone) is a biologically active ingredient extracted from the root of Scutellaria baicalensis Georgi. In the present study, we investigated the therapeutic effect of baicalein administered in the subacute phase of cerebral I/R injury in a rat model of ischemia induced by occlusion of the middle cerebral artery (MCA). Rats were treated daily with baicalein (200 mg/kg, i.g.) in the subacute phase (24 h after reperfusion) for 7 days. The results showed that baicalein significantly reduced neurobehavioral deficits and decreased brain infarct volume from 18.99% to 7.41%. Immunofluorescence analysis of the ischemic penumbra showed that baicalein significantly reduced expression of the M1 marker, cluster of differentiation (CD) 16 and CD86, and increased expression of the M2 marker, CD 163 and CD206, indicating that baicalein inhibited M1 transformation and promoted M2 transformation of microglia/macrophage to inhibit neuroinflammation. Moreover, baicalein suppressed NF-κB signaling by reducing IκBα phosphorylation and nuclear translocation of NF-κB/p65, which decreased the release of the pro-inflammatory factors IL-6, IL-18, and TNF-α. In addition, baicalein reduced phosphorylation of JNK, ERK and p38, which are involved modulation of microglia/macrophage M1/M2 polarization. Western blot analysis of apoptosis- and autophagy-related proteins showed that baicalein increased the Bcl-2/Bax ratio and reduced caspase-3 expression to decrease neuronal apoptosis and ameliorate neuronal loss. Baicalein also decreased the LC3-II/LC3-I ratio and promoted phosphorylation of the PI3K/Akt/mTOR signaling pathway which implied inhibition of autophagy. These observations suggest that baicalein exerts neuroprotective effects by reducing neuroinflammation, apoptosis and autophagy, and protects against cerebral I/R injury in the subacute phase in vivo.
Collapse
Affiliation(s)
- Shilun Yang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2 Nanwei Road, Beijing, 100050, China
| | - Haigang Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2 Nanwei Road, Beijing, 100050, China
| | - Yinglin Yang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2 Nanwei Road, Beijing, 100050, China
| | - Rui Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, No.280, Waihuan East Road, Guangzhou, 510006, China
| | - Yuehua Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2 Nanwei Road, Beijing, 100050, China
| | - Chunfu Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| | - Guanhua Du
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2 Nanwei Road, Beijing, 100050, China.
| |
Collapse
|
50
|
Neurotherapeutic potential of kolaviron on neurotransmitter dysregulation, excitotoxicity, mitochondrial electron transport chain dysfunction and redox imbalance in 2-VO brain ischemia/reperfusion injury. Biomed Pharmacother 2019; 111:859-872. [DOI: 10.1016/j.biopha.2018.12.144] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/26/2018] [Accepted: 12/31/2018] [Indexed: 02/05/2023] Open
|