1
|
Fuggle R, Matias MG, Mayer-Pinto M, Marzinelli EM. Multiple stressors affect function rather than taxonomic structure of freshwater microbial communities. NPJ Biofilms Microbiomes 2025; 11:60. [PMID: 40251215 PMCID: PMC12008304 DOI: 10.1038/s41522-025-00700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
Microbial community responses to environmental stressors are often characterised by assessing changes in taxonomic structure, but such changes, or lack thereof, may not reflect functional changes that are critical to ecosystem processes. We investigated the individual and combined effects of nutrient enrichment ( + 10 mg/L N, + 1 mg/L P) and salinisation ( + 15 g/L NaCl)-key stressors in freshwater systems-on the taxonomic structure and metabolic function of benthic microbial communities using 1000 L open freshwater ponds established >10 years ago in the field. Combined stressors drove strong decreases in maximum and mean total carbon metabolic rates and shifted carbon metabolic profiles compared to either stressor individually and compared to ambient conditions. These metabolic functional changes did not recover through time and occurred without significant alterations in bacterial community taxonomic structure. These results imply that critical functions, including organic carbon release, are likely to be impaired under multiple stressors, even when taxonomic structure remains stable.
Collapse
Affiliation(s)
- Rose Fuggle
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, 2006, Australia.
| | | | - Mariana Mayer-Pinto
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Ezequiel M Marzinelli
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Mallet C, Rossi F, Hassan-Loni Y, Holub G, Thi-Hong-Hanh L, Diez O, Michel H, Sergeant C, Kolovi S, Chardon P, Montavon G. Assessing the chronic effect of the bioavailable fractions of radionuclides and heavy metals on stream microbial communities: A case study at the Rophin mining site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170692. [PMID: 38325491 DOI: 10.1016/j.scitotenv.2024.170692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
This study aimed to assess the potential impact of long-term chronic exposure (69 years) to naturally-occurring radionuclides (RNs) and heavy metals on microbial communities in sediment from a stream flowing through a watershed impacted by an ancient mining site (Rophin, France). Four sediment samples were collected along a radioactivity gradient (for 238U368 to 1710 Bq.Kg-1) characterized for the presence of the bioavailable fractions of radionuclides (226Ra, 210Po), and trace metal elements (Th, U, As, Pb, Cu, Zn, Fe). Results revealed that the available fraction of contaminants was significant although it varied considerably from one element to another (0 % for As and Th, 5-59 % for U). Nonetheless, microbial communities appeared significantly affected by such chronic exposure to (radio)toxicities. Several microbial functions carried by bacteria and related with carbon and nitrogen cycling have been impaired. The high values of fungal diversity and richness observed with increasing downstream contamination (H' = 4.4 and Chao1 = 863) suggest that the community had likely shifted toward a more adapted/tolerant one as evidenced, for example, by the presence of the species Thelephora sp. and Tomentella sp. The bacterial composition was also affected by the contaminants with enrichment in Myxococcales, Acidovorax or Nostocales at the most contaminated points. Changes in microbial composition and functional structure were directly related to radionuclide and heavy metal contaminations, but also to organic matter which also significantly affected, directly or indirectly, bacterial and fungal compositions. Although it was not possible to distinguish the specific effects of RNs from heavy metals on microbial communities, it is essential to continue studies considering the available fraction of elements, which is the only one able to interact with microorganisms.
Collapse
Affiliation(s)
- Clarisse Mallet
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63170 Aubière, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France.
| | - Florent Rossi
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Yahaya Hassan-Loni
- SUBATECH, IMT Atlantique, Nantes Université, CNRS, F-44000 Nantes, France
| | - Guillaume Holub
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR5797, F- 33170 Gradignan, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Le Thi-Hong-Hanh
- ICN UMR 7272, Université Côte d'Azur, 28 avenue Valrose, 06108 Nice, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Olivier Diez
- Institut de Radioprotection et Sureté Nucléaire (IRSN), PSE-ENV/SPDR/LT2S, 31 Avenue de la division Leclerc, F-922602 Fontenay-aux-Roses, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Hervé Michel
- ICN UMR 7272, Université Côte d'Azur, 28 avenue Valrose, 06108 Nice, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Claire Sergeant
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR5797, F- 33170 Gradignan, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Sofia Kolovi
- Université Clermont-Auvergne, CNRS, LPC Clermont, F-63170 Aubière, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Patrick Chardon
- Université Clermont-Auvergne, CNRS, LPC Clermont, F-63170 Aubière, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Gilles Montavon
- SUBATECH, IMT Atlantique, Nantes Université, CNRS, F-44000 Nantes, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France.
| |
Collapse
|
3
|
Liu ZD, Song YY, Ma XY, Yuan JB, Lou YJ, Yang C, Tang HR, Song CC. Deep soil microbial carbon metabolic function is important but often neglected: a study on the Songnen Plain reed wetland, Northeast China. FUNDAMENTAL RESEARCH 2023; 3:833-843. [PMID: 38933016 PMCID: PMC11197545 DOI: 10.1016/j.fmre.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022] Open
Abstract
Soil microbial carbon metabolism is critical in wetland soil carbon cycling, and is also a research hotspot at present. However, most studies focus on the surface soil layer in the wetlands and the microorganisms associated with this layer. In this study, 0-75 cm soil profiles were collected from five widely separated reed wetlands in the Songnen Plain, which has a large number of middle-high latitude inland saline-sodic wetlands. The Biolog-ECO method was used to determine the carbon metabolic activity and functional diversity of soil microorganisms. The results showed that soil carbon metabolic activity decreased with increasing soil depth. The carbon metabolic activity of soil microorganisms in the 60-75 cm layer was approximately 57.41%-74.60% of that in the 0-15 cm layer. The soil microbial Shannon index and utilization rate of amines decreased with an increase in soil depth, while the Evenness index and utilization rate of polymers tended to increase with soil depth. Dissolved organic carbon (DOC) is the most important factor affecting microbial carbon source utilization preference, because microorganisms mainly obtain the carbon source from DOC. The result of the correlation analysis showed that the soil microbial carbon metabolic activity, Shannon index, and Evenness index significantly correlated with soil total carbon (TC), microbial biomass carbon (MBC), DOC, total nitrogen (TN), ammonium nitrogen (NH4 +-N), nitrate nitrogen (NO3 --N) contents, and electrical conductivity (EC). This study emphasized the important role of microbial carbon metabolic function in deep soil.
Collapse
Affiliation(s)
- Zhen-Di Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Yu Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiu-Yan Ma
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jia-Bao Yuan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Jing Lou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chen Yang
- Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hao-Ran Tang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang-Chun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Effects of Different Native Plants on Soil Remediation and Microbial Diversity in Jiulong Iron Tailings Area, Jiangxi. FORESTS 2022. [DOI: 10.3390/f13071106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phytoremediation is an important solution to heavy metal pollution in soil. However, the impact of plants on microbial communities in contaminated soil also requires attention. Community-level physiological profiling (CLPP) based on the Biolog™ EcoPlate and high-throughput sequencing were used to study the soil microbial community in this article. The rhizosphere and bulk soil samples of six native species were collected from the iron mine tailings on Jiulong Mountain, Jiangxi Province. According to the average well color development (AWCD), all plants improved the activity and diversity of the contaminated soil microbial community to varying degrees. Cunninghamia lanceolate is considered to have good effects and led to the appearance of Cunninghamia lanceolata > Zelkova schneideriana > Toona ciliata > Alnus cremastogyne > Cyclobalanopsis myrsinifolia > Pinus elliottii. The Shannon–Wiener diversity index and principal component analysis (PCA) show that the evenness and dominance of soil microbial communities of several plants are structurally similar to those of uncontaminated soil (UNS). The results of high-throughput sequencing indicated that the bacterial community diversity of C. lanceolata, A. cremastogyne, and P. elliottii is similar to UNS, while fungal community diversity is different from UNS. C. lanceolata has a better effect on soil nutrients, C. myrsinifolia and P. elliottii may have a better effect on decreasing the Cu content. The objective of this study was to assess the influence of native plants on microbial communities in soils and the soil remediation capacity. Mortierellomycota was the key species for native plants to regulate Cu and microbial community functions. Native plants have decisive influence on microbial community diversity.
Collapse
|
5
|
Martínez-García S, Bunse C, Pontiller B, Baltar F, Israelsson S, Fridolfsson E, Lindh MV, Lundin D, Legrand C, Pinhassi J. Seasonal Dynamics in Carbon Cycling of Marine Bacterioplankton Are Lifestyle Dependent. Front Microbiol 2022; 13:834675. [PMID: 36212867 PMCID: PMC9533715 DOI: 10.3389/fmicb.2022.834675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Although free-living (FL) and particle-attached (PA) bacteria are recognized as ecologically distinct compartments of marine microbial food-webs, few, if any, studies have determined their dynamics in abundance, function (production, respiration and substrate utilization) and taxonomy over a yearly cycle. In the Baltic Sea, abundance and production of PA bacteria (defined as the size-fraction >3.0 μm) peaked over 3 months in summer (6 months for FL bacteria), largely coinciding with blooms of Chitinophagales (Bacteroidetes). Pronounced changes in the growth efficiency (range 0.05–0.27) of FL bacteria (defined as the size-fraction <3.0 μm) indicated the magnitude of seasonal variability of ecological settings bacteria experience. Accordingly, 16S rRNA gene analyses of bacterial community composition uncovered distinct correlations between taxa, environmental variables and metabolisms, including Firmicutes associated with elevated hydrolytic enzyme activity in winter and Verrucomicrobia with utilization of algal-derived substrates during summer. Further, our results suggested a substrate-controlled succession in the PA fraction, from Bacteroidetes using polymers to Actinobacteria and Betaproteobacteria using monomers across the spring to autumn phytoplankton bloom transition. Collectively, our findings emphasize pronounced seasonal changes in both the composition of the bacterial community in the PA and FL size-fractions and their contribution to organic matter utilization and carbon cycling. This is important for interpreting microbial ecosystem function-responses to natural and human-induced environmental changes.
Collapse
Affiliation(s)
- Sandra Martínez-García
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Pontevedra, Spain
- *Correspondence: Sandra Martínez-García,
| | - Carina Bunse
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
- Institute for the Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Benjamin Pontiller
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Federico Baltar
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Stina Israelsson
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Emil Fridolfsson
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Markus V. Lindh
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
6
|
Brandstaetter C, Fricko N, Rahimi MJ, Fellner J, Ecker-Lala W, Druzhinina IS. The microbial metabolic activity on carbohydrates and polymers impact the biodegradability of landfilled solid waste. Biodegradation 2021; 33:71-85. [PMID: 34812990 PMCID: PMC8803693 DOI: 10.1007/s10532-021-09967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
Biological waste degradation is the main driving factor for landfill emissions. In a 2-year laboratory experiment simulating different landfill in-situ aeration scenarios, the microbial degradation of solid waste under different oxygen conditions (treatments) was investigated. Nine landfill simulation reactors were operated in triplicates under three distinct treatments. Three were kept anaerobic, three were aerated for 706 days after an initial anaerobic phase and three were aerated for 244 days in between two anaerobic phases. In total, 36 solid and 36 leachate samples were taken. Biolog® EcoPlates™ were used to assess the functional diversity of the microbial community. It was possible to directly relate the functional diversity to the biodegradability of MSW (municipal solid waste), measured as RI4 (respiration index after 4 days). The differences between the treatments in RI4 as well as in carbon and polymer degradation potential were small. Initially, a RI4 of about 6.5 to 8 mg O2 kg-1 DW was reduced to less than 1 mg O2 kg-1 DW within 114 days of treatment. After the termination of aeration, an increase 3 mg O2 kg-1 DW was observed. By calculating the integral of the Gompertz equation based on spline interpolation of the Biolog® EcoPlates™ results after 96 h two substrate groups mainly contributing to the biodegradability were identified: carbohydrates and polymers. The microbial activity of the respective microbial consortium could thus be related to the biodegradability with a multilinear regression model.
Collapse
Affiliation(s)
- Christian Brandstaetter
- Research Unit Waste and Resource Management, Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226.2, 1040, Vienna, Austria.,Institute of Computer Science, University of Applied Sciences Wiener Neustadt, Johannes-Gutenberg-Straße 3, 2700, Wiener Neustadt, Austria
| | - Nora Fricko
- Research Unit Waste and Resource Management, Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226.2, 1040, Vienna, Austria
| | - Mohammad J Rahimi
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Gumpendorferstrasse 1a, 1060, Vienna, Austria
| | - Johann Fellner
- Research Unit Waste and Resource Management, Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226.2, 1040, Vienna, Austria
| | - Wolfgang Ecker-Lala
- Institute of Computer Science, University of Applied Sciences Wiener Neustadt, Johannes-Gutenberg-Straße 3, 2700, Wiener Neustadt, Austria
| | - Irina S Druzhinina
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Gumpendorferstrasse 1a, 1060, Vienna, Austria.,Key Laboratory of Plant Immunity, Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, People's Republic of China
| |
Collapse
|
7
|
Barbosa da Costa N, Fugère V, Hébert MP, Xu CCY, Barrett RDH, Beisner BE, Bell G, Yargeau V, Fussmann GF, Gonzalez A, Shapiro BJ. Resistance, resilience, and functional redundancy of freshwater bacterioplankton communities facing a gradient of agricultural stressors in a mesocosm experiment. Mol Ecol 2021; 30:4771-4788. [PMID: 34324752 DOI: 10.1111/mec.16100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 01/04/2023]
Abstract
Agricultural pollution with fertilizers and pesticides is a common disturbance to freshwater biodiversity. Bacterioplankton communities are at the base of aquatic food webs, but their responses to these potentially interacting stressors are rarely explored. To test the extent of resistance and resilience in bacterioplankton communities faced with agricultural stressors, we exposed freshwater mesocosms to single and combined gradients of two commonly used pesticides: the herbicide glyphosate (0-15 mg/L) and the neonicotinoid insecticide imidacloprid (0-60 μg/L), in high or low nutrient backgrounds. Over the 43-day experiment, we tracked variation in bacterial density with flow cytometry, carbon substrate use with Biolog EcoPlates, and taxonomic diversity and composition with environmental 16S rRNA gene amplicon sequencing. We show that only glyphosate (at the highest dose, 15 mg/L), but not imidacloprid, nutrients, or their interactions measurably changed community structure, favouring members of the Proteobacteria including the genus Agrobacterium. However, no change in carbon substrate use was detected throughout, suggesting functional redundancy despite taxonomic changes. We further show that communities are resilient at broad, but not fine taxonomic levels: 24 days after glyphosate application the precise amplicon sequence variants do not return, and tend to be replaced by phylogenetically close taxa. We conclude that high doses of glyphosate - but still within commonly acceptable regulatory guidelines - alter freshwater bacterioplankton by favouring a subset of higher taxonomic units (i.e., genus to phylum) that transiently thrive in the presence of glyphosate. Longer-term impacts of glyphosate at finer taxonomic resolution merit further investigation.
Collapse
Affiliation(s)
- Naíla Barbosa da Costa
- Département des Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
- Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada
| | - Vincent Fugère
- Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada
- Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Marie-Pier Hébert
- Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Charles C Y Xu
- Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada
- Department of Biology, McGill University, Montreal, QC, Canada
- Redpath Museum, McGill University, Montreal, QC, Canada
| | - Rowan D H Barrett
- Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada
- Department of Biology, McGill University, Montreal, QC, Canada
- Redpath Museum, McGill University, Montreal, QC, Canada
| | - Beatrix E Beisner
- Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
| | - Graham Bell
- Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Gregor F Fussmann
- Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada
- Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Andrew Gonzalez
- Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada
- Department of Biology, McGill University, Montreal, QC, Canada
| | - B Jesse Shapiro
- Département des Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
- Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada
- Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Genome Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Freixa A, Perujo N, Langenheder S, Romaní AM. River biofilms adapted to anthropogenic disturbances are more resistant to WWTP inputs. FEMS Microbiol Ecol 2021; 96:5884858. [PMID: 32766791 DOI: 10.1093/femsec/fiaa152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/30/2020] [Indexed: 11/14/2022] Open
Abstract
The sensitivity and spatial recovery of river sediment biofilms along 1 km after the input of two wastewater treatment plants (WWTPs) located in two river reaches with different degrees of anthropogenic influence were investigated. First, at the upper reach, we observed an inhibition of some microbial functions (microbial respiration and extracellular enzyme activities) and strong shifts in bacterial community composition (16S rRNA gene), whereas an increase in microbial biomass and activity and less pronounced effect on microbial diversity and community composition were seen at the lower reach. Second, at the lower reach we observed a quick spatial recovery (around 200 m downstream of the effluent) as most of the functions and community composition were similar to those from reference sites. On the other hand, bacterial community composition and water quality at the upper reach was still altered 1 km from the WWTP effluent. Our results indicate that biofilms in the upstream sites were more sensitive to the effect of WWTPs due to a lower degree of tolerance after a disturbance than communities located in more anthropogenically impacted sites.
Collapse
Affiliation(s)
- Anna Freixa
- Catalan Institute for Water Research (ICRA), Girona, Spain.,GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Núria Perujo
- Catalan Institute for Water Research (ICRA), Girona, Spain.,GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Silke Langenheder
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
| | - Anna M Romaní
- GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| |
Collapse
|
9
|
Romero F, Acuña V, Font C, Freixa A, Sabater S. Effects of multiple stressors on river biofilms depend on the time scale. Sci Rep 2019; 9:15810. [PMID: 31676856 PMCID: PMC6825187 DOI: 10.1038/s41598-019-52320-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/15/2019] [Indexed: 11/08/2022] Open
Abstract
Global change exposes ecosystems to a myriad of stressors differing in their spatial (i.e. surface of stressed area) and temporal (i.e. exposure time) components. Among freshwater ecosystems, rivers and streams are subject to physical, chemical and biological stressors, which interact with each other and might produce diverging effects depending on exposure time. We conducted a manipulative experiment using 24 artificial streams to examine the individual and combined effects of warming (1.6 °C increase in water temperature), hydrological stress (simulated low-flow situation) and chemical stress caused by pesticide exposure (15.1-156.7 ng L-1) on river biofilms. We examined whether co-occurring stressors could lead to non-additive effects, and if these differed at two different exposure times. Specifically, structural and functional biofilm responses were assessed after 48 hours (short-term effects) and after 30 days (long-term effects) of exposure. Hydrological stress caused strong negative impacts on river biofilms, whereas effects of warming and pesticide exposure were less intense, although increasing on the long term. Most stressor combinations (71%) resulted in non-significant interactions, suggesting overall additive effects, but some non-additive interactions also occurred. Among non-additive interactions, 59% were classified as antagonisms after short-term exposure to the different stressor combinations, rising to 86% at long term. Our results indicate that a 30-day exposure period to multiple stressors increases the frequency of antagonistic interactions compared to a 48-hour exposure to the same conditions. Overall, the impacts of multiple-stressor occurrences appear to be hardly predictable from individual effects, highlighting the need to consider temporal components such as duration when predicting the effects of multiple stressors.
Collapse
Affiliation(s)
- Ferran Romero
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain.
- Universitat de Girona (UdG), Girona, Spain.
| | - Vicenç Acuña
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain
- Universitat de Girona (UdG), Girona, Spain
| | - Carme Font
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain
- Universitat de Girona (UdG), Girona, Spain
| | - Anna Freixa
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain
- Universitat de Girona (UdG), Girona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain
- Institute of Aquatic Ecology (IEA), University of Girona, Campus de Montilivi, 17003, Girona, Spain
| |
Collapse
|
10
|
Ravenscraft A, Berry M, Hammer T, Peay K, Boggs C. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1346] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Michelle Berry
- Department of Biology Stanford University Stanford California 94305 USA
| | - Tobin Hammer
- Ecology and Evolutionary Biology University of Colorado Boulder Boulder Colorado 80309 USA
| | - Kabir Peay
- Department of Biology Stanford University Stanford California 94305 USA
| | - Carol Boggs
- Department of Biological Sciences University of South Carolina Columbia South Carolina 29208 USA
| |
Collapse
|
11
|
Ruiz-González C, Archambault E, Laforest-Lapointe I, del Giorgio PA, Kembel SW, Messier C, Nock CA, Beisner BE. Soils associated to different tree communities do not elicit predictable responses in lake bacterial community structure and function. FEMS Microbiol Ecol 2018; 94:5037915. [DOI: 10.1093/femsec/fiy115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/14/2018] [Indexed: 01/09/2023] Open
Affiliation(s)
- Clara Ruiz-González
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
- Department of Biological Sciences, University of Québec at Montréal, Montréal, Canada
| | - Esther Archambault
- Department of Biological Sciences, University of Québec at Montréal, Montréal, Canada
| | | | - Paul A del Giorgio
- Department of Biological Sciences, University of Québec at Montréal, Montréal, Canada
| | - Steven W Kembel
- Department of Biological Sciences, University of Québec at Montréal, Montréal, Canada
| | - Christian Messier
- Department of Biological Sciences, University of Québec at Montréal, Montréal, Canada
| | - Charles A Nock
- Geobotany, Faculty of Biology, University of Freiburg, Germany
| | - Beatrix E Beisner
- Department of Biological Sciences, University of Québec at Montréal, Montréal, Canada
| |
Collapse
|
12
|
Co-inoculum of Beauveria brongniartii and B. bassiana shows in vitro different metabolic behaviour in comparison to single inoculums. Sci Rep 2017; 7:13102. [PMID: 29026120 PMCID: PMC5638874 DOI: 10.1038/s41598-017-12700-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
The use of entomopathogenic fungi for biocontrol of plant pests is recently receiving an increased interest due to the need of reducing the impact of agricultural practices on the environment. Biocontrol efficacy could be improved by co-inoculation of different microorganisms. However, interactions between the fungal species can trigger or depress the biocontrol activity. Co-inoculation of two entomopathogenic fungi (Beauveria bassiana and B. brongniartii) was performed in vitro to evaluate the effects of their joint behaviour on a range of different carbon sources in comparison to single inoculation. The two species showed a very different metabolic profile by Phenotype MicroArrayTM. B. bassiana showed a broader metabolism than B. brongniartii on a range of substrates. B. brongniartii showed a greater specificity in substrate utilization. Several carbon sources (L-Asparagine, L-Aspartic Acid, L- Glutamic Acid, m- Erythritol, D-Melezitose, D-Sorbitol) triggered the fungal metabolism in the co-inoculum. SSR markers and Real Time qPCR analysis showed that different substrates promoted either the growth of one or the other species, suggesting a form of interaction between the two fungi, related to their different ecological niches. The methodological approach that combines Phenotype MicroArrayTM and SSR genotyping appeared useful to assess the performance and potential competition of co-inoculated entomopathogenic fungi.
Collapse
|
13
|
Pino-Otín MR, Muñiz S, Val J, Navarro E. Effects of 18 pharmaceuticals on the physiological diversity of edaphic microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:441-450. [PMID: 28395259 DOI: 10.1016/j.scitotenv.2017.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 05/25/2023]
Abstract
Pharmaceutical residues can enter the terrestrial environment through the application of recycled water and contaminated biosolids to agricultural soils, were edaphic microfauna can would be threatened. This study thus assessed the effect of 18 widely consumed pharmaceuticals, belonging to four groups: antibiotics, non-steroidal anti-inflammatory drugs (NSAIDs), blood lipid-lowering agents (BLLA) and β-blockers, on the physiology of soil microbial communities from a ecological crop field. Biolog EcoPlates, containing 31 of the most common carbon sources found in forest and crop soils, were used to calculate both the averaged well colour development (AWCD), as an indicator of the entire capacity of degrading carbon sources, and the diversity of carbon source utilization, as an indicator of the physiological diversity. The results show that pharmaceuticals impact microbial communities by changing the ability of microbes to metabolize different carbon sources, thus affecting the metabolic diversity of the soil community. The toxicity of the pharmaceuticals was inversely related to the log Kow; indeed, NSAIDs were the least toxic and antibiotics were the most toxic, while BLLA and β-blockers presented intermediate toxicity. The antibiotic sulfamethoxazole imposed the greatest impact on microbial communities at concentrations from 100 mg/L, followed by the other two antibiotics (trimethoprim and tetracycline) and the β-blocker nadolol. Other chemical parameters (i.e. melting point, molecular weight, pKa or solubility) had little influence on toxicity. Microbial communities exposed to pharmaceuticals having similar physicochemical characteristics presented similar physiological diversity patterns of carbon substrate utilization. These results suggest that the repeated amendment of agricultural soils with biosolids or sludges containing pharmaceutical residuals may result in soil concentrations of concern regarding key ecological functions (i.e. the carbon cycle).
Collapse
Affiliation(s)
- Mª Rosa Pino-Otín
- Faculty of Health Sciences, San Jorge University, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Selene Muñiz
- Pyrenean Institute of Ecology, CSIC, Av. Montañana 1005, Zaragoza 50059, Spain
| | - Jonatan Val
- Faculty of Health Sciences, San Jorge University, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Enrique Navarro
- Pyrenean Institute of Ecology, CSIC, Av. Montañana 1005, Zaragoza 50059, Spain.
| |
Collapse
|
14
|
Wang X, Chen C, Wang J. Phytoremediation of strontium contaminated soil by Sorghum bicolor (L.) Moench and soil microbial community-level physiological profiles (CLPPs). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7668-7678. [PMID: 28124267 DOI: 10.1007/s11356-017-8432-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Phytoremediation of strontium contaminated soil by Sorghum bicolor (L.) Moench was investigated, and the soil microbial community-level physiological profiles (CLPPs) were examined. The growth and the stable strontium (88Sr) accumulations of the energy crop S. bicolor grown on the Sr-spiked soil at the level of 0, 50, 100, 200, and 400 mg/kg soil were characterized through pot soil system after the entire growth period (140 days). Correspondingly, the available content of strontium in soil extracted by Mehlich III extraction solution reached 42.0, 71.9, 151.8, and 242.2 mg/kg, respectively. The Sr-polluted soil microbial community was assessed by a Biolog Eco-plate method. The results showed that the spiked Sr significantly increased the height and the stem biomass weight of the plant. Sr contents in roots, stems, and leaves of the sorghum increased linearly (R 2 > 0.95) with the elevation of the Sr-spiked level in soil. The average Sr concentration in roots, stems, and leaves reached 68.9, 61.3, and 132.6 mg/kg dry weight (DW) under Sr-spiked 400 mg/kg soil, respectively. Sr content in tissues decreased in the order of leaves > roots > stems. The bioconcentration factor (BCF; Sr contents in shoots to soil) values of S. bicolor in soil system was lower than 1 (0.21∼0.39) whether based on the spiked Sr level or on the available Sr level in soil. The transfer factor (TF; Sr contents in shoots to roots) values of S. bicolor in soil system usually is higher than 1 or near to 1 (0.92∼1.29). TF values increased while BCF values decreased as the soil Sr increased. The Biolog Eco-plate assay showed that Sr at the spiked level of 400 mg/kg soil enhanced the soil microbial diversity and activity.
Collapse
Affiliation(s)
- Xu Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Can Chen
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
- Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, People's Republic of China.
- Energy Science Building, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
15
|
Effects of Continuous Tomato Monoculture on Soil Microbial Properties and Enzyme Activities in a Solar Greenhouse. SUSTAINABILITY 2017. [DOI: 10.3390/su9020317] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Traving SJ, Bentzon-Tilia M, Knudsen-Leerbeck H, Mantikci M, Hansen JLS, Stedmon CA, Sørensen H, Markager S, Riemann L. Coupling Bacterioplankton Populations and Environment to Community Function in Coastal Temperate Waters. Front Microbiol 2016; 7:1533. [PMID: 27729909 PMCID: PMC5037133 DOI: 10.3389/fmicb.2016.01533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/13/2016] [Indexed: 12/05/2022] Open
Abstract
Bacterioplankton play a key role in marine waters facilitating processes important for carbon cycling. However, the influence of specific bacterial populations and environmental conditions on bacterioplankton community performance remains unclear. The aim of the present study was to identify drivers of bacterioplankton community functions, taking into account the variability in community composition and environmental conditions over seasons, in two contrasting coastal systems. A Least Absolute Shrinkage and Selection Operator (LASSO) analysis of the biological and chemical data obtained from surface waters over a full year indicated that specific bacterial populations were linked to measured functions. Namely, Synechococcus (Cyanobacteria) was strongly correlated with protease activity. Both function and community composition showed seasonal variation. However, the pattern of substrate utilization capacity could not be directly linked to the community dynamics. The overall importance of dissolved organic matter (DOM) parameters in the LASSO models indicate that bacterioplankton respond to the present substrate landscape, with a particular importance of nitrogenous DOM. The identification of common drivers of bacterioplankton community functions in two different systems indicates that the drivers may be of broader relevance in coastal temperate waters.
Collapse
Affiliation(s)
- Sachia J Traving
- Centre for Ocean Life, Marine Biological Section, University of Copenhagen Helsingør, Denmark
| | | | | | | | | | - Colin A Stedmon
- Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark Charlottenlund, Denmark
| | - Helle Sørensen
- Laboratory for Applied Statistics, Department of Mathematical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Stiig Markager
- Department of Bioscience, Aarhus University Roskilde, Denmark
| | - Lasse Riemann
- Centre for Ocean Life, Marine Biological Section, University of CopenhagenHelsingør, Denmark; Marine Biological Section, University of CopenhagenHelsingør, Denmark
| |
Collapse
|
17
|
Pinzari F, Ceci A, Abu-Samra N, Canfora L, Maggi O, Persiani A. Phenotype MicroArray™ system in the study of fungal functional diversity and catabolic versatility. Res Microbiol 2016; 167:710-722. [PMID: 27283363 DOI: 10.1016/j.resmic.2016.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/18/2016] [Accepted: 05/26/2016] [Indexed: 11/30/2022]
Abstract
Fungi cover a range of important ecological functions associated with nutrient and carbon cycling in leaf litter and soil. As a result, research on existing relationships between fungal functional diversity, decomposition rates and competition is of key interest. Indeed, availability of nutrients in soil is largely the consequence of organic matter degradation dynamics. The Biolog® Phenotype MicroArrays™ (PM) system allows for the testing of fungi against many different carbon sources at any one time. The use and potential of the PM system as a tool for studying niche overlap and catabolic versatility of saprotrophic fungi is discussed here, and examples of its application are provided.
Collapse
Affiliation(s)
- Flavia Pinzari
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo (CREA-RPS), Via della Navicella 2-4, 00184 Rome, Italy; Natural History Museum, Life Sciences Department, Cromwell Road, London SW7 5BD, UK.
| | - Andrea Ceci
- Dipartimento di Biologia ambientale, Sapienza Università di Roma, P.le Aldo Moro, 00185 Rome, Italy.
| | - Nadir Abu-Samra
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo (CREA-RPS), Via della Navicella 2-4, 00184 Rome, Italy.
| | - Loredana Canfora
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo (CREA-RPS), Via della Navicella 2-4, 00184 Rome, Italy.
| | - Oriana Maggi
- Dipartimento di Biologia ambientale, Sapienza Università di Roma, P.le Aldo Moro, 00185 Rome, Italy.
| | - Annamaria Persiani
- Dipartimento di Biologia ambientale, Sapienza Università di Roma, P.le Aldo Moro, 00185 Rome, Italy.
| |
Collapse
|
18
|
Zha Y, Berga M, Comte J, Langenheder S. Effects of Dispersal and Initial Diversity on the Composition and Functional Performance of Bacterial Communities. PLoS One 2016; 11:e0155239. [PMID: 27182596 PMCID: PMC4868275 DOI: 10.1371/journal.pone.0155239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/26/2016] [Indexed: 12/04/2022] Open
Abstract
Natural communities are open systems and consequently dispersal can play an important role for the diversity, composition and functioning of communities at the local scale. It is, however, still unclear how effects of dispersal differ depending on the initial diversity of local communities. Here we implemented an experiment where we manipulated the initial diversity of natural freshwater bacterioplankton communities using a dilution-to-extinction approach as well as dispersal from a regional species pool. The aim was further to test whether dispersal effects on bacterial abundance and functional parameters (average community growth rates, respiration rates, substrate utilisation ability) differ in dependence of the initial diversity of the communities. First of all, we found that both initial diversity and dispersal rates had an effect on the recruitment of taxa from a regional source, which was higher in communities with low initial diversity and at higher rates of dispersal. Higher initial diversity and dispersal also promoted higher levels of richness and evenness in local communities and affected, both, separately or interactively, the functional performance of communities. Our study therefore suggests that dispersal can influence the diversity, composition and functioning of bacterial communities and that this effect may be enhanced if the initial diversity of communities is depleted.
Collapse
Affiliation(s)
- Yinghua Zha
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Mercè Berga
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Jérôme Comte
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Silke Langenheder
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| |
Collapse
|
19
|
Freixa A, Rubol S, Carles-Brangarí A, Fernàndez-Garcia D, Butturini A, Sanchez-Vila X, Romaní AM. The effects of sediment depth and oxygen concentration on the use of organic matter: An experimental study using an infiltration sediment tank. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 540:20-31. [PMID: 25900223 DOI: 10.1016/j.scitotenv.2015.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/02/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
Water flowing through hyporheic river sediments or artificial recharge facilities promotes the development of microbial communities with sediment depth. We performed an 83-day mesocosm infiltration experiment, to study how microbial functions (e.g., extracellular enzyme activities and carbon substrate utilization) are affected by sediment depth (up to 50 cm) and different oxygen concentrations. Results indicated that surface sediment layers were mainly colonized by microorganisms capable of using a wide range of substrates (although they preferred to degrade carbon polymeric compounds, as indicated by the higher β-glucosidase activity). In contrast, at a depth of 50 cm, the microbial community became specialized in using fewer carbon substrates, showing decreased functional richness and diversity. At this depth, microorganisms picked nitrogenous compounds, including amino acids and carboxyl acids. After the 83-day experiment, the sediment at the bottom of the tank became anoxic, inhibiting phosphatase activity. Coexistence of aerobic and anaerobic communities, promoted by greater physicochemical heterogeneity, was also observed in deeper sediments. The presence of specific metabolic fingerprints under oxic and anoxic conditions indicated that the microbial community was adapted to use organic matter under different oxygen conditions. Overall the heterogeneity of oxygen concentrations with depth and in time would influence organic matter metabolism in the sediment tank.
Collapse
Affiliation(s)
- A Freixa
- Institute of Aquatic Ecology, Department of Environmental Sciences, University of Girona, Girona, Spain.
| | - S Rubol
- Civil Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - A Carles-Brangarí
- Hydrogeology Group, Dept. Geotechnical Engineering and Geosciences, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - D Fernàndez-Garcia
- Hydrogeology Group, Dept. Geotechnical Engineering and Geosciences, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - A Butturini
- Department of Ecology, University of Barcelona, Barcelona, Spain
| | - X Sanchez-Vila
- Hydrogeology Group, Dept. Geotechnical Engineering and Geosciences, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - A M Romaní
- Institute of Aquatic Ecology, Department of Environmental Sciences, University of Girona, Girona, Spain
| |
Collapse
|
20
|
Community-Level Physiological Profiling of Microbial Communities in Constructed Wetlands: Effects of Sample Preparation. Appl Biochem Biotechnol 2015; 178:960-73. [DOI: 10.1007/s12010-015-1921-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/05/2015] [Indexed: 11/25/2022]
|
21
|
Zaveri P, Munshi N, Vaidya A, Jha S, Kumar GN. Functional microbial diversity dynamics in common effluent treatment plants of South Gujarat and hydrocarbon degradation. Can J Microbiol 2015; 61:389-97. [DOI: 10.1139/cjm-2014-0700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Common effluent treatment plants (CETPs) of South Gujarat region, India, process wastewater generated by more than 2500 industries because of the nonfeasibility of processing at the individual industrial unit. This study assessed functional microbial diversity in wastewater samples of CETPs over a geological belt using Ecoplate®, isolation of the most abundant bacteria, and screening for hydrocarbon degradation. The high evenness (EPielou) values (0.9) in almost all samples indicated a highly even community structure. Principal component analysis of carbon source utilization showed a cluster of all inlet samples except E1 and another cluster of all outlet samples; aeration tank community samples were dispersed. In spite of the high richness found in microbial communities, 60 morphologically similar organisms were observed and isolated; 46 out of them were subjected to amplified ribosomal DNA restriction analysis with MboI, HaeIII, and TaqI enzyme, followed by UPGMA clustering. In screening the most abundant bacteria from each cluster, one of the cultures showed a high potential for hydrocarbon degradation and was identified as Pseudomonas citronellolis by 16S rDNA sequencing. Because of its highly adapted inherent nature, this bacterium may help augment the conventional procedure in wastewater treatment and efficiently decrease the organic load.
Collapse
Affiliation(s)
- Purvi Zaveri
- Institute of Science, Nirma University, Sarkhej – Gandhinagar Highway, Ahmedabad, 382 481 Gujarat, India
| | - Nasreen Munshi
- Institute of Science, Nirma University, Sarkhej – Gandhinagar Highway, Ahmedabad, 382 481 Gujarat, India
| | - Alok Vaidya
- Department of Biotechnology, Navsari Agricultural University, Gujarat, India
| | - Sanjay Jha
- Department of Biotechnology, Navsari Agricultural University, Gujarat, India
| | - G. Naresh Kumar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat, India
| |
Collapse
|
22
|
Xiao C, Yang L, Zhang L, Liu C, Han M. Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng. J Ginseng Res 2015; 40:28-37. [PMID: 26843819 PMCID: PMC4703740 DOI: 10.1016/j.jgr.2015.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/27/2015] [Accepted: 04/10/2015] [Indexed: 10/30/2022] Open
Abstract
BACKGROUND Panax ginseng cannot be cultivated on the same land consecutively for an extended period, and the underlying mechanism regarding microorganisms is still being explored. METHODS Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) and BIOLOG methods were used to evaluate the microbial genetic and functional diversity associated with the P. ginseng rhizosphere soil in various cultivation ages and modes. RESULTS The analysis of microbial diversity using PCR-DGGE showed that microbial communities were significantly variable in composition, of which six bacterial phyla and seven fungal classes were detected in P. ginseng soil. Among them, Proteobacteria and Hypocreales dominated. Fusarium oxysporum, a soilborne pathogen, was found in all P. ginseng soil samples except R0. The results from functional diversity suggested that the microbial metabolic diversity of fallow soil abandoned in 2003 was the maximum and transplanted soil was higher than direct-seeding soil and the forest soil uncultivated P. ginseng, whereas the increase in cultivation ages in the same mode led to decreases in microbial diversity in P. ginseng soil. Carbohydrates, amino acids, and polymers were the main carbon sources utilized. Furthermore, the microbial diversity index and multivariate comparisons indicated that the augmentation of P. ginseng cultivation ages resulted in decreased bacterial diversity and increased fungal diversity, whereas microbial diversity was improved strikingly in transplanted soil and fallow soil abandoned for at least one decade. CONCLUSION The key factors for discontinuous P. ginseng cultivation were the lack of balance in rhizosphere microbial communities and the outbreak of soilborne diseases caused by the accumulation of its root exudates.
Collapse
Affiliation(s)
- Chunping Xiao
- Cultivation Base of State Key Laboratory for Ecological Restoration and Ecosystem Management of Jilin Province and Ministry of Science and Technology, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Limin Yang
- Cultivation Base of State Key Laboratory for Ecological Restoration and Ecosystem Management of Jilin Province and Ministry of Science and Technology, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Lianxue Zhang
- Cultivation Base of State Key Laboratory for Ecological Restoration and Ecosystem Management of Jilin Province and Ministry of Science and Technology, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Cuijing Liu
- Cultivation Base of State Key Laboratory for Ecological Restoration and Ecosystem Management of Jilin Province and Ministry of Science and Technology, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Mei Han
- Cultivation Base of State Key Laboratory for Ecological Restoration and Ecosystem Management of Jilin Province and Ministry of Science and Technology, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
23
|
Novel R pipeline for analyzing Biolog Phenotypic MicroArray data. PLoS One 2015; 10:e0118392. [PMID: 25786143 PMCID: PMC4365023 DOI: 10.1371/journal.pone.0118392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/15/2015] [Indexed: 01/02/2023] Open
Abstract
Data produced by Biolog Phenotype MicroArrays are longitudinal measurements of cells’ respiration on distinct substrates. We introduce a three-step pipeline to analyze phenotypic microarray data with novel procedures for grouping, normalization and effect identification. Grouping and normalization are standard problems in the analysis of phenotype microarrays defined as categorizing bacterial responses into active and non-active, and removing systematic errors from the experimental data, respectively. We expand existing solutions by introducing an important assumption that active and non-active bacteria manifest completely different metabolism and thus should be treated separately. Effect identification, in turn, provides new insights into detecting differing respiration patterns between experimental conditions, e.g. between different combinations of strains and temperatures, as not only the main effects but also their interactions can be evaluated. In the effect identification, the multilevel data are effectively processed by a hierarchical model in the Bayesian framework. The pipeline is tested on a data set of 12 phenotypic plates with bacterium Yersinia enterocolitica. Our pipeline is implemented in R language on the top of opm R package and is freely available for research purposes.
Collapse
|
24
|
Valverde A, Makhalanyane TP, Seely M, Cowan DA. Cyanobacteria drive community composition and functionality in rock-soil interface communities. Mol Ecol 2015; 24:812-21. [PMID: 25640844 DOI: 10.1111/mec.13068] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/30/2014] [Accepted: 01/06/2015] [Indexed: 01/29/2023]
Abstract
Most ecological research on hypoliths, significant primary producers in hyperarid deserts, has focused on the diversity of individual groups of microbes (i.e. bacteria). However, microbial communities are inherently complex, and the interactions between cyanobacteria, heterotrophic bacteria, protista and metazoa are likely to be very important for ecosystem functioning. Cyanobacterial and heterotrophic bacterial communities were analysed by pyrosequencing, while metazoan and protistan communities were assessed by T-RFLP analysis. Microbial functionality was estimated using carbon substrate utilization. Cyanobacterial community composition was significant in shaping community structure and function in hypoliths. Ecological network analysis showed that most significant co-occurrences were positive, representing potential synergistic interactions. There were several highly interconnected associations (modules), and specific cyanobacteria were important in driving the modular structure of hypolithic networks. Together, our results suggest that hypolithic cyanobacteria have strong effects on higher trophic levels and ecosystem functioning.
Collapse
Affiliation(s)
- Angel Valverde
- Centre for Microbial Ecology and Genomics (CMEG), Genomics Research Institute (GRI), University of Pretoria, Lynnwood road Pretoria 0028, South Africa
| | | | | | | |
Collapse
|
25
|
Bastidas Navarro M, Balseiro E, Modenutti B. Bacterial community structure in patagonian Andean Lakes above and below timberline: from community composition to community function. MICROBIAL ECOLOGY 2014; 68:528-541. [PMID: 24863131 DOI: 10.1007/s00248-014-0439-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
Lakes located above the timberline are remote systems with a number of extreme environmental conditions, becoming physically harsh ecosystems, and sensors of global change. We analyze bacterial community composition and community-level physiological profiles in mountain lakes located in an altitude gradient in North Patagonian Andes below and above the timberline, together with dissolved organic carbon (DOC) characterization and consumption. Our results indicated a decrease in 71 % of DOC and 65 % in total dissolved phosphorus (TDP) concentration as well as in bacteria abundances along the altitude range (1,380 to 1,950 m a.s.l.). Dissolved organic matter (DOM) fluorescence analysis revealed a low global variability composed by two humic-like components (allochthonous substances) and a single protein-like component (autochthonous substances). Lakes below the timberline showed the presence of all the three components, while lakes above the timberline the protein-like compound constituted the main DOC component. Furthermore, bacterial community composition similarity and ordination analysis showed that altitude and resource concentration (DOC and TDP) were the main variables determining the ordination of groups. Community-level physiological profiles showed a mismatch with bacteria community composition (BCC), indicating the absence of a relationship between genetic and functional diversity in the altitude gradient. However, carbon utilization efficiencies varied according to the presence of different compounds in DOM bulk. The obtained results suggest that the different bacterial communities in these mountain lakes seem to have similar metabolic pathways in order to be able to exploit the available DOC molecules.
Collapse
Affiliation(s)
- Marcela Bastidas Navarro
- Laboratorio de Limnología, INIBIOMA, UNComahue-CONICET, Quintral 1250, 8400, Bariloche, Argentina,
| | | | | |
Collapse
|
26
|
Huang J, Sheng X, He L, Huang Z, Wang Q, Zhang Z. Characterization of depth-related changes in bacterial community compositions and functions of a paddy soil profile. FEMS Microbiol Lett 2013; 347:33-42. [PMID: 23865584 DOI: 10.1111/1574-6968.12218] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 06/21/2013] [Accepted: 07/15/2013] [Indexed: 11/29/2022] Open
Abstract
Depth-related changes in bacterial community structures and functions were analyzed in a paddy soil profile using denaturing gradient gel electrophoresis (DGGE) and a metabolic profiling technique (BIOLOG ECO plates). Canonical correspondence analysis (CCA) was used to analyze the correlations between the relative abundance of bacterial groups and soil-available elements. DGGE and sequencing analysis revealed 12 classes and one unknown bacterial group. At the family level, Comamonadaceae and Moraxellaceae dominated through the soil profile, while Acidobacteriaceae and Nitrospiraceae dominated in the deepest layer. In addition, Streptococcaceae dominated and was only observed in the deeper layers. Metabolic profiles revealed the greatest carbon source utilization capacity in the surface layer, and no significant differences between upper and deeper soil layers. The carbon sources utilized by microorganisms were different among the different layers. CCA indicated that soil-available Mn, Ca, Cu, Al, and K concentrations were positively correlated with the relative abundance of Comamonadaceae, Moraxellaceae, Streptococcaceae, Microbacteriaceae, Nocardioidaceae, and Nitrospiraceae in the profile. The results showed that the paddy soil profile harbored diverse bacterial communities and experienced depth-related changes in community structure and carbon source utilization. The bacterial communities and functions might be shaped by the soil edaphic characteristics along the soil profile.
Collapse
Affiliation(s)
- Jing Huang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
27
|
Comte J, Fauteux L, Del Giorgio PA. Links between metabolic plasticity and functional redundancy in freshwater bacterioplankton communities. Front Microbiol 2013; 4:112. [PMID: 23675372 PMCID: PMC3650318 DOI: 10.3389/fmicb.2013.00112] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 04/18/2013] [Indexed: 12/01/2022] Open
Abstract
Metabolic plasticity and functional redundancy are fundamental properties of microbial communities, which shape their response to environmental forcing, and also mediate the relationship between community composition and function. Yet, the actual quantification of these emergent community properties has been elusive, and we thus do not know how they vary across bacterial communities, and their relationship to environmental gradients and to each other. Here we present an experimental framework that allows us to simultaneously quantify metabolic plasticity and functional redundancy in freshwater bacterioplankton communities, and to explore connections that may exists between them. We define metabolic plasticity as the rate of change in single-cell properties (cell wall integrity, cell size, single-cell activity) relative to changes in community composition. Likewise, we define functional redundancy as the rate of change in carbon substrate uptake capacities relative to changes in community composition. We assessed these two key community attributes in transplant experiments where bacterioplankton from various aquatic habitats within the same watershed were transplanted from their original water to waters from other systems that differ in their main resources. Our results show that metabolic plasticity is an intrinsic property of bacterial communities, whereas the expression of functional redundancy appears to be more dependent on environmental factors. Furthermore, there was an overall strong positive relationship between the level of functional redundancy and of metabolic plasticity, suggesting no trade-offs between these community attributes but rather a possible co-selection. The apparent continuum in the expression of both functional redundancy and plasticity among bacterial communities and the link between them, in turn suggest that the link between community diversity and function may also vary along a continuum, from being very tight, to being weak, or absent.
Collapse
Affiliation(s)
- Jérôme Comte
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal Montréal, QC, Canada ; Département de Biologie, Centre d'Études Nordiques, Unité Mixte Internationale Takuvik, Institut de Biologie Intégrative et des Systèmes, Université Laval QC, Canada
| | | | | |
Collapse
|
28
|
Preston-Mafham J, Boddy L, Randerson PF. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles - a critique. FEMS Microbiol Ecol 2012; 42:1-14. [PMID: 19709261 DOI: 10.1111/j.1574-6941.2002.tb00990.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Abstract Information on functional diversity (metabolic potential) is essential for understanding the role of microbial communities in different environments. Variations of the commercially available BIOLOG bacterial identification system plates are now widely used to assess functional diversity of microorganisms from environmental samples, based on utilisation patterns of a wide range (up to 95) of single carbon sources. There are many problems as well as benefits of using the approach, but the former are often disregarded. Here the basis of the approach is summarised, including type of plate to use, treatment of samples, replication, incubation conditions, monitoring of plates, and statistical analysis. The pros and cons of its use are critically assessed, inherent biases and limitations are pointed out and methodological difficulties are considered. Possible ways of overcoming some of the difficulties are suggested.
Collapse
Affiliation(s)
- Juliet Preston-Mafham
- Cardiff School of Biosciences, University of Wales Cardiff, P.O. Box 915, Cardiff CF10 3TL, UK
| | | | | |
Collapse
|
29
|
Baho DL, Peter H, Tranvik LJ. Resistance and resilience of microbial communities--temporal and spatial insurance against perturbations. Environ Microbiol 2012; 14:2283-92. [PMID: 22513226 DOI: 10.1111/j.1462-2920.2012.02754.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacteria play fundamental roles for many ecosystem processes; however, little empirical evidence is available on how environmental perturbations affect their composition and function. We investigated how spatial and temporal refuges affect the resistance and resilience of a freshwater bacterioplankton community upon a salinity pulse perturbation in continuous cultures. Attachment to a surface avoided the flushing out of cells and enabled re-colonization of the liquid phase after the perturbation, hence serving as a temporal refuge. A spatial refuge was established by introduction of bacteria from an undisturbed reservoir upstream of the continuous culture vessel, acting analogous to a regional species pool in a metacommunity. The salinity pulse affected bacterial community composition and the rates of respiration and the pattern of potential substrate utilization as well as the correlation between composition and function. Compared with the no-refuge treatment, the temporal refuge shortened return to pre-perturbation conditions, indicating enhanced community resilience. Composition and function were less disturbed in the treatment providing a spatial refuge, suggesting higher resistance. Our results highlight that spatial and temporal dynamics in general and refuges in particular need to be considered for conceptual progress in how microbial metacommunities are shaped by perturbations.
Collapse
Affiliation(s)
- Didier L Baho
- Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
30
|
Kissin I, Szallasi A. Therapeutic targeting of TRPV1 by resiniferatoxin, from preclinical studies to clinical trials. Curr Top Med Chem 2011. [PMID: 21671878 DOI: 10.1101/128884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In primary sensory neurons, the capsaicin receptor TRPV1 functions as a molecular integrator for a broad range of seemingly unrelated chemical and physical noxious stimuli, including heat and altered pH. Indeed, TRPV1 is thought to be a major transducer of the thermal hyperalgesia that follows inflammation and tissue injury as this response is impaired in TRPV1-deficient mice. Following the molecular cloning of TRPV1 in 1997, over a dozen companies embarked on efforts to find clinically useful TRPV1 antagonists, but side-effects and limited efficacy have thus far prevented any compounds from progressing beyond phase II. This has rekindled interest in desensitization of nociceptive neurons to TRPV1 agonists (e.g. capsaicin and its ultrapotent analog resiniferatoxin) as an alternative pharmacological approach to block pain in the periphery where it is generated. The clinical value of capsaicin is, however, limited by its unfavorable irritancy to desensitization ratio. In animal experiments, resiniferatoxin treatment is a powerful approach to achieve long-lasting analgesia. In patients with overactive bladder, intravesical resiniferatoxin improves bladder function (or even restores continence) without significant irritancy and/or toxicity. In this review, we argue that resiniferatoxin is an attractive alternative to capsaicin in that it achieves lasting desensitization without the side effects that complicate capsaicin therapy.
Collapse
Affiliation(s)
- Igor Kissin
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
31
|
Comte J, del Giorgio PA. Linking the patterns of change in composition and function in bacterioplankton successions along environmental gradients. Ecology 2010; 91:1466-76. [DOI: 10.1890/09-0848.1] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Liu W, Luo Y, Teng Y, Li Z, Ma LQ. Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2010; 32:23-29. [PMID: 19363671 DOI: 10.1007/s10653-009-9262-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 03/18/2009] [Indexed: 05/27/2023]
Abstract
In situ bioremediation of oily sludge-contaminated soil by biostimulation of indigenous microbes through adding manure was conducted at the Shengli oilfield in northern China. After bioremediation for 360 days, total petroleum hydrocarbon (TPH) content was reduced by 58.2% in the treated plots compared with only 15.6% in the control plot. Moreover, bioremediation significantly improved the physicochemical properties of the soil in the treated plot. Soil microbial counts and community-level physiological profiling were also examined. Manure addition increased TPH degraders and polycyclic aromatic hydrocarbon (PAH) degraders in the contaminated soil by one to two orders of magnitude. The activity and biodiversity of soil microbial communities also increased markedly in the treated plot compared with that of the control. Finally, biotoxicity was used to evaluate the soils and a sharp increase in the EC50 of the soil after bioremediation was observed, indicating that bioremediation had reduced the toxicity of the soil.
Collapse
Affiliation(s)
- Wuxing Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, People's Republic of China.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Community-level physiological profiling (CLPP) is a technique which offers an easily applied protocol yielding information regarding mixed microbial community function and functional adaptations over space and time. Different communities can be compared and classified based on sole carbon source utilization patterns (CSUPs) gathered using BIOLOG microplates. One of the most challenging aspects associated with the CLPP method is in the data analysis. This chapter describes the relatively simple CLPP laboratory protocol and provides a detailed description of different data analysis techniques.
Collapse
Affiliation(s)
- Kela P Weber
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
34
|
Shi K, Wang L, Zhou YH, Yu YL, Yu JQ. Effects of calcium cyanamide on soil microbial communities and Fusarium oxysporum f. sp. cucumberinum. CHEMOSPHERE 2009; 75:872-877. [PMID: 19230952 DOI: 10.1016/j.chemosphere.2009.01.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 01/14/2009] [Accepted: 01/20/2009] [Indexed: 05/27/2023]
Abstract
Calcium cyanamide (CaCN(2)) has been one of the potential candidates as soil disinfectant since the restriction of methyl bromide in soil fumigation due to its ecological risk. However, little information is available on effects of CaCN(2) on soil microbial community. In this study, the soil microbial communities and the fate of pathogen Fusarium oxysporum (Schlechtend, Fr) f. sp. cucumberinum (Owen) Snyder and Hansen (F.O. f. sp. cucumberinum) in response to CaCN(2) treatment was evaluated. F.O. f. sp. cucumberinum population in soil treated with CaCN(2) at rates of 80 and 200 gm(-2) was suppressed by 88.7 and 92.2% after 15 d of CaCN(2) application. Bacterial, fungal, and actinomycete populations were also greatly decreased after 3 d of CaCN(2) application, but they recovered to the control level by 15 d. The variation in functional diversity of soil microbes characterized by principal component analysis, diversity and evenness indices based on Biolog data followed a similar trend. Meanwhile, the band number from the DGGE of soil 16S rDNA fragments increased from 9 for the non-CaCN(2)-treated soil to 10 or 12 after different rates of CaCN(2) application at 15 d, indicating the increase of abundant rDNA types in the community. The results suggest that CaCN(2) application had only a short-term and transitory impact on the indigenous soil microbial community in contrast to the long-term suppression of the F.O. f. sp. cucumberinum population. It is feasible to reduce Fusarium wilt without significant impact on microbial community by application of CaCN(2) at reasonable doses.
Collapse
Affiliation(s)
- Kai Shi
- Department of Horticulture, Huajiachi Campus, Zhejiang University, Hangzhou 310029, PR China
| | | | | | | | | |
Collapse
|
35
|
Comte J, del Giorgio PA. Links between resources, C metabolism and the major components of bacterioplankton community structure across a range of freshwater ecosystems. Environ Microbiol 2009; 11:1704-16. [PMID: 19508562 DOI: 10.1111/j.1462-2920.2009.01897.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We explored the patterns in bacterioplankton community metabolism (BCM) and four components of community structure [composition (BCC), metabolic capacities (MC), physiological structure (PS) and single-cell characteristics (SCC)], between lakes, rivers and marshes within a watershed in Québec, to assess the connections that exist between them and with the main resources (organic matter, nutrients). Habitat types were well segregated by both resources and BCM and their corresponding dissimilarity matrices were significantly correlated, suggesting that BCM tracks resource conditions in a consistent manner across ecosystem types. MC also segregated the various habitats and was correlated to BCM but less so to resources, whereas BCC at times resulted in a clear separation of habitats, but was rarely correlated to resources and never to BCM, suggesting a higher degree of ecosystem specificity at this particular level. Finally, there was no clear separation of habitats in terms of PS and SCC, and none covaried with resources or BCM. The habitat patterns based on these different components of structure were rarely correlated to each other, indicating weak deterministic connections between them. MC appears to mediate the link between resources and BCM more directly and consistently across systems; BCC appears to be more influenced by ecosystem-specific factors that weaken its overall connection to both resources and BCM, whereas PS and SCC show no discernible patterns. Our results thus suggest that the bottom-up regulation of BCM by resources is mediated by complex shifts within components of community structure that can be directional, ecosystem-specific or apparently random, which combined nevertheless result in a systematic overall response to resources in terms of C metabolism.
Collapse
Affiliation(s)
- Jérôme Comte
- Groupe de Recherche Interuniversitaire en Limnologie, Dépt. des sciences biologiques, Université du Québec à Montréal, CP 8888, Succ. Centre Ville, Montréal, Québec, Canada H3C 3P8.
| | | |
Collapse
|
36
|
Coucheney E, Daniell TJ, Chenu C, Nunan N. Gas chromatographic metabolic profiling: A sensitive tool for functional microbial ecology. J Microbiol Methods 2008; 75:491-500. [DOI: 10.1016/j.mimet.2008.07.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 11/28/2022]
|
37
|
Ruppel S, Krumbein A, Schreiner M. Composition of the phyllospheric microbial populations on vegetable plants with different glucosinolate and carotenoid compositions. MICROBIAL ECOLOGY 2008; 56:364-372. [PMID: 18183453 DOI: 10.1007/s00248-007-9354-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 11/23/2007] [Accepted: 11/30/2007] [Indexed: 05/25/2023]
Abstract
The plant phyllosphere is intensely colonized by a complex and highly diverse microbial population and shows pronounced plant-species-specific differences. The mechanisms and influencing factors determining whether and in which density microorganisms colonize plant phyllosphere tissues are not yet fully understood. One of the key influencing factors is thought to be phytochemical concentration and composition. Therefore, correlations between various concentrations of individual glucosinolates and carotenoids in four different plant species-Brassica juncea, Brassica campestris, Cichorium endivia, and Spinacea oleracea-and the phyllospheric bacterial population size associated with the aerial parts of the same plants were analyzed. The concentration of various individual glucosinolates and carotenoids were measured using high-performance liquid chromatography. The phyllospheric bacterial population size including both nonculturable and culturable organisms was assessed using quantitative real-time polymerase chain reaction, and the physiological profile of the culturable microbial community was analyzed using the Biolog system. Results show significant differences between plant species in both concentration and composition of secondary metabolites, bacterial population size, and microbial community composition in three consecutively performed experiments. An interesting and underlying trend was that bacterial density was positively correlated to concentrations of beta-carotene in the plant phyllosphere of the four plant species examined. Likewise, the alkenyl glucosinolates, 2-propenyl, 3-butenyl, and 4-pentenyl, concentrations were positively correlated to the bacterial population density, whereas the aromatic glucosinolate 2-phenylethyl showed a negative correlation to the phyllospheric bacterial population size. Thus, we report for the first time the relationship between individual glucosinolate and carotenoid concentrations and the phyllospheric bacterial population size of nonculturable and culturable organisms and the phyllospheric microbial physiological profiles.
Collapse
Affiliation(s)
- Silke Ruppel
- Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V., Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany.
| | | | | |
Collapse
|
38
|
Weber KP, Gehder M, Legge RL. Assessment of changes in the microbial community of constructed wetland mesocosms in response to acid mine drainage exposure. WATER RESEARCH 2008; 42:180-8. [PMID: 17632206 DOI: 10.1016/j.watres.2007.06.055] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 06/15/2007] [Accepted: 06/24/2007] [Indexed: 05/16/2023]
Abstract
Changes in the bacterial community in the interstitial water of 5 different constructed wetland mesocosms were studied over a 22-day period following exposure to simulated acid mine drainage (AMD). The community-level physiological profile (CLPP) of each mesocosm was assessed using substrate utilization patterns gathered via BIOLOG ECO plates. Principal component analysis (PCA) of the BIOLOG ECO plate data proved feasible and useful in characterizing the interstitial bacterial community in the constructed wetland mesocosms based on mesocosm characteristics such as fixed biological regime development and plant presence, and was also used to successfully track changes in the interstitial bacterial community in response to AMD exposure. Clustering analysis of the BIOLOG ECO plate data was used to characterize the interstitial bacterial community and to validate the mesocosm groupings observed through PCA ordination. The calculation of substrate-based diversity indices from the BIOLOG ECO plate data was used to assess the robustness and the degree of change shown by the metabolic fingerprint of the interstitial bacterial community within the mesocosms. The interstitial bacterial community in the constructed mesocosms was shown to be significantly affected after exposure to AMD. Exposure to AMD caused similar bacterial species to detach from the fixed biotic regime of the mesocosms. It was also shown that mesocosms planted with Phragmites australis did not experience as great an ecological shift in the microbial ecology of the interstitial water after exposure to AMD as did the unplanted mesocosms. The substrate-based diversity indices for the planted mesocosms were also found to be more stable, after exposure to AMD, than those for the unplanted mesocosms. It is possible that the interaction between the plant root system and the substrate biological regime, collectively called the rhizosphere, may create a more ecologically robust and stable treatment system.
Collapse
Affiliation(s)
- Kela P Weber
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, ON, Canada N2L 3G1
| | | | | |
Collapse
|
39
|
Engel P, Brandt KK, Rasmussen LH, Ovesen RG, Sørensen J. Microbial degradation and impact of Bracken toxin ptaquiloside on microbial communities in soil. CHEMOSPHERE 2007; 67:202-9. [PMID: 17083965 DOI: 10.1016/j.chemosphere.2006.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Revised: 07/31/2006] [Accepted: 08/17/2006] [Indexed: 05/12/2023]
Abstract
The carcinogenic and toxic ptaquiloside (PTA) is a major secondary metabolite in Bracken fern (Pteridium aquilinum (L.) Kuhn) and was hypothesized to influence microbial communities in soil below Bracken stands. Soil and Bracken tissue were sampled at field sites in Denmark (DK) and New Zealand (NZ). PTA contents of 2.1 +/- 0.5 mg g(-1) and 37.0 +/- 8.7 mg g(-1) tissue were measured in Bracken fronds from DK and NZ, respectively. In the two soils the PTA levels were similar (0-5 microg g(-1) soil); a decrease with depth could be discerned in the deeper B and C horizons of the DK soil (weak acid sandy Spodosol), but not in the NZ soil (weak acid loamy Entisol). In the DK soil PTA turnover was predominantly due to microbial degradation (biodegradation); chemical hydrolysis was occurring mainly in the uppermost A horizon where pH was very low (3.4). Microbial activity (basal respiration) and growth ([3H]leucine incorporation assay) increased after PTA exposure, indicating that the Bracken toxin served as a C substrate for the organotrophic microorganisms. On the other hand, there was no apparent impact of PTA on community size as measured by substrate-induced respiration or composition as indicated by community-level physiological profiles. Our results demonstrate that PTA stimulates microbial activity and that microorganisms play a predominant role for rapid PTA degradation in Bracken-impacted soils.
Collapse
Affiliation(s)
- Pernille Engel
- Department of Ecology, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
40
|
Chen J, Zhuang X, Xie H, Bai Z, Qi H, Zhang H. Associated impact of inorganic fertilizers and pesticides on microbial communities in soils. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9189-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Alisi C, Lasinio GJ, Dalmastri C, Sprocati A, Tabacchioni S, Bevivino A, Chiarini L. Metabolic profiling of Burkholderia cenocepacia, Burkholderia ambifaria, and Burkholderia pyrrocinia isolates from maize rhizosphere. MICROBIAL ECOLOGY 2005; 50:385-95. [PMID: 16328653 DOI: 10.1007/s00248-005-0223-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 01/27/2005] [Indexed: 05/05/2023]
Abstract
Burkholderia cenocepacia, Burkholderia ambifaria, and Burkholderia pyrrocinia are the Burkholderia cepacia complex (Bcc) species most frequently associated with roots of crop plants. To investigate the ecophysiological diversity of these species, metabolic profiling of maize rhizosphere isolates was carried out by means of the Biolog system, using GN2 and SFN2 plates and different parameters related to optical density (OD). The metabolic profiles produced by the SFN2 and GN2 plates were identical, but the SFN2's narrower range of OD values and significantly longer reaction times made these plates less suitable for differentiation of isolates. Principal component analysis of maximum OD (ODM) and maximum substrate oxidation rate (muM) data generated by GN2 plates allowed the selection of a reduced number of carbon sources. Statistical analysis of ODM values highlighted marked differences between the metabolic profiles of B. cenocepacia and B. ambifaria, whereas metabolic profiles of B. pyrrocinia clustered very often with those of B. cenocepacia. Analysis of the mu(M) parameter resulted in a slightly lower differentiation among the three Bcc species and a higher metabolic diversity within the single species, in particular within B. cenocepacia. Finally, B. cenocepacia and B. pyrrocinia showed generally higher oxidation rates than B. ambifaria on those GN2 substrates that commonly occur in maize root exudates.
Collapse
Affiliation(s)
- Chiara Alisi
- Unità Protezione dell'Ambiente, Ente Nazionale per le Nuove Tecnologie, l'Energia e l'Ambiente (ENEA) C. R. Casaccia, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Goberna M, Insam H, Klammer S, Pascual JA, Sánchez J. Microbial community structure at different depths in disturbed and undisturbed semiarid Mediterranean forest soils. MICROBIAL ECOLOGY 2005; 50:315-26. [PMID: 16328659 DOI: 10.1007/s00248-005-0177-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 01/11/2005] [Indexed: 05/05/2023]
Abstract
Metabolic abilities and micrfiobial community structure were investigated through three semiarid Mediterranean soils of SE Spain. The soils were (1) a Typic Calcixerept under an adult pine plantation (PP), growing on abandoned agricultural terraces; (2) a Typic Calcixeroll under a native pinewood (NP); and (3) a Typic Haploxerept covered with a grass steppe (GS). PP and NP were similar as regards their genesis, but the former used to be tilled. NP and GS were undisturbed and supported natural and seminatural vegetation, respectively. Seven samples in 10-cm depth increments were taken in triplicate along each soil profile. Community-level physiological profiles based on sole-C-source use were determined to characterize the metabolic abilities. A 16S rDNA polymerase chain reaction-denaturing gradient gel electrophoresis analysis was performed to investigate the microbial genetic structure. Plant cover and land-use history were major determinants of microbial community structure. Microbial communities residing in soils under a native pinewood, the most diverse and stable plant cover, were the most complex both metabolically and genetically. The microbial community structure distinctly changed with depth, related to the quantity and quality of total organic carbon. Both undisturbed soils showed falling gradients of metabolic and genetic complexity, which were invariably of a greater magnitude in the mature woodland than in the grass steppe. In the planted pinewood, however, the substrate-use diversity increased with depth, apparently a response to the depleted metabolic abilities within its upper layer (0-30 cm). Tilling and plant cover removal might be responsible for such a perturbation. In the same profile, molecular fingerprint patterns of the topsoil layer (0-10 cm) indicated a disturbed genetic structure that might underlie the loss of metabolic abilities. However, the genetic structure of the deeper layers of the planted and native pinewoods was not dissimilar, revealing that equivalent genetic resources perform different environmental functions under changing soil scenarios.
Collapse
Affiliation(s)
- M Goberna
- Centro de Investigaciones sobre Desertificación (CIDE), CSIC, Universitat de València, Generalitat Valenciana, Camí de la Marjal, s/n, 46470, Albal, Valencia, Spain.
| | | | | | | | | |
Collapse
|
43
|
Leflaive J, Céréghino R, Danger M, Lacroix G, Ten-Hage L. Assessment of self-organizing maps to analyze sole-carbon source utilization profiles. J Microbiol Methods 2005; 62:89-102. [PMID: 15823397 DOI: 10.1016/j.mimet.2005.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 02/07/2005] [Accepted: 02/07/2005] [Indexed: 11/16/2022]
Abstract
The use of community-level physiological profiles obtained with Biolog microplates is widely employed to consider the functional diversity of bacterial communities. Biolog produces a great amount of data which analysis has been the subject of many studies. In most cases, after some transformations, these data were investigated with classical multivariate analyses. Here we provided an alternative to this method, that is the use of an artificial intelligence technique, the Self-Organizing Maps (SOM, unsupervised neural network). We used data from a microcosm study of algae-associated bacterial communities placed in various nutritive conditions. Analyses were carried out on the net absorbances at two incubation times for each substrates and on the chemical guild categorization of the total bacterial activity. Compared to Principal Components Analysis and cluster analysis, SOM appeared as a valuable tool for community classification, and to establish clear relationships between clusters of bacterial communities and sole-carbon sources utilization. Specifically, SOM offered a clear bidimensional projection of a relatively large volume of data and were easier to interpret than plots commonly obtained with multivariate analyses. They would be recommended to pattern the temporal evolution of communities' functional diversity.
Collapse
Affiliation(s)
- Joséphine Leflaive
- Laboratoire d'Ecologie des Hydrosystèmes, UMR CNRS 5177, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 04, France
| | | | | | | | | |
Collapse
|
44
|
Maul JD, Gandhi JP, Farris JL. Community-level physiological profiles of cloacal microbes in songbirds (order: Passeriformes): variation due to host species, host diet, and habitat. MICROBIAL ECOLOGY 2005; 50:19-28. [PMID: 16132424 DOI: 10.1007/s00248-004-0076-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 06/23/2004] [Indexed: 05/04/2023]
Abstract
The relationship between microorganisms and birds has received increased attention recently. The state of knowledge of this relationship, however, is based largely on examination of sick or dead birds, and knowledge of the prevalence and community structure and function of microbes in healthy wild populations is limited. Using carbon substrate utilization profiles, microbial communities were examined in 91 cloacal samples from 14 species within apparently healthy summer and winter passerine populations. Within each season, gradient lengths and eigenvalues from ordination analyses suggested that many samples differed in their carbon substrate utilization and several had very different communities. Cloacal microbe carbon utilization profiles were distinguishable among host species, season-specific diet, and study site in the ordination analyses. However, these patterns were only observed for the analysis of the summer data set. The results of this study support the idea that the avian host's microbial community, relative to carbon substrate utilization, is related to host diet. Previously, this pattern had only been reported for potential pathogens isolated from the avian cloaca. Study site-specific patterns in the ordination analysis suggest that environmental conditions at a particular study site may influence cloacal microbial communities in birds. Results of this study indicate that examination of community-level physiological profiles may be a useful technique for distinguishing among avian cloacal samples, similar to that already established for discriminating aqueous and soil samples. Future studies that correlate microbe physiological profiles to condition-based indices of avian hosts may be most useful for eventually using the profile as an indicator of environmental conditions experienced by hosts.
Collapse
Affiliation(s)
- J D Maul
- Environmental Sciences Program, Arkansas State University, State University, AR 72467, USA.
| | | | | |
Collapse
|
45
|
Spiegelman D, Whissell G, Greer CW. A survey of the methods for the characterization of microbial consortia and communities. Can J Microbiol 2005; 51:355-86. [PMID: 16088332 DOI: 10.1139/w05-003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A survey of the available literature on methods most frequently used for the identification and characterization of microbial strains, communities, or consortia is presented. The advantages and disadvantages of the various methodologies were examined from several perspectives including technical, economic (time and cost), and regulatory. The methods fall into 3 broad categories: molecular biological, biochemical, and microbiological. Molecular biological methods comprise a broad range of techniques that are based on the analysis and differentiation of microbial DNA. This class of methods possesses several distinct advantages. Unlike most other commonly used methods, which require the production of secondary materials via the manipulation of microbial growth, molecular biological methods recover and test their source materials (DNA) directly from the microbial cells themselves, without the requirement for culturing. This eliminates both the time required for growth and the biases associated with cultured growth, which is unavoidably and artificially selective. The recovered nucleic acid can be cloned and sequenced directly or subpopulations can be specifically amplified using polymerase chain reaction (PCR), and subsequently cloned and sequenced. PCR technology, used extensively in forensic science, provides researchers with the unique ability to detect nucleic acids (DNA and RNA) in minute amounts, by amplifying a single target molecule by more than a million-fold. Molecular methods are highly sensitive and allow for a high degree of specificity, which, coupled with the ability to separate similar but distinct DNA molecules, means that a great deal of information can be gleaned from even very complex microbial communities. Biochemical methods are composed of a more varied set of methodologies. These techniques share a reliance on gas chromatography and mass spectrometry to separate and precisely identify a range of biomolecules, or else investigate biochemical properties of key cellular biomolecules. Like the molecular biological methods, some biochemical methods such as lipid analyses are also independent of cultured growth. However, many of these techniques are only capable of producing a profile that is characteristic of the microbial community as a whole, providing no information about individual members of the community. A subset of these methodologies are used to derive taxonomic information from a community sample; these rely on the identification of key subspecies of biomolecules that differ slightly but characteristically between species, genera, and higher biological groupings. However, when the consortium is already growing in chemically defined media (as is often the case with commercial products), the rapidity and relatively low costs of these procedures can mitigate concerns related to culturing biases. Microbiological methods are the most varied and the least useful for characterizing microbial consortia. These methods rely on traditional tools (cell counting, selective growth, and microscopic examination) to provide more general characteristics of the community as a whole, or else to narrow down and identify only a small subset of the members of that community. As with many of the biochemical methods, some of the microbiological methods can fairly rapidly and inexpensively create a community profile, which can be used to compare 2 or more entire consortia. However, for taxonomic identification of individual members, microbiological methods are useful only to screen for the presence of a few key predetermined species, whose preferred growth conditions and morphological characteristics are well defined and reproducible.Key words: microbial communities, microbial consortia, characterization methods, taxonomic identification.
Collapse
Affiliation(s)
- Dan Spiegelman
- Biotechnology Research Institute, National Research Council Canada, Montreal, QC
| | | | | |
Collapse
|
46
|
Boivin MEY, Massieux B, Breure AM, van den Ende FP, Greve GD, Rutgers M, Admiraal W. Effects of copper and temperature on aquatic bacterial communities. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2005; 71:345-356. [PMID: 15710482 DOI: 10.1016/j.aquatox.2004.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 12/07/2004] [Accepted: 12/15/2004] [Indexed: 05/24/2023]
Abstract
The present study aimed to characterise effects of copper and temperature on bacterial communities in photosynthetic biofilms using a suit of supplementary methods: pollution-induced community tolerance (PICT), DNA profiles with denaturing gradient gel electrophoresis (DGGE) and physiological profiles with community-level physiological profiling (CLPP). Biofilms of algae and bacteria were grown in a ditch of a Dutch polder and exposed in the laboratory to copper (3 microM and a reference) at three different temperatures (10, 14 and 20 degrees C). Bacterial communities sampled from the field showed heterogeneity in their physiological profiles, however the heterogeneity decreased during laboratory incubation. After 3 days laboratory incubation, the copper treated biofilms were different from the reference biofilms, as revealed by DGGE and CLPP analyses. Effects of temperature were not observed in the CLPPs, or in the DGGE profiles. PICT was observed for the bacterial communities at all temperatures. The copper-tolerance at 10 and 14 degrees C increased about 3 times, whereas copper-tolerance at 20 degrees C increased about 6 times. Temperature had an effect on the community tolerance, but not on the structure or on the physiological profile, suggesting that temperature was not a major factor causing successional changes under these laboratory conditions. In contrast, temperature had an effect on tolerance development indicating that the exposure to copper was enhanced at higher temperature.
Collapse
Affiliation(s)
- Marie-Elène Y Boivin
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
47
|
Celis C, Scurrah M, Cowgill S, Chumbiauca S, Green J, Franco J, Main G, Kiezebrink D, Visser RGF, Atkinson HJ. Environmental biosafety and transgenic potato in a centre of diversity for this crop. Nature 2004; 432:222-5. [PMID: 15538370 DOI: 10.1038/nature03048] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 09/17/2004] [Indexed: 11/08/2022]
Abstract
The Nuffield Council on Bioethics suggests that introgression of genetic material into related species in centres of crop biodiversity is an insufficient justification to bar the use of genetically modified crops in the developing world. They consider that a precautionary approach to forgo the possible benefits invokes the fallacy of thinking that doing nothing is itself without risk to the poor. Here we report findings relevant to this and other aspects of environmental biosafety for genetically modified potato in its main centre of biodiversity, the central Andes. We studied genetically modified potato clones that provide resistance to nematodes, principal pests of Andean potato crops. We show that there is no harm to many non-target organisms, but gene flow occurs to wild relatives growing near potato crops. If stable introgression were to result, the fitness of these wild species could be altered. We therefore transformed the male sterile cultivar Revolucion to provide a genetically modified nematode-resistant potato to evaluate the benefits that this provides until the possibility of stable introgression to wild relatives is determined. Thus, scientific progress is possible without compromise to the precautionary principle.
Collapse
Affiliation(s)
- Carolina Celis
- Laboratory of Plant Breeding, Wageningen University, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Brandt KK, Jørgensen NO, Nielsen TH, Winding A. Microbial community-level toxicity testing of linear alkylbenzene sulfonates in aquatic microcosms. FEMS Microbiol Ecol 2004; 49:229-41. [DOI: 10.1016/j.femsec.2004.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
49
|
Schmitt H, van Beelen P, Tolls J, van Leeuwen CL. Pollution-induced community tolerance of soil microbial communities caused by the antibiotic sulfachloropyridazine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:1148-1153. [PMID: 14998030 DOI: 10.1021/es034685p] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Little is known about the environmental hazards linked to the treatment of farm animals with antibiotics and subsequent spreading of manure, especially regarding soil microbial communities. In this investigation, pollution-induced community tolerance (PICT) of bacteria from soils artificially spiked with the sulfonamide sulfachloropyridazine (SCP) was investigated. Tolerance of the bacterial communities after 3 weeks' exposure to SCP was determined by analyzing the sensitivity of 31 microbial metabolic processes in microtiter plates. Bacterial suspensions extracted from soils containing higher concentrations of SCP showed an increased tolerance of their metabolic activities to this antibiotic. An increase in tolerance by 10% was found at 7.3 mg/kg dw SCP. The PICT effect could be demonstrated by both a shift in the tolerance of the average of all metabolic activities and a shift of the physiological process sensitivity distributions made up from the single metabolic processes. The PICT effect was accompanied by smaller changes in the community-level physiological profile (CLPP). To conclude, PICT has been shown to be a versatile and illustrative method for the detection of the effects of antibacterial agents on soil microorganisms.
Collapse
Affiliation(s)
- Heike Schmitt
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands.
| | | | | | | |
Collapse
|