1
|
Sridhar PR, Ali I, Lakshmi MVK. Synthesis of Hexenuloses and a Library of Disaccharides Possessing 3-oxo-glycal Unit. J Org Chem 2022; 87:8939-8955. [PMID: 35772022 DOI: 10.1021/acs.joc.2c00663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An expeditious method for the synthesis of monosaccharides and disaccharides possessing 3-oxo-glycal units is revealed. Several monosaccharides and disaccharide-derived glycals are converted to the corresponding hexenuloses in three steps involving halo-alkoxylation, dehydrohalogenation, and ketalyzation reactions. A number of 3-oxo-glycals are synthesized to show the methodology's importance and generality. Further, the protocol is successfully applied to synthesize a rare-sugar disaccharide donor unit present as part of the trisaccharide moiety in the reported natural product, versipelostatin.
Collapse
Affiliation(s)
- Perali Ramu Sridhar
- School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500 046, India
| | - Intzar Ali
- School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500 046, India
| | - M V Kamala Lakshmi
- School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500 046, India
| |
Collapse
|
2
|
Mohammed ASA, Tian W, Zhang Y, Peng P, Wang F, Li T. Leishmania lipophosphoglycan components: A potent target for synthetic neoglycoproteins as a vaccine candidate for leishmaniasis. Carbohydr Polym 2020; 237:116120. [PMID: 32241437 DOI: 10.1016/j.carbpol.2020.116120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 11/27/2022]
Abstract
Leishmania is an obligate intracellular pathogen that invades phagocytic host cells. Due to its high morbidity and mortality rates, leishmaniasis attracts significant attention. The disease, which is caused by Leishmania parasites, is distributed worldwide, particularly among developing communities, and causes fatal complications if not treated expediently. Unfortunately, the existing treatments are not preventive and do not impede Leishmania infection. Many drugs available for leishmaniasis are becoming less effective due to emerging resistance in some Leishmania species. Other drugs have drawbacks such as low cost-effectiveness, toxicity, and side effects. The World Health Organization (WHO) considers leishmaniasis to be a major public health problem and suggests that the best prevention is to develop a vaccine for this dangerous disease. In this review, we focus on the unique components of lipophosphoglycan (LPG), a component of the Leishmania cell wall, particularly [Galp(1 → 4)-β-[Manp-(1 → 2)-α-Manp-(1 → 2)-α]-Manp] in the cryptic tetrasaccharide cap, and on synthetic approaches as a potent candidate for a leishmaniasis vaccine.
Collapse
Affiliation(s)
- Aiman Saleh A Mohammed
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China; National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China
| | - Weilu Tian
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Youqin Zhang
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China
| | - Peng Peng
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China; National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China.
| | - Tianlu Li
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China; National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Rintelmann CL, Grinnage-Pulley T, Ross K, Kabotso DEK, Toepp A, Cowell A, Petersen C, Narasimhan B, Pohl N. Design and synthesis of multivalent α-1,2-trimannose-linked bioerodible microparticles for applications in immune response studies of Leishmania major infection. Beilstein J Org Chem 2019; 15:623-632. [PMID: 30931004 PMCID: PMC6423605 DOI: 10.3762/bjoc.15.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
Leishmaniasis, a neglected tropical disease, currently infects approximately 12 million people worldwide with 1 to 2 million new cases each year in predominately underdeveloped countries. The treatment of the disease is severely underdeveloped due to the ability of the Leishmania pathogen to evade and abate immune responses. In an effort to develop anti-leishmaniasis vaccines and adjuvants, novel carbohydrate-based probes were made to study the mechanisms of immune modulation. In this study, a new bioerodible polyanhydride microparticle was designed and conjugated with a glycodendrimer molecular probe. This molecular probe incorporates a pathogen-like multivalent display of α-1,2-trimannose, for which a more efficient synthesis was designed, with a tethered fluorophore. Further attachment of the glycodendrimer to a biocompatible, surface eroding microparticle allows for targeted uptake and internalization of the pathogen-associated oligosaccharide by phagocytic immune cells. The α-1,2-trimannose-linked bioerodible microparticles were found to be safe after administration into the footpad of mice and demonstrated a similar response to α-1,2-trimannose-coated latex beads during L. major footpad infection. Furthermore, the bioerodible microparticles allowed for investigation of the role of pathogen-associated oligosaccharides for recognition by pathogen-recognition receptors during L. major-induced leishmaniasis.
Collapse
Affiliation(s)
- Chelsea L Rintelmann
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Ave., Bloomington, Indiana 47405-7102, USA
| | - Tara Grinnage-Pulley
- Department of Epidemiology, College of Public Health, University of Iowa, 105 River Street, S444 CPHB, Iowa City, Iowa 52242, USA.,Center for Emerging Infectious Diseases, University of Iowa Research Park, 2500 Crosspark Road, MTF B166 Coralville, Iowa 52241, USA.,Nanovaccine Institute, Iowa State University, 2114 Sweeney Hall, Ames, Iowa 50011-2230, USA
| | - Kathleen Ross
- Nanovaccine Institute, Iowa State University, 2114 Sweeney Hall, Ames, Iowa 50011-2230, USA.,Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011-2230, USA
| | - Daniel E K Kabotso
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Ave., Bloomington, Indiana 47405-7102, USA
| | - Angela Toepp
- Department of Epidemiology, College of Public Health, University of Iowa, 105 River Street, S444 CPHB, Iowa City, Iowa 52242, USA.,Center for Emerging Infectious Diseases, University of Iowa Research Park, 2500 Crosspark Road, MTF B166 Coralville, Iowa 52241, USA
| | - Anne Cowell
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Ave., Bloomington, Indiana 47405-7102, USA
| | - Christine Petersen
- Department of Epidemiology, College of Public Health, University of Iowa, 105 River Street, S444 CPHB, Iowa City, Iowa 52242, USA.,Center for Emerging Infectious Diseases, University of Iowa Research Park, 2500 Crosspark Road, MTF B166 Coralville, Iowa 52241, USA.,Nanovaccine Institute, Iowa State University, 2114 Sweeney Hall, Ames, Iowa 50011-2230, USA
| | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, 2114 Sweeney Hall, Ames, Iowa 50011-2230, USA.,Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011-2230, USA
| | - Nicola Pohl
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Ave., Bloomington, Indiana 47405-7102, USA.,Nanovaccine Institute, Iowa State University, 2114 Sweeney Hall, Ames, Iowa 50011-2230, USA
| |
Collapse
|
4
|
Meng B, Wang J, Wang Q, Serianni AS, Pan Q. Synthesis of high-mannose oligosaccharides containing mannose-6-phosphate residues using regioselective glycosylation. Carbohydr Res 2018; 467:23-32. [PMID: 30075362 PMCID: PMC6121786 DOI: 10.1016/j.carres.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 11/23/2022]
Abstract
Molecular recognition of mannose-6-phosphate (M6P)-modified oligosaccharides by transmembrane M6P receptors is a key signaling event in lysosomal protein trafficking in vivo. Access to M6P-containing high-mannose N-glycans is essential to achieving a thorough understanding of the M6P ligand-receptor recognition process. Herein we report the application of a versatile and reliable chemical strategy to prepare asymmetric di-antennary M6P-tagged high-mannose oligosaccharides in >20% overall yield and in high purity (>98%). Regioselective chemical glycosylation coupled with effective phosphorylation and product purification protocols were applied to rapidly assemble these oligosaccharides. The development of this synthetic strategy simplifies the preparation of M6P-tagged high-mannose oligosaccharides, which will improve access to these compounds to study their structures and biological functions.
Collapse
Affiliation(s)
- Bo Meng
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, IN, 46617-2701, USA
| | - Jun Wang
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, IN, 46617-2701, USA
| | - Quanli Wang
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, IN, 46617-2701, USA
| | - Anthony S Serianni
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, IN, 46617-2701, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556-5670, USA
| | - Qingfeng Pan
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, IN, 46617-2701, USA.
| |
Collapse
|
5
|
Roudias M, Vallée F, Martel J, Paquin JF. Use of XtalFluor-E as an Alternative to POCl 3 in the Vilsmeier-Haack Formylation of C-2-Glycals. J Org Chem 2018; 83:8731-8738. [PMID: 29989816 DOI: 10.1021/acs.joc.8b01006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We report the use of XtalFluor-E ([Et2NSF2]BF4) as an alternative to POCl3 in the Vilsmeier-Haack formylation reaction of C-2-glycals. Employing a XtalFluor-E/DMF combination allowed the desired C-2-formyl glycals to be isolated in 11-90% yield. This method was extended to the synthesis of a C-2 -formylated disaccharide glycal.
Collapse
Affiliation(s)
- Majdouline Roudias
- CCVC, PROTEO, Département de chimie , Université Laval , 1045 avenue de la Médecine , Québec , QC , Canada G1V 0A6
| | - Frédéric Vallée
- OmegaChem Inc. , 480 rue Perreault , Lévis , QC , Canada G6W 7V6
| | - Julien Martel
- OmegaChem Inc. , 480 rue Perreault , Lévis , QC , Canada G6W 7V6
| | - Jean-François Paquin
- CCVC, PROTEO, Département de chimie , Université Laval , 1045 avenue de la Médecine , Québec , QC , Canada G1V 0A6
| |
Collapse
|
6
|
Baumann A, Marchner S, Daum M, Hoffmann-Röder A. Synthesis of Fluorinated Leishmania
Cap Trisaccharides for Diagnostic Tool and Vaccine Development. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Andreas Baumann
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Stefan Marchner
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Markus Daum
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Anja Hoffmann-Röder
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| |
Collapse
|
7
|
Yamabe M, Kaihatsu K, Ebara Y. Sialyllactose-Modified Three-Way Junction DNA as Binding Inhibitor of Influenza Virus Hemagglutinin. Bioconjug Chem 2018; 29:1490-1494. [PMID: 29566328 DOI: 10.1021/acs.bioconjchem.8b00045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sialic acid present on the cell surface is recognized by hemagglutinin (HA) on the influenza virus in the first step of infection. Therefore, a compound that can efficiently interfere with the interaction between sialic acid and HA might inhibit infection and allow detection of the influenza virus. We focused on the spatial arrangement of sialic acid binding sites on HA and developed 2,3-sialyllactose (2,3-SL)-modified three-way junction (3WJ) DNA molecules with a topology similar to that of sialic acid binding sites. 3WJ DNA with three 2,3-SL residues on each DNA strand showed (8.0 × 104)-fold higher binding affinity for influenza virus A/Puerto Rico/08/34 (H1N1) compared to the 2,3-SL. This result indicated that the glycocluster effect due to clustering on one DNA arm and optimal spatial arrangement of the 3WJ DNA improved the weak interactions between a sialic acid and its binding site on HA. This 3WJ DNA compound has possible application as an inhibitor of influenza infection and for virus sensing.
Collapse
Affiliation(s)
- Miyuki Yamabe
- Graduate School of Human Development and Environment , Kobe University , 3-11 Tsurukabuto , Kobe , Hyogo 657-8501 , Japan
| | - Kunihiro Kaihatsu
- Department of Organic Fine Chemicals, The Institute of Scientific and Industrial Research , Osaka University , 8-1 Mihogaoka , Ibaraki , Osaka 567-0047 , Japan
| | - Yasuhito Ebara
- Graduate School of Human Development and Environment , Kobe University , 3-11 Tsurukabuto , Kobe , Hyogo 657-8501 , Japan
| |
Collapse
|
8
|
Hamon N, Mouline CC, Travert M. Synthesis of Mannosylglycerate Derivatives as Immunostimulating Agents. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nadège Hamon
- Kercells Biosciences; 45 rue Clemenceau - CS 30300 29403 Landivisiau CEDEX France
| | - Caroline C. Mouline
- Kercells Biosciences; 45 rue Clemenceau - CS 30300 29403 Landivisiau CEDEX France
| | - Marion Travert
- Kercells Biosciences; 45 rue Clemenceau - CS 30300 29403 Landivisiau CEDEX France
| |
Collapse
|
9
|
Meng B, Wang J, Wang Q, Serianni AS, Pan Q. Rapid assembly of branched mannose oligosaccharides through consecutive regioselective glycosylation: A convergent and efficient strategy. Tetrahedron 2017; 73:3932-3938. [PMID: 29104323 PMCID: PMC5667659 DOI: 10.1016/j.tet.2017.05.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A convergent and efficient strategy for the synthesis of high-mannose oligosaccharides is described wherein regioselective glycosylations between trichloroacetimidate donors and partially protected acceptors are employed to reduce the number of protection-deprotection steps. Two representative branched mannose oligosaccharides, a mannose heptasaccharide (Man7) and a mannose nonasaccharide (Man9) were constructed via (4+3) and (5+4) glycosylations, respectively. These mannose-containing oligosaccharides were obtained in nine steps in ~25% overall yield and >98% purity on 60-70 mg scales to demonstrate the effectiveness of the strategy.
Collapse
Affiliation(s)
- Bo Meng
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, Indiana 46617-2701, USA
| | - Jun Wang
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, Indiana 46617-2701, USA
| | - Qianli Wang
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, Indiana 46617-2701, USA
| | - Anthony S Serianni
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, Indiana 46617-2701, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
| | - Qingfeng Pan
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, Indiana 46617-2701, USA
| |
Collapse
|
10
|
Mukherjee MM, Basu N, Ghosh R. Expeditious synthesis of the tetrasaccharide cap domain of the Leishmania donovani lipophosphoglycan using one-pot glycosylation reactions. RSC Adv 2016. [DOI: 10.1039/c6ra03856e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Expeditious syntheses of the tetrasaccharide cap related to the lipophosphoglycan ofLeishmania donovaniwere achieved by sequential one-pot glycosylation reactions.
Collapse
Affiliation(s)
| | - Nabamita Basu
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Rina Ghosh
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| |
Collapse
|
11
|
Greatrex BW, Daines AM, Hook S, Lenz DH, McBurney W, Rades T, Rendle PM. Synthesis, Formulation, and Adjuvanticity of Monodesmosidic Saponins with Olenanolic Acid, Hederagenin and Gypsogenin Aglycones, and some C-28 Ester Derivatives. ChemistryOpen 2015; 4:740-55. [PMID: 27308200 PMCID: PMC4906508 DOI: 10.1002/open.201500149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/20/2015] [Indexed: 11/06/2022] Open
Abstract
In an attempt to discover a new synthetic vaccine adjuvant, the glycosylation of hederagenin, gypsogenin, and oleanolic acid acceptors with di- and trisaccharide donors to generate a range of mimics of natural product QS-21 was carried out. The saponins were formulated with phosphatidylcholine and cholesterol, and the structures analyzed by transmission electron microscopy. 3-O-(Manp(1→3)Glcp)hederagenin was found to produce numerous ring-like micelles when formulated, while C-28 choline ester derivatives preferred self-assembly and did not interact with the liposomes. When alone and in the presence of cholesterol and phospholipid, the choline ester derivatives produced nanocrystalline rods or helical micelles. The effects of modifying sugar stereochemistry and the aglycone on the immunostimulatory effects of the saponins was then evaluated using the activation markers MHC class II and CD86 in murine bone marrow dendritic cells. The most active saponin, 3-O-(Manp(1→3)Glcp)hederagenin, was stimulatory at high concentrations in cell culture, but this did not translate to strong responses in vivo.
Collapse
Affiliation(s)
- Ben W. Greatrex
- Ferrier Research InstituteVictoria University of WellingtonGracefield RdLower Hutt5010New Zealand
- School of Science & TechnologyUniversity of New EnglandArmidaleNSW2351Australia
| | - Alison M. Daines
- Ferrier Research InstituteVictoria University of WellingtonGracefield RdLower Hutt5010New Zealand
| | - Sarah Hook
- School of PharmacyUniversity of OtagoDunedin9016New Zealand
| | - Dirk H. Lenz
- Ferrier Research InstituteVictoria University of WellingtonGracefield RdLower Hutt5010New Zealand
| | | | - Thomas Rades
- School of PharmacyUniversity of OtagoDunedin9016New Zealand
| | - Phillip M. Rendle
- Ferrier Research InstituteVictoria University of WellingtonGracefield RdLower Hutt5010New Zealand
| |
Collapse
|
12
|
Chen YB, Wang SI, Lin ZP, Lin CH, Hsieh MT, Lin HC. Stereoselective glycosylation of d-galactals by diethyl phosphorochloridite- and AlCl3-assisted Ferrier rearrangement. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Hernández-Guerra D, Rodríguez MS, Suárez E. Fragmentation of Carbohydrate Anomeric Alkoxyl Radicals: Synthesis of Chiral Polyhydroxylated β-Iodo- and Alkenylorganophosphorus(V) Compounds. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
A convenient and efficient synthetic approach to mono-, di-, and tri-O-mannosylated Fmoc amino acids. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.02.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Song EH, Manganiello MJ, Chow YH, Ghosn B, Convertine AJ, Stayton PS, Schnapp LM, Ratner DM. In vivo targeting of alveolar macrophages via RAFT-based glycopolymers. Biomaterials 2012; 33:6889-97. [PMID: 22770567 DOI: 10.1016/j.biomaterials.2012.06.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/16/2012] [Indexed: 01/07/2023]
Abstract
Targeting cell populations via endogenous carbohydrate receptors is an appealing approach for drug delivery. However, to be effective, this strategy requires the production of high affinity carbohydrate ligands capable of engaging with specific cell-surface lectins. To develop materials that exhibit high affinity towards these receptors, we synthesized glycopolymers displaying pendent carbohydrate moieties from carbohydrate-functionalized monomer precursors via reversible addition-fragmentation chain transfer (RAFT) polymerization. These glycopolymers were fluorescently labeled and used to determine macrophage-specific targeting both in vitro and in vivo. Mannose- and N-acetylglucosamine-containing glycopolymers were shown to specifically target mouse bone marrow-derived macrophages (BMDMs) in vitro in a dose-dependent manner as compared to a galactose-containing glycopolymer (30- and 19-fold higher uptake, respectively). In addition, upon macrophage differentiation, the mannose glycopolymer exhibited enhanced uptake in M2-polarized macrophages, an anti-inflammatory macrophage phenotype prevalent in injured tissue. This carbohydrate-specific uptake was retained in vivo, as alveolar macrophages demonstrated 6-fold higher internalization of mannose glycopolymer, as compared to galactose, following intratracheal administration in mice. We have shown the successful synthesis of a class of functional RAFT glycopolymers capable of macrophage-type specific uptake both in vitro and in vivo, with significant implications for the design of future targeted drug delivery systems.
Collapse
Affiliation(s)
- Eun-Ho Song
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sureshkumar G, Hotha S. AuBr(3) mediated glycosidations: synthesis of tetrasaccharide motif of the Leishmania donovani lipophosphoglycan. Glycoconj J 2012; 29:221-30. [PMID: 22660966 DOI: 10.1007/s10719-012-9400-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/14/2012] [Accepted: 05/21/2012] [Indexed: 11/30/2022]
Abstract
Tetrasaccharide cap present in lipophosphoglycan of the Leishmania donovani responsible for visceral Leishmaniaisis is synthesized as a fully protected propargyl glycoside. AuBr(3) mediated selective glycosylation of propargyl 1,2-orthoester in the presence of propargyl glycoside is employed as a key step to obtain propargyl containing oligomers. Further, propargyl tetrasaccharide is connected with a long chain hydrocarbon containing azidothiol functionality situated at two terminal ends via 'click' reaction.
Collapse
Affiliation(s)
- Gopalsamy Sureshkumar
- Department of Chemistry, Indian Insititute of Science Education & Research, Pune, 411 008, India
| | | |
Collapse
|
17
|
Nikolaev AV, Sizova OV. Synthetic neoglycoconjugates of cell-surface phosphoglycans of Leishmania as potential anti-parasite carbohydrate vaccines. BIOCHEMISTRY. BIOKHIMIIA 2011; 76:761-73. [PMID: 21999537 PMCID: PMC5496670 DOI: 10.1134/s0006297911070066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/17/2011] [Indexed: 11/23/2022]
Abstract
Leishmania are a genus of sandfly-transmitted protozoan parasites that cause a spectrum of debilitating and often fatal diseases in humans throughout the tropics and subtropics. During the parasite life cycle, Leishmania survive and proliferate in highly hostile environments. Their survival strategies involve the formation of an elaborate and dense cell-surface glycocalyx composed of diverse stage-specific glycoconjugates that form a protective barrier. Phosphoglycans constitute the variable structural and functional domain of major cell-surface lipophosphoglycan and secreted proteophosphoglycans. In this paper, we discuss structural aspects of various phosphoglycans from Leishmania with the major emphasis on the chemical preparation of neoglycoconjugates (neoglycoproteins and neoglycolipids) based on Leishmania lipophosphoglycan structures as well as the immunological evaluation for some of them as potential anti-leishmaniasis vaccines.
Collapse
Affiliation(s)
- A V Nikolaev
- College of Life Sciences, Division of Biological Chemistry and Drug Discovery, University of Dundee, UK.
| | | |
Collapse
|
18
|
Epoxidation of glycals with oxone–acetone–tetrabutylammonium hydrogen sulfate: a convenient access to simple β-d-glycosides and to α-d-mannosamine and d-talosamine donors. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.tetasy.2011.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Chen HM, Withers SG. Syntheses of p-nitrophenyl 3- and 4-thio-β-D-glycopyranosides. Carbohydr Res 2010; 345:2596-604. [PMID: 21044780 DOI: 10.1016/j.carres.2010.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 10/19/2022]
Abstract
Thioglycosides have proved to be useful, enzymatically stable analogs of glycosides for structural and mechanistic studies and their synthesis is considerably simplified through the use of thioglycoligases. As part of an investigation into the use of thioglycosides as potential pharmacological chaperones, and as components of glycoproteins and glycolipids, the syntheses of p-nitrophenyl 3-thio-β-D-galactopyranoside, phenyl 1,4-dithio-β-D-glucopyranoside, p-nitrophenyl 4-thio-β-D-mannopyranoside and p-nitrophenyl 2-acetamido-2-deoxy-4-thio-β-D-mannopyranoside are described.
Collapse
Affiliation(s)
- Hong-Ming Chen
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | | |
Collapse
|
20
|
Di Bussolo V, Fiasella A, Balzano F, Uccello Barretta G, Crotti P. Stereoselective synthesis of beta-phenylselenoglycosides from glycals and rationalization of the selenoglycosylation processes. J Org Chem 2010; 75:4284-7. [PMID: 20476760 DOI: 10.1021/jo100145s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Beta-phenylselenoglycosides have been efficiently and stereoselectively synthesized by direct oxidative glycosylation of benzenselenolate (PhSe(-)) with glycals. A rationalization of the presently described beta-selectivity and the opposite alpha-selectivity reported by Danishefsky in the ring-opening of epoxy glycals with benzeneselenol (PhSeH) is proposed.
Collapse
Affiliation(s)
- Valeria Di Bussolo
- Dipartimento di Scienze Farmaceutiche, sede Chimica Biorganica e Biofarmacia, Università di Pisa,Via Bonanno 33, 56126 Pisa, Italy.
| | | | | | | | | |
Collapse
|
21
|
León EI, Martín A, Peréz-Martín I, Quintanal LM, Suárez E. Hydrogen Atom Transfer Experiments Provide Chemical Evidence for the Conformational Differences between C- and O-Disaccharides. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000470] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Daines AM, Greatrex BW, Hayman CM, Hook SM, McBurney WT, Rades T, Rendle PM, Sims IM. Mannosylated saponins based on oleanolic and glycyrrhizic acids. Towards synthetic colloidal antigen delivery systems. Bioorg Med Chem 2009; 17:5207-18. [DOI: 10.1016/j.bmc.2009.05.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/13/2009] [Accepted: 05/17/2009] [Indexed: 11/17/2022]
|
23
|
André S, Velasco-Torrijos T, Leyden R, Gouin S, Tosin M, Murphy PV, Gabius HJ. Phenylenediamine-based bivalent glycocyclophanes: synthesis and analysis of the influence of scaffold rigidity and ligand spacing on lectin binding in cell systems with different glycomic profiles. Org Biomol Chem 2009; 7:4715-25. [DOI: 10.1039/b913010a] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Galan MC, Brunet C, Fuensanta M. [bmim][OTf]: a versatile room temperature glycosylation promoter. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2008.11.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Francisco C, Herrera A, Kennedy A, Martín A, Melián D, Pérez-Martín I, Quintanal L, Suárez E. Intramolecular 1,8-Hydrogen-Atom Transfer Reactions in (1→4)-O-Disaccharide Systems: Conformational and Stereochemical Requirements. Chemistry 2008; 14:10369-81. [DOI: 10.1002/chem.200801414] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Kline T, Trent MS, Stead CM, Lee MS, Sousa MC, Felise HB, Nguyen HV, Miller SI. Synthesis of and evaluation of lipid A modification by 4-substituted 4-deoxy arabinose analogs as potential inhibitors of bacterial polymyxin resistance. Bioorg Med Chem Lett 2008; 18:1507-10. [PMID: 18187325 PMCID: PMC2516481 DOI: 10.1016/j.bmcl.2007.12.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/21/2007] [Accepted: 12/21/2007] [Indexed: 11/18/2022]
Abstract
Three sets of novel 4-deoxy-l-arabinose analogs were synthesized and evaluated as potential inhibitors of the bacterial resistance mechanism in which lipid A, on the outer membrane, is modified with 4-amino-4-deoxy-l-arabinose (l-Ara4N). One compound diminished the transfer of l-Ara4N onto lipid A. These results suggest that small molecules might be designed that would effect the same reversal of bacterial resistance observed in genetic knockouts.
Collapse
Affiliation(s)
- T Kline
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Coutrot F, Busseron E, Montero JL. A Very Efficient Synthesis of a Mannosyl Orthoester [2]Rotaxane and Mannosidic [2]Rotaxanes. Org Lett 2008; 10:753-6. [DOI: 10.1021/ol702779z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frédéric Coutrot
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247CNRS-Universités Montpellier 2 et 1, Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - Eric Busseron
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247CNRS-Universités Montpellier 2 et 1, Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - Jean-Louis Montero
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247CNRS-Universités Montpellier 2 et 1, Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| |
Collapse
|
28
|
Yin ZJ, Li Q, Meng XB, Li ZJ. Design and synthesis of novel multivalent mannosides targeting the mannose receptor. Carbohydr Res 2007; 342:2729-34. [PMID: 17880930 DOI: 10.1016/j.carres.2007.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 08/16/2007] [Accepted: 08/21/2007] [Indexed: 11/22/2022]
Abstract
According to the characteristics of C-type lectin-like domains in the mannose receptor (MR), a novel design of multivalent mannosides targeting the MR was accomplished. Beginning with a divalent mannoside as the sugar unit, a series of multivalent mannosides with variations in both valence and space were synthesized in a convergent approach. The synthetic multivalent mannosides are to be explored to study MR-sugar binding events.
Collapse
Affiliation(s)
- Zhao-Jun Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100083, PR China
| | | | | | | |
Collapse
|
29
|
Cumpstey I, Salomonsson E, Sundin A, Leffler H, Nilsson UJ. Studies of Arginine–Arene Interactions through Synthesis and Evaluation of a Series of Galectin-Binding Aromatic Lactose Esters. Chembiochem 2007; 8:1389-98. [PMID: 17631664 DOI: 10.1002/cbic.200700040] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aromatic lactose 2-O-esters were synthesized and used to probe arene-arginine interactions with the galectin family of proteins. They were found to be low microM inhibitors of galectin-1, -3, and -9N-terminal domain and moderate inhibitors of galectin-7, but not inhibitors of galectin-8N-terminal, which lacks an arginine residue close to the critical, esterified lactose 2-O-position. Molecular modeling of galectins in complex with aromatic lactose 2-O-esters, as well as binding studies with a galectin-3 R186S mutant, confirmed that the inhibitory efficiency of the lactose 2-O-esters was due to the formation of strong interactions between the aromatic ester moieties and the arginine guanidinium groups of galectin-1 and -3. An important common feature shared by galectin-1 and -3 was that the arginines formed in-plane ion pairs with two side-chain carboxylates, which resulted in extended planar pi-electron surfaces that did not require solvation by water; these surfaces were ideal for stacking with aromatic moieties of the ligands. The results provide a basis for the design of lectin inhibitors and drugs that exploit interactions with arginine side-chains via aromatic moieties, which are involved in intramolecular protein salt bridges.
Collapse
Affiliation(s)
- Ian Cumpstey
- Organic Chemistry, Lund University, P.O. Box 124, Lund, Sweden
| | | | | | | | | |
Collapse
|
30
|
Liu X, Siegrist S, Amacker M, Zurbriggen R, Pluschke G, Seeberger PH. Enhancement of the immunogenicity of synthetic carbohydrates by conjugation to virosomes: a leishmaniasis vaccine candidate. ACS Chem Biol 2006; 1:161-4. [PMID: 17163663 DOI: 10.1021/cb600086b] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel virosomal formulations of a synthetic oligosaccharide were prepared and evaluated as vaccine candidates against leishmaniasis. A lipophosphoglycan-related synthetic tetrasaccharide antigen was conjugated to a phospholipid and to the influenza virus coat protein hemagglutinin. These glycan conjugates were embedded into the lipid membrane of reconstituted influenza virus virosomes. The virosomal formulations elicited both IgM and IgG anti-glycan antibodies in mice, indicating an antibody isotype class switch to IgG. The antisera cross-reacted in vitro with the corresponding natural carbohydrate antigens expressed by leishmania cells. These findings support the concept of using virosomes as universal antigen delivery platform for synthetic carbohydrate vaccines.
Collapse
Affiliation(s)
- Xinyu Liu
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli Strasse 10, 8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Mangold SL, Morgan JR, Strohmeyer GC, Gronenborn AM, Cloninger MJ. Cyanovirin-N binding to Manalpha1-2Man functionalized dendrimers. Org Biomol Chem 2005; 3:2354-8. [PMID: 16010372 DOI: 10.1039/b417789d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manalpha1-2Man functionalized G(3) and G(4)-PAMAM dendrimers have been synthesized and characterized by MALDI-TOF MS and NMR spectroscopy. Precipitation assays to assess the binding of the dimannose-functionalized dendrimers to Cyanovirin-N, a HIV-inactivating protein that blocks virus-to-cell fusion through high mannose mediated interactions, are presented.
Collapse
Affiliation(s)
- Shane L Mangold
- Department of Chemistry and Biochemistry and Center for Bioinspired Nanomaterials, 108 Gaines Hall, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | |
Collapse
|
32
|
Tosin M, Murphy PV. Synthesis of Structurally Defined Scaffolds for Bivalent Ligand Display Based on Glucuronic Acid Anilides. The Degree of Tertiary Amide Isomerism and Folding Depends on the Configuration of a Glycosyl Azide. J Org Chem 2005; 70:4107-17. [PMID: 15876103 DOI: 10.1021/jo050200z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[structures: see text] Syntheses and structural analyses of bivalent carbohydrates based on anilides of glucuronic acid are described. Secondary anilides predominantly adopted the Z-anti structure; there is also evidence for population of the Z-syn isomer. Bivalent tertiary anilides displayed two signal sets in their NMR spectra, consistent with the presence of (i) a major isomer where both amides have E configurations (EE) and (ii) a minor isomer where one amide is E and the other Z (EZ). Qualitative NOE/ROE spectroscopic studies in solution support the proposal that the anti conformation is preferred for E amides. The crystal structure of one bivalent tertiary anilide showed E-anti and E-syn structural isomers; intramolecular carbohydrate-carbohydrate stacking was observed and mediated by carbonyl-pyranose, azide-azide, and pyranose-aromatic interactions. The EE to EZ isomer ratio, or the degree of folding, for tertiary amides, was greatest for a bivalent compound containing two alpha-glycosyl azide groups; this was enhanced in water, suggesting that hydrophobic interactions are partially but not wholly responsible. Computational methods predicted azide-aromatic (N...H-C interaction) and azide-azide interactions for folded isomers. The close contact of the azide and aromatic protons (N...H-C interaction) was observed upon examination of the close packing in the crystal structure of a related monomer. It is proposed that the alpha-azide group is more optimally aligned, compared to the beta-azide, to facilitate interaction and minimize the surface area of the hydrophobic groups exposed to water, and this leads to the increased folding. The alkylation of bivalent secondary anilides induces a switch from Z to E amide that alters the scaffold orientation. The synthesis of a bivalent mannoside, based on a secondary anilide scaffold, for investigation of mannose-binding receptor cross-linking and lattice formation is described.
Collapse
Affiliation(s)
- Manuela Tosin
- Centre for Synthesis and Chemical Biology, Department of Chemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
33
|
Ruhela D, Chatterjee P, Vishwakarma RA. 1-Oxabicyclic β-lactams as new inhibitors of elongating MPT–a key enzyme responsible for assembly of cell-surface phosphoglycans of Leishmania parasite. Org Biomol Chem 2005; 3:1043-8. [PMID: 15750647 DOI: 10.1039/b418247b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New iminosugars (1-oxabicyclic beta-lactam disaccharides) have been synthesized as inhibitors of elongating alpha-D-mannosyl phosphate transferase (eMPT), a key enzyme involved in the iterative biosynthesis of cell-surface phosphoglycans of the Leishmania parasite. The design is based on a transition-state model for this remarkable enzyme that transfers intact alpha-D-mannosyl-phosphate from GDP-Man. Since these phosphoglycans are unique to Leishmania and are essential for its infectivity and survival, their biosynthetic pathway has emerged as a novel target for anti-leishmanial drug and vaccine design.
Collapse
Affiliation(s)
- Dipali Ruhela
- Bio-organic Chemistry Lab, National Institute of Immunology, JNU Complex, New Delhi 110-067, India
| | | | | |
Collapse
|
34
|
Tosin M, Gouin SG, Murphy PV. Synthesis of Structurally Diverse and Defined Bivalent Mannosides on Saccharide Scaffolding. Org Lett 2004; 7:211-4. [PMID: 15646960 DOI: 10.1021/ol047841l] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
[Structure: see text] The synthesis of bivalent mannosides by the grafting of alpha-D-mannopyranoside onto monosaccharide acceptors and conjugation to terephthalic acid or phenylenediamine is described. Computational methods were used to predict accessible orientations and distances between the mannose units.
Collapse
Affiliation(s)
- Manuela Tosin
- Centre for Synthesis and Chemical Biology, Chemistry Department, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
35
|
Ruhela D, Vishwakarma RA. A facile and novel route to the antigenic branched phosphoglycan of the protozoan Leishmania major parasite. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.01.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Kanai A, Kamino T, Kuramochi K, Kobayashi S. Synthetic studies directed toward the assembly of the C-glycoside fragment of the telomerase inhibitor D8646-2-6. Org Lett 2003; 5:2837-9. [PMID: 12889887 DOI: 10.1021/ol034873k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] Construction and characterization of the C-glycosidic moiety of telomerase inhibitor D8646-2-6 (1) are described. This is the first example of the C-glycosylation using electron-poor aromatics, 4-hydroxypyrone, as a glycosyl acceptor. The glycosylation reaction and base-promoted isomerization affords desired beta-C-glycoside in a 61% overall yield.
Collapse
Affiliation(s)
- Akira Kanai
- Frontier Research Center for Genomic Drug Discovery and Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Nodashi, Chiba 278-8510, Japan
| | | | | | | |
Collapse
|
37
|
Ruhela D, Vishwakarma RA. Iterative synthesis of Leishmania phosphoglycans by solution, solid-phase, and polycondensation approaches without involving any glycosylation. J Org Chem 2003; 68:4446-56. [PMID: 12762750 DOI: 10.1021/jo0341867] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general strategy (solution, solid-phase, and polycondensation) for the synthesis of antigenic phosphoglycans (PG) of the protozoan parasite Leishmania is presented. Phosphoglycans constitute the variable structural and functional domain of major cell-surface lipophosphoglycan (LPG) and secreted proteophosphoglycan (PPG), the molecules involved in infectivity and survival of the Leishmania parasite inside human macrophages. We have shown that the chemically labile, anomerically phosphodiester-linked phosphoglycan repeats can be assembled in an iterative and efficient manner from a single key intermediate, without involving any glycosylation steps. Furthermore, the phosphoglycan chain can be extended toward either the nonreducing (6'-OH) or the reducing (1-OH) end. We also describe a new and efficient solid-phase methodology to construct phosphoglycans based on design and application of a novel cis-allylphosphoryl solid-phase linker that enabled the selective cleavage of the first anomeric-phosphodiester linkage without affecting any of the other internal anomeric-phosphodiester groups of the growing PG chain on the solid support. The strategy to construct larger phosphoglycans in a one-pot synthesis by polycondensation of a single key intermediate is also described, enabling CD spectrometric measurements to show the helical nature of phosphoglycans. Our versatile synthetic approach provides easy access to Leishmania phosphoglycans and the opportunity to address key immunological, biochemical, and biophysical questions pertaining to the phosphoglycan family (LPG and PPG) unique to the parasite.
Collapse
Affiliation(s)
- Dipali Ruhela
- Bio-organic Chemistry Laboratory, National Institute of Immunology, JNU Complex, New Delhi 110067, India
| | | |
Collapse
|
38
|
Chawla M, Vishwakarma RA. Alkylacylglycerolipid domain of GPI molecules of Leishmania is responsible for inhibition of PKC-mediated c-fos expression. J Lipid Res 2003; 44:594-600. [PMID: 12562866 DOI: 10.1194/jlr.m200296-jlr200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycosylphosphatidylinositols (GPIs) are the most abundant molecules present in the membranes of the parasitic protozoa Leishmania responsible for multiple forms of leishmaniasis. Among the prominent biological activities displayed by the major Leishmania GPIs [lipophosphoglycan (LPG) and glycoinositolphospholipids (GIPLs)] is the inhibition of macrophage functions such as the protein kinase C (PKC)-dependent signaling pathway. The bioactivity of Leishmania GPIs is in contrast to Trypanosoma brucei and Plasmodium falciparum GPIs, which activate the macrophage functions. To address the question as to which structural domain of Leishmania GPIs is responsible for dramatic down-regulation of PKC-dependent transient c-fos expression, the chemically synthesized defined alkylacylglycerolipids domain of corresponding GPIs, and LPG and GIPLs isolated from Leishmania donovani, were evaluated for inhibition of PKC and c-fos expression in macrophages. The results presented here demonstrate that the unusual lipid domain of Leishmania GPIs is primarily responsible for inhibition of PKC-dependent transient c-fos expression.
Collapse
Affiliation(s)
- Mamta Chawla
- Bio-organic Chemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | |
Collapse
|
39
|
Hewitt MC, Seeberger PH. Automated solid-phase synthesis of a branched Leishmania cap tetrasaccharide. Org Lett 2001; 3:3699-702. [PMID: 11700116 DOI: 10.1021/ol016631v] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction--see text] Described is the first automated solid-phase synthesis of a branched oligosaccharide by stepwise assembly from monosaccharides. Cap tetrasaccharide 1, found as part of the cell surface lipophosphoglycan (LPG) of the protozoan parasite Leishmania, was readily prepared using glycosyl phosphate and glycosyl trichloroacetimidate building blocks.
Collapse
Affiliation(s)
- M C Hewitt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
40
|
Hewitt MC, Seeberger PH. Solution and solid-support synthesis of a potential leishmaniasis carbohydrate vaccine. J Org Chem 2001; 66:4233-43. [PMID: 11397159 DOI: 10.1021/jo015521z] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of a potential carbohydrate vaccine for the parasitic disease leishmaniasis is described. New solution- and solid-phase synthetic strategies were explored for the assembly of a unique tetrasaccharide antigen found on the Leishmania lipophosphoglycan. An initial solution-phase synthesis relied on thioglycosides as building blocks and the establishment of the central disaccharide from lactal via an oxidation-reduction sequence. A second approach was completed both in solution and on solid support. The solid-phase synthesis relied on assembly from monosaccharide units and was used to evaluate different glycosylating agents in the efficient installation of the galactose beta-(1-->4) mannoside. Glycosyl phosphates proved most successful in this endeavor. This first solid-phase synthesis of the Leishmania cap provided rapid access to the tetrasaccharide in 18% overall yield while requiring only a single purification step. The synthetic cap tetrasaccharide was conjugated to the immunostimulator Pam3Cys to create fully synthetic carbohydrate vaccine 1 and to the carrier protein KLH to form semisynthetic vaccine 2. Currently, both constructs have entered initial immunological experiments in mice targeted at the development of a vaccine against the parasitic disease leishmaniasis.
Collapse
Affiliation(s)
- M C Hewitt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|