1
|
Devi NB, Pakshirajan K. Diversifying product portfolio of syngas fermentation in addition to ethanol production by using Clostridium species. BIORESOURCE TECHNOLOGY 2025; 427:132401. [PMID: 40090495 DOI: 10.1016/j.biortech.2025.132401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
This study explores the impact of syngas, a mixture of CO (carbon monoxide), CO2 (carbon dioxide) and H2 (hydrogen), composition on production of ethanol and other metabolites by using various Clostridia. Clostridium carboxidivorans, Clostridium ljungdahlii, and Clostridium ragsdalei were examined to convert CO-rich syngas into ethanol and other valuable products, and C. carboxidivorans was shown to produce maximum ethanol at a high initial CO concentration (80 % CO: 10 % CO2: 10 % H2). In addition, other C2-C6 compounds, viz. lactate, propionate, butyrate, 2,3-butanediol, butanol, isovalerate, hexanol, were produced by C. carboxidivorans, C. ljungdahlii, and C. ragsdalei, indicating diversified product formation through the Wood-Ljungdahl pathway. Modified Gompertz and Logistic models were successfully applied to describe the kinetics of cell growth and ethanol production by Clostridia via syngas fermentation. The findings emphasize optimization of syngas composition for maximum production of ethanol and other valuable biochemicals, providing a sustainable approach to biofuels and bioproduct production.
Collapse
Affiliation(s)
- Naorem Bela Devi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
2
|
Kerkhof I, Puiman L, Straathof AJJ. Understanding microbial syngas fermentation rates. Appl Microbiol Biotechnol 2024; 108:540. [PMID: 39704780 PMCID: PMC11662053 DOI: 10.1007/s00253-024-13364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
Syngas fermentation to ethanol has reached industrial production. Further improvement of this process would be aided by quantitative understanding of the influence of imposed reaction conditions on the fermentation performance. That requires a reliable model of the microbial kinetics. Data were collected from 37 steady states in chemostats and from many batch experiments that use Clostridium authoethanogenum. Biomass-specific rates from CO conversion experiments were related to each other according to simple reaction stoichiometries and the Pirt equation, with only the ratio of ethanol to acetate production remaining as degree of freedom. No clear dependency of this ratio on dissolved concentrations, such as CO or acetic acid concentration, was found. This is largely caused by the lack of knowledge about the dependency of the CO uptake rate (and hence all other rates) on the CO concentration. This knowledge gap is caused by a lack of dissolved CO measurements. For dissolved H2, a similar gap applies. Modelling H2 consumption adds more degrees of freedom to the system, so that more structured experiments with H2 is needed. The inhibition of gas consumption by acetate and ethanol is partly known but needs further study. KEY POINTS: • Set of Clostridium autoethanogenum syngas fermentation data from chemostats. • Unstructured kinetic models can relate most biomass-specific rates to dilution rates. • Lack of dissolved gas measurements limits deeper understanding.
Collapse
Affiliation(s)
- Iris Kerkhof
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Lars Puiman
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Adrie J J Straathof
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
3
|
Harahap BM, Ahring BK. Acetate Production from Syngas Produced from Lignocellulosic Biomass Materials along with Gaseous Fermentation of the Syngas: A Review. Microorganisms 2023; 11:microorganisms11040995. [PMID: 37110418 PMCID: PMC10143712 DOI: 10.3390/microorganisms11040995] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Biotransformation of lignocellulose-derived synthetic gas (syngas) into acetic acid is a promising way of creating biochemicals from lignocellulosic waste materials. Acetic acid has a growing market with applications within food, plastics and for upgrading into a wide range of biofuels and bio-products. In this paper, we will review the microbial conversion of syngas to acetic acid. This will include the presentation of acetate-producing bacterial strains and their optimal fermentation conditions, such as pH, temperature, media composition, and syngas composition, to enhance acetate production. The influence of syngas impurities generated from lignocellulose gasification will further be covered along with the means to alleviate impurity problems through gas purification. The problem with mass transfer limitation of gaseous fermentation will further be discussed as well as ways to improve gas uptake during the fermentation.
Collapse
Affiliation(s)
- Budi Mandra Harahap
- Bioproducts, Science, and Engineering Laboratory, Washington State University Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA
- Department of Biological System Engineering, Washington State University, L. J. Smith Hall, Pullman, WA 99164, USA
| | - Birgitte K Ahring
- Bioproducts, Science, and Engineering Laboratory, Washington State University Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA
- Department of Biological System Engineering, Washington State University, L. J. Smith Hall, Pullman, WA 99164, USA
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Wegner Hall, Pullman, WA 99164, USA
| |
Collapse
|
4
|
Mutyala S, Kim JR. Recent advances and challenges in the bioconversion of acetate to value-added chemicals. BIORESOURCE TECHNOLOGY 2022; 364:128064. [PMID: 36195215 DOI: 10.1016/j.biortech.2022.128064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Acetate is a major byproduct of the bioconversion of the greenhouse gas carbon dioxide, pretreatment of lignocellulose biomass, and microbial fermentation. The utilization and valorization of acetate have been emphasized in transforming waste to clean energy and value-added platform chemicals, contributing to the development of a closed carbon loop toward a low-carbon circular bio-economy. Acetate has been used to produce several platform chemicals, including succinate, 3-hydroxypropionate, and itaconic acid, highlighting the potential of acetate to synthesize many biochemicals and biofuels. On the other hand, the yields and titers have not reached the theoretical maximum. Recently, recombinant strain development and pathway regulation have been suggested to overcome this limitation. This review provides insights into the important constraints limiting the yields and titers of the biochemical and metabolic pathways of bacteria capable of metabolizing acetate for acetate bioconversion. The current developments in recombinant strain engineering are also discussed.
Collapse
Affiliation(s)
- Sakuntala Mutyala
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Yoon J, Bae J, Kang S, Cho BK, Oh MK. Poly-3-hydroxybutyrate production in acetate minimal medium using engineered Methylorubrum extorquens AM1. BIORESOURCE TECHNOLOGY 2022; 353:127127. [PMID: 35398538 DOI: 10.1016/j.biortech.2022.127127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Acetate is regarded as a sustainable microbial feedstock that is synthesized from biowastes such as synthesis gas (syngas), carbon dioxide, lignocellulose, or organic waste. In this study, Methylorubrum extorquens AM1 was engineered to improve the production of bioplastic poly-3-hydroxybutyrate (PHB) using acetate as the sole carbon source. To utilize acetate as a carbon source and methanol as an energy source, acs encoding acetyl-CoA synthetase and fdh from Burkholderia stabilis were overexpressed, while ftfL involved in the assimilation of methanol into formyl-tetrahydrofolate was deleted. The yields of biomass and PHB from acetate significantly improved, and the growth rate and PHB content of the bacteria increased. In addition, sustainability of the PHB production was demonstrated using acetate derived from carbon dioxide and syngas. This study shows that biopolymers could be synthesized efficiently using acetate as the sole carbon source through metabolic engineering and the supply of energy cofactors.
Collapse
Affiliation(s)
- Jihee Yoon
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jiyun Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seulgi Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Lee H, Bae J, Jin S, Kang S, Cho BK. Engineering Acetogenic Bacteria for Efficient One-Carbon Utilization. Front Microbiol 2022; 13:865168. [PMID: 35615514 PMCID: PMC9124964 DOI: 10.3389/fmicb.2022.865168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
C1 gases, including carbon dioxide (CO2) and carbon monoxide (CO), are major contributors to climate crisis. Numerous studies have been conducted to fix and recycle C1 gases in order to solve this problem. Among them, the use of microorganisms as biocatalysts to convert C1 gases to value-added chemicals is a promising solution. Acetogenic bacteria (acetogens) have received attention as high-potential biocatalysts owing to their conserved Wood–Ljungdahl (WL) pathway, which fixes not only CO2 but also CO. Although some metabolites have been produced via C1 gas fermentation on an industrial scale, the conversion of C1 gases to produce various biochemicals by engineering acetogens has been limited. The energy limitation of acetogens is one of the challenges to overcome, as their metabolism operates at a thermodynamic limit, and the low solubility of gaseous substrates results in a limited supply of cellular energy. This review provides strategies for developing efficient platform strains for C1 gas conversion, focusing on engineering the WL pathway. Supplying liquid C1 substrates, which can be obtained from CO2, or electricity is introduced as a strategy to overcome the energy limitation. Future prospective approaches on engineering acetogens based on systems and synthetic biology approaches are also discussed.
Collapse
Affiliation(s)
- Hyeonsik Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jiyun Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sangrak Jin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seulgi Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Byung-Kwan Cho,
| |
Collapse
|
7
|
Ruggiero G, Lanzillo F, Raganati F, Russo M, Salatino P, Marzocchella A. Bioreactor modelling for syngas fermentation: kinetic characterization. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Pavan M, Reinmets K, Garg S, Mueller AP, Marcellin E, Köpke M, Valgepea K. Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy. Metab Eng 2022; 71:117-141. [DOI: 10.1016/j.ymben.2022.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
|
9
|
Conversion of Carbon Monoxide to Chemicals Using Microbial Consortia. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:373-407. [PMID: 34811579 DOI: 10.1007/10_2021_180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Syngas, a gaseous mixture of CO, H2 and CO2, can be produced by gasification of carbon-containing materials, including organic waste materials or lignocellulosic biomass. The conversion of bio-based syngas to chemicals is foreseen as an important process in circular bioeconomy. Carbon monoxide is also produced as a waste gas in many industrial sectors (e.g., chemical, energy, steel). Often, the purity level of bio-based syngas and waste gases is low and/or the ratios of syngas components are not adequate for chemical conversion (e.g., by Fischer-Tropsch). Microbes are robust catalysts to transform impure syngas into a broad spectrum of products. Fermentation of CO-rich waste gases to ethanol has reached commercial scale (by axenic cultures of Clostridium species), but production of other chemical building blocks is underexplored. Currently, genetic engineering of carboxydotrophic acetogens is applied to increase the portfolio of products from syngas/CO, but the limited energy metabolism of these microbes limits product yields and applications (for example, only products requiring low levels of ATP for synthesis can be produced). An alternative approach is to explore microbial consortia, including open mixed cultures and synthetic co-cultures, to create a metabolic network based on CO conversion that can yield products such as medium-chain carboxylic acids, higher alcohols and other added-value chemicals.
Collapse
|
10
|
Litty D, Müller V. Butyrate production in the acetogen Eubacterium limosum is dependent on the carbon and energy source. Microb Biotechnol 2021; 14:2686-2692. [PMID: 33629808 PMCID: PMC8601167 DOI: 10.1111/1751-7915.13779] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022] Open
Abstract
Eubacterium limosum KIST612 is one of the few acetogenic bacteria that has the genes encoding for butyrate synthesis from acetyl-CoA, and indeed, E. limosum KIST612 is known to produce butyrate from CO but not from H2 + CO2 . Butyrate production from CO was only seen in bioreactors with cell recycling or in batch cultures with addition of acetate. Here, we present detailed study on growth of E. limosum KIST612 on different carbon and energy sources with the goal, to find other substrates that lead to butyrate formation. Batch fermentations in serum bottles revealed that acetate was the major product under all conditions investigated. Butyrate formation from the C1 compounds carbon dioxide and hydrogen, carbon monoxide or formate was not observed. However, growth on glucose led to butyrate formation, but only in the stationary growth phase. A maximum of 4.3 mM butyrate was observed, corresponding to a butyrate:glucose ratio of 0.21:1 and a butyrate:acetate ratio of 0.14:1. Interestingly, growth on the C1 substrate methanol also led to butyrate formation in the stationary growth phase with a butyrate:methanol ratio of 0.17:1 and a butyrate:acetate ratio of 0.33:1. Since methanol can be produced chemically from carbon dioxide, this offers the possibility for a combined chemical-biochemical production of butyrate from H2 + CO2 using this acetogenic biocatalyst. With the advent of genetic methods in acetogens, butanol production from methanol maybe possible as well.
Collapse
Affiliation(s)
- Dennis Litty
- Department of Molecular Microbiology & BioenergeticsInstitute of Molecular BiosciencesGoethe‐University Frankfurt am MainHessenGermany
| | - Volker Müller
- Department of Molecular Microbiology & BioenergeticsInstitute of Molecular BiosciencesGoethe‐University Frankfurt am MainHessenGermany
| |
Collapse
|
11
|
Fuentes L, Palomo-Briones R, de Jesús Montoya-Rosales J, Braga L, Castelló E, Vesga A, Tapia-Venegas E, Razo-Flores E, Ecthebehere C. Knowing the enemy: homoacetogens in hydrogen production reactors. Appl Microbiol Biotechnol 2021; 105:8989-9002. [PMID: 34716461 DOI: 10.1007/s00253-021-11656-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
One of the bottlenecks of the hydrogen production by dark fermentation is the low yields obtained because of the homoacetogenesis persistence, a metabolic pathway where H2 and CO2 are consumed to produce acetate. The central reactions of H2 production and homoacetogenesis are catalyzed by enzyme hydrogenase and the formyltetrahydrofolate synthetase, respectively. In this work, genes encoding for the formyltetrahydrofolate synthetase (fthfs) and hydrogenase (hydA) were used to investigate the diversity of homoacetogens as well as their phylogenetic relationships through quantitative PCR (qPCR) and next-generation amplicon sequencing. A total of 70 samples from 19 different H2-producing bioreactors with different configurations and operating conditions were analyzed. Quantification through qPCR showed that the abundance of fthfs and hydA was strongly associated with the type of substrate, organic loading rate, and H2 production performance. In particular, fthfs sequencing revealed that homoacetogens diversity was low with one or two dominant homoacetogens in each sample. Clostridium carboxivorans was detected in the reactors fed with agave hydrolisates; Acetobacterium woodii dominated in systems fed with glucose; Blautia coccoides and unclassified Sporoanaerobacter species were present in reactors fed with cheese whey; finally, Eubacterium limosum and Selenomonas sp. were co-dominant in reactors fed with glycerol. Altogether, quantification and sequencing analysis revealed that the occurrence of homoacetogenesis could take place due to (1) metabolic changes of H2-producing bacteria towards homoacetogenesis or (2) the displacement of H2-producing bacteria by homoacetogens. Overall, it was demonstrated that the fthfs gene was a suitable marker to investigate homoacetogens in H2-producing reactors. KEY POINTS: • qPCR and sequencing analysis revealed two homoacetogenesis phenomena. • fthfs gene was a suitable marker to investigate homoacetogens in H2 reactors.
Collapse
Affiliation(s)
- Laura Fuentes
- Laboratorio de Ecología Microbiana, Departamento de Bioquímica Y Genómica Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia, 3318, Montevideo, Uruguay
| | - Rodolfo Palomo-Briones
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica A.C, Camino a La Presa San José No, 2055, Col. Lomas 4a Sección, C.P., 78216, San Luis Potosí, SLP, México
| | - José de Jesús Montoya-Rosales
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica A.C, Camino a La Presa San José No, 2055, Col. Lomas 4a Sección, C.P., 78216, San Luis Potosí, SLP, México
| | - Lucía Braga
- Laboratorio Bioprocesos Ambientales, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de La República, Herrera Y Reissig, 565, Montevideo, Uruguay
| | - Elena Castelló
- Laboratorio Bioprocesos Ambientales, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de La República, Herrera Y Reissig, 565, Montevideo, Uruguay
| | - Alejandra Vesga
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, 2085, Valparaíso, Av. Brasil, Chile
| | - Estela Tapia-Venegas
- Departamento de Medio Ambiente, Facultad de Ingeniería, Universidad de Playa Ancha Av, Leopoldo Carvallo 270, Valparaíso, Chile
| | - Elías Razo-Flores
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica A.C, Camino a La Presa San José No, 2055, Col. Lomas 4a Sección, C.P., 78216, San Luis Potosí, SLP, México
| | - Claudia Ecthebehere
- Laboratorio de Ecología Microbiana, Departamento de Bioquímica Y Genómica Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia, 3318, Montevideo, Uruguay.
| |
Collapse
|
12
|
Li X, Henson MA. Dynamic metabolic modelling predicts efficient acetogen-gut bacterium cocultures for CO-to-butyrate conversion. J Appl Microbiol 2021; 131:2899-2917. [PMID: 34008274 DOI: 10.1111/jam.15155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
AIMS While gas-fermenting acetogens have been engineered to secrete non-native metabolites such as butyrate, acetate remains the most thermodynamically favourable product. An alternative to metabolic engineering is to exploit native capabilities for CO-to-acetate conversion by coculturing an acetogen with a second bacterium that provides efficient acetate-butyrate conversion. METHODS AND RESULTS We used dynamic metabolic modelling to computationally evaluate the CO-to-butyrate conversion capabilities of candidate coculture systems by exploiting the diversity of human gut bacteria for anaerobic synthesis of butyrate from acetate and ethanol. A preliminary screening procedure based on flux balance analysis was developed to identify 48 gut bacteria which satisfied minimal growth rate and acetate-to-butyrate conversion requirements when cultured on minimal medium containing acetate and a simple sugar not consumed by the paired acetogen. A total of 170 acetogen/gut bacterium/sugar combinations were dynamically simulated for continuous growth using a 70/30 CO/CO2 feed gas mixture and minimal medium computationally determined for each combination. CONCLUSIONS While coculture systems involving the acetogens Eubacterium limosum or Blautia producta yielded low butyrate productivities and CO-to-ethanol conversion had minimal impact on system performance, dynamic simulations predicted a large number of promising coculture designs with Clostridium ljungdahlii or C. autoethanogenum as the CO-to-acetate converter. Pairings with the gut bacterium Clostridium hylemonae or Roseburia hominis were particularly promising due to their ability to generate high butyrate productivities over a range of dilution rates with a variety of sugars. The higher specific acetate secretion rate of C. ljungdahlii proved more beneficial than the elevated growth rate of C. autoethanogenum for coculture butyrate productivity. SIGNIFICANCE AND IMPACT OF THE STUDY Our study demonstrated that metabolic modelling could provide useful insights into coculture design that can guide future experimental studies. More specifically, our predictions generated several favourable designs, which could serve as the first coculture systems realized experimentally.
Collapse
Affiliation(s)
- X Li
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | - M A Henson
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
13
|
Kim JY, Park S, Jeong J, Lee M, Kang B, Jang SH, Jeon J, Jang N, Oh S, Park ZY, Chang IS. Methanol supply speeds up synthesis gas fermentation by methylotrophic-acetogenic bacterium, Eubacterium limosum KIST612. BIORESOURCE TECHNOLOGY 2021; 321:124521. [PMID: 33321298 DOI: 10.1016/j.biortech.2020.124521] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
This study analyzed the effect of methanol on the metabolism of syngas components (i.e., H2 and CO) by the syngas fermenting acetogenic strain E. limosum KIST612. The culture characteristics and relevant proteomic expressions (as fold changes) were carefully analyzed under CO/CO2 and H2/CO2 conditions with and without methanol addition, as well as, under methanol/CO2 conditions. The culture characteristics (specific growth rate and H2 consumption rate) under H2/CO2 conditions were greatly enhanced in the presence of methanol, by 4.0 and 2.7 times, respectively. However, the promoting effect of methanol was not significant under CO/CO2 conditions. Proteomic fold changes in most enzyme expression levels in the Wood-Ljungdahl pathway and chemiosmotic energy conservation also exhibited high correspondence between methanol and H2/CO2 but not between methanol and CO/CO2. These findings suggest the advantages of methanol addition to H2/CO2 for biomass enhancement and faster consumption of gaseous substrates during syngas fermentation.
Collapse
Affiliation(s)
- Ji-Yeon Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sehoon Park
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jiyeong Jeong
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Mungyu Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Byeongchan Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Se Hwan Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jinsung Jeon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Nulee Jang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Soyoung Oh
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
14
|
Syngas Derived from Lignocellulosic Biomass Gasification as an Alternative Resource for Innovative Bioprocesses. Processes (Basel) 2020. [DOI: 10.3390/pr8121567] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A hybrid system based on lignocellulosic biomass gasification and syngas fermentation represents a second-generation biorefinery approach that is currently in the development phase. Lignocellulosic biomass can be gasified to produce syngas, which is a gas mixture consisting mainly of H2, CO, and CO2. The major challenge of biomass gasification is the syngas’s final quality. Consequently, the development of effective syngas clean-up technologies has gained increased interest in recent years. Furthermore, the bioconversion of syngas components has been intensively studied using acetogenic bacteria and their Wood–Ljungdahl pathway to produce, among others, acetate, ethanol, butyrate, butanol, caproate, hexanol, 2,3-butanediol, and lactate. Nowadays, syngas fermentation appears to be a promising alternative for producing commodity chemicals in comparison to fossil-based processes. Research studies on syngas fermentation have been focused on process design and optimization, investigating the medium composition, operating parameters, and bioreactor design. Moreover, metabolic engineering efforts have been made to develop genetically modified strains with improved production. In 2018, for the first time, a syngas fermentation pilot plant from biomass gasification was built by LanzaTech Inc. in cooperation with Aemetis, Inc. Future research will focus on coupling syngas fermentation with additional bioprocesses and/or on identifying new non-acetogenic microorganisms to produce high-value chemicals beyond acetate and ethanol.
Collapse
|
15
|
Vees CA, Neuendorf CS, Pflügl S. Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. J Ind Microbiol Biotechnol 2020; 47:753-787. [PMID: 32894379 PMCID: PMC7658081 DOI: 10.1007/s10295-020-02296-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
The sustainable production of solvents from above ground carbon is highly desired. Several clostridia naturally produce solvents and use a variety of renewable and waste-derived substrates such as lignocellulosic biomass and gas mixtures containing H2/CO2 or CO. To enable economically viable production of solvents and biofuels such as ethanol and butanol, the high productivity of continuous bioprocesses is needed. While the first industrial-scale gas fermentation facility operates continuously, the acetone-butanol-ethanol (ABE) fermentation is traditionally operated in batch mode. This review highlights the benefits of continuous bioprocessing for solvent production and underlines the progress made towards its establishment. Based on metabolic capabilities of solvent producing clostridia, we discuss recent advances in systems-level understanding and genome engineering. On the process side, we focus on innovative fermentation methods and integrated product recovery to overcome the limitations of the classical one-stage chemostat and give an overview of the current industrial bioproduction of solvents.
Collapse
Affiliation(s)
- Charlotte Anne Vees
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Christian Simon Neuendorf
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| |
Collapse
|
16
|
Thi HN, Park S, Li H, Kim YK. Medium Compositions for the Improvement of Productivity in Syngas Fermentation with Clostridium autoethanogenum. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0428-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Liu LY, Xie GJ, Xing DF, Liu BF, Ding J, Ren NQ. Biological conversion of methane to polyhydroxyalkanoates: Current advances, challenges, and perspectives. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 2:100029. [PMID: 36160923 PMCID: PMC9487992 DOI: 10.1016/j.ese.2020.100029] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 05/13/2023]
Abstract
Methane emissions and plastic pollution are critical global challenges. The biological conversion of methane to poly-β-hydroxybutyrate (PHB) not only mitigates methane emissions but also provides biodegradable polymer substitutes for petroleum-based materials used in plastics production. This work provides an early overview of the methane-based PHB advances and discusses challenges and related strategies. Recent advances of PHB, including PHB biosynthetic pathways, methanotrophs, bioreactors, and the performances of PHB materials are introduced. Major challenges of methane-based PHB production are discussed in detail; these include low efficiency of methanotrophs, low gas-liquid mass transfer efficiency, and poor material properties. To overcome these limitations, various approaches are also explored, such as feast-famine regimes, engineered microorganisms, gas-permeable membrane bioreactors, two-phase partitioning bioreactors, poly-β-hydroxybutyrate-co-hydroxyvalerate synthesis, and molecular weight manipulation.
Collapse
|
18
|
Lee M, Yasin M, Jang N, Chang IS. A simultaneous gas feeding and cell-recycled reaction (SGCR) system to achieve biomass boosting and high acetate titer in microbial carbon monoxide fermentation. BIORESOURCE TECHNOLOGY 2020; 298:122549. [PMID: 31859133 DOI: 10.1016/j.biortech.2019.122549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
This study employed a simultaneous gas feeding and cell-recycled reaction (SGCR) system to ferment CO using Eubacterium limosum KIST612. A bubble column reactor was equipped with an ex-situ hollow fiber membrane module to enable cell recycling. The internal gas circulation rate was adjusted by controlling the pump speed to provide sufficient gas supplement to the microorganism. Gas feedings were conducted by either the use of a gas-tight bag (Batch), a pressurized gas cylinder (Continuous), or a sequential combination of the two (Mixed feeding). Mixed feeding mode achieved higher biomass (9.7 g/L) and acetate (9.8 g/L) concentrations than Batch mode (3.2 g/L biomass and 7.0 g/L acetate) or Continuous mode (5.0 g/L biomass and 8.1 g/L acetate). The high acetate titer in Mixed feeding mode was achieved due to the high concentration of cells secured in a short time at the initial operation stage and maintaining a high specific growth rate.
Collapse
Affiliation(s)
- Mungyu Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Muhammad Yasin
- Bioenergy & Environmental Sustainable Technology (BEST) Research Group, Department of Chemical Engineering, COMSATS Institute of Information Technology (CIIT), Lahore, Pakistan
| | - Nulee Jang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
19
|
Almeida Benalcázar E, Noorman H, Maciel Filho R, Posada JA. Modeling ethanol production through gas fermentation: a biothermodynamics and mass transfer-based hybrid model for microbial growth in a large-scale bubble column bioreactor. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:59. [PMID: 32231709 PMCID: PMC7102449 DOI: 10.1186/s13068-020-01695-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/05/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Ethanol production through fermentation of gas mixtures containing CO, CO2 and H2 has just started operating at commercial scale. However, quantitative schemes for understanding and predicting productivities, yields, mass transfer rates, gas flow profiles and detailed energy requirements have been lacking in literature; such are invaluable tools for process improvements and better systems design. The present study describes the construction of a hybrid model for simulating ethanol production inside a 700 m3 bubble column bioreactor fed with gas of two possible compositions, i.e., pure CO and a 3:1 mixture of H2 and CO2. RESULTS Estimations made using the thermodynamics-based black-box model of microbial reactions on substrate threshold concentrations, biomass yields, as well as CO and H2 maximum specific uptake rates agreed reasonably well with data and observations reported in literature. According to the bioreactor simulation, there is a strong dependency of process performance on mass transfer rates. When mass transfer coefficients were estimated using a model developed from oxygen transfer to water, ethanol productivity reached 5.1 g L-1 h-1; when the H2/CO2 mixture is fed to the bioreactor, productivity of CO fermentation was 19% lower. Gas utilization reached 23 and 17% for H2/CO2 and CO fermentations, respectively. If mass transfer coefficients were 100% higher than those estimated, ethanol productivity and gas utilization may reach 9.4 g L-1 h-1 and 38% when feeding the H2/CO2 mixture at the same process conditions. The largest energetic requirements for a complete manufacturing plant were identified for gas compression and ethanol distillation, being higher for CO fermentation due to the production of CO2. CONCLUSIONS The thermodynamics-based black-box model of microbial reactions may be used to quantitatively assess and consolidate the diversity of reported data on CO, CO2 and H2 threshold concentrations, biomass yields, maximum substrate uptake rates, and half-saturation constants for CO and H2 for syngas fermentations by acetogenic bacteria. The maximization of ethanol productivity in the bioreactor may come with a cost: low gas utilization. Exploiting the model flexibility, multi-objective optimizations of bioreactor performance might reveal how process conditions and configurations could be adjusted to guide further process development.
Collapse
Affiliation(s)
- Eduardo Almeida Benalcázar
- Department of Product and Process Development, Faculty of Chemical Engineering, State University of Campinas, Av. Albert Einstein 500, Cidade Universitária, Campinas, SP 13083-852 Brazil
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Henk Noorman
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- DSM Biotechnology Center, A. Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Rubens Maciel Filho
- Department of Product and Process Development, Faculty of Chemical Engineering, State University of Campinas, Av. Albert Einstein 500, Cidade Universitária, Campinas, SP 13083-852 Brazil
| | - John A. Posada
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
20
|
Stoll IK, Boukis N, Sauer J. Syngas Fermentation to Alcohols: Reactor Technology and Application Perspective. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.201900118] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- I. Katharina Stoll
- Karlsruhe Institute of Technology (KIT)Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Nikolaos Boukis
- Karlsruhe Institute of Technology (KIT)Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Jörg Sauer
- Karlsruhe Institute of Technology (KIT)Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
21
|
Improving fermentation industry sludge treatment as well as energy production with constructed dual chamber microbial fuel cell. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1826-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
22
|
Clostridium sp. as Bio-Catalyst for Fuels and Chemicals Production in a Biorefinery Context. Catalysts 2019. [DOI: 10.3390/catal9110962] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clostridium sp. is a genus of anaerobic bacteria capable of metabolizing several substrates (monoglycerides, diglycerides, glycerol, carbon monoxide, cellulose, and more), into valuable products. Biofuels, such as ethanol and butanol, and several chemicals, such as acetone, 1,3-propanediol, and butyric acid, can be produced by these organisms through fermentation processes. Among the most well-known species, Clostridium carboxidivorans, C. ragsdalei, and C. ljungdahlii can be highlighted for their ability to use gaseous feedstocks (as syngas), obtained from the gasification or pyrolysis of waste material, to produce ethanol and butanol. C. beijerinckii is an important species for the production of isopropanol and butanol, with the advantage of using hydrolysate lignocellulosic material, which is produced in large amounts by first-generation ethanol industries. High yields of 1,3 propanediol by C. butyricum are reported with the use of another by-product from fuel industries, glycerol. In this context, several Clostridium wild species are good candidates to be used as biocatalysts in biochemical or hybrid processes. In this review, literature data showing the technical viability of these processes are presented, evidencing the opportunity to investigate them in a biorefinery context.
Collapse
|
23
|
Yasin M, Jang N, Lee M, Kang H, Aslam M, Bazmi AA, Chang IS. Bioreactors, gas delivery systems and supporting technologies for microbial synthesis gas conversion process. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Li X, Henson MA. Metabolic modeling of bacterial co-culture systems predicts enhanced carbon monoxide-to-butyrate conversion compared to monoculture systems. Biochem Eng J 2019; 151. [PMID: 32863734 DOI: 10.1016/j.bej.2019.107338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We used metabolic modeling to computationally investigate the potential of bacterial coculture system designs for CO conversion to the platform chemical butyrate. By taking advantage of the native capabilities of wild-type strains, we developed two anaerobic coculture designs by combining Clostridium autoethanogenum for CO-to-acetate conversion with bacterial strains that offer high acetate-to-butyrate conversion capabilities: the environmental bacterium the human gut bacteriumEubacterium rectale. When grown in continuous stirred tank reactor on a 70/0/30 CO/H2/N2 gas mixture, the C. autoethanogenum-C Kluyveri co-culture was predicted to offer no mprovement in butyrate volumetric productivity compared to an engineered C. autoethanogenum monoculture despite utilizing vinyl acetate as a secondary carbon source for C. kluyveri growth enhancement. A coculture consisting of C. autoethanogenum and C. kluyveri engineered in silico to eliminate hexanoate synthesis was predicted to enhance both butyrate productivity and titer. The C. autoethanogenum-E. rectale coculture offered similar improvements in butyrate productivity without the need for metabolic engineering when glucose was provided as a secondary carbon source to enhance E. rectale growth. A bubble column model developed to assess the potential for large-scale butyrate production of the C. autoethanogenum-E. rectale design predicted that a 40/30/30 CO/H2/N2 gas mixture and a 5 m column length would be preferred to enhance C. autoethanogenum growth and counteract CO inhibitory effects on E. rectale.
Collapse
Affiliation(s)
- Xiangan Li
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Michael A Henson
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
25
|
de Medeiros EM, Posada JA, Noorman H, Filho RM. Dynamic modeling of syngas fermentation in a continuous stirred-tank reactor: Multi-response parameter estimation and process optimization. Biotechnol Bioeng 2019; 116:2473-2487. [PMID: 31286472 PMCID: PMC9328424 DOI: 10.1002/bit.27108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/11/2019] [Accepted: 07/03/2019] [Indexed: 01/06/2023]
Abstract
Syngas fermentation is one of the bets for the future sustainable biobased economies due to its potential as an intermediate step in the conversion of waste carbon to ethanol fuel and other chemicals. Integrated with gasification and suitable downstream processing, it may constitute an efficient and competitive route for the valorization of various waste materials, especially if systems engineering principles are employed targeting process optimization. In this study, a dynamic multi‐response model is presented for syngas fermentation with acetogenic bacteria in a continuous stirred‐tank reactor, accounting for gas–liquid mass transfer, substrate (CO, H2) uptake, biomass growth and death, acetic acid reassimilation, and product selectivity. The unknown parameters were estimated from literature data using the maximum likelihood principle with a multi‐response nonlinear modeling framework and metaheuristic optimization, and model adequacy was verified with statistical analysis via generation of confidence intervals as well as parameter significance tests. The model was then used to study the effects of process conditions (gas composition, dilution rate, gas flow rates, and cell recycle) as well as the sensitivity of kinetic parameters, and multiobjective genetic algorithm was used to maximize ethanol productivity and CO conversion. It was observed that these two objectives were clearly conflicting when CO‐rich gas was used, but increasing the content of H2 favored higher productivities while maintaining 100% CO conversion. The maximum productivity predicted with full conversion was 2 g·L−1·hr−1 with a feed gas composition of 54% CO and 46% H2 and a dilution rate of 0.06 hr−1 with roughly 90% of cell recycle.
Collapse
Affiliation(s)
- Elisa M de Medeiros
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.,Laboratory of Optimization, Design and Advanced Control (LOPCA), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - John A Posada
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Henk Noorman
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.,DSM Biotechnology Center, Delft, The Netherlands
| | - Rubens Maciel Filho
- Laboratory of Optimization, Design and Advanced Control (LOPCA), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
26
|
Mayer A, Schädler T, Trunz S, Stelzer T, Weuster‐Botz D. Carbon monoxide conversion withClostridium aceticum. Biotechnol Bioeng 2018; 115:2740-2750. [DOI: 10.1002/bit.26808] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/24/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Alexander Mayer
- Department of Mechanical EngineeringInstitute of Biochemical Engineering, Technical University of MunichGarching Germany
| | - Torben Schädler
- Department of Mechanical EngineeringInstitute of Biochemical Engineering, Technical University of MunichGarching Germany
| | - Sascha Trunz
- Department of Mechanical EngineeringInstitute of Biochemical Engineering, Technical University of MunichGarching Germany
| | - Thomas Stelzer
- Department of Mechanical EngineeringInstitute of Biochemical Engineering, Technical University of MunichGarching Germany
| | - Dirk Weuster‐Botz
- Department of Mechanical EngineeringInstitute of Biochemical Engineering, Technical University of MunichGarching Germany
| |
Collapse
|
27
|
Lim HG, Lee JH, Noh MH, Jung GY. Rediscovering Acetate Metabolism: Its Potential Sources and Utilization for Biobased Transformation into Value-Added Chemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3998-4006. [PMID: 29637770 DOI: 10.1021/acs.jafc.8b00458] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the great advantages of microbial fermentation is the capacity to convert various carbon compounds into value-added chemicals. In this regard, there have been many efforts to engineer microorganisms to facilitate utilization of abundant carbon sources. Recently, the potential of acetate as a feedstock has been discovered; efforts have been made to produce various biochemicals from acetate based on understanding of its metabolism. In this review, we discuss the potential sources of acetate and summarized the recent progress to improve acetate utilization with microorganisms. Furthermore, we also describe representative studies that engineered microorganisms for the production of biochemicals from acetate.
Collapse
|
28
|
Bengelsdorf FR, Beck MH, Erz C, Hoffmeister S, Karl MM, Riegler P, Wirth S, Poehlein A, Weuster-Botz D, Dürre P. Bacterial Anaerobic Synthesis Gas (Syngas) and CO 2+H 2 Fermentation. ADVANCES IN APPLIED MICROBIOLOGY 2018; 103:143-221. [PMID: 29914657 DOI: 10.1016/bs.aambs.2018.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Anaerobic bacterial gas fermentation gains broad interest in various scientific, social, and industrial fields. This microbial process is carried out by a specific group of bacterial strains called acetogens. All these strains employ the Wood-Ljungdahl pathway but they belong to different taxonomic groups. Here we provide an overview of the metabolism of acetogens and naturally occurring products. Characteristics of 61 strains were summarized and selected acetogens described in detail. Acetobacterium woodii, Clostridium ljungdahlii, and Moorella thermoacetica serve as model organisms. Results of approaches such as genome-scale modeling, proteomics, and transcriptomics are discussed. Metabolic engineering of acetogens can be used to expand the product portfolio to platform chemicals and to study different aspects of cell physiology. Moreover, the fermentation of gases requires specific reactor configurations and the development of the respective technology, which can be used for an industrial application. Even though the overall process will have a positive effect on climate, since waste and greenhouse gases could be converted into commodity chemicals, some legislative barriers exist, which hamper successful exploitation of this technology.
Collapse
Affiliation(s)
- Frank R Bengelsdorf
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany.
| | - Matthias H Beck
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Catarina Erz
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Sabrina Hoffmeister
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Michael M Karl
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Peter Riegler
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Steffen Wirth
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| | - Dirk Weuster-Botz
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|
29
|
Wainaina S, Horváth IS, Taherzadeh MJ. Biochemicals from food waste and recalcitrant biomass via syngas fermentation: A review. BIORESOURCE TECHNOLOGY 2018; 248:113-121. [PMID: 28651875 DOI: 10.1016/j.biortech.2017.06.075] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 05/21/2023]
Abstract
An effective method for the production of value-added chemicals from food waste and lignocellulosic materials is a hybrid thermal-biological process, which involves gasification of the solid materials to syngas (primarily CO and H2) followed by fermentation. This paper reviews the recent advances in this process. The special focus is on the cultivation methods that involve the use of single strains, defined mixed cultures and undefined mixed cultures for production of carboxylic acids and higher alcohols. A rate limiting step in these processes is the low mass transfer between the gas and the liquid phases. Therefore, novel techniques that can enhance the gas-liquid mass transfer including membrane- and trickle-bed bioreactors were discussed. Such bioreactors have shown promising results in increasing the volumetric mass transfer coefficient (kLa). High gas pressure also influences the mass transfer in certain batch processes, although the presence of impurities in the gas would impede the process.
Collapse
Affiliation(s)
- Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | | | | |
Collapse
|
30
|
Park S, Yasin M, Jeong J, Cha M, Kang H, Jang N, Choi IG, Chang IS. Acetate-assisted increase of butyrate production by Eubacterium limosum KIST612 during carbon monoxide fermentation. BIORESOURCE TECHNOLOGY 2017; 245:560-566. [PMID: 28898856 DOI: 10.1016/j.biortech.2017.08.132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 05/26/2023]
Abstract
The acetate-assisted cultivation of Eubacterium limosum KIST612 was found to provide a way for enhancing cell mass, the carbon monoxide (CO) consumption rate, and butyrate production using CO as an electron and energy source. Cell growth (146%), μmax (121%), and CO consumption rates (151%) increased significantly upon the addition of 30mM acetate to microbial cultures. The main product of CO fermentation by E. limosum KIST612 shifted from acetate to butyrate in the presence of acetate, and 5.72mM butyrate was produced at the end of the reaction. The resting cell experimental conditions indicated acetate uptake and an increase in the butyrate concentration. Three routes to acetate assimilation and energy conservation were suggested based on given experimental results and previously genome sequencing data. Acetate assimilation via propionate CoA-transferase (PCT) was expected to produce 1.5mol ATP/mol butyrate, and was thus anticipated to be the most preferred route.
Collapse
Affiliation(s)
- Shinyoung Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS Institute of Information Technology (CIIT), Lahore, Pakistan
| | - Jiyeong Jeong
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Minseok Cha
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Hyunsoo Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Nulee Jang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - In-Geol Choi
- School of Life Sciences and Biotechnology, Korea University, 5 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
31
|
Jang N, Yasin M, Park S, Lovitt RW, Chang IS. Determination of volumetric gas-liquid mass transfer coefficient of carbon monoxide in a batch cultivation system using kinetic simulations. BIORESOURCE TECHNOLOGY 2017; 239:387-393. [PMID: 28531864 DOI: 10.1016/j.biortech.2017.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
A mathematical model of microbial kinetics was introduced to predict the overall volumetric gas-liquid mass transfer coefficient (kLa) of carbon monoxide (CO) in a batch cultivation system. The cell concentration (X), acetate concentration (Cace), headspace gas (Nco and [Formula: see text] ), dissolved CO concentration in the fermentation medium (Cco), and mass transfer rate (R) were simulated using a variety of kLa values. The simulated results showed excellent agreement with the experimental data for a kLa of 13/hr. The Cco values decreased with increase in cultivation times, whereas the maximum mass transfer rate was achieved at the mid-log phase due to vigorous microbial CO consumption rate higher than R. The model suggested in this study may be applied to a variety of microbial systems involving gaseous substrates.
Collapse
Affiliation(s)
- Nulee Jang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS Institute of Information Technology (CIIT), Lahore, Pakistan
| | - Shinyoung Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Robert W Lovitt
- College of Engineering, Center of Complex Fluids Processing, Multidisciplinary Nanotechnology Centre, Swansea University, Swansea SA2 8PP, UK
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
32
|
Xu H, Liang C, Yuan Z, Xu J, Hua Q, Guo Y. A study of CO/syngas bioconversion by Clostridium autoethanogenum with a flexible gas-cultivation system. Enzyme Microb Technol 2017; 101:24-29. [PMID: 28433187 DOI: 10.1016/j.enzmictec.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/23/2017] [Accepted: 03/09/2017] [Indexed: 10/20/2022]
Abstract
Bioconversion of CO/syngas to produce ethanol is a novel route in bioethanol production, which can be accomplished by some acetogens. Specific culture vessels and techniques are needed to cultivate these microorganisms since they are anaerobic and substrates are gaseous. In this work, gas-sampling bag was applied as a gas-cultivation system to study CO/syngas bioconversion by Clostridium autoethanogenum and was demonstrated to be efficient because of its flexibility and excellent ability to maintain the headspace atmosphere. C. autoethanogenum can use CO as the sole carbon and energy source to produce ethanol, acetate as well as CO2. In the experimental range, higher ethanol production was favored by higher yeast extract concentrations, and the maximum ethanol concentration of 3.45g/L was obtained at 1.0g/L of yeast extract. Study with various bottled gases showed that C. autoethanogenum preferred to use CO other than CO2 and produced the highest level of ethanol with 100% CO as the substrate. C. autoethanogenum can also utilize biomass-generated syngas (36.2% CO, 23.0% H2, 15.4% CO2, 11.3% N2), but the process proceeded slowly and insufficiently due to the presence of O2 and C2H2. In our study, C. autoethanogenum showed a better performance in the bioconversion of CO to ethanol than Clostridium ljungdahlii, a strain which has been most studied, and for both strains, ethanol production was promoted by supplementing 0.5g/L of acetate.
Collapse
Affiliation(s)
- Huijuan Xu
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Cuiyi Liang
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenhong Yuan
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.
| | - Jingliang Xu
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Guo
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
33
|
Lee J, Jang N, Yasin M, Lee EY, Chang IS, Kim C. Enhanced mass transfer rate of methane via hollow fiber membrane modules for Methylosinus trichosporium OB3b fermentation. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Jeong Y, Jang N, Yasin M, Park S, Chang IS. Intrinsic kinetic parameters of Thermococcus onnurineus NA1 strains and prediction of optimum carbon monoxide level for ideal bioreactor operation. BIORESOURCE TECHNOLOGY 2016; 201:74-79. [PMID: 26638136 DOI: 10.1016/j.biortech.2015.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
This study determines and compares the intrinsic kinetic parameters (Ks and Ki) of selected Thermococcus onnurineus NA1 strains (wild-type (WT), and mutants MC01, MC02, and WTC156T) using the substrate inhibition model. Ks and Ki values were used to find the optimum dissolved CO (CL) conditions inside the reactor. The results showed that in terms of the maximum specific CO consumption rates (qCO(max)) of WT, MC01, MC02, and WTC156T the optimum activities can be achieved by maintaining the CL levels at 0.56mM, 0.52mM, 0.58mM, and 0.75mM, respectively. The qCO(max) value of WTC156T at 0.75mM was found to be 1.5-fold higher than for the WT strain, confirming its superiority. Kinetic modeling was then used to predict the conditions required to maintain the optimum CL levels and high cell concentrations in the reactor, based on the kinetic parameters of the WTC156T strain.
Collapse
Affiliation(s)
- Yeseul Jeong
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Nulee Jang
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Muhammad Yasin
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Department of Chemical Engineering, COMSATS Institute of Information Technology (CIIT), Lahore, Pakistan
| | - Shinyoung Park
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - In Seop Chang
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
35
|
Shen Y, Jarboe L, Brown R, Wen Z. A thermochemical–biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnol Adv 2015; 33:1799-813. [DOI: 10.1016/j.biotechadv.2015.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022]
|
36
|
Energy Conservation Model Based on Genomic and Experimental Analyses of a Carbon Monoxide-Utilizing, Butyrate-Forming Acetogen, Eubacterium limosum KIST612. Appl Environ Microbiol 2015; 81:4782-90. [PMID: 25956767 DOI: 10.1128/aem.00675-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/01/2015] [Indexed: 12/19/2022] Open
Abstract
Eubacterium limosum KIST612 is one of the few acetogens that can produce butyrate from carbon monoxide. We have used a genome-guided analysis to delineate the path of butyrate formation, the enzymes involved, and the potential coupling to ATP synthesis. Oxidation of CO is catalyzed by the acetyl-coenzyme A (CoA) synthase/CO dehydrogenase and coupled to the reduction of ferredoxin. Oxidation of reduced ferredoxin is catalyzed by the Rnf complex and Na(+) dependent. Consistent with the finding of a Na(+)-dependent Rnf complex is the presence of a conserved Na(+)-binding motif in the c subunit of the ATP synthase. Butyrate formation is from acetyl-CoA via acetoacetyl-CoA, hydroxybutyryl-CoA, crotonyl-CoA, and butyryl-CoA and is consistent with the finding of a gene cluster that encodes the enzymes for this pathway. The activity of the butyryl-CoA dehydrogenase was demonstrated. Reduction of crotonyl-CoA to butyryl-CoA with NADH as the reductant was coupled to reduction of ferredoxin. We postulate that the butyryl-CoA dehydrogenase uses flavin-based electron bifurcation to reduce ferredoxin, which is consistent with the finding of etfA and etfB genes next to it. The overall ATP yield was calculated and is significantly higher than the one obtained with H2 + CO2. The energetic benefit may be one reason that butyrate is formed only from CO but not from H2 + CO2.
Collapse
|
37
|
Yasin M, Jeong Y, Park S, Jeong J, Lee EY, Lovitt RW, Kim BH, Lee J, Chang IS. Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. BIORESOURCE TECHNOLOGY 2015; 177:361-374. [PMID: 25443672 DOI: 10.1016/j.biortech.2014.11.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Microbial conversion of syngas to energy-dense biofuels and valuable chemicals is a potential technology for the efficient utilization of fossils (e.g., coal) and renewable resources (e.g., lignocellulosic biomass) in an environmentally friendly manner. However, gas-liquid mass transfer and kinetic limitations are still major constraints that limit the widespread adoption and successful commercialization of the technology. This review paper provides rationales for syngas bioconversion and summarizes the reaction limited conditions along with the possible strategies to overcome these challenges. Mass transfer and economic performances of various reactor configurations are compared, and an ideal case for optimum bioreactor operation is presented. Overall, the challenges with the bioprocessing steps are highlighted, and potential solutions are suggested. Future research directions are provided and a conceptual design for a membrane-based syngas biorefinery is proposed.
Collapse
Affiliation(s)
- Muhammad Yasin
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Republic of Korea
| | - Yeseul Jeong
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Republic of Korea
| | - Shinyoung Park
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Republic of Korea
| | - Jiyeong Jeong
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea
| | - Robert W Lovitt
- College of Engineering, Swansea University, Swansea SA2 8PP, United Kingdom
| | - Byung Hong Kim
- Fuel Cell Institute, National University of Malaysia, 43600 UKM, Bangi, Malaysia
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Republic of Korea
| | - In Seop Chang
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Republic of Korea.
| |
Collapse
|
38
|
Singla A, Verma D, Lal B, Sarma PM. Enrichment and optimization of anaerobic bacterial mixed culture for conversion of syngas to ethanol. BIORESOURCE TECHNOLOGY 2014; 172:41-49. [PMID: 25233475 DOI: 10.1016/j.biortech.2014.08.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 05/15/2023]
Abstract
The main aim of the present study was to enrich anaerobic mixed bacterial culture capable of producing ethanol from synthesis gas fermentation. Screening of thirteen anaerobic strains together with enrichment protocol helped to develop an efficient mixed culture capable of utilizing syngas for ethanol production. Physiological and operational parameters were optimized for enhanced ethanol production. The optimized value of operational parameters i.e. initial media pH, incubation temperature, initial syngas pressure, and agitation speed were 6.0±0.1, 37°C, 2kgcm(-2) and 100rpm respectively. Under these conditions ethanol and acetic acid production by the selected mixed culture were 1.54gL(-1) and 0.8gL(-1) respectively. Furthermore, up-scaling studies in semi-continuous fermentation mode further enhanced ethanol and acetic acid production up to 2.2gL(-1) and 0.9gL(-1) respectively. Mixed culture TERI SA1 was efficient for ethanol production by syngas fermentation.
Collapse
Affiliation(s)
- Ashish Singla
- TERI University, 10 Institutional Area, Vasant Kunj, New Delhi 110 070, India; TERI, Darbari Seth Block, India Habitat Centre, New Delhi 110 003, India
| | - Dipti Verma
- TERI, Darbari Seth Block, India Habitat Centre, New Delhi 110 003, India
| | - Banwari Lal
- TERI University, 10 Institutional Area, Vasant Kunj, New Delhi 110 070, India; TERI, Darbari Seth Block, India Habitat Centre, New Delhi 110 003, India
| | - Priyangshu M Sarma
- TERI University, 10 Institutional Area, Vasant Kunj, New Delhi 110 070, India; TERI, Darbari Seth Block, India Habitat Centre, New Delhi 110 003, India.
| |
Collapse
|
39
|
Yasin M, Park S, Jeong Y, Lee EY, Lee J, Chang IS. Effect of internal pressure and gas/liquid interface area on the CO mass transfer coefficient using hollow fibre membranes as a high mass transfer gas diffusing system for microbial syngas fermentation. BIORESOURCE TECHNOLOGY 2014; 169:637-643. [PMID: 25105269 DOI: 10.1016/j.biortech.2014.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/28/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
This study proposed a submerged hollow fibre membrane bioreactor (HFMBR) system capable of achieving high carbon monoxide (CO) mass transfer for applications in microbial synthesis gas conversion systems. Hydrophobic polyvinylidene fluoride (PVDF) membrane fibres were used to fabricate a membrane module, which was used for pressurising CO in water phase. Pressure through the hollow fibre lumen (P) and membrane surface area per unit working volume of the liquid (A(S)/V(L)) were used as controllable parameters to determine gas-liquid volumetric mass transfer coefficient (k(L)a) values. We found a k(L)a of 135.72 h(-1) when P was 93.76 kPa and AS/VL was fixed at 27.5m(-1). A higher k(L)a of 155.16 h(-1) was achieved by increasing AS/VL to 62.5m(-1) at a lower P of 37.23 kPa. Practicality of HFMBR to support microbial growth and organic product formation was assessed by CO/CO2 fermentation using Eubacterium limosum KIST612.
Collapse
Affiliation(s)
- Muhammad Yasin
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Shinyoung Park
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Yeseul Jeong
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Republic of Korea
| | - In Seop Chang
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
40
|
Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: Evaluating the mass transfer coefficient and ethanol production performance. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.01.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Kinetic studies on fermentative production of biofuel from synthesis gas using Clostridium ljungdahlii. ScientificWorldJournal 2014; 2014:910590. [PMID: 24672390 PMCID: PMC3925604 DOI: 10.1155/2014/910590] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022] Open
Abstract
The intrinsic growth, substrate uptake, and product formation biokinetic parameters were obtained for the anaerobic bacterium, Clostridium ljungdahlii, grown on synthesis gas in various pressurized batch bioreactors. A dual-substrate growth kinetic model using Luong for CO and Monod for H2 was used to describe the growth kinetics of the bacterium on these substrates. The maximum specific growth rate (μmax = 0.195 h−1) and Monod constants for CO (Ks,CO = 0.855 atm) and H2 (Ks,H2 = 0.412 atm) were obtained. This model also accommodated the CO inhibitory effects on cell growth at high CO partial pressures, where no growth was apparent at high dissolved CO tensions (PCO∗ > 0.743 atm). The Volterra model, Andrews, and modified Gompertz were, respectively, adopted to describe the cell growth, substrate uptake rate, and product formation. The maximum specific CO uptake rate (qmax = 34.364 mmol/gcell/h), CO inhibition constant (KI = 0.601 atm), and maximum rate of ethanol (Rmax = 0.172 mmol/L/h at PCO = 0.598 atm) and acetate (Rmax = 0.096 mmol/L/h at PCO = 0.539 atm) production were determined from the applied models.
Collapse
|
42
|
Liu K, Atiyeh HK, Stevenson BS, Tanner RS, Wilkins MR, Huhnke RL. Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol. BIORESOURCE TECHNOLOGY 2014; 151:69-77. [PMID: 24211485 DOI: 10.1016/j.biortech.2013.10.059] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/06/2013] [Accepted: 10/09/2013] [Indexed: 05/21/2023]
Abstract
Syngas fermentation to fuels is a technology on the verge of commercialization. Low cost of fermentation medium is important for process feasibility. The use of corn steep liquor (CSL) instead of yeast extract (YE) in Alkalibaculum bacchi strain CP15 bottle fermentations reduced the medium cost by 27% and produced 78% more ethanol. When continuous fermentation was performed in a 7-L fermentor, 6g/L ethanol was obtained in the YE and YE-free media. When CSL medium was used in continuous fermentation, the maximum produced concentrations of ethanol, n-propanol and n-butanol were 8 g/L, 6 g/L and 1 g/L, respectively. n-Propanol and n-butanol were not typical products of strain CP15. A 16S rRNA gene-based survey revealed a mixed culture in the fermentor dominated by A. bacchi strain CP15 (56%) and Clostridium propionicum (34%). The mixed culture presents an opportunity for higher alcohols production from syngas.
Collapse
Affiliation(s)
- Kan Liu
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Park S, Yasin M, Kim D, Park HD, Kang CM, Kim DJ, Chang IS. Rapid enrichment of (homo)acetogenic consortia from animal feces using a high mass-transfer gas-lift reactor fed with syngas. ACTA ACUST UNITED AC 2013; 40:995-1003. [DOI: 10.1007/s10295-013-1292-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/14/2013] [Indexed: 11/28/2022]
Abstract
Abstract
A gas-lift reactor having a high mass transfer coefficient (k L a = 80.28 h−1) for a relatively insoluble gas (carbon monoxide; CO) was used to enrich (homo)acetogens from animal feces. Samples of fecal matter from cow, rabbit, chicken, and goat were used as sources of inoculum for the enrichment of CO and H2 utilizing microbial consortia. To confirm the successful enrichment, the Hungate roll tube technique was employed to count and then isolate putative CO utilizers. The results of this work showed that CO and H2 utilizing consortia were established for each inoculum source after 8 days. The number of colony-forming units in cow, rabbit, chicken, and goat fecal samples were 3.83 × 109, 1.03 × 109, 8.3 × 108, and 3.25 × 108 cells/ml, respectively. Forty-two colonies from the animal fecal samples were screened for the ability to utilize CO/H2. Ten of these 42 colonies were capable of utilizing CO/H2. Five isolates from cow feces (samples 5, 6, 8, 16, and 22) were highly similar to previously unknown (homo)acetogen, while cow-7 has shown 99 % similarity with Acetobacterium sp. as acetogens. On the other hand, four isolates from chicken feces (samples 3, 8, 10, and 11) have also shown high CO/H2 utilizing activity. Hence, it is expected that this research could be used as the basis for the rapid enrichment of (homo)acetogenic consortia from various environmental sources.
Collapse
Affiliation(s)
- Shinyoung Park
- grid.61221.36 0000000110339831 School of Environmental Science and Engineering Gwangju Institute of Science and Technology (GIST) 261 Cheomdan-gwagiro, Buk-gu 500-712 Gwangju Republic of Korea
| | - Muhammad Yasin
- grid.61221.36 0000000110339831 School of Environmental Science and Engineering Gwangju Institute of Science and Technology (GIST) 261 Cheomdan-gwagiro, Buk-gu 500-712 Gwangju Republic of Korea
| | - Daehee Kim
- grid.418979.a 0000000106917707 Jeju Global Research Center Korea Institute of Energy Research 200 Haemajihaean-ro, Gujwa-eub 695-971 Jeju Jeju Special Self-Governing Province Republic of Korea
| | - Hee-Deung Park
- grid.222754.4 0000000108402678 School of Civil, Environmental and Architectural Engineering Korea University Anam-dong, Sungbuk-ku 136-701 Seoul Republic of Korea
| | - Chang Min Kang
- grid.418982.e Gyeongnam Department of Environmental Toxicology & Chemistry Korea Institute of Toxicology 17 Jegok-Gil, Munsan-Eup 660-844 Jinju Gyeongsangnamdo Republic of Korea
| | - Duk Jin Kim
- Department of Water and Sewage Support Korea Environment Corporation Gyeongseo-dong, Seo-gu 404-708 Incheon Republic of Korea
| | - In Seop Chang
- grid.61221.36 0000000110339831 School of Environmental Science and Engineering Gwangju Institute of Science and Technology (GIST) 261 Cheomdan-gwagiro, Buk-gu 500-712 Gwangju Republic of Korea
| |
Collapse
|
45
|
Munasinghe PC, Khanal SK. Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer and analytical modeling using a composite hollow fiber (CHF) membrane bioreactor. BIORESOURCE TECHNOLOGY 2012; 122:130-136. [PMID: 22494572 DOI: 10.1016/j.biortech.2012.03.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 05/31/2023]
Abstract
In this study, the volumetric mass transfer coefficients (Ka) for CO were examined in a composite hollow fiber (CHF) membrane bioreactor. The mass transfer experiments were conducted at various inlet gas pressures (from 5 to 30 psig (34.5-206.8 kPa(g))) and recirculation flow rates (300, 600, 900, 1200 and 1500 mL/min) through CHF module. The highest Ka value of 946.6 1/h was observed at a recirculation rate of 1500 mL/min and at an inlet gas pressure of 30 psig(206.8 kPa(g)). The findings of this study confirm that the use of CHF membranes is effective and improves the efficiency CO mass transfer into the aqueous phase.
Collapse
Affiliation(s)
- Pradeep Chaminda Munasinghe
- Department of Molecular Biosciences and Bioengineering (MBBE), University of Hawai'i at Mānoa, Agricultural Science Building 218, 1955 East-West Road, Honolulu, HI 96822, USA
| | | |
Collapse
|
46
|
Liu K, Atiyeh HK, Tanner RS, Wilkins MR, Huhnke RL. Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi. BIORESOURCE TECHNOLOGY 2012; 104:336-341. [PMID: 22074906 DOI: 10.1016/j.biortech.2011.10.054] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/15/2011] [Accepted: 10/15/2011] [Indexed: 05/27/2023]
Abstract
Ethanol production from syngas using three moderately alkaliphilic strains of a novel genus and species Alkalibaculum bacchi CP11(T), CP13 and CP15 was investigated in 250 ml bottle fermentations containing 100ml of yeast extract medium at 37 °C and pH 8.0. Two commercial syngas mixtures (Syngas I: 20% CO, 15% CO(2), 5% H(2), 60% N(2)) and (Syngas II: 40% CO, 30% CO(2), 30% H(2)) were used. Syngas I and Syngas II represent gasified biomass and coal, respectively. The maximum ethanol concentration (1.7 g l(-1)) and yield from CO (76%) were obtained with strain CP15 and Syngas II after 360 h. CP15 produced over twofold more ethanol with Syngas I compared to strains CP11(T) and CP13. In addition, CP15 produced 18% and 71% more ethanol using Syngas II compared to strains CP11(T) and CP13, respectively. These results show that CP15 is the most promising for ethanol production because of its higher growth and ethanol production rates and yield compared to CP11(T) and CP13.
Collapse
Affiliation(s)
- Kan Liu
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | |
Collapse
|
47
|
Munasinghe PC, Khanal SK. Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol Prog 2011; 26:1616-21. [PMID: 20677226 DOI: 10.1002/btpr.473] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lignocellulosic biomass such as agri-residues, agri-processing by-products, and energy crops do not compete with food and feed, and is considered to be the ideal renewable feedstocks for biofuel production. Gasification of biomass produces synthesis gas (syngas), a mixture primarily consisting of CO and H(2). The produced syngas can be converted to ethanol by anaerobic microbial catalysts especially acetogenic bacteria such as various clostridia species.One of the major drawbacks associated with syngas fermentation is the mass transfer limitation of these sparingly soluble gases in the aqueous phase. One way of addressing this issue is the improvement in reactor design to achieve a higher volumetric mass transfer coefficient (k(L)a). In this study, different reactor configurations such as a column diffuser, a 20-μm bulb diffuser, gas sparger, gas sparger with mechanical mixing, air-lift reactor combined with a 20-μm bulb diffuser, air-lift reactor combined with a single gas entry point, and a submerged composite hollow fiber membrane (CHFM) module were employed to examine the k(L) a values. The k(L) a values reported in this study ranged from 0.4 to 91.08 h(-1). The highest k(L) a of 91.08 h(-1) was obtained in the air-lift reactor combined with a 20-μm bulb diffuser, whereas the reactor with the CHFM showed the lowest k(L) a of 0.4 h(-1). By considering both the k(L) a value and the statistical significance of each configuration, the air-lift reactor combined with a 20-μm bulb diffuser was found to be the ideal reactor configuration for carbon monoxide mass transfer in an aqueous phase.
Collapse
Affiliation(s)
- Pradeep Chaminda Munasinghe
- Dept. of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Agricultural Science Building 218, Honolulu, HI 96822, USA
| | | |
Collapse
|
48
|
Complete genome sequence of a carbon monoxide-utilizing acetogen, Eubacterium limosum KIST612. J Bacteriol 2010; 193:307-8. [PMID: 21036996 DOI: 10.1128/jb.01217-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eubacterium limosum KIST612 is an anaerobic acetogenic bacterium that uses CO as the sole carbon/energy source and produces acetate, butyrate, and ethanol. To evaluate its potential as a syngas microbial catalyst, we have sequenced the complete 4.3-Mb genome of E. limosum KIST612.
Collapse
|
49
|
Kim D, Chang IS. Electricity generation from synthesis gas by microbial processes: CO fermentation and microbial fuel cell technology. BIORESOURCE TECHNOLOGY 2009; 100:4527-4530. [PMID: 19410448 DOI: 10.1016/j.biortech.2009.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 04/03/2009] [Accepted: 04/07/2009] [Indexed: 05/27/2023]
Abstract
A microbiological process was established to harvest electricity from the carbon monoxide (CO). A CO fermenter was enriched with CO as the sole carbon source. The DGGE/DNA sequencing results showed that Acetobacterium spp. were enriched from the anaerobic digester fluid. After the fermenter was operated under continuous mode, the products were then continuously fed to the microbial fuel cell (MFC) to generate electricity. Even though the conversion yield was quite low, this study proved that synthesis gas (syn-gas) can be converted to electricity with the aid of microbes that do not possess the drawbacks of metal catalysts of conventional methods.
Collapse
Affiliation(s)
- Daehee Kim
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, Republic of Korea
| | | |
Collapse
|
50
|
Kang SM, Koh J, Noh SY, Kim SJ, Kwon YJ. Effects of lugworm protease on the dyeing properties of protein fibers. J IND ENG CHEM 2009. [DOI: 10.1016/j.jiec.2009.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|