1
|
Thorens B. Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion. Physiol Rev 2024; 104:1461-1486. [PMID: 38661565 DOI: 10.1152/physrev.00038.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024] Open
Abstract
Glucose homeostasis is mainly under the control of the pancreatic islet hormones insulin and glucagon, which, respectively, stimulate glucose uptake and utilization by liver, fat, and muscle and glucose production by the liver. The balance between the secretions of these hormones is under the control of blood glucose concentrations. Indeed, pancreatic islet β-cells and α-cells can sense variations in glycemia and respond by an appropriate secretory response. However, the secretory activity of these cells is also under multiple additional metabolic, hormonal, and neuronal signals that combine to ensure the perfect control of glycemia over a lifetime. The central nervous system (CNS), which has an almost absolute requirement for glucose as a source of metabolic energy and thus a vital interest in ensuring that glycemic levels never fall below ∼5 mM, is equipped with populations of neurons responsive to changes in glucose concentrations. These neurons control pancreatic islet cell secretion activity in multiple ways: through both branches of the autonomic nervous system, through the hypothalamic-pituitary-adrenal axis, and by secreting vasopressin (AVP) in the blood at the level of the posterior pituitary. Here, we present the autonomic innervation of the pancreatic islets; the mechanisms of neuron activation by a rise or a fall in glucose concentration; how current viral tracing, chemogenetic, and optogenetic techniques allow integration of specific glucose sensing neurons in defined neuronal circuits that control endocrine pancreas function; and, finally, how genetic screens in mice can untangle the diversity of the hypothalamic mechanisms controlling the response to hypoglycemia.
Collapse
Affiliation(s)
- Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Viskaitis P, Tesmer AL, Liu Z, Karnani MM, Arnold M, Donegan D, Bracey E, Grujic N, Patriarchi T, Peleg-Raibstein D, Burdakov D. Orexin neurons track temporal features of blood glucose in behaving mice. Nat Neurosci 2024; 27:1299-1308. [PMID: 38773350 PMCID: PMC11239495 DOI: 10.1038/s41593-024-01648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/10/2024] [Indexed: 05/23/2024]
Abstract
Does the brain track how fast our blood glucose is changing? Knowing such a rate of change would enable the prediction of an upcoming state and a timelier response to this new state. Hypothalamic arousal-orchestrating hypocretin/orexin neurons (HONs) have been proposed to be glucose sensors, yet whether they track glucose concentration (proportional tracking) or rate of change (derivative tracking) is unknown. Using simultaneous recordings of HONs and blood glucose in behaving male mice, we found that maximal HON responses occur in considerable temporal anticipation (minutes) of glucose peaks due to derivative tracking. Analysis of >900 individual HONs revealed glucose tracking in most HONs (98%), with derivative and proportional trackers working in parallel, and many (65%) HONs multiplexed glucose and locomotion information. Finally, we found that HON activity is important for glucose-evoked locomotor suppression. These findings reveal a temporal dimension of brain glucose sensing and link neurobiological and algorithmic views of blood glucose perception in the brain's arousal orchestrators.
Collapse
Affiliation(s)
- Paulius Viskaitis
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Alexander L Tesmer
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Ziyu Liu
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mahesh M Karnani
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Myrtha Arnold
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Dane Donegan
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Eva Bracey
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Nikola Grujic
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Daria Peleg-Raibstein
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland.
| |
Collapse
|
3
|
Martin H, Coursan A, Lallement J, Di Miceli M, Kandiah J, Raho I, Buttler J, Guilloux JP, De Deurwaerdere P, Layé S, Routh VH, Guiard BP, Magnan C, Cruciani-Guglielmacci C, Fioramonti X. Serotonergic neurons are involved in the counter-regulatory response to hypoglycemia. J Neuroendocrinol 2023; 35:e13344. [PMID: 37857383 DOI: 10.1111/jne.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES Intensive insulin therapy provides optimal glycemic control in patients with diabetes. However, intensive insulin therapy causes so-called iatrogenic hypoglycemia as a major adverse effect. The ventromedial hypothalamus (VMH) has been described as the primary brain area initiating the counter-regulatory response (CRR). Nevertheless, the VMH receives projections from other brain areas which could participate in the regulation of the CRR. In particular, studies suggest a potential role of the serotonin (5-HT) network. Thus, the objective of this study was to determine the contribution of 5-HT neurons in CRR control. METHODS Complementary approaches have been used to test this hypothesis in quantifying the level of 5-HT in several brain areas by HPLC in response to insulin-induced hypoglycemia, measuring the electrical activity of dorsal raphe (DR) 5-HT neurons in response to insulin or decreased glucose level by patch-clamp electrophysiology; and measuring the CRR hormone glucagon as an index of the CRR to the modulation of the activity of 5-HT neurons using pharmacological or pharmacogenetic approaches. RESULTS HPLC measurements show that the 5HIAA/5HT ratio is increased in several brain regions including the VMH in response to insulin-induced hypoglycemia. Patch-clamp electrophysiological recordings show that insulin, but not decreased glucose level, increases the firing frequency of DR 5-HT neurons in the DR. In vivo, both the pharmacological inhibition of 5-HT neurons by intraperitoneal injection of the 5-HT1A receptor agonist 8-OH-DPAT or the chemogenetic inhibition of these neurons reduce glucagon secretion, suggesting an impaired CRR. CONCLUSION Taken together, these data highlight a new neuronal network involved in the regulation of the CRR. In particular, this study shows that DR 5-HT neurons detect iatrogenic hypoglycemia in response to the increased insulin level and may play an important role in the regulation of CRR.
Collapse
Affiliation(s)
- Hugo Martin
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Adeline Coursan
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | | | - Mathieu Di Miceli
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, UK
| | - Janany Kandiah
- Université Paris Cité, BFA, UMR 8251, CNRS, Paris, France
| | - Ilyès Raho
- Université Paris Cité, BFA, UMR 8251, CNRS, Paris, France
| | - Jasmine Buttler
- INCIA, UMR CNRS, Bordeaux University, Neurocampus, Bordeaux, France
| | | | | | - Sophie Layé
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, New Jersey, USA
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Toulouse, France
| | | | | | - Xavier Fioramonti
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| |
Collapse
|
4
|
Fioramonti X. A New Role for Hypothalamic Glucose-Sensing Neurons in Hypoglycemia Unawareness. Diabetes 2023; 72:1055-1056. [PMID: 37471600 PMCID: PMC10382646 DOI: 10.2337/dbi22-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Xavier Fioramonti
- INRAE, Bordeaux INP, NutriNeuro, UMR 1286, University of Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Tu L, Bean JC, He Y, Liu H, Yu M, Liu H, Zhang N, Yin N, Han J, Scarcelli NA, Conde KM, Wang M, Li Y, Feng B, Gao P, Cai ZL, Fukuda M, Xue M, Tong Q, Yang Y, Liao L, Xu J, Wang C, He Y, Xu Y. Anoctamin 4 channel currents activate glucose-inhibited neurons in the mouse ventromedial hypothalamus during hypoglycemia. J Clin Invest 2023; 133:e163391. [PMID: 37261917 PMCID: PMC10348766 DOI: 10.1172/jci163391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/30/2023] [Indexed: 06/03/2023] Open
Abstract
Glucose is the basic fuel essential for maintenance of viability and functionality of all cells. However, some neurons - namely, glucose-inhibited (GI) neurons - paradoxically increase their firing activity in low-glucose conditions and decrease that activity in high-glucose conditions. The ionic mechanisms mediating electric responses of GI neurons to glucose fluctuations remain unclear. Here, we showed that currents mediated by the anoctamin 4 (Ano4) channel are only detected in GI neurons in the ventromedial hypothalamic nucleus (VMH) and are functionally required for their activation in response to low glucose. Genetic disruption of the Ano4 gene in VMH neurons reduced blood glucose and impaired counterregulatory responses during hypoglycemia in mice. Activation of VMHAno4 neurons increased food intake and blood glucose, while chronic inhibition of VMHAno4 neurons ameliorated hyperglycemia in a type 1 diabetic mouse model. Finally, we showed that VMHAno4 neurons represent a unique orexigenic VMH population and transmit a positive valence, while stimulation of neurons that do not express Ano4 in the VMH (VMHnon-Ano4) suppress feeding and transmit a negative valence. Together, our results indicate that the Ano4 channel and VMHAno4 neurons are potential therapeutic targets for human diseases with abnormal feeding behavior or glucose imbalance.
Collapse
Affiliation(s)
- Longlong Tu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Jonathan C. Bean
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Yang He
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Hailan Liu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Meng Yu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Hesong Liu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Nan Zhang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Na Yin
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Junying Han
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Nikolas A. Scarcelli
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Kristine M. Conde
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Mengjie Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Yongxiang Li
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Bing Feng
- Brain glycemic and metabolism control department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Peiyu Gao
- Brain glycemic and metabolism control department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Zhao-Lin Cai
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Makoto Fukuda
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yongjie Yang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Yanlin He
- Brain glycemic and metabolism control department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Yong Xu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Nagayach A, Bhaskar R, Patro I. Microglia activation and inflammation in hippocampus attenuates memory and mood functions during experimentally induced diabetes in rat. J Chem Neuroanat 2022; 125:102160. [PMID: 36089179 DOI: 10.1016/j.jchemneu.2022.102160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Incidence of cognitive and emotional alterations are reportedly two times more in diabetic patients than in non-diabetic population with hitherto unexplained causation and mechanism. Purview of the hippocampus functional diversity sanctions the accessibility and the necessity to investigate the regional neuro-immunological aspects of neurodegeneration and related functional alterations following diabetes. We examined the possible involvement of microglia activation, macrophage response, oxidative stress and inflammatory stature in both ventral and dorsal hippocampus of rats rendered diabetic by a single injection of streptozotocin (STZ; 45 mg/ kg body weight; intraperitoneal). Cognitive and behavioural alterations were studied using open field test (locomotor activity), elevated plus maze (anxiety), Barnes maze (spatial cognition) and T maze (working memory) at 2nd, 4th, 6th, 8th, 10th and 12th week post diabetic confirmation. Oxidative stress was investigated via measuring the level of lipid peroxidation biochemically. Scenario of microglia activation, macrophage response and inflammation was gauged using qualitative and quantitative analysis. Pronounced macrophage expression and activation directed microglia phenotypic switching was prominent in both ventral and dorsal hippocampus indicating the impact of oxidative stress following diabetes in hippocampus. The resultant inflammatory response was also progressive and persistent in both ventral and dorsal hippocampus parallel to the altered cognitive, locomotor ability and anxiety behaviour in diabetic rats. Conclusively, present data not only comprehends the microglia, macrophage physiology and related immune response in functionally different hippocampal regions associated cognitive and behavioural deficits, but also offers a suggestive region-specific cellular mechanism pathway for developing an imminent therapeutic approach during particular diabetes deficits.
Collapse
Affiliation(s)
- Aarti Nagayach
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, Madhya Pradesh, India; Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, South Korea
| | - Ishan Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, Madhya Pradesh, India; School of Studies in Zoology, Jiwaji University, Gwalior 474011, Madhya Pradesh, India
| |
Collapse
|
7
|
Teixidor J, Novello S, Ortiz D, Menin L, Lashuel HA, Bertsch A, Renaud P. On-Demand Nanoliter Sampling Probe for the Collection of Brain Fluid. Anal Chem 2022; 94:10415-10426. [PMID: 35786947 DOI: 10.1021/acs.analchem.2c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Continuous fluidic sampling systems allow collection of brain biomarkers in vivo. Here, we propose a new sequential and intermittent sampling paradigm using droplets, called Droplet on Demand (DoD). It is implemented in a microfabricated neural probe and alternates phases of analyte removal from the tissue and phases of equilibration of the concentration in the tissue. It allows sampling droplets loaded with molecules from the brain extracellular fluid punctually, without the long transient equilibration periods typical of continuous methods. It uses an accurately defined fluidic sequence with controlled timings, volumes, and flow rates, and correct operation is verified by the embedded electrodes and a flow sensor. As a proof of concept, we demonstrated the application of this novel approach in vitro and in vivo, to collect glucose in the brain of mice, with a temporal resolution of 1-2 min and without transient regime. Absolute quantification of the glucose level in the samples was performed by direct infusion nanoelectrospray ionization Fourier transform mass spectrometry (nanoESI-FTMS). By adjusting the diffusion time and the perfusion volume of DoD, the fraction of molecules recovered in the samples can be tuned to mirror the tissue concentration at accurate points in time. Moreover, this makes quantification of biomarkers in the brain possible within acute experiments of only 20-120 min. DoD provides a complementary tool to continuous microdialysis and push-pull sampling probes. Thus, the advances allowed by DoD will benefit quantitative molecular studies in the brain, i.e., for molecules involved in volume transmission or for protein aggregates that form in neurodegenerative diseases over long periods.
Collapse
Affiliation(s)
- Joan Teixidor
- Microsystems Laboratory 4 (STI-IEM-LMIS4), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Salvatore Novello
- Laboratory of Molecular and Chemical Biology of Neurodegeneration (SV-BMI-LMNN), EPFL, 1015 Lausanne, Switzerland
| | - Daniel Ortiz
- Mass Spectrometry and Elemental Analysis Platform (SB-ISIC-MSEAP), EPFL, 1015 Lausanne, Switzerland
| | - Laure Menin
- Mass Spectrometry and Elemental Analysis Platform (SB-ISIC-MSEAP), EPFL, 1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration (SV-BMI-LMNN), EPFL, 1015 Lausanne, Switzerland
| | - Arnaud Bertsch
- Microsystems Laboratory 4 (STI-IEM-LMIS4), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Philippe Renaud
- Microsystems Laboratory 4 (STI-IEM-LMIS4), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Picard A, Berney X, Castillo-Armengol J, Tarussio D, Jan M, Sanchez-Archidona AR, Croizier S, Thorens B. Hypothalamic Irak4 is a genetically controlled regulator of hypoglycemia-induced glucagon secretion. Mol Metab 2022; 61:101479. [PMID: 35339728 PMCID: PMC9046887 DOI: 10.1016/j.molmet.2022.101479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Glucagon secretion to stimulate hepatic glucose production is the first line of defense against hypoglycemia. This response is triggered by so far incompletely characterized central hypoglycemia-sensing mechanisms, which control autonomous nervous activity and hormone secretion. The objective of this study was to identify novel hypothalamic genes controlling insulin-induced glucagon secretion. METHODS To obtain new information on the mechanisms of hypothalamic hypoglycemia sensing, we combined genetic and transcriptomic analysis of glucagon response to insulin-induced hypoglycemia in a panel of BXD recombinant inbred mice. RESULTS We identified two QTLs on chromosome 8 and chromosome 15. We further investigated the role of Irak4 and Cpne8, both located in the QTL on chromosome 15, in C57BL/6J and DBA/2J mice, the BXD mouse parental strains. We found that the poor glucagon response of DBA/2J mice was associated with higher hypothalamic expression of Irak4, which encodes a kinase acting downstream of the interleukin-1 receptor (Il-1R), and of Il-ß when compared with C57BL/6J mice. We showed that intracerebroventricular administration of an Il-1R antagonist in DBA/2J mice restored insulin-induced glucagon secretion; this was associated with increased c-fos expression in the arcuate and paraventricular nuclei of the hypothalamus and with higher activation of both branches of the autonomous nervous system. Whole body inactivation of Cpne8, which encodes a Ca++-dependent regulator of membrane trafficking and exocytosis, however, had no impact on insulin-induced glucagon secretion. CONCLUSIONS Collectively, our data identify Irak4 as a genetically controlled regulator of hypoglycemia-activated hypothalamic neurons and glucagon secretion.
Collapse
Affiliation(s)
- Alexandre Picard
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Xavier Berney
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Judit Castillo-Armengol
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland; Novo Nordisk A/S, Måløv, Denmark
| | - David Tarussio
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Maxime Jan
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | | | - Sophie Croizier
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
9
|
Aldhshan MS, Jhanji G, Poritsanos NJ, Mizuno TM. Glucose Stimulates Glial Cell Line-Derived Neurotrophic Factor Gene Expression in Microglia through a GLUT5-Independent Mechanism. Int J Mol Sci 2022; 23:ijms23137073. [PMID: 35806073 PMCID: PMC9266953 DOI: 10.3390/ijms23137073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
Feeding-regulating neurotrophic factors are expressed in both neurons and glial cells. However, nutritional regulation of anorexigenic glial cell line-derived neurotrophic factor (GDNF) and orexigenic mesencephalic astrocyte-derived neurotrophic factor (MANF) expression in specific cell types remains poorly understood. Hypothalamic glucose sensing plays a critical role in the regulation of food intake. It has been theorized that local glucose concentration modulates microglial activity partially via glucose transporter 5 (GLUT5). We hypothesized that an increased local glucose concentration stimulates GDNF expression while inhibiting MANF expression in the hypothalamus and microglia via GLUT5. The present study investigated the effect of glucose on Gdnf and Manf mRNA expression in the mouse hypothalamus and murine microglial cell line SIM-A9. Intracerebroventricular glucose treatment significantly increased Gdnf mRNA levels in the hypothalamus without altering Manf mRNA levels. Exposure to high glucose caused a significant increase in Gdnf mRNA expression and a time-dependent change in Manf mRNA expression in SIM-A9 cells. GLUT5 inhibitor treatment did not block glucose-induced Gdnf mRNA expression in these cells. These findings suggest that microglia are responsive to changes in the local glucose concentration and increased local glucose availability stimulates the expression of microglial GNDF through a GLUT5-independent mechanism, contributing to glucose-induced feeding suppression.
Collapse
|
10
|
Tu L, Fukuda M, Tong Q, Xu Y. The ventromedial hypothalamic nucleus: watchdog of whole-body glucose homeostasis. Cell Biosci 2022; 12:71. [PMID: 35619170 PMCID: PMC9134642 DOI: 10.1186/s13578-022-00799-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
The brain, particularly the ventromedial hypothalamic nucleus (VMH), has been long known for its involvement in glucose sensing and whole-body glucose homeostasis. However, it is still not fully understood how the brain detects and responds to the changes in the circulating glucose levels, as well as brain-body coordinated control of glucose homeostasis. In this review, we address the growing evidence implicating the brain in glucose homeostasis, especially in the contexts of hypoglycemia and diabetes. In addition to neurons, we emphasize the potential roles played by non-neuronal cells, as well as extracellular matrix in the hypothalamus in whole-body glucose homeostasis. Further, we review the ionic mechanisms by which glucose-sensing neurons sense fluctuations of ambient glucose levels. We also introduce the significant implications of heterogeneous neurons in the VMH upon glucose sensing and whole-body glucose homeostasis, in which sex difference is also addressed. Meanwhile, research gaps have also been identified, which necessities further mechanistic studies in future.
Collapse
Affiliation(s)
- Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA
| | - Makoto Fukuda
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Tripathi R, Banerjee SK, Nirala JP, Mathur R. Simultaneous exposure to electromagnetic field from mobile phone and unimpeded fructose drinking during pre-, peri-, and post-pubertal stages perturbs the hypothalamic and hepatic regulation of energy homeostasis by early adulthood: experimental evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7438-7451. [PMID: 34476698 DOI: 10.1007/s11356-021-15841-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The present-day children-adolescents ubiquitously use the mobile phones and unrestrictedly consume fructose-laden diet. Unfortunately, a rise in the incidence of insulin resistance and fatty liver syndrome in young adults has also been recorded. To delineate a possible correlate, the effect of exposure to electromagnetic field (EMF) from the mobile phone and unrestricted fructose intake during pre-, peri-, and post-pubertal stages of development on orexigenic and anorexigenic signals arising from the hypothalamus and liver of rats is investigated here. The study design included four arms, i.e., "Normal", "Exposure Only (ExpO)", "Fructose Only (FruO)", and "Exposure with Fructose (EF)", wherein weaned rats received either "normal chow and drinking water" or "normal chow and fructose (15%) drinking solution" in presence and absence of EMF exposure (2 h/day) for 8 weeks. The results indicate that the total calories consumed by the EF were higher by early adulthood than normal, possibly under the influence of the raised levels of the orexigenic hormone, i.e., ghrelin, and it reflected as raised rate of weight gain. At early adulthood, the EF recorded mitigated response and sensitivity of insulin. Despite EF being a "fed-state", both centrally and peripherally, the glycolysis was restrained, but the gluconeogenesis was raised. Additionally, the altered lipid profile and the glycogen levels indicate that the EF developed fatty liver. The energy homeostasis of the EF was compromised as evidenced by (a) reduced expression of the glucosensors-GLUT2 and glucokinase in the hypothalamus and liver and (b) reduced expression of the cellular energy regulator-AMPK, orexigenic peptide-NPY, and anorexigenic peptide-POMC in the hypothalamus. Taken together, the present study evidences that the exposure to EMFfrom the mobile phone and unrestricted fructose intake during childhood-adolescence impairs the central and peripheral pathways that mediate the glucosensing, glucoregulation, feeding, and satiety behavior by early adulthood.
Collapse
Affiliation(s)
- Ruchi Tripathi
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences & Research, New Delhi, India
| | - Sanjay Kumar Banerjee
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad, India
- Current Address: Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajani Mathur
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences & Research, New Delhi, India.
| |
Collapse
|
12
|
Nasu Y, Murphy-Royal C, Wen Y, Haidey JN, Molina RS, Aggarwal A, Zhang S, Kamijo Y, Paquet ME, Podgorski K, Drobizhev M, Bains JS, Lemieux MJ, Gordon GR, Campbell RE. A genetically encoded fluorescent biosensor for extracellular L-lactate. Nat Commun 2021; 12:7058. [PMID: 34873165 PMCID: PMC8648760 DOI: 10.1038/s41467-021-27332-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023] Open
Abstract
L-Lactate, traditionally considered a metabolic waste product, is increasingly recognized as an important intercellular energy currency in mammals. To enable investigations of the emerging roles of intercellular shuttling of L-lactate, we now report an intensiometric green fluorescent genetically encoded biosensor for extracellular L-lactate. This biosensor, designated eLACCO1.1, enables cellular resolution imaging of extracellular L-lactate in cultured mammalian cells and brain tissue.
Collapse
Affiliation(s)
- Yusuke Nasu
- grid.26999.3d0000 0001 2151 536XDepartment of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Ciaran Murphy-Royal
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1 Canada ,grid.410559.c0000 0001 0743 2111Centre Hospitalier de l’Université de Montréal, Department of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC H2X 0A9 Canada
| | - Yurong Wen
- grid.17089.37Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7 Canada ,grid.452438.c0000 0004 1760 8119Department of Talent Highland, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710061 China
| | - Jordan N. Haidey
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Rosana S. Molina
- grid.41891.350000 0001 2156 6108Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717 USA
| | - Abhi Aggarwal
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147 USA
| | - Shuce Zhang
- grid.17089.37Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Yuki Kamijo
- grid.26999.3d0000 0001 2151 536XDepartment of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Marie-Eve Paquet
- grid.23856.3a0000 0004 1936 8390CERVO Brain Research Center, Laval University, Québec, QC G1E 1T2 Canada ,grid.23856.3a0000 0004 1936 8390Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec, QC G1J 2G3 Canada
| | - Kaspar Podgorski
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147 USA
| | - Mikhail Drobizhev
- grid.41891.350000 0001 2156 6108Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717 USA
| | - Jaideep S. Bains
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - M. Joanne Lemieux
- grid.17089.37Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7 Canada
| | - Grant R. Gordon
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Robert E. Campbell
- grid.26999.3d0000 0001 2151 536XDepartment of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan ,grid.17089.37Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| |
Collapse
|
13
|
Regulation of the Fructose Transporter Gene Slc2a5 Expression by Glucose in Cultured Microglial Cells. Int J Mol Sci 2021; 22:ijms222312668. [PMID: 34884473 PMCID: PMC8657830 DOI: 10.3390/ijms222312668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Microglia play a role in the regulation of metabolism and pathogenesis of obesity. Microglial activity is altered in response to changes in diet and the body’s metabolic state. Solute carrier family 2 member 5 (Slc2a5) that encodes glucose transporter 5 (GLUT5) is a fructose transporter primarily expressed in microglia within the central nervous system. However, little is known about the nutritional regulation of Slc2a5 expression in microglia and its role in the regulation of metabolism. The present study aimed to address the hypothesis that nutrients affect microglial activity by altering the expression of glucose transporter genes. Murine microglial cell line SIM-A9 cells and primary microglia from mouse brain were exposed to different concentrations of glucose and levels of microglial activation markers and glucose transporter genes were measured. High concentration of glucose increased levels of the immediate-early gene product c-Fos, a marker of cell activation, Slc2a5 mRNA, and pro-inflammatory cytokine genes in microglial cells in a time-dependent manner, while fructose failed to cause these changes. Glucose-induced changes in pro-inflammatory gene expression were partially attenuated in SIM-A9 cells treated with the GLUT5 inhibitor. These findings suggest that an increase in local glucose availability leads to the activation of microglia by controlling their carbohydrate sensing mechanism through both GLUT5-dependent and –independent mechanisms.
Collapse
|
14
|
Rodrigues AG, Campos HO, Drummond LR, Marubayashi U, Coimbra CC. Effects of Increased Central Cholinergic Activity on the Metabolic Challenge Induced by Submaximal Exercise in Rats: Adrenomedullary Secretion Influences. Pharmacology 2021; 107:46-53. [PMID: 34788751 DOI: 10.1159/000519807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022]
Abstract
AIM The aim of this study was to assess the influence of adrenomedullary secretion on the plasma glucose, lactate, and free fatty acids (FFAs) during running exercise in rats submitted to intracerebroventricular (i.c.v.) injection of physostigmine (PHY). PHY i.c.v. was used to activate the central cholinergic system. METHODS Wistar rats were divided into sham-saline (sham-SAL), sham-PHY, adrenal medullectomy-SAL, and ADM-PHY groups. The plasma concentrations of glucose, lactate, and FFAs were determined immediately before and after i.c.v. injection of 20 μL of SAL or PHY at rest and during running exercise on a treadmill. RESULTS The i.c.v. injection of PHY at rest increased plasma glucose in the sham group, but not in the ADM group. An increase in plasma glucose, lactate, and FFAs mobilization from adipose tissue was observed during physical exercise in the sham-SAL group; however, the increase in plasma glucose was greater with i.c.v. PHY. Moreover, the hyperglycemia induced by exercise and PHY in the ADM group were blunted by ADM, whereas FFA mobilization was unaffected. CONCLUSION These results indicate that there is a dual metabolic control by which activation of the central cholinergic pathway increases plasma glucose but not FFA during rest and exercise, and that this hyperglycemic response is dependent on adrenomedullary secretion.
Collapse
Affiliation(s)
| | - Helton Oliveira Campos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Biological Sciences, Minas Gerais State University-Carangola Unit, Carangola, Brazil
| | - Lucas Rios Drummond
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Umeko Marubayashi
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Cândido Celso Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
15
|
Shimizu T, Uzui H, Sato Y, Miyoshi M, Shiomi Y, Hasegawa K, Ikeda H, Tama N, Fukuoka Y, Morishita T, Ishida K, Miyazaki S, Tada H. Association between Changes in the Systolic Blood Pressure from Evening to the Next Morning and Night Glucose Variability in Heart Disease Patients. Intern Med 2021; 60:3543-3549. [PMID: 34092728 PMCID: PMC8666227 DOI: 10.2169/internalmedicine.6784-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objectve To assess the impact of glycemic variability on blood pressure in hospitalized patients with cardiac disease. Methods In 40 patients with cardiovascular disease, the glucose levels were monitored by flash continuous glucose monitoring (FGM; Free-Style Libre™ or Free-Style Libre Pro; Abbott, Witney, UK) and self-monitoring blood glucose (SMBG) for 14 days. Blood pressure measurements were performed twice daily (morning and evening) at the same time as the glucose level measurement using SMBG. Results The detection rate of hypoglycemia using the FGM method was significantly higher than that with the 5-point SMBG method (77.5% vs. 5.0%, p<0.001). Changes in the systolic blood pressure from evening to the next morning [morning - evening (ME) difference] were significantly correlated with night glucose variability (r=0.63, P<0.001). A multiple regression analysis showed that night glucose variability using FGM was more closely correlated with the ME difference [r=0.62 (95% confidence interval, 0.019-0.051); p<0.001] than with the age, body mass index, or smoking history. Night glucose variability was also more closely associated with the ME difference in patients with unstable angina pectoris (UAP) than in those with acute myocardial infarction (AMI) or heart failure (HF) (r=0.83, p=0.058). Conclusion Night glucose variability is associated with the ME blood pressure difference, and FGM is more accurate than the 5-point SMBG approach for detecting such variability.
Collapse
Affiliation(s)
- Tomohiro Shimizu
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Hiroyasu Uzui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Yusuke Sato
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Machiko Miyoshi
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Yuichiro Shiomi
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Kanae Hasegawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Hiroyuki Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Naoto Tama
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Yoshitomo Fukuoka
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Tetsuji Morishita
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Kentaro Ishida
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Shinsuke Miyazaki
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Hiroshi Tada
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| |
Collapse
|
16
|
Millet J, Siracusa J, Tardo-Dino PE, Thivel D, Koulmann N, Malgoyre A, Charlot K. Effects of Acute Heat and Cold Exposures at Rest or during Exercise on Subsequent Energy Intake: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13103424. [PMID: 34684424 PMCID: PMC8538265 DOI: 10.3390/nu13103424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
The objective of this meta-analysis was to assess the effect of acute heat/cold exposure on subsequent energy intake (EI) in adults. We searched the following sources for publications on this topic: PubMed, Ovid Medline, Science Direct and SPORTDiscus. The eligibility criteria for study selection were: randomized controlled trials performed in adults (169 men and 30 women; 20–52 years old) comparing EI at one or more meals taken ad libitum, during and/or after exposure to heat/cold and thermoneutral conditions. One of several exercise sessions could be realized before or during thermal exposures. Two of the thirteen studies included examined the effect of heat (one during exercise and one during exercise and at rest), eight investigated the effect of cold (six during exercise and two at rest), and three the effect of both heat and cold (two during exercise and one at rest). The meta-analysis revealed a small increase in EI in cold conditions (g = 0.44; p = 0.019) and a small decrease in hot conditions (g = −0.39, p = 0.022) for exposure during both rest and exercise. Exposures to heat and cold altered EI in opposite ways, with heat decreasing EI and cold increasing it. The effect of exercise remains unclear.
Collapse
Affiliation(s)
- Juliette Millet
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Julien Siracusa
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Pierre-Emmanuel Tardo-Dino
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - David Thivel
- Laboratory AME2P, University of Clermont Auvergne, 63170 Aubière, France;
| | - Nathalie Koulmann
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
- Ecole du Val-de-Grâce, 1, Place Alphonse Laveran, 75230 Paris, France
| | - Alexandra Malgoyre
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Keyne Charlot
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
- Correspondence: ; Tel.: +33-(1)78-65-13-03
| |
Collapse
|
17
|
Picard A, Metref S, Tarussio D, Dolci W, Berney X, Croizier S, Labouebe G, Thorens B. Fgf15 Neurons of the Dorsomedial Hypothalamus Control Glucagon Secretion and Hepatic Gluconeogenesis. Diabetes 2021; 70:1443-1457. [PMID: 33883213 PMCID: PMC8336003 DOI: 10.2337/db20-1121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/03/2021] [Indexed: 11/18/2022]
Abstract
The counterregulatory response to hypoglycemia is an essential survival function. It is controlled by an integrated network of glucose-responsive neurons, which trigger endogenous glucose production to restore normoglycemia. The complexity of this glucoregulatory network is, however, only partly characterized. In a genetic screen of a panel of recombinant inbred mice we previously identified Fgf15, expressed in neurons of the dorsomedial hypothalamus (DMH), as a negative regulator of glucagon secretion. Here, we report on the generation of Fgf15CretdTomato mice and their use to further characterize these neurons. We show that they were glutamatergic and comprised glucose-inhibited and glucose-excited neurons. When activated by chemogenetics, Fgf15 neurons prevented the increase in vagal nerve firing and the secretion of glucagon normally triggered by insulin-induced hypoglycemia. On the other hand, they increased the activity of the sympathetic nerve in the basal state and prevented its silencing by glucose overload. Higher sympathetic tone increased hepatic Creb1 phosphorylation, Pck1 mRNA expression, and hepatic glucose production leading to glucose intolerance. Thus, Fgf15 neurons of the DMH participate in the counterregulatory response to hypoglycemia by a direct adrenergic stimulation of hepatic glucose production while suppressing vagally induced glucagon secretion. This study provides new insights into the complex neuronal network that prevents the development of hypoglycemia.
Collapse
Affiliation(s)
- Alexandre Picard
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Salima Metref
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - David Tarussio
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Wanda Dolci
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Xavier Berney
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sophie Croizier
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gwenaël Labouebe
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
De Angelis LC, Brigati G, Polleri G, Malova M, Parodi A, Minghetti D, Rossi A, Massirio P, Traggiai C, Maghnie M, Ramenghi LA. Neonatal Hypoglycemia and Brain Vulnerability. Front Endocrinol (Lausanne) 2021; 12:634305. [PMID: 33796072 PMCID: PMC8008815 DOI: 10.3389/fendo.2021.634305] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Neonatal hypoglycemia is a common condition. A transient reduction in blood glucose values is part of a transitional metabolic adaptation following birth, which resolves within the first 48 to 72 h of life. In addition, several factors may interfere with glucose homeostasis, especially in case of limited metabolic stores or increased energy expenditure. Although the effect of mild transient asymptomatic hypoglycemia on brain development remains unclear, a correlation between severe and prolonged hypoglycemia and cerebral damage has been proven. A selective vulnerability of some brain regions to hypoglycemia including the second and the third superficial layers of the cerebral cortex, the dentate gyrus, the subiculum, the CA1 regions in the hippocampus, and the caudate-putamen nuclei has been observed. Several mechanisms contribute to neuronal damage during hypoglycemia. Neuronal depolarization induced by hypoglycemia leads to an elevated release of glutamate and aspartate, thus promoting excitotoxicity, and to an increased release of zinc to the extracellular space, causing the extensive activation of poly ADP-ribose polymerase-1 which promotes neuronal death. In this review we discuss the cerebral glucose homeostasis, the mechanisms of brain injury following neonatal hypoglycemia and the possible treatment strategies to reduce its occurrence.
Collapse
Affiliation(s)
- Laura Costanza De Angelis
- Neonatal Intensive Care Unit, Department Mother and Child, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Giorgia Brigati
- Neonatal Intensive Care Unit, Department Mother and Child, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giulia Polleri
- Neonatal Intensive Care Unit, Department Mother and Child, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariya Malova
- Neonatal Intensive Care Unit, Department Mother and Child, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Alessandro Parodi
- Neonatal Intensive Care Unit, Department Mother and Child, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Diego Minghetti
- Neonatal Intensive Care Unit, Department Mother and Child, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Rossi
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Neuroradiology Unit, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Massirio
- Neonatal Intensive Care Unit, Department Mother and Child, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Cristina Traggiai
- Neonatal Intensive Care Unit, Department Mother and Child, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mohamad Maghnie
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Luca Antonio Ramenghi
- Neonatal Intensive Care Unit, Department Mother and Child, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
19
|
Kolben Y, Weksler-Zangen S, Ilan Y. Adropin as a potential mediator of the metabolic system-autonomic nervous system-chronobiology axis: Implementing a personalized signature-based platform for chronotherapy. Obes Rev 2021; 22:e13108. [PMID: 32720402 DOI: 10.1111/obr.13108] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Adropin is a peptide hormone, which plays a role in energy homeostasis and controls glucose and fatty acid metabolism. Its levels correlate with changes in carbohydrate-lipid metabolism, metabolic diseases, central nervous system function, endothelial function and cardiovascular disease. Both metabolic pathways and adropin are regulated by the circadian clocks. Here, we review the roles of the autonomic nervous system and circadian rhythms in regulating metabolic pathways and energy homeostasis. The beneficial effects of chronotherapy in various systems are discussed. We suggest a potential role for adropin as a mediator of the metabolic system-autonomic nervous system axis. We discuss the possibility of establishing an individualized adropin and circadian rhythm-based platform for implementing chronotherapy, and variability signatures for improving the efficacy of adropin-based therapies are discussed.
Collapse
Affiliation(s)
- Yotam Kolben
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Sarah Weksler-Zangen
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
20
|
Quenneville S, Labouèbe G, Basco D, Metref S, Viollet B, Foretz M, Thorens B. Hypoglycemia-Sensing Neurons of the Ventromedial Hypothalamus Require AMPK-Induced Txn2 Expression but Are Dispensable for Physiological Counterregulation. Diabetes 2020; 69:2253-2266. [PMID: 32839348 PMCID: PMC7576557 DOI: 10.2337/db20-0577] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022]
Abstract
The ventromedial nucleus of the hypothalamus (VMN) is involved in the counterregulatory response to hypoglycemia. VMN neurons activated by hypoglycemia (glucose-inhibited [GI] neurons) have been assumed to play a critical although untested role in this response. Here, we show that expression of a dominant negative form of AMPK or inactivation of AMPK α1 and α2 subunit genes in Sf1 neurons of the VMN selectively suppressed GI neuron activity. We found that Txn2, encoding a mitochondrial redox enzyme, was strongly downregulated in the absence of AMPK activity and that reexpression of Txn2 in Sf1 neurons restored GI neuron activity. In cell lines, Txn2 was required to limit glucopenia-induced reactive oxygen species production. In physiological studies, absence of GI neuron activity after AMPK suppression in the VMN had no impact on the counterregulatory hormone response to hypoglycemia or on feeding. Thus, AMPK is required for GI neuron activity by controlling the expression of the antioxidant enzyme Txn2. However, the glucose-sensing capacity of VMN GI neurons is not required for the normal counterregulatory response to hypoglycemia. Instead, it may represent a fail-safe system in case of impaired hypoglycemia sensing by peripherally located glucose detection systems that are connected to the VMN.
Collapse
Affiliation(s)
- Simon Quenneville
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gwenaël Labouèbe
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Davide Basco
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Salima Metref
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Glucose transporters in brain in health and disease. Pflugers Arch 2020; 472:1299-1343. [PMID: 32789766 PMCID: PMC7462931 DOI: 10.1007/s00424-020-02441-x] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
Energy demand of neurons in brain that is covered by glucose supply from the blood is ensured by glucose transporters in capillaries and brain cells. In brain, the facilitative diffusion glucose transporters GLUT1-6 and GLUT8, and the Na+-d-glucose cotransporters SGLT1 are expressed. The glucose transporters mediate uptake of d-glucose across the blood-brain barrier and delivery of d-glucose to astrocytes and neurons. They are critically involved in regulatory adaptations to varying energy demands in response to differing neuronal activities and glucose supply. In this review, a comprehensive overview about verified and proposed roles of cerebral glucose transporters during health and diseases is presented. Our current knowledge is mainly based on experiments performed in rodents. First, the functional properties of human glucose transporters expressed in brain and their cerebral locations are described. Thereafter, proposed physiological functions of GLUT1, GLUT2, GLUT3, GLUT4, and SGLT1 for energy supply to neurons, glucose sensing, central regulation of glucohomeostasis, and feeding behavior are compiled, and their roles in learning and memory formation are discussed. In addition, diseases are described in which functional changes of cerebral glucose transporters are relevant. These are GLUT1 deficiency syndrome (GLUT1-SD), diabetes mellitus, Alzheimer’s disease (AD), stroke, and traumatic brain injury (TBI). GLUT1-SD is caused by defect mutations in GLUT1. Diabetes and AD are associated with changed expression of glucose transporters in brain, and transporter-related energy deficiency of neurons may contribute to pathogenesis of AD. Stroke and TBI are associated with changes of glucose transporter expression that influence clinical outcome.
Collapse
|
22
|
Qin L, Tiwari AK, Zai CC, Freeman N, Zhai D, Liu F, Stachelscheid H, Mergenthaler P, Kennedy JL, Müller DJ. Regulation of melanocortin-4-receptor (MC4R) expression by SNP rs17066842 is dependent on glucose concentration. Eur Neuropsychopharmacol 2020; 37:39-48. [PMID: 32684494 DOI: 10.1016/j.euroneuro.2020.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 11/17/2022]
Abstract
Melanocortin-4-receptor (MC4R) gene codes for a G-protein-coupled receptor that is highly expressed in the hypothalamus and involved in the regulation of appetite. Single-nucleotide polymorphisms (SNPs) in the MC4R gene region have been associated with obesity, type 2-diabetes (T2D) and with antipsychotic-induced weight gain. Of these, rs17066842 (G>A) in the MC4R promoter region is the top variant associated with obesity and diabetes. In this study, we investigated the effect of rs17066842 on MC4R expression at various glucose concentrations using reporter gene expression in the SH-SY5Y cell line and regulation of MC4R expression in human cerebral organoids. We observed that higher glucose concentrations significantly reduced MC4R mRNA expression in SH-SY5Y cells. In addition, at high glucose concentrations, the luciferase reporter plasmid containing the MC4R promoter insert with the G-allele of rs170066842 showed significantly reduced activity compared to the A-allele carrying plasmid. The immediate early gene product, early growth-response 1 (EGR-1), was identified to bind to the sequence containing the G-allele at rs17066842 but not to the A-allele-containing sequence. Interestingly, in human induced pluripotent stem cell (hiPSC)-derived cerebral organoids, we observed increased MC4R expression in response to high glucose exposure. These opposite observations might suggest that glucose regulation is complex and may be cell-specific. This study provides evidence that rs17066842 regulates MC4R gene expression through binding of EGR-1 and that this process is influenced by glucose concentration.
Collapse
Affiliation(s)
- Li Qin
- Pharmacogenetics Research Clinic, Molecular Brain Science, Centre for Addiction and Mental Health, Toronto M5T 1R8, ON, Canada
| | - Arun K Tiwari
- Pharmacogenetics Research Clinic, Molecular Brain Science, Centre for Addiction and Mental Health, Toronto M5T 1R8, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| | - Clement C Zai
- Pharmacogenetics Research Clinic, Molecular Brain Science, Centre for Addiction and Mental Health, Toronto M5T 1R8, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| | - Natalie Freeman
- Pharmacogenetics Research Clinic, Molecular Brain Science, Centre for Addiction and Mental Health, Toronto M5T 1R8, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Dongxu Zhai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| | - Harald Stachelscheid
- Berlin Institute of Health, Stem Cell Core Facility, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Charité-BIH Centrum Therapy and Research 13353 Berlin, Germany
| | - Philipp Mergenthaler
- Charité-Universitätsmedizin Berlin, Department of Experimental Neurology, Department of Neurology, Center for Stroke Research Berlin, 10117 Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - James L Kennedy
- Pharmacogenetics Research Clinic, Molecular Brain Science, Centre for Addiction and Mental Health, Toronto M5T 1R8, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| | - Daniel J Müller
- Pharmacogenetics Research Clinic, Molecular Brain Science, Centre for Addiction and Mental Health, Toronto M5T 1R8, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
23
|
|
24
|
Worker CJ, Li W, Feng CY, Souza LAC, Gayban AJB, Cooper SG, Afrin S, Romanick S, Ferguson BS, Feng Earley Y. The neuronal (pro)renin receptor and astrocyte inflammation in the central regulation of blood pressure and blood glucose in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2020; 318:E765-E778. [PMID: 32228320 PMCID: PMC7272727 DOI: 10.1152/ajpendo.00406.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report here that the neuronal (pro)renin receptor (PRR), a key component of the brain renin-angiotensin system (RAS), plays a critical role in the central regulation of high-fat-diet (HFD)-induced metabolic pathophysiology. The neuronal PRR is known to mediate formation of the majority of angiotensin (ANG) II, a key bioactive peptide of the RAS, in the central nervous system and to regulate blood pressure and cardiovascular function. However, little is known about neuronal PRR function in overnutrition-related metabolic physiology. Here, we show that PRR deletion in neurons reduces blood pressure, neurogenic pressor activity, and fasting blood glucose and improves glucose tolerance without affecting food intake or body weight following a 16-wk HFD. Mechanistically, we found that a HFD increases levels of the PRR ligand (pro)renin in the circulation and hypothalamus and of ANG II in the hypothalamus, indicating activation of the brain RAS. Importantly, PRR deletion in neurons reduced astrogliosis and activation of the astrocytic NF-κB p65 (RelA) in the arcuate nucleus and the ventromedial nucleus of the hypothalamus. Collectively, our findings indicate that the neuronal PRR plays essential roles in overnutrition-related metabolic pathophysiology.
Collapse
Affiliation(s)
- Caleb J Worker
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Wencheng Li
- Department of Pathology, Wake Forest University, Winston-Salem, North Carolina
| | - Cheng-Yuan Feng
- Department of Neurology, Loma Linda University, Loma Linda, California
| | - Lucas A C Souza
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Ariana Julia B Gayban
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Silvana G Cooper
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Sanzida Afrin
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Samantha Romanick
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
- Department of Neurology, Loma Linda University, Loma Linda, California
| | - Bradley S Ferguson
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
- Department of Neurology, Loma Linda University, Loma Linda, California
| | - Yumei Feng Earley
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| |
Collapse
|
25
|
Hanna L, Kawalek TJ, Beall C, Ellacott KLJ. Changes in neuronal activity across the mouse ventromedial nucleus of the hypothalamus in response to low glucose: Evaluation using an extracellular multi-electrode array approach. J Neuroendocrinol 2020; 32:e12824. [PMID: 31880369 PMCID: PMC7064989 DOI: 10.1111/jne.12824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023]
Abstract
The hypothalamic ventromedial nucleus (VMN) is involved in maintaining systemic glucose homeostasis. Neurophysiological studies in rodent brain slices have identified populations of VMN glucose-sensing neurones: glucose-excited (GE) neurones, cells which increased their firing rate in response to increases in glucose concentration, and glucose-inhibited (GI) neurones, which show a reduced firing frequency in response to increasing glucose concentrations. To date, most slice electrophysiological studies characterising VMN glucose-sensing neurones in rodents have utilised the patch clamp technique. Multi-electrode arrays (MEAs) are a state-of-the-art electrophysiological tool enabling the electrical activity of many cells to be recorded across multiple electrode sites (channels) simultaneously. We used a perforated MEA (pMEA) system to evaluate electrical activity changes across the dorsal-ventral extent of the mouse VMN region in response to alterations in glucose concentration. Because intrinsic (ie, direct postsynaptic sensing) and extrinsic (ie, presynaptically modulated) glucosensation were not discriminated, we use the terminology 'GE/presynaptically excited by an increase (PER)' and 'GI/presynaptically excited by a decrease (PED)' in the present study to describe responsiveness to changes in extracellular glucose across the mouse VMN. We observed that 15%-60% of channels were GE/PER, whereas 2%-7% were GI/PED channels. Within the dorsomedial portion of the VMN (DM-VMN), significantly more channels were GE/PER compared to the ventrolateral portion of the VMN (VL-VMN). However, GE/PER channels within the VL-VMN showed a significantly higher basal firing rate in 2.5 mmol l-1 glucose than DM-VMN GE/PER channels. No significant difference in the distribution of GI/PED channels was observed between the VMN subregions. The results of the present study demonstrate the utility of the pMEA approach for evaluating glucose responsivity across the mouse VMN. pMEA studies could be used to refine our understanding of other neuroendocrine systems by examining population level changes in electrical activity across brain nuclei, thus providing key functional neuroanatomical information to complement and inform the design of single-cell neurophysiological studies.
Collapse
Affiliation(s)
- Lydia Hanna
- Reading School of PharmacyUniversity of ReadingReadingUK
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolExeterUK
- Present address:
Department of Biological SciencesCentre for Biomedical SciencesRoyal Holloway University of LondonEghamUK
| | - Tristan J. Kawalek
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolExeterUK
| | - Craig Beall
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolExeterUK
| | - Kate L. J. Ellacott
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolExeterUK
| |
Collapse
|
26
|
Soares da Costa D, Sousa JC, Dá Mesquita S, Petkova-Yankova NI, Marques F, Reis RL, Sousa N, Pashkuleva I. Bioorthogonal Labeling Reveals Different Expression of Glycans in Mouse Hippocampal Neuron Cultures during Their Development. Molecules 2020; 25:molecules25040795. [PMID: 32059500 PMCID: PMC7070308 DOI: 10.3390/molecules25040795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
The expression of different glycans at the cell surface dictates cell interactions with their environment and other cells, being crucial for the cell fate. The development of the central nervous system is associated with tremendous changes in the cell glycome that is tightly regulated. Herein, we have employed bioorthogonal Cu-free click chemistry to image temporal distribution of different glycans in live mouse hippocampal neurons during their maturation in vitro. We show development-dependent glycan patterns with increased fucose and decreased mannose expression at the end of the maturation process. We also demonstrate that this approach is biocompatible and does not affect glycan transport although it relies on an administration of modified glycans. The applicability of this strategy to tissue sections unlocks new opportunities to study the glycan dynamics under more complex physiological conditions.
Collapse
Affiliation(s)
- Diana Soares da Costa
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (N.I.P.-Y.); (R.L.R.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- Correspondence: (D.S.d.C.); (I.P.)
| | - João C. Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Sandro Dá Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Nevena I. Petkova-Yankova
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (N.I.P.-Y.); (R.L.R.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (N.I.P.-Y.); (R.L.R.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Iva Pashkuleva
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (N.I.P.-Y.); (R.L.R.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (J.C.S.); (S.D.M.); (F.M.); n (N.S.)
- Correspondence: (D.S.d.C.); (I.P.)
| |
Collapse
|
27
|
Hypoglycemia. Endocrinology 2020. [PMID: 31968189 DOI: 10.1007/978-3-030-36694-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Su M, Yan M, Gong Y. Ghrelin fiber projections from the hypothalamic arcuate nucleus into the dorsal vagal complex and the regulation of glycolipid metabolism. Neuropeptides 2019; 78:101972. [PMID: 31610887 DOI: 10.1016/j.npep.2019.101972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVES This study aimed to explore the involvement of the ghrelin pathway from the arcuate nucleus (ARC) to the dorsal vagal complex (DVC) and to determine its role in the regulation of glycolipid metabolism. METHODS The protein and mRNA expression of ghrelin and growth hormone (GH) secretagogue receptor type 1a (GHSR-1a) were measured using immunohistochemistry and the polymerase chain reaction (PCR) method, respectively. Ghrelin fiber projections arising from the ARC and projecting into the DVC were investigated using retrograde tracing, combined with fluorescence immunohistochemical staining. The effects of electrical stimulation (ES) of the ARC on ghrelin-responsive, glucose-sensitive DVC neurons, glycolipid metabolism, and liver lipid enzymes were determined using electrical physiological method, biochemical analysis, quantitative real-time PCR (qRT-PCR) and Western blot analysis. RESULTS GHSR-1a was expressed in the DVC neurons. Ghrelin fibers originating from the ARC projected into the DVC. ES of the ARC-activated the ghrelin-responsive glucose-excited (GE) and glucose-inhibited (GI) neurons in the DVC. ES of the ARC significantly elevated the serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and glucose levels; it reduced the serum high-density lipoprotein (HDLC) and insulin levels. Moreover, ES of the ARC increased liver acetyl-CoA carboxylase-1 (ACC-1) and decreased carnitine palmitoyltransferase-1 (CPT-1) expression, resulting in lipid accumulation in the liver. All the aforementioned effects were partially blocked by pretreatment with the ghrelin receptor antagonist [D-Lys-3]-GHRP-6 in the DVC and were reduced by vagotomy. ES of the ARC increased agouti-related protein (AgRP)/neuropeptide Y (NPY) expression in the ARC and ghrelin expression in the DVC. CONCLUSION Ghrelin fiber projections arising from the ARC and projecting into the DVC play a role in the regulation of afferent glucose metabolism and glycolipid metabolism via the ghrelin receptor GHSR-1a in the DVC.
Collapse
Affiliation(s)
- Manqing Su
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Meixing Yan
- Qingdao Women and Children's Hospital, Qingdao 266042, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
29
|
Masi EB, Levy T, Tsaava T, Bouton CE, Tracey KJ, Chavan SS, Zanos TP. Identification of hypoglycemia-specific neural signals by decoding murine vagus nerve activity. Bioelectron Med 2019; 5:9. [PMID: 32232099 PMCID: PMC7098244 DOI: 10.1186/s42234-019-0025-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glucose is a crucial energy source. In humans, it is the primary sugar for high energy demanding cells in brain, muscle and peripheral neurons. Deviations of blood glucose levels from normal levels for an extended period of time is dangerous or even fatal, so regulation of blood glucose levels is a biological imperative. The vagus nerve, comprised of sensory and motor fibres, provides a major anatomical substrate for regulating metabolism. While prior studies have implicated the vagus nerve in the neurometabolic interface, its specific role in either the afferent or efferent arc of this reflex remains elusive. METHODS Here we use recently developed methods to isolate and decode specific neural signals acquired from the surface of the vagus nerve in BALB/c wild type mice to identify those that respond robustly to hypoglycemia. We also attempted to decode neural signals related to hyperglycemia. In addition to wild type mice, we analyzed the responses to acute hypo- and hyperglycemia in transient receptor potential cation channel subfamily V member 1 (TRPV1) cell depleted mice. The decoding algorithm uses neural signals as input and reconstructs blood glucose levels. RESULTS Our algorithm was able to reconstruct the blood glucose levels with high accuracy (median error 18.6 mg/dl). Hyperglycemia did not induce robust vagus nerve responses, and deletion of TRPV1 nociceptors attenuated the hypoglycemia-dependent vagus nerve signals. CONCLUSION These results provide insight to the sensory vagal signaling that encodes hypoglycemic states and suggest a method to measure blood glucose levels by decoding nerve signals. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
| | - Todd Levy
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - Tea Tsaava
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - Chad E Bouton
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - Kevin J Tracey
- Zucker School of Medicine at Hofstra/Northwell, Heampstead, NY USA
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - Sangeeta S Chavan
- Zucker School of Medicine at Hofstra/Northwell, Heampstead, NY USA
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - Theodoros P Zanos
- Zucker School of Medicine at Hofstra/Northwell, Heampstead, NY USA
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| |
Collapse
|
30
|
Salgado M, Ordenes P, Villagra M, Uribe E, García-Robles MDLA, Tarifeño-Saldivia E. When a Little Bit More Makes the Difference: Expression Levels of GKRP Determines the Subcellular Localization of GK in Tanycytes. Front Neurosci 2019; 13:275. [PMID: 30983961 PMCID: PMC6449865 DOI: 10.3389/fnins.2019.00275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
Glucose homeostasis is performed by specialized cells types that detect and respond to changes in systemic glucose concentration. Hepatocytes, β-cells and hypothalamic tanycytes are part of the glucosensor cell types, which express several proteins involved in the glucose sensing mechanism such as GLUT2, Glucokinase (GK) and Glucokinase regulatory protein (GKRP). GK catalyzes the phosphorylation of glucose to glucose-6-phosphate (G-6P), and its activity and subcellular localization are regulated by GKRP. In liver, when glucose concentration is low, GKRP binds to GK holding it in the nucleus, while the rise in glucose concentration induces a rapid export of GK from the nucleus to the cytoplasm. In contrast, hypothalamic tanycytes display inverse compartmentalization dynamic in response to glucose: a rise in the glucose concentration drives nuclear compartmentalization of GK. The underlying mechanism responsible for differential GK subcellular localization in tanycytes has not been described yet. However, it has been suggested that relative expression between GK and GKRP might play a role. To study the effects of GKRP expression levels in the subcellular localization of GK, we used insulinoma 832/13 cells and hypothalamic tanycytes to overexpress the tanycytic sequences of Gckr. By immunocytochemistry and Western blot analysis, we observed that overexpression of GKRP, independently of the cellular context, turns GK localization to a liver-like fashion, as GK is mainly localized in the nucleus in response to low glucose. Evaluating the expression levels of GKRP in relation to GK through RT-qPCR, suggest that excess of GKRP might influence the pattern of GK subcellular localization. In this sense, we propose that the low expression of GKRP (in relation to GK) observed in tanycytes is responsible, at least in part, for the compartmentalization pattern observed in this cell type. Since GKRP behaves as a GK inhibitor, the regulation of GKRP expression levels or activity in tanycytes could be used as a therapeutic target to regulate the glucosensing activity of these cells and consequently to regulate feeding behavior.
Collapse
Affiliation(s)
- Magdiel Salgado
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Patricio Ordenes
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Marcos Villagra
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Elena Uribe
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | | | - Estefanía Tarifeño-Saldivia
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| |
Collapse
|
31
|
Hypoglycemia. Endocrinology 2019. [DOI: 10.1007/978-3-319-27316-7_22-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Huang Z, Xiao K. Electrophysiological Mechanism of Peripheral Hormones and Nutrients Regulating Energy Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1090:183-198. [PMID: 30390291 DOI: 10.1007/978-981-13-1286-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In organism, energy homeostasis is a biological process that involves the coordinated homeostatic regulation of energy intake (food intake) and energy expenditure. The human brain, particularly the hypothalamic proopiomelanocortin (POMC)- and agouti-related protein/neuropeptide Y (AgRP/NPY)-expressing neurons in the arcuate nucleus, plays an essential role in regulating energy homeostasis. The regulation process is mainly dependent upon peripheral hormones such as leptin and insulin, as well as nutrients such as glucose, amino acids, and fatty acids. Although many studies have attempted to illustrate the exact mechanisms of glucose and hormones action on these neurons, we still cannot clearly see the full picture of this regulation action. Therefore, in this review we will mainly discuss those established theories and recent progresses in this area, demonstrating the possible physiological mechanism by which glucose, leptin, and insulin affect neuronal excitability of POMC and AgRP neurons. In addition, we will also focus on some important ion channels which are expressed by POMC and AgRP neurons, such as KATP channels and TRPC channels, and explain how these channels are regulated by peripheral hormones and nutrients and thus regulate energy homeostasis.
Collapse
Affiliation(s)
- Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
| | - Kuo Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
33
|
Burdakov D. Reactive and predictive homeostasis: Roles of orexin/hypocretin neurons. Neuropharmacology 2018; 154:61-67. [PMID: 30347195 DOI: 10.1016/j.neuropharm.2018.10.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 11/30/2022]
Abstract
Homeostasis is the maintenance of a healthy physiological equilibrium in a changing world. Reactive (feedback, counter-regulatory) and predictive (feedforward, anticipatory) homeostatic control strategies are both important for survival. For example, in energy homeostasis, the pancreas reacts to ingested glucose by releasing insulin, whereas the brain prepares the body for ingestion through anticipatory salivation based on food-associated cues. Reactive control is largely innate, whereas predictive control is often acquired or modified through associative learning, though some important predictive control strategies are innate, e.g. avoidance of fox scent in mice that never met a fox. Traditionally, the hypothalamus has been viewed as a reactive controller, sensing deviations from homeostasis to elicit counter-regulatory responses, while "higher" areas such as the cortex have been viewed as predictive controllers. However, experimental evidence argues against such neuroanatomical segregation: for example, receptors for internal homeostatic indicators are found throughout the brain, while key interoceptive hypothalamic cells also rapidly sense external cues. Here a model is proposed where the brain-wide-projecting, non-neuroendocrine, neurons of the hypothalamus, exemplified by orexin/hypocretin neurons, function as "brain government" systems that convert integrated internal and external information into reactive and predictive autonomic, cognitive, and behavioural adaptations that ensure homeostasis. Like regions of a country without a government, individual brain regions can function normally without hypothalamic guidance, but these functions are uncoordinated, producing mismatch between supply and demand of arousal, and derailing decision-making as seen in orexin-deficient narcolepsy. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Denis Burdakov
- Swiss Federal Institute of Technology / ETH Zürich, D-HEST, Institute for Neuroscience, Schorenstrasse 16, Schwerzenbach 8603, Switzerland.
| |
Collapse
|
34
|
Carnagarin R, Matthews VB, Herat LY, Ho JK, Schlaich MP. Autonomic Regulation of Glucose Homeostasis: a Specific Role for Sympathetic Nervous System Activation. Curr Diab Rep 2018; 18:107. [PMID: 30232652 DOI: 10.1007/s11892-018-1069-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Cardiometabolic disorders such as obesity, metabolic syndrome and diabetes are increasingly common and associated with adverse cardiovascular outcomes. The mechanisms driving these developments are incompletely understood but likely to include autonomic dysregulation. The latest evidence for such a role is briefly reviewed here. RECENT FINDINGS Recent findings highlight the relevance of autonomic regulation in glucose metabolism and identify sympathetic activation, in concert with parasympathetic withdrawal, as a major contributor to the development of metabolic disorders and an important mediator of the associated adverse cardiovascular consequences. Methods targeting sympathetic overactivity using pharmacological and device-based approaches are available and appear as logical additional approaches to curb the burden of metabolic disorders and alleviate the associated morbidity from cardiovascular causes. While the available data are encouraging, the role of therapeutic inhibition of sympathetic overdrive in the prevention of the metabolic disorders and the associated adverse outcomes requires adequate testing in properly sized randomised controlled trials.
Collapse
Affiliation(s)
- Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Lakshini Y Herat
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Jan K Ho
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia.
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia.
- Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
35
|
Lee S, Lee J, Kang GM, Kim MS. Leptin directly regulate intrinsic neuronal excitability in hypothalamic POMC neurons but not in AgRP neurons in food restricted mice. Neurosci Lett 2018; 681:105-109. [PMID: 29857041 DOI: 10.1016/j.neulet.2018.05.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 05/09/2018] [Accepted: 05/28/2018] [Indexed: 10/16/2022]
Abstract
Leptin plays a pivotal role in the central control of energy balance through leptin receptors expressed on specific hypothalamic nuclei. Leptin suppresses food intake and body weight and ameliorates hyperglycemia by acting on the AgRP and POMC neurons of the arcuate nucleus. Leptin action on POMC neurons are essential for control of body weight and blood glucose levels and are known to be mediated by JAK-STAT3 and PI3K signalling pathway thus increase POMC mRNA and intrinsic excitability. The effects of leptin on AgRP neurons are not as clear although it has been reported to hyperpolarize AgRP neurons through change of K+ conductance. Using cell-attached patch and whole cell patch configuration, we directly assessed neuronal response to leptin in GFP labelled AgRP or POMC neurons in mice after 18 h of food deprivation. We found leptin has a direct effect on POMC neuron through increased intrinsic excitability and decreased inhibitory synaptic inputs. However, leptin does not have any effect on intrinsic excitability of AgRP neurons in fasted condition although food deprivation induced increase of firing frequency of AgRP neurons. In conclusion, leptin probably has a direct and acute effect on POMC neurons but not on AgRP neurons to control their excitability within feeding-regulatory neuronal circuitry.
Collapse
Affiliation(s)
- Soojung Lee
- Department of Oral Physiology, Faculty of Dentistry, Kyung Hee University, Seoul, Republic of Korea.
| | - Jooyoung Lee
- Department of Oral Physiology, Faculty of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Gil Myoung Kang
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min-Seon Kim
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
36
|
López-Gambero AJ, Martínez F, Salazar K, Cifuentes M, Nualart F. Brain Glucose-Sensing Mechanism and Energy Homeostasis. Mol Neurobiol 2018; 56:769-796. [PMID: 29796992 DOI: 10.1007/s12035-018-1099-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/25/2018] [Indexed: 01/02/2023]
Abstract
The metabolic and energy state of the organism depends largely on the availability of substrates, such as glucose for ATP production, necessary for maintaining physiological functions. Deregulation in glucose levels leads to the appearance of pathological signs that result in failures in the cardiovascular system and various diseases, such as diabetes, obesity, nephropathy, and neuropathy. Particularly, the brain relies on glucose as fuel for the normal development of neuronal activity. Regions adjacent to the cerebral ventricles, such as the hypothalamus and brainstem, exercise central control in energy homeostasis. These centers house nuclei of neurons whose excitatory activity is sensitive to changes in glucose levels. Determining the different detection mechanisms, the phenotype of neurosecretion, and neural connections involving glucose-sensitive neurons is essential to understanding the response to hypoglycemia through modulation of food intake, thermogenesis, and activation of sympathetic and parasympathetic branches, inducing glucagon and epinephrine secretion and other hypothalamic-pituitary axis-dependent counterregulatory hormones, such as glucocorticoids and growth hormone. The aim of this review focuses on integrating the current understanding of various glucose-sensing mechanisms described in the brain, thereby establishing a relationship between neuroanatomy and control of physiological processes involved in both metabolic and energy balance. This will advance the understanding of increasingly prevalent diseases in the modern world, especially diabetes, and emphasize patterns that regulate and stimulate intake, thermogenesis, and the overall synergistic effect of the neuroendocrine system.
Collapse
Affiliation(s)
- A J López-Gambero
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, BIONAND, Andalusian Center for Nanomedicine and Biotechnology and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Málaga, Spain
| | - F Martínez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - K Salazar
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - M Cifuentes
- Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, BIONAND, Andalusian Center for Nanomedicine and Biotechnology and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Málaga, Spain.
| | - F Nualart
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile. .,Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
37
|
|
38
|
Hypoglycemia. Endocrinology 2018. [DOI: 10.1007/978-3-319-27316-7_22-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
α-MSH Influences the Excitability of Feeding-Related Neurons in the Hypothalamus and Dorsal Vagal Complex of Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2034691. [PMID: 29318141 PMCID: PMC5727559 DOI: 10.1155/2017/2034691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/07/2017] [Accepted: 10/22/2017] [Indexed: 11/23/2022]
Abstract
Alpha-melanocyte-stimulating hormone (α-MSH) is processed from proopiomelanocortin (POMC) and acts on the melanocortin receptors, MC3 and MC4. α-MSH plays a key role in energy homeostasis. In the present study, to shed light on the mechanisms by which α-MSH exerts its anorectic effects, extracellular neuronal activity was recorded in the hypothalamus and the dorsal vagal complex (DVC) of anesthetized rats. We examined the impact of α-MSH on glucose-sensing neurons and gastric distension (GD) sensitive neurons. In the lateral hypothalamus (LHA), α-MSH inhibited 75.0% of the glucose-inhibited (GI) neurons. In the ventromedial nucleus (VMN), most glucose-sensitive neurons were glucose-excited (GE) neurons, which were mainly activated by α-MSH. In the paraventricular nucleus (PVN), α-MSH suppressed the majority of GI neurons and excited most GE neurons. In the DVC, among the 20 GI neurons examined for a response to α-MSH, 1 was activated, 16 were depressed, and 3 failed to respond. Nineteen of 24 GE neurons were activated by α-MSH administration. Additionally, among the 42 DVC neurons examined for responses to GD, 23 were excited (GD-EXC) and 19 were inhibited (GD-INH). Fifteen of 20 GD-EXC neurons were excited, whereas 11 out of 14 GD-INH neurons were suppressed by α-MSH. All these responses were abolished by pretreatment with the MC3/4R antagonist, SHU9119. In conclusion, the activity of glucose-sensitive neurons and GD-sensitive neurons in the hypothalamus and DVC can be modulated by α-MSH.
Collapse
|
40
|
van den Top M, Zhao FY, Viriyapong R, Michael NJ, Munder AC, Pryor JT, Renaud LP, Spanswick D. The impact of ageing, fasting and high-fat diet on central and peripheral glucose tolerance and glucose-sensing neural networks in the arcuate nucleus. J Neuroendocrinol 2017; 29. [PMID: 28834571 DOI: 10.1111/jne.12528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
Obesity and ageing are risk factors for diabetes. In the present study, we investigated the effects of ageing, obesity and fasting on central and peripheral glucose tolerance and on glucose-sensing neuronal function in the arcuate nucleus of rats, with a view to providing insight into the central mechanisms regulating glucose homeostasis and how they change or are subject to dysfunction with ageing and obesity. We show that, following a glucose load, central glucose tolerance at the level of the cerebrospinal fluid (CSF) and plasma is significantly reduced in rats maintained on a high-fat diet (HFD). With ageing, up to 2 years, central glucose tolerance was impaired in an age-dependent manner, whereas peripheral glucose tolerance remained unaffected. Ageing-induced peripheral glucose intolerance was improved by a 24-hour fast, whereas central glucose tolerance was not corrected. Pre-wean, immature animals have elevated basal plasma glucose levels and a delayed increase in central glucose levels following peripheral glucose injection compared to mature animals. Electrophysiological recording techniques revealed an energy-status-dependent role for glucose-excited, inhibited and adapting neurones, along with glucose-induced changes in synaptic transmission. We conclude that ageing affects central glucose tolerance, whereas HFD profoundly affects central and peripheral glucose tolerance and, in addition, glucose-sensing neurones adapt function in an energy-status-dependent manner.
Collapse
Affiliation(s)
| | - F-Y Zhao
- NeuroSolutions Ltd, Coventry, UK
| | - R Viriyapong
- Warwick Medical School, University of Warwick, Coventry, UK
- MOAC DTC, University of Warwick, Coventry, UK
| | - N J Michael
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - A C Munder
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - J T Pryor
- Warwick Medical School, University of Warwick, Coventry, UK
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - L P Renaud
- Ottawa Hospital Research Institute, Ottawa Civic Hospital, Ottawa, ON, Canada
| | - D Spanswick
- NeuroSolutions Ltd, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
41
|
Abdul-Wahed A, Guilmeau S, Postic C. Sweet Sixteenth for ChREBP: Established Roles and Future Goals. Cell Metab 2017; 26:324-341. [PMID: 28768172 DOI: 10.1016/j.cmet.2017.07.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/01/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022]
Abstract
With the identification of ChREBP in 2001, our interest in understanding the molecular control of carbohydrate sensing has surged. While ChREBP was initially studied as a master regulator of lipogenesis in liver and fat tissue, it is now clear that ChREBP functions as a central metabolic coordinator in a variety of cell types in response to environmental and hormonal signals, with wide implications in health and disease. Celebrating its sweet sixteenth birthday, we review here the current knowledge about the function and regulation of ChREBP throughout usual and less explored tissues, to recapitulate ChREBP's role as a whole-body glucose sensor.
Collapse
Affiliation(s)
- Aya Abdul-Wahed
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Sandra Guilmeau
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Catherine Postic
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.
| |
Collapse
|
42
|
Roberts BL, Zhu M, Zhao H, Dillon C, Appleyard SM. High glucose increases action potential firing of catecholamine neurons in the nucleus of the solitary tract by increasing spontaneous glutamate inputs. Am J Physiol Regul Integr Comp Physiol 2017; 313:R229-R239. [PMID: 28615161 DOI: 10.1152/ajpregu.00413.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 02/07/2023]
Abstract
Glucose is a crucial substrate essential for cell survival and function. Changes in glucose levels impact neuronal activity and glucose deprivation increases feeding. Several brain regions have been shown to respond to glucoprivation, including the nucleus of the solitary tract (NTS) in the brain stem. The NTS is the primary site in the brain that receives visceral afferent information from the gastrointestinal tract. The catecholaminergic (CA) subpopulation within the NTS modulates many homeostatic functions including cardiovascular reflexes, respiration, food intake, arousal, and stress. However, it is not known if they respond to changes in glucose. Here we determined whether NTS-CA neurons respond to changes in glucose concentration and the mechanism involved. We found that decreasing glucose concentrations from 5 mM to 2 mM to 1 mM, significantly decreased action potential firing in a cell-attached preparation, whereas increasing it back to 5 mM increased the firing rate. This effect was dependent on glutamate release from afferent terminals and required presynaptic 5-HT3Rs. Decreasing the glucose concentration also decreased both basal and 5-HT3R agonist-induced increase in the frequency of spontaneous glutamate inputs onto NTS-CA neurons. Low glucose also blunted 5-HT-induced inward currents in nodose ganglia neurons, which are the cell bodies of vagal afferents. The effect of low glucose in both nodose ganglia cells and in NTS slices was mimicked by the glucokinase inhibitor glucosamine. This study suggests that NTS-CA neurons are glucosensing through a presynaptic mechanism that is dependent on vagal glutamate release, 5-HT3R activity, and glucokinase.
Collapse
Affiliation(s)
- Brandon L Roberts
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Mingyan Zhu
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Huan Zhao
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Crystal Dillon
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Suzanne M Appleyard
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
43
|
Diniz GB, Bittencourt JC. The Melanin-Concentrating Hormone as an Integrative Peptide Driving Motivated Behaviors. Front Syst Neurosci 2017; 11:32. [PMID: 28611599 PMCID: PMC5447028 DOI: 10.3389/fnsys.2017.00032] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/04/2017] [Indexed: 12/14/2022] Open
Abstract
The melanin-concentrating hormone (MCH) is an important peptide implicated in the control of motivated behaviors. History, however, made this peptide first known for its participation in the control of skin pigmentation, from which its name derives. In addition to this peripheral role, MCH is strongly implicated in motivated behaviors, such as feeding, drinking, mating and, more recently, maternal behavior. It is suggested that MCH acts as an integrative peptide, converging sensory information and contributing to a general arousal of the organism. In this review, we will discuss the various aspects of energy homeostasis to which MCH has been associated to, focusing on the different inputs that feed the MCH peptidergic system with information regarding the homeostatic status of the organism and the exogenous sensory information that drives this system, as well as the outputs that allow MCH to act over a wide range of homeostatic and behavioral controls, highlighting the available morphological and hodological aspects that underlie these integrative actions. Besides the well-described role of MCH in feeding behavior, a prime example of hypothalamic-mediated integration, we will also examine those functions in which the participation of MCH has not yet been extensively characterized, including sexual, maternal, and defensive behaviors. We also evaluated the available data on the distribution of MCH and its function in the context of animals in their natural environment. Finally, we briefly comment on the evidence for MCH acting as a coordinator between different modalities of motivated behaviors, highlighting the most pressing open questions that are open for investigations and that could provide us with important insights about hypothalamic-dependent homeostatic integration.
Collapse
Affiliation(s)
- Giovanne B. Diniz
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| | - Jackson C. Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
- Center for Neuroscience and Behavior, Institute of Psychology, University of São PauloSão Paulo, Brazil
| |
Collapse
|
44
|
Yuan JH, Chen X, Dong J, Zhang D, Song K, Zhang Y, Wu GB, Hu XH, Jiang ZY, Chen P. Nesfatin-1 in the Lateral Parabrachial Nucleus Inhibits Food Intake, Modulates Excitability of Glucosensing Neurons, and Enhances UCP1 Expression in Brown Adipose Tissue. Front Physiol 2017; 8:235. [PMID: 28484396 PMCID: PMC5401881 DOI: 10.3389/fphys.2017.00235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/03/2017] [Indexed: 01/11/2023] Open
Abstract
Nesfatin-1, an 82-amino acid neuropeptide, has been shown to induce anorexia and energy expenditure. Food intake is decreased in ad libitum-fed rats following injections of nesfatin-1 into the lateral, third, or fourth ventricles of the brain. Although the lateral parabrachial nucleus (LPBN) is a key regulator of feeding behavior and thermogenesis, the role of nesfatin-1 in this structure has not yet been delineated. We found that intra-LPBN microinjections of nesfatin-1 significantly reduced nocturnal cumulative food intake and average meal sizes without affecting meal numbers in rats. Because glucose sensitive neurons are involved in glucoprivic feeding and glucose homeostasis, we examined the effect of nesfatin-1 on the excitability of LPBN glucosensing neurons. In vivo electrophysiological recordings from LPBN glucose sensitive neurons showed that nesfatin-1 (1.5 × 10-8 M) excited most of the glucose-inhibited neurons. Chronic administration of nesfatin-1 into the LPBN of rats reduced body weight gain and enhanced the expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) over a 10-day period. Furthermore, the effects of nesfatin-1 on food intake, body weight, and BAT were attenuated by treatment with the melanocortin antagonist SHU9119. These results demonstrate that nesfatin-1 in LPBN inhibited food intake, modulated excitability of glucosensing neurons and enhanced UCP1 expression in BAT via the melanocortin system.
Collapse
Affiliation(s)
- Jun-hua Yuan
- Special Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Xi Chen
- Physiology Department, Medical College, Qingdao UniversityQingdao, China
| | - Jing Dong
- Special Medicine Department, Medical College, Qingdao UniversityQingdao, China
- Physiology Department, Medical College, Qingdao UniversityQingdao, China
| | - Di Zhang
- Special Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Kun Song
- Clinical Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Yue Zhang
- Clinical Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Guang-bo Wu
- Clinical Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Xi-hao Hu
- Clinical Medicine Department, Medical College, Qingdao UniversityQingdao, China
| | - Zheng-yao Jiang
- Physiology Department, Medical College, Qingdao UniversityQingdao, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, Qingdao UniversityQingdao, China
| |
Collapse
|
45
|
McIsaac W, Ferguson AV. Glucose concentrations modulate brain-derived neurotrophic factor responsiveness of neurones in the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 2017; 29. [PMID: 28258626 DOI: 10.1111/jne.12464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 11/30/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN) is critical for normal energy balance and has been shown to contain high levels of both brain-derived neurotrophic factor (BDNF) and tropomyosin-receptor kinase B mRNA. Microinjections of BDNF into the PVN increase energy expenditure, suggesting that BDNF plays an important role in energy homeostasis through direct actions in this nucleus. The present study aimed to examine the postsynaptic effects of BDNF on the membrane potential of PVN neurones, and also to determine whether extracellular glucose concentrations modulated these effects. We used hypothalamic PVN slices from male Sprague-Dawley rats to perform whole cell current-clamp recordings from PVN neurones. BDNF was bath applied at a concentration of 2 nmol L-1 and the effects on membrane potential determined. BDNF caused depolarisations in 54% of neurones (n=25; mean±SEM, 8.9±1.2 mV) and hyperpolarisations in 23% (n=11; -6.7±1.4 mV), whereas the remaining cells were unaffected. These effects were maintained in the presence of tetrodotoxin (n=9; 56% depolarised, 22% hyperpolarised, 22% nonresponders), or the GABAa antagonist bicuculline (n=12; 42% depolarised, 17% hyperpolarised, 41% nonresponders), supporting the conclusion that these effects on membrane potential were postsynaptic. Current-clamp recordings from PVN neurones next examined the effects of BDNF on these neurones at varying extracellular glucose concentrations. Larger proportions of PVN neurones hyperpolarised in response to BDNF as the glucose concentrations decreased [10 mmol L-1 glucose 23% (n=11) of neurones hyperpolarised, whereas, at 0.2 mmol L-1 glucose, 71% showed hyperpolarising effects (n=12)]. Our findings reveal that BDNF has direct GABAA independent effects on PVN neurones, which are modulated by local glucose concentrations. The latter observation further emphasises the critical importance of using physiologically relevant conditions in an investigation of the central pathways involved in the regulation of energy homeostasis.
Collapse
Affiliation(s)
- W McIsaac
- Centre for Neuroscience, Queens University, Kingston, ON, Canada
| | - A V Ferguson
- Centre for Neuroscience, Queens University, Kingston, ON, Canada
| |
Collapse
|
46
|
Martins-Oliveira M, Akerman S, Holland PR, Hoffmann JR, Tavares I, Goadsby PJ. Neuroendocrine signaling modulates specific neural networks relevant to migraine. Neurobiol Dis 2017; 101:16-26. [PMID: 28108291 PMCID: PMC5356993 DOI: 10.1016/j.nbd.2017.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/19/2016] [Accepted: 01/16/2017] [Indexed: 01/03/2023] Open
Abstract
Migraine is a disabling brain disorder involving abnormal trigeminovascular activation and sensitization. Fasting or skipping meals is considered a migraine trigger and altered fasting glucose and insulin levels have been observed in migraineurs. Therefore peptides involved in appetite and glucose regulation including insulin, glucagon and leptin could potentially influence migraine neurobiology. We aimed to determine the effect of insulin (10U·kg-1), glucagon (100μg·200μl-1) and leptin (0.3, 1 and 3mg·kg-1) signaling on trigeminovascular nociceptive processing at the level of the trigeminocervical-complex and hypothalamus. Male rats were anesthetized and prepared for craniovascular stimulation. In vivo electrophysiology was used to determine changes in trigeminocervical neuronal responses to dural electrical stimulation, and phosphorylated extracellular signal-regulated kinases 1 and 2 (pERK1/2) immunohistochemistry to determine trigeminocervical and hypothalamic neural activity; both in response to intravenous administration of insulin, glucagon, leptin or vehicle control in combination with blood glucose analysis. Blood glucose levels were significantly decreased by insulin (p<0.001) and leptin (p<0.01) whereas glucagon had the opposite effect (p<0.001). Dural-evoked neuronal firing in the trigeminocervical-complex was significantly inhibited by insulin (p<0.001), glucagon (p<0.05) and leptin (p<0.01). Trigeminocervical-complex pERK1/2 cell expression was significantly decreased by insulin and leptin (both p<0.001), and increased by glucagon (p<0.001), when compared to vehicle control. However, only leptin affected pERK1/2 expression in the hypothalamus, significantly decreasing pERK1/2 immunoreactive cell expression in the arcuate nucleus (p<0.05). These findings demonstrate that insulin, glucagon and leptin can alter the transmission of trigeminal nociceptive inputs. A potential neurobiological link between migraine and impaired metabolic homeostasis may occur through disturbed glucose regulation and a transient hypothalamic dysfunction.
Collapse
Affiliation(s)
- Margarida Martins-Oliveira
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, UK; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Experimental Biology, Faculty of Medicine of University of Porto, Institute for Molecular and Cell Biology (IBMC) and Institute of Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Simon Akerman
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Philip R Holland
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, UK
| | - Jan R Hoffmann
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Isaura Tavares
- Department of Experimental Biology, Faculty of Medicine of University of Porto, Institute for Molecular and Cell Biology (IBMC) and Institute of Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Peter J Goadsby
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, UK; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
47
|
Dore R, Levata L, Lehnert H, Schulz C. Nesfatin-1: functions and physiology of a novel regulatory peptide. J Endocrinol 2017; 232:R45-R65. [PMID: 27754932 DOI: 10.1530/joe-16-0361] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022]
Abstract
Nesfatin-1 was identified in 2006 as a potent anorexigenic peptide involved in the regulation of homeostatic feeding. It is processed from the precursor-peptide NEFA/nucleobindin 2 (NUCB2), which is expressed both in the central nervous system as well as in the periphery, from where it can access the brain via non-saturable transmembrane diffusion. In hypothalamus and brainstem, nesfatin-1 recruits the oxytocin, the melancortin and other systems to relay its anorexigenic properties. NUCB2/nesfatin-1 peptide expression in reward-related areas suggests that nesfatin-1 might also be involved in hedonic feeding. Besides its initially discovered anorexigenic properties, over the last years, other important functions of nesfatin-1 have been discovered, many of them related to energy homeostasis, e.g. energy expenditure and glucose homeostasis. Nesfatin-1 is not only affecting these physiological processes but also the alterations of the metabolic state (e.g. fat mass, glycemic state) have an impact on the synthesis and release of NUCB2 and/or nesfatin-1. Furthermore, nesfatin-1 exerts pleiotropic actions at the level of cardiovascular and digestive systems, as well as plays a role in stress response, behavior, sleep and reproduction. Despite the recent advances in nesfatin-1 research, a putative receptor has not been identified and furthermore potentially distinct functions of nesfatin-1 and its precursor NUCB2 have not been dissected yet. To tackle these open questions will be the major objectives of future research to broaden our knowledge on NUCB2/nesfatin-1.
Collapse
Affiliation(s)
- Riccardo Dore
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Luka Levata
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Schulz
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
48
|
Picard A, Soyer J, Berney X, Tarussio D, Quenneville S, Jan M, Grouzmann E, Burdet F, Ibberson M, Thorens B. A Genetic Screen Identifies Hypothalamic Fgf15 as a Regulator of Glucagon Secretion. Cell Rep 2016; 17:1795-1806. [PMID: 27829151 PMCID: PMC5120348 DOI: 10.1016/j.celrep.2016.10.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 10/04/2016] [Accepted: 10/13/2016] [Indexed: 12/26/2022] Open
Abstract
The counterregulatory response to hypoglycemia, which restores normal blood glucose levels to ensure sufficient provision of glucose to the brain, is critical for survival. To discover underlying brain regulatory systems, we performed a genetic screen in recombinant inbred mice for quantitative trait loci (QTL) controlling glucagon secretion in response to neuroglucopenia. We identified a QTL on the distal part of chromosome 7 and combined this genetic information with transcriptomic analysis of hypothalami. This revealed Fgf15 as the strongest candidate to control the glucagon response. Fgf15 was expressed by neurons of the dorsomedial hypothalamus and the perifornical area. Intracerebroventricular injection of FGF19, the human ortholog of Fgf15, reduced activation by neuroglucopenia of dorsal vagal complex neurons, of the parasympathetic nerve, and lowered glucagon secretion. In contrast, silencing Fgf15 in the dorsomedial hypothalamus increased neuroglucopenia-induced glucagon secretion. These data identify hypothalamic Fgf15 as a regulator of glucagon secretion.
Collapse
Affiliation(s)
- Alexandre Picard
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Josselin Soyer
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Xavier Berney
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - David Tarussio
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Simon Quenneville
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Maxime Jan
- Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Eric Grouzmann
- Service de Biomédicine, Laboratoire des Catécholamines et Peptides, Centre Hospitalier Universitaire Vaudois CHUV, 1011 Lausanne, Switzerland
| | - Frédéric Burdet
- Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Mark Ibberson
- Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
49
|
Steinbusch LKM, Picard A, Bonnet MS, Basco D, Labouèbe G, Thorens B. Sex-Specific Control of Fat Mass and Counterregulation by Hypothalamic Glucokinase. Diabetes 2016; 65:2920-31. [PMID: 27422385 DOI: 10.2337/db15-1514] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/07/2016] [Indexed: 11/13/2022]
Abstract
Glucokinase (Gck) is a critical regulator of glucose-induced insulin secretion by pancreatic β-cells. It has been suggested to also play an important role in glucose signaling in neurons of the ventromedial hypothalamic nucleus (VMN), a brain nucleus involved in the control of glucose homeostasis and feeding. To test the role of Gck in VMN glucose sensing and physiological regulation, we studied mice with genetic inactivation of the Gck gene in Sf1 neurons of the VMN (Sf1Gck(-/-) mice). Compared with control littermates, Sf1Gck(-/-) mice displayed increased white fat mass and adipocyte size, reduced lean mass, impaired hypoglycemia-induced glucagon secretion, and a lack of parasympathetic and sympathetic nerve activation by neuroglucopenia. However, these phenotypes were observed only in female mice. To determine whether Gck was required for glucose sensing by Sf1 neurons, we performed whole-cell patch clamp analysis of brain slices from control and Sf1Gck(-/-) mice. Absence of Gck expression did not prevent the glucose responsiveness of glucose-excited or glucose-inhibited Sf1 neurons in either sex. Thus Gck in the VMN plays a sex-specific role in the glucose-dependent control of autonomic nervous activity; this is, however, unrelated to the control of the firing activity of classical glucose-responsive neurons.
Collapse
Affiliation(s)
| | - Alexandre Picard
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Marion S Bonnet
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Davide Basco
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gwenaël Labouèbe
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
50
|
Herrera-Moro Chao D, León-Mercado L, Foppen E, Guzmán-Ruiz M, Basualdo MC, Escobar C, Buijs RM. The Suprachiasmatic Nucleus Modulates the Sensitivity of Arcuate Nucleus to Hypoglycemia in the Male Rat. Endocrinology 2016; 157:3439-51. [PMID: 27429160 DOI: 10.1210/en.2015-1751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The suprachiasmatic nucleus (SCN) and arcuate nucleus (ARC) have reciprocal connections; catabolic metabolic information activates the ARC and inhibits SCN neuronal activity. Little is known about the influence of the SCN on the ARC. Here, we investigated whether the SCN modulated the sensitivity of the ARC to catabolic metabolic conditions. ARC neuronal activity, as determined by c-Fos immunoreactivity, was increased after a hypoglycemic stimulus by 2-deoxyglucose (2DG). The highest ARC neuronal activity after 2DG was found at the end of the light period (zeitgeber 11, ZT11) with a lower activity in the beginning of the light period (zeitgeber 2, ZT2), suggesting the involvement of the SCN. The higher activation of ARC neurons after 2DG at ZT11 was associated with higher 2DG induced blood glucose levels as compared with ZT2. Unilateral SCN-lesioned animals, gave a mainly ipsilateral activation of ARC neurons at the lesioned side, suggesting an inhibitory role of the SCN on ARC neurons. The 2DG-induced counterregulatory glucose response correlated with increased ARC neuronal activity and was significantly higher in unilateral SCN-lesioned animals. Finally, the ARC as site where 2DG may, at least partly, induce a counterregulatory response was confirmed by local microdialysis of 2DG. 2DG administration in the ARC produced a higher increase in circulating glucose compared with 2DG administration in surrounding areas such as the ventromedial nucleus of the hypothalamus (VMH). We conclude that the SCN uses neuronal pathways to the ARC to gate sensory metabolic information to the brain, regulating ARC glucose sensitivity and counterregulatory responses to hypoglycemic conditions.
Collapse
Affiliation(s)
- D Herrera-Moro Chao
- Departamento de Biología Celular y Fisiología (D.H.-M.C., L.L.-M., M.G.-R., M.C.B., R.M.B.), Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, (UNAM) PC 04510 Distrito Federal, México; Departamento de Anatomía (C.E.), Facultad de Medicina, PC 04510 UNAM, Distrito Federal, México; and Department of Endocrinology and Metabolism (E.F.), Academic Medical Center, PC 1105 AZ Amsterdam, The Netherlands
| | - L León-Mercado
- Departamento de Biología Celular y Fisiología (D.H.-M.C., L.L.-M., M.G.-R., M.C.B., R.M.B.), Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, (UNAM) PC 04510 Distrito Federal, México; Departamento de Anatomía (C.E.), Facultad de Medicina, PC 04510 UNAM, Distrito Federal, México; and Department of Endocrinology and Metabolism (E.F.), Academic Medical Center, PC 1105 AZ Amsterdam, The Netherlands
| | - E Foppen
- Departamento de Biología Celular y Fisiología (D.H.-M.C., L.L.-M., M.G.-R., M.C.B., R.M.B.), Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, (UNAM) PC 04510 Distrito Federal, México; Departamento de Anatomía (C.E.), Facultad de Medicina, PC 04510 UNAM, Distrito Federal, México; and Department of Endocrinology and Metabolism (E.F.), Academic Medical Center, PC 1105 AZ Amsterdam, The Netherlands
| | - M Guzmán-Ruiz
- Departamento de Biología Celular y Fisiología (D.H.-M.C., L.L.-M., M.G.-R., M.C.B., R.M.B.), Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, (UNAM) PC 04510 Distrito Federal, México; Departamento de Anatomía (C.E.), Facultad de Medicina, PC 04510 UNAM, Distrito Federal, México; and Department of Endocrinology and Metabolism (E.F.), Academic Medical Center, PC 1105 AZ Amsterdam, The Netherlands
| | - M C Basualdo
- Departamento de Biología Celular y Fisiología (D.H.-M.C., L.L.-M., M.G.-R., M.C.B., R.M.B.), Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, (UNAM) PC 04510 Distrito Federal, México; Departamento de Anatomía (C.E.), Facultad de Medicina, PC 04510 UNAM, Distrito Federal, México; and Department of Endocrinology and Metabolism (E.F.), Academic Medical Center, PC 1105 AZ Amsterdam, The Netherlands
| | - C Escobar
- Departamento de Biología Celular y Fisiología (D.H.-M.C., L.L.-M., M.G.-R., M.C.B., R.M.B.), Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, (UNAM) PC 04510 Distrito Federal, México; Departamento de Anatomía (C.E.), Facultad de Medicina, PC 04510 UNAM, Distrito Federal, México; and Department of Endocrinology and Metabolism (E.F.), Academic Medical Center, PC 1105 AZ Amsterdam, The Netherlands
| | - R M Buijs
- Departamento de Biología Celular y Fisiología (D.H.-M.C., L.L.-M., M.G.-R., M.C.B., R.M.B.), Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, (UNAM) PC 04510 Distrito Federal, México; Departamento de Anatomía (C.E.), Facultad de Medicina, PC 04510 UNAM, Distrito Federal, México; and Department of Endocrinology and Metabolism (E.F.), Academic Medical Center, PC 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|