1
|
Morales-Magaña J, Arciniega-Martínez IM, Drago-Serrano ME, Reséndiz-Albor AA, Jarillo-Luna RA, Cruz-Baquero A, Gómez-López M, Guzmán-Mejía F, Pacheco-Yépez J. Cholecystokinin Outcome on Markers of Intestinal IgA Antibody Response. Curr Issues Mol Biol 2022; 44:2542-2553. [PMID: 35735614 PMCID: PMC9221551 DOI: 10.3390/cimb44060173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Cholecystokinin 8 (CCK8) is an entero-octapeptide that participates in crosstalk with components of intestinal immunity via the CCK receptor (CCKR), but its role in modulation of the IgA response is not fully known under physiological conditions. Male eight-week-old BALB/c mice each were intraperitoneally injected once during 7 days with CCK8, devazapide (CCKR1 antagonist), L365,260 (CCKR2 antagonist) or vehicle (sham group). In intestinal lavages, total and secretory IgA (SIgA) were determined by ELISA; in lamina propria, IgA+ B lymphocytes and IgA+ plasma cells were analyzed by flow cytometry; mRNA levels of polymeric immunoglobulin receptor (pIgR) in epithelial cells and α chain, interleukins (ILs) in lamina propria cells were assessed by qRTPCR. Regarding the sham conditions, IgA+ plasma-cell percentage and IL-2, IL-5, IL-10 and transforming growth factor-β (TGF-β) mRNA levels were either increased by CCK8 or decreased by both CCKR antagonists. For IgA/SIgA responses, IL-4/IL-6 mRNA levels were decreased by all drugs and pIgR mRNA was increased by CCK8 and reduced by L365,260. IgA+ B cell percentage and α chain mRNA levels were elicited by CCK8 and L365,260. Data suggested a presumable differential role of CCK/CCKR on the IgA-response; outcome of L365,260 on the elicitation of IgA+ B cells and α chain mRNA needs further examination.
Collapse
Affiliation(s)
- Juan Morales-Magaña
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (J.M.-M.); (R.A.J.-L.); (M.G.-L.)
| | - Ivonne Maciel Arciniega-Martínez
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (I.M.A.-M.); (A.A.R.-A.)
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso No. 1100, Mexico City 04960, Mexico; (M.E.D.-S.); (F.G.-M.)
| | - Aldo Arturo Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (I.M.A.-M.); (A.A.R.-A.)
| | - Rosa Adriana Jarillo-Luna
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (J.M.-M.); (R.A.J.-L.); (M.G.-L.)
- Departamento de Formación Básica Disciplinaria, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico
| | - Andrea Cruz-Baquero
- Bacteriología, Facultad de Ciencias de la Salud, Universidad Colegio Mayor de Cundinamarca, Bogotá 111311, Colombia;
| | - Modesto Gómez-López
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (J.M.-M.); (R.A.J.-L.); (M.G.-L.)
| | - Fabiola Guzmán-Mejía
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso No. 1100, Mexico City 04960, Mexico; (M.E.D.-S.); (F.G.-M.)
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (J.M.-M.); (R.A.J.-L.); (M.G.-L.)
- Correspondence: ; Tel.: +52-5557296000 (ext. 62817)
| |
Collapse
|
2
|
Suppression of LPS-Induced Inflammation by Chalcone Flavokawain A through Activation of Nrf2/ARE-Mediated Antioxidant Genes and Inhibition of ROS/NF κB Signaling Pathways in Primary Splenocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3476212. [PMID: 32617135 PMCID: PMC7306849 DOI: 10.1155/2020/3476212] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/02/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023]
Abstract
Oxidative stress is an important contributing factor for inflammation. Piper methysticum, also known as Kava-kava, is a shrub whose root extract has been consumed as a drink by the pacific islanders for a long time. Flavokawain A (FKA) is a novel chalcone derived from the kava plant that is known to have medicinal properties. This study was aimed at demonstrating the antioxidant molecular mechanisms mediated by FKA on lipopolysaccharide- (LPS-) induced inflammation in BALB/c mouse-derived primary splenocytes. In vitro data show that the nontoxic concentrations of FKA (2-30 μM) significantly suppressed the proinflammatory cytokine (TNF-α, IL-1β, and IL-6) release but induced the secretion of interleukin-10 (IL-10), an anti-inflammatory cytokine. It was also shown that FKA pretreatment significantly downregulated the LPS-induced ROS production and blocked the activation of the NFκB (p65) pathway leading to the significant suppression of iNOS, COX-2, TNF-α, and IL-1β protein expressions. Notably, FKA favored the nuclear translocation of Nrf2 leading to the downstream expression of antioxidant proteins HO-1, NQO-1, and γ-GCLC via the Nrf2/ARE signaling pathway signifying the FKA's potent antioxidant mechanism in these cells. Supporting the in vitro data, the ex vivo data obtained from primary splenocytes derived from the FKA-preadministered BALB/c mice (orally) show that FKA significantly suppressed the proinflammatory cytokine (TNF-α, IL-1β, and IL-6) secretion in control-, LPS-, or Concanavalin A- (Con A-) stimulated cells. A significant decrease in the ratios of pro- and anti-inflammatory cytokines (IL-6/IL-10; TNF-α/IL-10) showed that FKA possesses strong anti-inflammatory properties. Furthermore, BALB/c mice induced with experimental pancreatitis using cholecystokinin- (CCK-) 8 showed decreased serum lipase levels due to FKA pretreatment. We conclude that with its potent antioxidant and anti-inflammatory properties, chalcone flavokawain A could be a novel therapeutic agent in the treatment of inflammation-associated diseases.
Collapse
|
3
|
Glišić R, Koko V, Cvijić G, Milošević MČ, Obradović J. Cholecystokinin-producing (I) cells of intestinal mucosa in dexamethasone-treated rats. ACTA ACUST UNITED AC 2011; 171:6-10. [PMID: 21693136 DOI: 10.1016/j.regpep.2011.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/12/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
Abstract
The aim of this study was to investigate the morphological, immunohistochemical and ultrastructural changes of cholecystokinin-producing (I) cells of gastrointestinal mucosa in dexamethasone-treated rats (D). After 12-daily intraperitoneal administration of 2mg/kg dexamethasone, rats developed diabetes similar to human diabetes mellitus type 2. The mean diameter of the duodenum was significantly decreased due to significant reduction of volume fraction and profile area of lamina propria. There was a decrease in volume fraction and number of cholecystokinin (CCK)-producing cells per mm(2) of mucosa, as well as their numerical density, but without statistical significance. Also, dexamethasone induced appearance of hyperactive duodenal I-cells with small number of granules and dilated endoplasmic reticulum. In conclusion, the present study showed that morphological changes in duodenum cholecystokinin-producing (I) cells occurred in diabetic rats, in a manner which, suggests compensatory effort of CCK cells in diabetic condition.
Collapse
Affiliation(s)
- Radmila Glišić
- Institute of Biology and Ecology Faculty of Science, University of Kragujevac, 34000 Kragujevac, Republic of Serbia
| | | | | | | | | |
Collapse
|
4
|
Moran GW, Leslie FC, Levison SE, Worthington J, McLaughlin JT. Enteroendocrine cells: neglected players in gastrointestinal disorders? Therap Adv Gastroenterol 2011; 1:51-60. [PMID: 21180514 DOI: 10.1177/1756283x08093943] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Enteroendocrine cells (EEC) form the basis of the largest endocrine system in the body. They secrete multiple regulatory molecules which control physiological and homeostatic functions, particularly postprandial secretion and motility. Their key purpose is to act as sensors of luminal contents, either in a classical endocrine fashion, or by a paracrine effect on proximate cells, notably vagal afferent fibres. They also play a pivotal role in the control of food intake, and emerging data add roles in mucosal immunity and repair. We propose that EEC are fundamental in several gastrointestinal pathologies, notably Post-infectious Irritable Bowel Syndrome, infectious enteritis, and possibly inflammatory bowel disease. Further work is needed to fully illustrate the importance, detailed biology and therapeutic potential of these frequently overlooked cells.
Collapse
Affiliation(s)
- Gordon W Moran
- Department of Gastroenterology, University Hospital of North Staffordshire, Stoke-on-Trent, UK
| | | | | | | | | |
Collapse
|
5
|
Lyte M, Vulchanova L, Brown DR. Stress at the intestinal surface: catecholamines and mucosa-bacteria interactions. Cell Tissue Res 2010; 343:23-32. [PMID: 20941511 DOI: 10.1007/s00441-010-1050-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/01/2010] [Indexed: 02/08/2023]
Abstract
Psychological stress has profound effects on gastrointestinal function, and investigations over the past few decades have examined the mechanisms by which neural and hormonal stress mediators act to modulate gut motility, epithelial barrier function and inflammatory states. With its cellular diversity and large commensal bacterial population, the intestinal mucosa and its overlying mucous environment constitute a highly interactive environment for eukaryotic host cells and prokaryotic bacteria. The elaboration of stress mediators, particularly norepinephrine, at this interface influences host cells engaged in mucosal protection and the bacteria which populate the mucosal surface and gut lumen. This review will address growing evidence that norepinephrine and, in some cases, other mediators of the adaptation to stress modulate mucosal interactions with enteric bacteria. Stress-mediated changes in this delicate interplay may shift the microbial colonization patterns on the mucosal surface and alter the susceptibility of the host to infection. Moreover, changes in host-microbe interactions in the digestive tract may also influence ongoing neural activity in stress-responsive brain areas.
Collapse
Affiliation(s)
- Mark Lyte
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, 3601 4th Street, MS 8162, Lubbock, TX 79430-8162, USA.
| | | | | |
Collapse
|
6
|
Kang W, Kudsk KA, Sano Y, Lan J, Yang-Xin F, Gomez FE, Maeshima Y. Effects of lymphotoxin beta receptor blockade on intestinal mucosal immunity. JPEN J Parenter Enteral Nutr 2007; 31:358-64; discussion 364-5. [PMID: 17712143 DOI: 10.1177/0148607107031005358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mucosal addressin cellular adhesion molecule-1 (MAdCAM-1) directs lymphocyte migration into gut-associated lymphoid tissue (GALT) through Peyer's patches (PPs). Parenteral nutrition (PN) impairs mucosal immunity by reducing PPs MAdCAM-1 expression, T and B cells in GALT, and intestinal and respiratory immunoglobulin (Ig) A levels. We previously showed that PN reduces lymphotoxin beta receptor blockade (LTbetaR) in PPs and intestine, and that stimulation with LTbetaR agonist antibodies reverses these defects. To confirm that LTbetaR regulates transcription of MAdCAM-1 message and more fully understand the effects of LTbetaR on MAdCAM-1 function within the mucosal immune system, we studied the effect of LTbetaR blockade with a chimeric LTbetaR Ig-fusion protein on MAdCAM-1 mRNA levels, PP lymphocyte mass and IgA levels in the intestinal and respiratory tracts. METHODS Mice were cannulated and killed 3 days after receiving chow + control Ig, chow + LTbetaR-Ig fusion protein (100 microg IV), or PN + control Ig. The PPs of half of the animals were processed for lymphocyte count, and the other half were processed for complementary DNA and subsequent polymerase chain reaction (PCR). mRNA levels of MAdCAM-1 were determined by real-time PCR; intestinal and respiratory IgA levels were measured by ELISA. RESULTS PN significantly reduced PP lymphocyte mass, MAdCAM-1 mRNA, and intestinal IgA. As anticipated, LTbetaR blockade significantly decreased PP cells and MAdCAM-1 mRNA, but not intestinal IgA because chow feeding was maintained. Both LTbetaR blockade and PN decreased nasal IgA, but not significantly. CONCLUSIONS LTbetaR blockade in chow animals significantly reduces transcription of MAdCAM-1 gene and PPs lymphocyte mass. These data implicate inadequate LTbetaR signaling as a major mechanism for decreased GALT cells with lack of enteral stimulation, and further establish the role of LTbetaR in the mucosal immune system.
Collapse
Affiliation(s)
- Woodae Kang
- Department of Surgery, University of Wisconsin-Madison College of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Jarillo-Luna A, Rivera-Aguilar V, Garfias HR, Lara-Padilla E, Kormanovsky A, Campos-Rodríguez R. Effect of repeated restraint stress on the levels of intestinal IgA in mice. Psychoneuroendocrinology 2007; 32:681-92. [PMID: 17590521 DOI: 10.1016/j.psyneuen.2007.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 04/14/2007] [Accepted: 04/19/2007] [Indexed: 10/23/2022]
Abstract
The effects of restraint stress on the intestinal humoral immune system, particularly those about intestinal IgA production, have not been explored in detail. Thus, the purpose of this study was to assess the effect of restraint stress on the production and secretion of intestinal IgA as well as on the number of IgA+ cells in the intestinal lamina propria. The involvement of glucocorticoids and catecholamines were also evaluated. Mice were exposed to 1 or 4 h restraint stress for 4 d. The intestinal IgA concentration was quantified by ELISA and the number of IgA containing cells in the lamina propria was determined by immunohistochemistry. The effects of restraint were also analyzed in mice submitted to different procedures: adrenalectomy, chemical sympathectomy, treatment with a glucocorticoid antagonist (RU486), dexamethasone and epinephrine. The main findings were that (1) chronic restraint-stress reduced the intestinal IgA concentration without changing the number of IgA+ cells in lamina propria; (2) adrenalectomy restored the production of IgA in stressed mice; (3) RU486 and chemical sympathectomy partially blocked the decrease in intestinal IgA in stressed mice; and (4) pharmacological doses of dexamethasone and epinephrine significantly reduced the intestinal IgA concentration and the number of IgA+ cells. The restraint stress probably reduced the intestinal IgA concentration through the effects of glucocorticoids and catecholamines.
Collapse
Affiliation(s)
- Adriana Jarillo-Luna
- Departamento de Morfología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, CP 11340, México, DF
| | | | | | | | | | | |
Collapse
|
8
|
Baudinette RV, Boontheung P, Musgrave IF, Wabnitz PA, Maselli VM, Skinner J, Alewood PF, Brinkworth CS, Bowie JH. An immunomodulator used to protect young in the pouch of the Tammar wallaby, Macropus eugenii. FEBS J 2005; 272:433-43. [PMID: 15654881 DOI: 10.1111/j.1742-4658.2004.04483.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eugenin [pGluGlnAspTyr(SO(3))ValPheMetHisProPhe-NH(2)] has been isolated from the pouches of female Tammar wallabies (Macropus eugenii) carrying young in the early lactation period. The sequence of eugenin has been determined using a combination of positive and negative ion electrospray mass spectrometry. This compound bears some structural resemblance to the mammalian neuropeptide cholecystokinin 8 [AspTyr(SO(3))MetGlyTrpMetAspPhe-NH(2)] and to the amphibian caerulein peptides [caerulein: pGluGlnAspTyr(SO(3))ThrGlyTrpMetAspPhe-NH(2)]. Eugenin has been synthesized by a route which causes only minor hydrolysis of the sulfate group when the peptide is removed from the resin support. Biological activity tests with eugenin indicate that it contracts smooth muscle at a concentration of 10(-9) M, and enhances the proliferation of splenocytes at 10(-7) M, probably via activation of CCK(2) receptors. The activity of eugenin on splenocytes suggests that it is an immunomodulator peptide which plays a role in the protection of pouch young.
Collapse
Affiliation(s)
- Russell V Baudinette
- Department of Environmental Biology, The University of Adelaide, South Australia, 5005
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The intestinal barrier function of GI tract is very important in the body except for the function of digestion and absorption. The functional status of gut barrier basically reflects the stress severity when body suffers from trauma and various stimulations. Many harmful factors such as drugs, illnesses, trauma and burns can damage the gut barrier, which can lead to the barrier dysfunction and bacterial/endotoxin translocation. The paper discusses and reviews the concepts, anatomy, pathophysiology of gut barrier and its clinical relations.
Collapse
Affiliation(s)
- Lian-An Ding
- Department of General Surgery, Affilitated Hospital of Medical School, Qingdao University, Qingdao 266003, Shandong Province, China.
| | | |
Collapse
|
10
|
Enteral feeding preserves mucosal immunity despite in vivo MAdCAM-1 blockade of lymphocyte homing. Ann Surg 2003. [PMID: 12724634 DOI: 10.1097/00000658-200305000-00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the influence of route of nutrition on gut mucosal addressin cellular adhesion molecule-1 (MAdCAM-1) expression and the effect of MAdCAM-1 blockade on gut-associated lymphoid tissue (GALT) lymphocyte populations and established respiratory antibacterial immunity. SUMMARY BACKGROUND DATA Lymphocytes, sensitized to antigens in Peyer's patches, migrate via mesenteric lymph nodes and home to intestinal lamina propria. MAdCAM-1 located on endothelial cells regulates this trafficking. Experimentally, parenteral nutrition (PN) decreases GALT cell mass and mucosal immunity when compared with enteral feeding. METHODS In experiment 1, MAdCAM-1 expression was quantified in 32 mice after 4 days of feeding chow, a complex diet, intragastric (IG)-PN, or PN. In experiment 2, MAdCAM-1 was measured in 102 mice 0, 4, 8, 12, 24, 48, or 72 hours after starting PN and at 0, 4, 8, 12, 24, or 48 hours after reinstituting chow following 5 days of PN. In experiment 3, 56 mice received chow, PN, chow + MECA-367 (anti-MAdCAM-1 mAb), or chow + Isotype control Ab (IsoAb) for 5 days, followed by Peyer's patches, lamina propria, and intraepithelial lymphocyte yield with respiratory and intestinal IgA levels. In experiment 4, 10 days after Pseudomonas immunization, mice received chow + MECA-367 or chow + IsoAb for 4 days followed by 1.2 x 108 Pseudomonas intratracheally. RESULTS Diet and route affect MAdCAM-1 expression (chow > complex diet > IG-PN > PN). Decreased MAdCAM-1 expression occurred within hours of starting PN in Peyer's patches, but not mesenteric lymph nodes or the intestine, and recovered quickly with enteral refeeding. MAdCAM-1 blockade reduced all GALT populations. Blockade had little effect on IgA levels and partially impaired the late response of established respiratory immunity. CONCLUSIONS Enteral feeding affects MAdCAM-1 expression. Complete MAdCAM-1 blockade reduces GALT lymphocytes to PN levels, but the chow feeding stimulus preserves IgA and early antibacterial resistance, implying the existence of non-MAdCAM-1 mechanisms to preserve mucosal immunity.
Collapse
|
11
|
Ikeda S, Kudsk KA, Fukatsu K, Johnson CD, Le T, Reese S, Zarzaur BL. Enteral feeding preserves mucosal immunity despite in vivo MAdCAM-1 blockade of lymphocyte homing. Ann Surg 2003; 237:677-85; discussion 685. [PMID: 12724634 PMCID: PMC1514523 DOI: 10.1097/01.sla.0000064364.40406.ea] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the influence of route of nutrition on gut mucosal addressin cellular adhesion molecule-1 (MAdCAM-1) expression and the effect of MAdCAM-1 blockade on gut-associated lymphoid tissue (GALT) lymphocyte populations and established respiratory antibacterial immunity. SUMMARY BACKGROUND DATA Lymphocytes, sensitized to antigens in Peyer's patches, migrate via mesenteric lymph nodes and home to intestinal lamina propria. MAdCAM-1 located on endothelial cells regulates this trafficking. Experimentally, parenteral nutrition (PN) decreases GALT cell mass and mucosal immunity when compared with enteral feeding. METHODS In experiment 1, MAdCAM-1 expression was quantified in 32 mice after 4 days of feeding chow, a complex diet, intragastric (IG)-PN, or PN. In experiment 2, MAdCAM-1 was measured in 102 mice 0, 4, 8, 12, 24, 48, or 72 hours after starting PN and at 0, 4, 8, 12, 24, or 48 hours after reinstituting chow following 5 days of PN. In experiment 3, 56 mice received chow, PN, chow + MECA-367 (anti-MAdCAM-1 mAb), or chow + Isotype control Ab (IsoAb) for 5 days, followed by Peyer's patches, lamina propria, and intraepithelial lymphocyte yield with respiratory and intestinal IgA levels. In experiment 4, 10 days after Pseudomonas immunization, mice received chow + MECA-367 or chow + IsoAb for 4 days followed by 1.2 x 108 Pseudomonas intratracheally. RESULTS Diet and route affect MAdCAM-1 expression (chow > complex diet > IG-PN > PN). Decreased MAdCAM-1 expression occurred within hours of starting PN in Peyer's patches, but not mesenteric lymph nodes or the intestine, and recovered quickly with enteral refeeding. MAdCAM-1 blockade reduced all GALT populations. Blockade had little effect on IgA levels and partially impaired the late response of established respiratory immunity. CONCLUSIONS Enteral feeding affects MAdCAM-1 expression. Complete MAdCAM-1 blockade reduces GALT lymphocytes to PN levels, but the chow feeding stimulus preserves IgA and early antibacterial resistance, implying the existence of non-MAdCAM-1 mechanisms to preserve mucosal immunity.
Collapse
Affiliation(s)
- Shigeo Ikeda
- Department of Surgery, The University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792-7375, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Meng AH, Ling YL, Zhang XP, Zhang JL. Anti-inflammatory effect of cholecystokinin and its signal transduction mechanism in endotoxic shock rat. World J Gastroenterol 2002; 8:712-7. [PMID: 12174384 PMCID: PMC4656326 DOI: 10.3748/wjg.v8.i4.712] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the anti-inflammatory effects of cholecystokinin-octapeptide (CCK-8) on lipopolysaccharide (LPS)-induced endotoxic shock (ES) and further investigate its signal transduction pathways involving p38 mitogen-activated protein kinase (MAPK) and IκB-α.
METHODS: Eighty-four rats were divided randomly into four groups: LPS (8 mg·kg-1, iv) induced ES; CCK-8 (40 μg·kg-1, iv) pretreatment 10 min before LPS (8 mg·kg-1); CCK-8 (40 μg·kg-1, iv) or normal saline (control) groups. The inflammatory changes of lung and spleen, phagocytic function of alveolar macrophage, quantification of inflammatory cells in bronchoalveolar lavage (BAL) were investigated in rats by using hematoxylin and eosin (HE) staining, phagocytosis of Candida albicans and differential cell counting. Nitric oxide (NO) production in serum, lung and spleen was measured with the Griess reaction. The mechanism involving p38 MAPK and IκB-α signal pathways was investigated by Western blot.
RESULTS: Inflammatory changes of lung and spleen induced by LPS were alleviated by CCK-8, the increase of NO induced by LPS in serum, lung and spleen was significantly inhibited and the neutrophil infiltration in BAL was significantly reduced by CCK-8. The number of neutrophils was (52 ± 10) × 106 cells•L-1 in LPS group, while it decreased to (18 ± 4) × 106 cells•L-1 in CCK-8+LPS (P < 0.01). The phagocytic rate of CCK-8 group increased to (62.49 ± 9.49)%, compared with control group (48.16 ± 14.20)%, P < 0.05. The phagocytosis rate was (85.14 ± 4.64)% in LPS group, which reduced to (59.33 ± 3.14)% in CCK-8+LPS group (P < 0.01). The results of phagocytosis indexes showed similar changes. CCK-8 may play an important role in increasing the expression of p38 MAPK and decreasing the degradation of IκB-α in lung and spleen of ES rats.
CONCLUSION: CCK-8 can result in anti-inflammatory effects, which may be related to activation of p38 MAPK and inhibition on the degradation of IκB-α.
Collapse
Affiliation(s)
- Ai-Hong Meng
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | | | | | | |
Collapse
|
13
|
Ling YL, Meng AH, Zhao XY, Shan BE, Zhang JL, Zhang XP. Effect of cholecystokinin on cytokines during endotoxic shock in rats. World J Gastroenterol 2001; 7:667-71. [PMID: 11819851 PMCID: PMC4695571 DOI: 10.3748/wjg.v7.i5.667] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of cholecystokinin-octapeptide (CCK-8) on systemic hypotension and cytokine production in lipopolysaccharide (LPS)-induced endotoxic shock (ES) rats.
METHODS: The changes of blood pressure were observed using physiological record instrument in four groups of rats: LPS (8 mg•kg¯¹, iv) induced ES; CCK-8 (40 μg•kg¯¹, iv) pretreatment 10 min before LPS (8 mg•kg¯¹); CCK-8 (40 μg•kg¯¹, iv) or normal saline (control) groups. Differences in tissue and circulating specificity of the proinflammatory cytokines (TNF-α, IL-1β and IL-6) were assayed with ELISA kits.
RESULTS: CCK-8 reversed LPS-induced decrease of mean artery blood pressure (MABP) in rats. Compared with control, LPS elevated the serum level of IL-6 significantly (3567 ± 687) ng•L¯¹vs 128 ± 22 ng•L¯¹, P < 0.01), while contents of TNF-αβ elevated significantly (277 ± 86 ng•L¯¹vs not detectable and 43 ± 9 ng•L¯¹vs not detectable, P < 0.01) but less extent than IL-6. CCK-8 significantly inhibited the LPS-induced increase in serum TNF-α, IL-1β and IL-6. LPS elevated spleen and lung content of IL-1β significantly (5184 ± 85 ng•L¯¹vs 1047 ± 21 ng•L¯¹ and 4050 ± 614 ng•L¯¹vs not detectable, P < 0.01), while levels of TNF-α and IL-6 also rose significantly but in less extent than IL-1β. CCK-8 inhibited the LPS-induced increase of the cytokines in spleen and lung. In the heart, CCK-8 significantly inhibited LPS-induced increase of TNF-α (864 ± 123 ng•L¯¹ in CCK-8 + LPS group vs 1599 ± 227 ng•L¯¹ in LPS group, P < 0.01), and IL-1β (282 ± 93 ng•L¯¹ in CCK-8+LPS group vs 621 ± 145 ng•L¯¹ in LPS group, P < 0.01).
CONCLUSION: CCK-8 reverses ES, which may be related to its inhibitory effect on the overproduction of cytokines.
Collapse
Affiliation(s)
- Y L Ling
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China.
| | | | | | | | | | | |
Collapse
|
14
|
Keith Hanna M, Zarzaur BL, Fukatsu K, Chance DeWitt R, Renegar KB, Sherrell C, Wu Y, Kudsk KA. Individual neuropeptides regulate gut-associated lymphoid tissue integrity, intestinal immunoglobulin A levels, and respiratory antibacterial immunity. JPEN J Parenter Enteral Nutr 2000; 24:261-8; discussion 268-9. [PMID: 11011780 DOI: 10.1177/0148607100024005261] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Total parenteral nutrition (TPN) leads to atrophy of the gut-associated lymphoid tissue (GALT) and a significant decrease in intestinal immunoglobulin A (IgA) levels, a major constituent of mucosal immunity. Bombesin (BBS) prevents TPN-induced GALT atrophy and maintains intestinal IgA levels. BBS, a neuropeptide analogous to gastrin-releasing peptide in humans, stimulates the release of other gut neuropeptides including cholecystokinin (CCK), gastrin, and neurotensin (NT). This study investigates the ability of CCK, gastrin, or NT to individually prevent TPN-induced GALT atrophy and preserve respiratory immunity. METHODS Experiment 1: Male mice were randomly assigned to receive chow, TPN, TPN plus CCK, TPN plus gastrin, or TPN plus NT. After 5 days of feeding, Peyer's patches (PP) from the proximal and distal small bowel were harvested and analyzed for cell yields. PP cells were also analyzed for GALT cell type. Small bowel IgA levels were measured by enzyme-linked immunosorbent assay (ELISA). Experiment 2: Mice were randomly assigned to receive either liposomes containing Pseudomonas antigen or liposomes without antigen. After 10 days, mice were randomly assigned to the same five treatment groups, fed for 5 days, and then given intratracheal Pseudomonas. Mortality was assessed after 48 hours. RESULTS Experiment 1: GALT cell reductions due to IV-TPN were greater in the distal than proximal small bowel. All three neuropeptides prevented most TPN-induced GALT atrophy due mainly to the maintenance of the B-cell and T-cell populations in the PP of the distal bowel. Intestinal IgA levels were significantly higher in the animals treated with neuropeptides than animals treated with TPN only; however, these IgA levels were not maintained at levels observed in chow-fed animals. Experiment 2: Immunization resulted in significantly lower mortality in animals fed chow, TPN plus CCK, and TPN plus gastrin. TPN alone and TPN plus NT resulted in loss of immunity and mortality rate at comparable levels to unimmunized animals. CONCLUSIONS Supplementation of IV-TPN with CCK, gastrin, and NT prevents GALT atrophy, primarily in the distal bowel. Intestinal IgA levels improve but not to normal levels. CCK and gastrin reversed IV-TPN-induced effects on antibacterial pneumonia in immunized animals while NT did not.
Collapse
Affiliation(s)
- M Keith Hanna
- Department of Surgery, University of Tennessee, Memphis, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Eizaguirre I, Aldazabal P, Barrena MJ, Garcia-Arenzana JM, Ariz C, Candelas S, Tovar JA. Effect of growth hormone, epidermal growth factor, and insulin on bacterial translocation in experimental short bowel syndrome. J Pediatr Surg 2000; 35:692-5. [PMID: 10813326 DOI: 10.1053/jpsu.2000.6008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND/PURPOSE An adaptive process starts in the remaining intestine after massive resection, and several trophic factors including growth hormone (GH), epidermal growth factor (EGF), and insulin (INS) have been shown to have a positive effect on it. Bacterial translocation (BT) is frequent after extensive small bowel resection, but the effects of GH, EGF, or INS have not been investigated in experimental short bowel syndrome (SBS). This study tests the hypothesis that GH, EGF, or INS decrease BT in SBS in rats with parenteral nutrition (PN). METHODS Thirty-eight adult Wistar rats underwent central venous cannulation and were assigned randomly to 1 of 4 groups receiving for 10 days 4 treatment regimes: (1) PN group (n = 10): fasting, all-in-one PN solution (300 mL/kg/24 h, 280 kcal/kg/24 h), 80% gut resection including ileo-cecal valve; (2) GH group (n = 9): fasting, same PN regime and resection, GH (1 mg/kg/d, subcutaneously); (3) EGF group (n = 9): fasting, PN, resection, EGF (150 microg/24 h intravenously); (4) INS group (n = 9): fasting, PN, resection, INS (1 UI/100 g/24 h subcutaneously). At the end of the experiment they were killed, and mesenteric lymph nodes (MLN) and peripheral and portal blood samples were recovered and cultured. Several fragments of intestine were taken to determine cell proliferation (PCNA index) and morphometric parameters (villous height, crypt depth). RESULTS GH, EGF, and INS groups showed a 28%, 29%, and 30% increase in gut mucosal thickness, and PCNA index rose 21%, 20%, and 25%, respectively in comparison with PN controls. Bacterial translocation to peripheral blood was detected in 0% of PN animals and in 44%, 40%, and 28% of GH, EGF, or INS rats, respectively (P < .05). No differences were found in BT in MLN or portal blood among groups. CONCLUSION Administration of GH, EGF, or INS improves gut mucosal structure in rats with SBS under PN, but, surprisingly, the incidence of BT detected in peripheral blood was increased rather than decreased in animals receiving these treatments.
Collapse
Affiliation(s)
- I Eizaguirre
- Department of Pediatric Surgery, Hospital Aranzazu, San Sebastian, Spain
| | | | | | | | | | | | | |
Collapse
|