1
|
Cavanaugh BL, Milstein ML, Boucher RC, Tan SX, Hanna MW, Seidel A, Frederiksen R, Saunders TL, Sampath AP, Mitton KP, Zhang DQ, Goldberg AFX. A new mouse model for PRPH2 pattern dystrophy exhibits functional compensation prior and subsequent to retinal degeneration. Hum Mol Genet 2024; 33:1916-1928. [PMID: 39231530 PMCID: PMC11540925 DOI: 10.1093/hmg/ddae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Mutations in PRPH2 are a relatively common cause of sight-robbing inherited retinal degenerations (IRDs). Peripherin-2 (PRPH2) is a photoreceptor-specific tetraspanin protein that structures the disk rim membranes of rod and cone outer segment (OS) organelles, and is required for OS morphogenesis. PRPH2 is noteworthy for its broad spectrum of disease phenotypes; both inter- and intra-familial heterogeneity have been widely observed and this variability in disease expression and penetrance confounds efforts to understand genotype-phenotype correlations and pathophysiology. Here we report the generation and initial characterization of a gene-edited animal model for PRPH2 disease associated with a nonsense mutation (c.1095:C>A, p.Y285X), which is predicted to truncate the peripherin-2 C-terminal domain. Young (P21) Prph2Y285X/WT mice developed near-normal photoreceptor numbers; however, OS membrane architecture was disrupted, OS protein levels were reduced, and in vivo and ex vivo electroretinography (ERG) analyses found that rod and cone photoreceptor function were each severely reduced. Interestingly, ERG studies also revealed that rod-mediated downstream signaling (b-waves) were functionally compensated in the young animals. This resiliency in retinal function was retained at P90, by which time substantial IRD-related photoreceptor loss had occurred. Altogether, the current studies validate a new mouse model for investigating PRPH2 disease pathophysiology, and demonstrate that rod and cone photoreceptor function and structure are each directly and substantially impaired by the Y285X mutation. They also reveal that Prph2 mutations can induce a functional compensation that resembles homeostatic plasticity, which can stabilize rod-derived signaling, and potentially dampen retinal dysfunction during some PRPH2-associated IRDs.
Collapse
Affiliation(s)
| | - Michelle L Milstein
- Eye Research Institute, Oakland University, Rochester, MI 48309, United States
| | - R Casey Boucher
- Eye Research Institute, Oakland University, Rochester, MI 48309, United States
| | - Sharon X Tan
- Eye Research Institute, Oakland University, Rochester, MI 48309, United States
| | - Mario W Hanna
- Eye Research Institute, Oakland University, Rochester, MI 48309, United States
| | - Adam Seidel
- Eye Research Institute, Oakland University, Rochester, MI 48309, United States
| | - Rikard Frederiksen
- Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7000, United States
| | - Thomas L Saunders
- Trangsgenic Animal Model Core, Biomedical Research Core Facilities, Division of Genetic Medicine, University of Michigan, Ann Arbor, MI 41809, United States
| | - Alapakkam P Sampath
- Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7000, United States
| | - Kenneth P Mitton
- Eye Research Institute, Oakland University, Rochester, MI 48309, United States
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, United States
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, MI 48309, United States
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, United States
| | - Andrew F X Goldberg
- Eye Research Institute, Oakland University, Rochester, MI 48309, United States
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, United States
| |
Collapse
|
2
|
Leinonen H, Fu Z, Bull E. Neural and Müller glial adaptation of the retina to photoreceptor degeneration. Neural Regen Res 2023; 18:701-707. [DOI: 10.4103/1673-5374.354511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
3
|
Martinez-Galan JR, Garcia-Belando M, Cabanes-Sanchis JJ, Caminos E. Pre- and postsynaptic alterations in the visual cortex of the P23H-1 retinal degeneration rat model. Front Neuroanat 2022; 16:1000085. [PMID: 36312296 PMCID: PMC9608761 DOI: 10.3389/fnana.2022.1000085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
P23H rats express a variant of rhodopsin with a mutation that leads to loss of visual function with similar properties as human autosomal dominant retinitis pigmentosa (RP). The advances made in different therapeutic strategies to recover visual system functionality reveal the need to know whether progressive retina degeneration affects the visual cortex structure. Here we are interested in detecting cortical alterations in young rats with moderate retinal degeneration, and in adulthood when degeneration is severer. For this purpose, we studied the synaptic architecture of the primary visual cortex (V1) by analyzing a series of pre- and postsynaptic elements related to excitatory glutamatergic transmission. Visual cortices from control Sprague Dawley (SD) and P23H rats at postnatal days 30 (P30) and P230 were used to evaluate the distribution of vesicular glutamate transporters VGLUT1 and VGLUT2 by immunofluorescence, and to analyze the expression of postsynaptic density protein-95 (PSD-95) by Western blot. The amount and dendritic spine distribution along the apical shafts of the layer V pyramidal neurons, stained by the Golgi-Cox method, were also studied. We observed that at P30, RP does not significantly affect any of the studied markers and structures, which suggests in young P23H rats that visual cortex connectivity seems preserved. However, in adult rats, although VGLUT1 immunoreactivity and PSD-95 expression were similar between both groups, a narrower and stronger VGLUT2-immunoreactive band in layer IV was observed in the P23H rats. Furthermore, RP significantly decreased the density of dendritic spines and altered their distribution along the apical shafts of pyramidal neurons, which remained in a more immature state compared to the P230 SD rats. Our results indicate that the most notable changes in the visual cortex structure take place after a prolonged retinal degeneration period that affected the presynaptic thalamocortical VGLUT2-immunoreactive terminals and postsynaptic dendritic spines from layer V pyramidal cells. Although plasticity is more limited at these ages, future studies will determine how reversible these changes are and to what extent they can affect the visual system's functionality.
Collapse
Affiliation(s)
- Juan R. Martinez-Galan
- Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | | | | | | |
Collapse
|
4
|
Fitzpatrick MJ, Kerschensteiner D. Homeostatic plasticity in the retina. Prog Retin Eye Res 2022; 94:101131. [PMID: 36244950 DOI: 10.1016/j.preteyeres.2022.101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Vision begins in the retina, whose intricate neural circuits extract salient features of the environment from the light entering our eyes. Neurodegenerative diseases of the retina (e.g., inherited retinal degenerations, age-related macular degeneration, and glaucoma) impair vision and cause blindness in a growing number of people worldwide. Increasing evidence indicates that homeostatic plasticity (i.e., the drive of a neural system to stabilize its function) can, in principle, preserve retinal function in the face of major perturbations, including neurodegeneration. Here, we review the circumstances and events that trigger homeostatic plasticity in the retina during development, sensory experience, and disease. We discuss the diverse mechanisms that cooperate to compensate and the set points and outcomes that homeostatic retinal plasticity stabilizes. Finally, we summarize the opportunities and challenges for unlocking the therapeutic potential of homeostatic plasticity. Homeostatic plasticity is fundamental to understanding retinal development and function and could be an important tool in the fight to preserve and restore vision.
Collapse
|
5
|
Fortenbach C, Peinado Allina G, Shores CM, Karlen SJ, Miller EB, Bishop H, Trimmer JS, Burns ME, Pugh EN. Loss of the K+ channel Kv2.1 greatly reduces outward dark current and causes ionic dysregulation and degeneration in rod photoreceptors. J Gen Physiol 2021; 153:e202012687. [PMID: 33502442 PMCID: PMC7845921 DOI: 10.1085/jgp.202012687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vertebrate retinal photoreceptors signal light by suppressing a circulating "dark current" that maintains their relative depolarization in the dark. This dark current is composed of an inward current through CNG channels and NCKX transporters in the outer segment that is balanced by outward current exiting principally from the inner segment. It has been hypothesized that Kv2.1 channels carry a predominant fraction of the outward current in rods. We examined this hypothesis by comparing whole cell, suction electrode, and electroretinographic recordings from Kv2.1 knockout (Kv2.1-/-) and wild-type (WT) mouse rods. Single cell recordings revealed flash responses with unusual kinetics, and reduced dark currents that were quantitatively consistent with the measured depolarization of the membrane resting potential in the dark. A two-compartment (outer and inner segment) physiological model based on known ionic mechanisms revealed that the abnormal Kv2.1-/- rod photoresponses arise principally from the voltage dependencies of the known conductances and the NCKX exchanger, and a highly elevated fraction of inward current carried by Ca2+ through CNG channels due to the aberrant depolarization. Kv2.1-/- rods had shorter outer segments than WT and dysmorphic mitochondria in their inner segments. Optical coherence tomography of knockout animals demonstrated a slow photoreceptor degeneration over a period of 6 mo. Overall, these findings reveal that Kv2.1 channels carry 70-80% of the non-NKX outward dark current of the mouse rod, and that the depolarization caused by the loss of Kv2.1 results in elevated Ca2+ influx through CNG channels and elevated free intracellular Ca2+, leading to progressive degeneration.
Collapse
Affiliation(s)
| | | | | | - Sarah J. Karlen
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Hannah Bishop
- Center for Neuroscience, University of California, Davis, Davis, CA
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA
| | - James S. Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Marie E. Burns
- Center for Neuroscience, University of California, Davis, Davis, CA
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| | - Edward N. Pugh
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| |
Collapse
|
6
|
Leinonen H, Pham NC, Boyd T, Santoso J, Palczewski K, Vinberg F. Homeostatic plasticity in the retina is associated with maintenance of night vision during retinal degenerative disease. eLife 2020; 9:e59422. [PMID: 32960171 PMCID: PMC7529457 DOI: 10.7554/elife.59422] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022] Open
Abstract
Neuronal plasticity of the inner retina has been observed in response to photoreceptor degeneration. Typically, this phenomenon has been considered maladaptive and may preclude vision restoration in the blind. However, several recent studies utilizing triggered photoreceptor ablation have shown adaptive responses in bipolar cells expected to support normal vision. Whether such homeostatic plasticity occurs during progressive photoreceptor degenerative disease to help maintain normal visual behavior is unknown. We addressed this issue in an established mouse model of Retinitis Pigmentosa caused by the P23H mutation in rhodopsin. We show robust modulation of the retinal transcriptomic network, reminiscent of the neurodevelopmental state, and potentiation of rod - rod bipolar cell signaling following rod photoreceptor degeneration. Additionally, we found highly sensitive night vision in P23H mice even when more than half of the rod photoreceptors were lost. These results suggest retinal adaptation leading to persistent visual function during photoreceptor degenerative disease.
Collapse
Affiliation(s)
- Henri Leinonen
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, IrvineIrvineUnited States
| | - Nguyen C Pham
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| | - Taylor Boyd
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| | - Johanes Santoso
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, IrvineIrvineUnited States
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, IrvineIrvineUnited States
- Departments of Physiology and Biophysics, and Chemistry, University of California, IrvineIrvineUnited States
| | - Frans Vinberg
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| |
Collapse
|
7
|
Foote KG, Wong JJ, Boehm AE, Bensinger E, Porco TC, Roorda A, Duncan JL. Comparing Cone Structure and Function in RHO- and RPGR-Associated Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2020; 61:42. [PMID: 32343782 PMCID: PMC7401955 DOI: 10.1167/iovs.61.4.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose To study cone structure and function in patients with retinitis pigmentosa (RP) owing to mutations in rhodopsin (RHO), expressed in rod outer segments, and mutations in the RP-GTPase regulator (RPGR) gene, expressed in the connecting cilium of rods and cones. Methods Four eyes of 4 patients with RHO mutations, 5 eyes of 5 patients with RPGR mutations, and 4 eyes of 4 normal subjects were studied. Cone structure was studied with confocal and split-detector adaptive optics scanning laser ophthalmoscopy (AOSLO) and spectral-domain optical coherence tomography. Retinal function was measured using a 543-nm AOSLO-mediated adaptive optics microperimetry (AOMP) stimulus. The ratio of sensitivity to cone density was compared between groups using the Wilcoxon rank-sum test. Results AOMP sensitivity/cone density in patients with RPGR mutations was significantly lower than normal (P< 0.001) and lower than patients with RHO mutations (P< 0.015), whereas patients with RHO mutations were similar to normal (P> 0.9). Conclusions Retinal sensitivity/cone density was lower in patients with RPGR mutations than normal and lower than patients with RHO mutations, perhaps because cones express RPGR and degenerate primarily, whereas cones in eyes with RHO mutations die secondary to rod degeneration. High-resolution microperimetry can reveal differences in cone degeneration in patients with different forms of RP.
Collapse
|
8
|
Uyhazi KE, Aravand P, Bell BA, Wei Z, Leo L, Serrano LW, Pearson DJ, Shpylchak I, Pham J, Vasireddy V, Bennett J, Aleman TS. Treatment Potential for LCA5-Associated Leber Congenital Amaurosis. Invest Ophthalmol Vis Sci 2020; 61:30. [PMID: 32428231 PMCID: PMC7405811 DOI: 10.1167/iovs.61.5.30] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose To determine the therapeutic window for gene augmentation for Leber congenital amaurosis (LCA) associated with mutations in LCA5. Methods Five patients (ages 6-31) with LCA and biallelic LCA5 mutations underwent an ophthalmic examination including optical coherence tomography (SD-OCT), full-field stimulus testing (FST), and pupillometry. The time course of photoreceptor degeneration in the Lca5gt/gt mouse model and the efficacy of subretinal gene augmentation therapy with AAV8-hLCA5 delivered at postnatal day 5 (P5) (early, n = 11 eyes), P15 (mid, n = 14), and P30 (late, n = 13) were assessed using SD-OCT, histologic study, electroretinography (ERG), and pupillometry. Comparisons were made with the human disease. Results Patients with LCA5-LCA showed a maculopathy with detectable outer nuclear layer (ONL) in the pericentral retina and at least 4 log units of dark-adapted sensitivity loss. The Lca5gt/gt mouse has a similarly severe and rapid photoreceptor degeneration. The ONL became progressively thinner and was undetectable by P60. Rod- and cone-mediated ERGs were severely reduced in amplitudes at P30 and became nondetectable by P60. Subretinal AAV8-hLCA5 administered to Lca5gt/gt mice at P5 and P15, but not at P30, resulted in structural and functional rescue. Conclusions LCA5-LCA is a particularly severe form of LCA that was recapitulated in the Lca5gt/gt mouse. Gene augmentation resulted in structural and functional rescue in the Lca5gt/gt mouse if delivered before P30. Retained photoreceptors were visible within the central retina in all patients with LCA5-LCA, at a level equivalent to that observed in rescued Lca5gt/gt mice, suggesting a window of opportunity for the treatment of patients with LCA5-LCA.
Collapse
Affiliation(s)
- Katherine E. Uyhazi
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
- Scheie Eye Institute at The Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Puya Aravand
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brent A. Bell
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhangyong Wei
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lanfranco Leo
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Leona W. Serrano
- Scheie Eye Institute at The Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Denise J. Pearson
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
- Scheie Eye Institute at The Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Shpylchak
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Pham
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Vidyullatha Vasireddy
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomas S. Aleman
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
- Scheie Eye Institute at The Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Collison FT, Fishman GA, Nagasaki T, Zernant J, McAnany JJ, Park JC, Allikmets R. Characteristic Ocular Features in Cases of Autosomal Recessive PROM1 Cone-Rod Dystrophy. Invest Ophthalmol Vis Sci 2019; 60:2347-2356. [PMID: 31136651 PMCID: PMC6538366 DOI: 10.1167/iovs.19-26993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose To define characteristic ocular features in a group of patients with autosomal recessive (AR) PROM1 cone-rod dystrophy (CRD). Methods Three males and one female from three unrelated families were first seen at the ages of 15 to 22 years and diagnosed with CRD. Clinical testing available for review included full-field electroretinogram (ERG) in three patients, as well as near-infrared autofluorescence (NIR-AF), spectral-domain optical coherence tomography (SD-OCT), and color fundus photography in all four patients. Whole exome sequencing (WES) was performed on all cases, and whole genome sequencing (WGS) was performed in two families. Results WES found compound heterozygous PROM1 variants in one isolated male, plus heterozygous variants in the remaining patients. WGS uncovered deleterious PROM1 variants in these two families. ERG showed markedly reduced cone-isolated amplitudes and variably reduced rod-isolated amplitudes. The dark-adapted combined rod and cone responses demonstrated notably reduced a-wave amplitudes and moderately reduced b-waves, and the resultant waveform resembled the normal rod-isolated response. On fundus examination, oval-shaped macular lesions were observed, as were several small, circular hypoautofluorescent lesions within the posterior pole on NIR-AF. Three patients showed extramacular circular atrophic lesions. Conclusions The autofluorescence changes, peripheral retinal abnormalities, and ERG findings have not been emphasized in previous reports of AR PROM1, but they became a recognizable phenotype in this cohort of patients. A similar constellation of findings may be observed in CRD due to CDHR1, a functionally related gene. The pattern of abnormalities reported herein may help to focus genetic screening in patients with these findings.
Collapse
Affiliation(s)
- Frederick T Collison
- The Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, Illinois, United States
| | - Gerald A Fishman
- The Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, Illinois, United States.,Department of Ophthalmology and Visual Sciences, The University of Illinois at Chicago, Chicago, Illinois, United States
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - J Jason McAnany
- Department of Ophthalmology and Visual Sciences, The University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jason C Park
- Department of Ophthalmology and Visual Sciences, The University of Illinois at Chicago, Chicago, Illinois, United States
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| |
Collapse
|
10
|
Akula JD, Ambrosio L, Howard FI, Hansen RM, Fulton AB. Extracting the ON and OFF contributions to the full-field photopic flash electroretinogram using summed growth curves. Exp Eye Res 2019; 189:107827. [PMID: 31600486 DOI: 10.1016/j.exer.2019.107827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Abstract
Under cone-mediated (photopic) conditions, an "instantaneous" flash of light, including both stimulus onset and offset, will simultaneously activate both "ON" and "OFF" bipolar cells, which either depolarize (ON) or hyperpolarize (OFF) in response and, respectively, produce positive-going and negative-going deflections in the electroretinogram (ERG). The stimulus-response (SR) relationship of the photopic ON response demonstrates logistic growth, like that manifested in the rod-mediated (scotopic) b-wave, which is driven by a single class of depolarizing bipolar cell. However, the photopic b-wave SR function is importantly shaped by OFF responses, leading to a "photopic hill." Furthermore, both on and off stimuli elicit activity in both ON and OFF bipolar cells. This has made it difficult to produce meaningful parameters for ready interpretation of the photopic b-wave SR relationship. Therefore, we evaluated whether the sum of sigmoidal SR functions, as descriptors of the depolarizing and hyperpolarizing components of the photopic flash ERG, could be used to elucidate and quantitate the mechanisms that produce the photopic hill. We used a novel fitting routine to optimize a sum of simple sigmoidal curves to SR data in five groups of subjects: Healthy adult, 10-week-old infant, congenital stationary night blindness (CSNB), X-linked juvenile retinoschisis (XJR), and preterm-born, both without and with a history of retinopathy of prematurity (ROP). Differences in ON and OFF amplitude, sensitivity, and implicit time among the groups were then compared using parameters extracted from these fits. We found that our modeling procedure enabled plausible derivations of ON and OFF pathway contributions to the ERG, and that the parameters produced appeared to have physiological relevance. In adult subjects, the ON and OFF amplitudes were similar in magnitude with respectively longer and shorter implicit times. Infant, CSNB, and XJR subjects showed significant ON pathway deficits. History of preterm-birth, without or with a diagnosis of ROP, did not much affect cone responses.
Collapse
Affiliation(s)
- James D Akula
- Ophthalmology, Boston Children's Hospital, Boston, MA, United States; Ophthalmology, Harvard Medical School, Boston, MA, United States.
| | - Lucia Ambrosio
- Ophthalmology, Boston Children's Hospital, Boston, MA, United States; Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Fiona I Howard
- Ophthalmology, Boston Children's Hospital, Boston, MA, United States; Psychology, Northeastern University, Boston, MA, United States
| | - Ronald M Hansen
- Ophthalmology, Boston Children's Hospital, Boston, MA, United States; Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Anne B Fulton
- Ophthalmology, Boston Children's Hospital, Boston, MA, United States; Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Roth S, Dreixler J, Newman NJ. Haemodilution and head-down tilting induce functional injury in the rat optic nerve: A model for peri-operative ischemic optic neuropathy. Eur J Anaesthesiol 2019; 35:840-847. [PMID: 29771733 DOI: 10.1097/eja.0000000000000829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mechanisms of peri-operative ischaemic optic neuropathy remain poorly understood. Both specific pre-operative and intra-operative factors have been examined by retrospective studies, but no animal model currently exists. OBJECTIVES To develop a rodent model of peri-operative ischaemic optic neuropathy. In rats, we performed head-down tilt and/or haemodilution, theorising that the combination damages the optic nerve. DESIGN Animal study. SETTING Laboratory. ANIMALS A total of 36 rats, in four groups, completed the functional examination of retina and optic nerve after the interventions. INTERVENTIONS Anaesthetised groups (n>8) were supine (SUP) for 5 h, head-down tilted 70° for 5 h, head-down tilted/haemodiluted for 5 h or SUP/haemodiluted for 5 h. We measured blood pressure, heart rate, intra-ocular pressure and maintained constant temperature. MAIN OUTCOME MEASUREMENTS Retinal function (electroretinography), scotopic threshold response (STR) (for retinal ganglion cells) and visual evoked potentials (VEP) (for transmission through the optic nerve). We imaged the optic nerve in vivo and evaluated retinal histology, apoptotic cells and glial activation in the optic nerve. Retinal and optic nerve function were followed to 14 and 28 days after experiments. RESULTS At 28 days in head down tilted/haemodiluted rats, negative STR decreased (about 50% amplitude reduction, P = 0.006), VEP wave N2-P3 decreased (70% amplitude reduction, P = 0.01) and P2 latency increased (35%, P = 0.003), optic discs were swollen and glial activation was present in the optic nerve. SUP/haemodiluted rats had decreases in negative STR and increased VEP latency, but no glial activation. CONCLUSION An injury partly resembling human ischaemic optic neuropathy can be produced in rats by combining haemodilution and head-down tilt. Significant functional changes were also present with haemodilution alone. Future studies with this partial optic nerve injury may enable understanding of mechanisms of peri-operative ischaemic optic neuropathy and could help discover preventive or treatment strategies.
Collapse
Affiliation(s)
- Steven Roth
- From the Department of Anesthesiology (SR), Department of Ophthalmology and Visual Sciences, University of Illinois (SR), Anesthesia and Critical Care, University of Chicago, Chicago, Illinois (JD), Department of Ophthalmology and Neurology (NJN) and Department of Neurological Surgery, Emory University School of Medicine, Atlanta, Georgia, USA (NJN)
| | | | | |
Collapse
|
12
|
LaVail MM, Nishikawa S, Steinberg RH, Naash MI, Duncan JL, Trautmann N, Matthes MT, Yasumura D, Lau-Villacorta C, Chen J, Peterson WM, Yang H, Flannery JG. Phenotypic characterization of P23H and S334ter rhodopsin transgenic rat models of inherited retinal degeneration. Exp Eye Res 2018; 167:56-90. [PMID: 29122605 PMCID: PMC5811379 DOI: 10.1016/j.exer.2017.10.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
We produced 8 lines of transgenic (Tg) rats expressing one of two different rhodopsin mutations in albino Sprague-Dawley (SD) rats. Three lines were generated with a proline to histidine substitution at codon 23 (P23H), the most common autosomal dominant form of retinitis pigmentosa in the United States. Five lines were generated with a termination codon at position 334 (S334ter), resulting in a C-terminal truncated opsin protein lacking the last 15 amino acid residues and containing all of the phosphorylation sites involved in rhodopsin deactivation, as well as the terminal QVAPA residues important for rhodopsin deactivation and trafficking. The rates of photoreceptor (PR) degeneration in these models vary in proportion to the ratio of mutant to wild-type rhodopsin. The models have been widely studied, but many aspects of their phenotypes have not been described. Here we present a comprehensive study of the 8 Tg lines, including the time course of PR degeneration from the onset to one year of age, retinal structure by light and electron microscopy (EM), hemispheric asymmetry and gradients of rod and cone degeneration, rhodopsin content, gene dosage effect, rapid activation and invasion of the outer retina by presumptive microglia, rod outer segment disc shedding and phagocytosis by the retinal pigmented epithelium (RPE), and retinal function by the electroretinogram (ERG). The biphasic nature of PR cell death was noted, as was the lack of an injury-induced protective response in the rat models. EM analysis revealed the accumulation of submicron vesicular structures in the interphotoreceptor space during the peak period of PR outer segment degeneration in the S334ter lines. This is likely due to the elimination of the trafficking consensus domain as seen before as with other rhodopsin mutants lacking the C-terminal QVAPA. The 8 rhodopsin Tg lines have been, and will continue to be, extremely useful models for the experimental study of inherited retinal degenerations.
Collapse
Affiliation(s)
- Matthew M LaVail
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Shimpei Nishikawa
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Roy H Steinberg
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2011, Houston, TX 77204-5060, USA.
| | - Jacque L Duncan
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Nikolaus Trautmann
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Michael T Matthes
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Douglas Yasumura
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA
| | - Cathy Lau-Villacorta
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Jeannie Chen
- Zilka Neurogenetic Institute, USC Keck School of Medicine, Los Angeles, CA 90089-2821, USA.
| | - Ward M Peterson
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Haidong Yang
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - John G Flannery
- School of Optometry, UC Berkeley, Berkeley, CA 94720-2020, USA.
| |
Collapse
|
13
|
Hansen RM, Moskowitz A, Akula JD, Fulton AB. The neural retina in retinopathy of prematurity. Prog Retin Eye Res 2017; 56:32-57. [PMID: 27671171 PMCID: PMC5237602 DOI: 10.1016/j.preteyeres.2016.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 12/26/2022]
Abstract
Retinopathy of prematurity (ROP) is a neurovascular disease that affects prematurely born infants and is known to have significant long term effects on vision. We conducted the studies described herein not only to learn more about vision but also about the pathogenesis of ROP. The coincidence of ROP onset and rapid developmental elongation of the rod photoreceptor outer segments motivated us to consider the role of the rods in this disease. We used noninvasive electroretinographic (ERG), psychophysical, and retinal imaging procedures to study the function and structure of the neurosensory retina. Rod photoreceptor and post-receptor responses are significantly altered years after the preterm days during which ROP is an active disease. The alterations include persistent rod dysfunction, and evidence of compensatory remodeling of the post-receptor retina is found in ERG responses to full-field stimuli and in psychophysical thresholds that probe small retinal regions. In the central retina, both Mild and Severe ROP delay maturation of parafoveal scotopic thresholds and are associated with attenuation of cone mediated multifocal ERG responses, significant thickening of post-receptor retinal laminae, and dysmorphic cone photoreceptors. These results have implications for vision and control of eye growth and refractive development and suggest future research directions. These results also lead to a proposal for noninvasive management using light that may add to the currently invasive therapeutic armamentarium against ROP.
Collapse
Affiliation(s)
- Ronald M Hansen
- Department of Ophthalmology, Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA 02115-5737, USA.
| | - Anne Moskowitz
- Department of Ophthalmology, Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA 02115-5737, USA.
| | - James D Akula
- Department of Ophthalmology, Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA 02115-5737, USA.
| | - Anne B Fulton
- Department of Ophthalmology, Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA 02115-5737, USA.
| |
Collapse
|
14
|
Wilkin J, Kerr NC, Byrd KW, Ward JC, Iannaccone A. Characterization of a Case of Pigmentary Retinopathy in Sanfilippo Syndrome Type IIIA Associated with Compound Heterozygous Mutations in the SGSH Gene. Ophthalmic Genet 2015; 37:217-27. [PMID: 26331342 DOI: 10.3109/13816810.2015.1028647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To report longitudinal phenotypic findings in a patient with Sanfilippo syndrome type IIIA, harboring SGSH mutations, one of which is novel. METHODS Heparan-N-sulfatidase enzyme function testing in skin fibroblasts and white blood cells and SGSH gene sequencing were obtained. Clinical office examinations, examinations under anesthesia, electroretinogram, spectral domain optical coherence tomography (SD-OCT), and fundus photography were performed over a 5-year period. RESULTS Fundus examination revealed a progressive breadcrumb-like pigmentary retinopathy with perifoveal pigmentary involvement. SD-OCT showed loss of normal neuroretinal lamination and cystic macular changes responsive to treatment with carbonic anhydrase inhibitors. Electroretinography exhibited complex characteristics indicative of a generalized retinal rod > cone dysfunction with significant ON > OFF postreceptoral response compromise. Sequencing revealed compound heterozygous mutations in the SGSH gene, the novel c.88G > C (p.A30P) change and a second, previously reported one (c.734G > A, p.R245H). CONCLUSIONS We have identified ocular features of a patient with Sanfilippo syndrome type IIIA harboring a novel SGHS mutation that were not previously known to occur in this disease - namely, a progressive retinopathy with distinctive features, cystic macular changes responsive to carbonic anhydrase inhibitors, and complex electroretinographic abnormalities consistent with postreceptoral dysfunction. SD-OCT imaging revealed retinal lamination changes consistent with previously reported histologic studies. Both the SD-OCT and the electroretinogram changes appear attributable to intraretinal deposition of heparan sulfate.
Collapse
Affiliation(s)
- Justin Wilkin
- a Hamilton Eye Institute, Department of Ophthalmology and
| | - Natalie C Kerr
- a Hamilton Eye Institute, Department of Ophthalmology and
| | - Kathryn W Byrd
- a Hamilton Eye Institute, Department of Ophthalmology and
| | - Jewell C Ward
- b Medical Genetics Division, Department of Pediatrics , University of Tennessee Health Science Center , Memphis , TN , USA
| | | |
Collapse
|
15
|
Fransen JW, Pangeni G, Pyle IS, McCall MA. Functional changes in Tg P23H-1 rat retinal responses: differences between ON and OFF pathway transmission to the superior colliculus. J Neurophysiol 2015; 114:2368-75. [PMID: 26245318 DOI: 10.1152/jn.00600.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/04/2015] [Indexed: 01/12/2023] Open
Abstract
The morphological consequences of retinal photoreceptor degeneration are well documented. Much less is known about changes in visual function during degeneration and whether central visual structures directly reflect changes in retinal ganglion cell (RGC) function. To address this, we compared changes in visual function of RGCs and cells in the superior colliculus (SC) in transgenic (Tg) P23H-1 rats, a model of retinitis pigmentosa (RP), and wild-type (WT) rats at postnatal days 35-50 (P35-50) and P300. RGCs were classified on the basis of their responses to light: onset (ON), offset (OFF), or both (ON-OFF). The distribution of ON, OFF, and ON-OFF RGCs is similar between WT and P35 Tg P23H-1 rats. By P300, many Tg P23H-1 RGCs are nonresponsive (NR). At this age, there is a sharp decline in ON and ON-OFF RGCs, and the majority that remain are OFF RGCs. Spontaneous rhythmic activity was observed in many RGCs at P300, but only in OFF or NR RGCs. In the SC, WT and P50 Tg P23H-1 responses are similar. At P300, Tg P23H-1 ON SC responses declined but OFF responses increased. We examined postsynaptic glutamate receptor expression located on the bipolar cells (BC), where the ON and OFF pathways arise. At P150, metabotropic glutamate receptor 6 (mGluR6) expression is lower than in WT, consistent with a decrease in ON RGC responses. GluR4 expression, an ionotropic glutamate receptor associated with OFF BCs, appears similar to that in WT. The loss of ON responses in Tg P23H-1 RGCs and in the SC is conserved and related to reduced mGluR6 signaling.
Collapse
Affiliation(s)
- James W Fransen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky; and
| | - Gobinda Pangeni
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, Kentucky
| | - Ian S Pyle
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky; and
| | - Maureen A McCall
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky; and Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, Kentucky
| |
Collapse
|
16
|
Wong VH, Armitage JA, He Z, Hui F, Vingrys AJ, Bui BV. Chronic intraocular pressure elevation impairs autoregulatory capacity in streptozotocin-induced diabetic rat retina. Ophthalmic Physiol Opt 2014; 35:125-34. [PMID: 25529024 DOI: 10.1111/opo.12174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/23/2014] [Indexed: 02/03/2023]
Abstract
PURPOSE To assess ocular blood flow responses to acute IOP stress following 4 weeks of chronic IOP elevation in streptozotocin (STZ)-induced diabetic and control rats. We hypothesise that chronic IOP elevation for 4 weeks will further impair blood flow regulation in STZ-induced diabetic rats eyes. METHODS Two weeks following citrate buffer or STZ-injections chronic IOP elevation was induced in Long Evans rats via fortnightly intracameral injections of microspheres (15 μm) suspended in 5% polyethylene glycol. IOP was monitored daily. Electroretinography (ERG, -6.79-2.07 log cd s m(-2) ) was undertaken at Week 4 to compare photoreceptor (RmPIII ), ON-bipolar cell (Vmax ) and ganglion cell dominant ERG [scotopic threshold response (STR)] components. 4 weeks post-chronic IOP induction, ocular blood flow (laser Doppler flowmetry) was measured in response to acute IOP challenge (10-100 mmHg, in 5 mmHg steps, each 3 min). RESULTS Four weeks of chronic IOP (mean ± S.E.M., citrate: 24.0 ± 0.3 to 30.7 ± 1.3 and STZ-diabetes: 24.2 ± 0.2 to 31.1 ± 1.2 mmHg) was associated with reduced photoreceptor amplitude in both groups (-25.3 ± 2.2% and -17.2 ± 3.0%, respectively). STZ-diabetic eyes showed reduced photoreceptor sensitivity (citrate: 0.5 ± 1.8%, STZ-diabetic: -8.1 ± 2.4%). Paradoxically ON-bipolar cell sensitivity was increased, particularly in citrate control eyes (citrate: 166.8 ± 25.9%, STZ-diabetic: 64.8 ± 18.7%). The ganglion cell dominant STR was not significantly reduced in STZ-diabetic rats. Using acute IOP elevation to probe autoregulation, we show that STZ-diabetes impaired autoregulation compared with citrate control animals. The combination of STZ-diabetes and chronic IOP elevation further impaired autoregulation. CONCLUSIONS STZ-diabetes and chronic IOP elevation appear to be additive risk factors for impairment of ocular blood flow autoregulation.
Collapse
Affiliation(s)
- Vickie H Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Sotoca JV, Alvarado JC, Fuentes-Santamaría V, Martinez-Galan JR, Caminos E. Hearing impairment in the P23H-1 retinal degeneration rat model. Front Neurosci 2014; 8:297. [PMID: 25278831 PMCID: PMC4166116 DOI: 10.3389/fnins.2014.00297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/31/2014] [Indexed: 12/17/2022] Open
Abstract
The transgenic P23H line 1 (P23H-1) rat expresses a variant of rhodopsin with a mutation that leads to loss of visual function. This rat strain is an experimental model usually employed to study photoreceptor degeneration. Although the mutated protein should not interfere with other sensory functions, observing severe loss of auditory reflexes in response to natural sounds led us to study auditory brain response (ABR) recording. Animals were separated into different hearing levels following the response to natural stimuli (hand clapping and kissing sounds). Of all the analyzed animals, 25.9% presented auditory loss before 50 days of age (P50) and 45% were totally deaf by P200. ABR recordings showed that all the rats had a higher hearing threshold than the control Sprague-Dawley (SD) rats, which was also higher than any other rat strains. The integrity of the central and peripheral auditory pathway was analyzed by histology and immunocytochemistry. In the cochlear nucleus (CN), statistical differences were found between SD and P23H-1 rats in VGluT1 distribution, but none were found when labeling all the CN synapses with anti-Syntaxin. This finding suggests anatomical and/or molecular abnormalities in the auditory downstream pathway. The inner ear of the hypoacusic P23H-1 rats showed several anatomical defects, including loss and disruption of hair cells and spiral ganglion neurons. All these results can explain, at least in part, how hearing impairment can occur in a high percentage of P23H-1 rats. P23H-1 rats may be considered an experimental model with visual and auditory dysfunctions in future research.
Collapse
Affiliation(s)
- Jorge V Sotoca
- Deparment of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha Albacete, Spain ; Barn och Ungdomsmedicin Eskilstuna, Sweden
| | - Juan C Alvarado
- Deparment of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha Albacete, Spain
| | - Verónica Fuentes-Santamaría
- Deparment of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha Albacete, Spain
| | - Juan R Martinez-Galan
- Deparment of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha Albacete, Spain
| | - Elena Caminos
- Deparment of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha Albacete, Spain
| |
Collapse
|
18
|
Huang WC, Cideciyan AV, Roman AJ, Sumaroka A, Sheplock R, Schwartz SB, Stone EM, Jacobson SG. Inner and outer retinal changes in retinal degenerations associated with ABCA4 mutations. Invest Ophthalmol Vis Sci 2014; 55:1810-22. [PMID: 24550365 DOI: 10.1167/iovs.13-13768] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE To investigate in vivo inner and outer retinal microstructure and effects of structural abnormalities on visual function in patients with retinal degeneration caused by ABCA4 mutations (ABCA4-RD). METHODS Patients with ABCA4-RD (n = 45; age range, 9-71 years) were studied by spectral-domain optical coherence tomography (OCT) scans extending from the fovea to 30° eccentricity along horizontal and vertical meridians. Thicknesses of outer and inner retinal laminae were analyzed. Serial OCT measurements available over a mean period of 4 years (range, 2-8 years) allowed examination of the progression of outer and inner retinal changes. A subset of patients had dark-adapted chromatic static threshold perimetry. RESULTS There was a spectrum of photoreceptor layer thickness changes from localized central retinal abnormalities to extensive thinning across central and near midperipheral retina. The inner retina also showed changes. There was thickening of the inner nuclear layer (INL) that was mainly associated with regions of photoreceptor loss. Serial data documented only limited change in some patients while others showed an increase in outer nuclear layer (ONL) thinning accompanied by increased INL thickening in some regions imaged. Visual function in regions both with and without INL thickening was describable with a previously defined model based on photoreceptor quantum catch. CONCLUSIONS Inner retinal laminar abnormalities, as in other human photoreceptor diseases, can be a feature of ABCA4-RD. These changes are likely due to the retinal remodeling that accompanies photoreceptor loss. Rod photoreceptor-mediated visual loss in retinal regionswith inner laminopathy at the stages studied did not exceed the prediction from photoreceptor loss alone.
Collapse
Affiliation(s)
- Wei Chieh Huang
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE To determine whether there is an age-dependent susceptibility in retinal function in response to repeated anterior chamber cannulation with or without intraocular pressure (IOP) elevation. METHODS Baseline electroretinograms were measured in 3- and 18-month-old Sprague-Dawley rats (n = 16 each group). Following baseline assessment, eyes were randomly assigned to undergo a 60-min anterior chamber cannulation with IOP either left at baseline (sham, 15 mm Hg) or elevated to 60 mm Hg. This was repeated three additional times, with each episode separated by 1 week. At weeks 1 to 3, dark-adapted retinal function was assessed immediately before cannulation, with final functional assessment at week 4. RESULTS Both sham and IOP elevated eyes of older rats showed retinal dysfunction, which became more pronounced with the number of repeated insults. This effect was largest for responses arising from the inner retina. Repeated insult in younger eyes did not produce a change in amplitude but an increase in the sensitivity to light of photoreceptoral and bipolar cell components of the electroretinogram. CONCLUSIONS Repeated trauma, not IOP, produces permanent retinal dysfunction in older eyes. Younger eyes appear to be able to withstand this type of injury by upregulating sensitivity of outer and middle retinal responses to maintain normal inner retinal function.
Collapse
|
20
|
Zhang Y, Seo S, Bhattarai S, Bugge K, Searby CC, Zhang Q, Drack AV, Stone EM, Sheffield VC. BBS mutations modify phenotypic expression of CEP290-related ciliopathies. Hum Mol Genet 2013; 23:40-51. [PMID: 23943788 DOI: 10.1093/hmg/ddt394] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ciliopathies are a group of heterogeneous disorders associated with ciliary dysfunction. Diseases in this group display considerable phenotypic variation within individual syndromes and overlapping phenotypes among clinically distinct disorders. Particularly, mutations in CEP290 cause phenotypically diverse ciliopathies ranging from isolated retinal degeneration, nephronophthisis and Joubert syndrome, to the neonatal lethal Meckel-Gruber syndrome. However, the underlying mechanisms of the variable expressivity in ciliopathies are not well understood. Here, we show that components of the BBSome, a protein complex composed of seven Bardet-Biedl syndrome (BBS) proteins, physically and genetically interact with CEP290 and modulate the expression of disease phenotypes caused by CEP290 mutations. The BBSome binds to the N-terminal region of CEP290 through BBS4 and co-localizes with CEP290 to the transition zone (TZ) of primary cilia and centriolar satellites in ciliated cells, as well as to the connecting cilium in photoreceptor cells. Although CEP290 still localizes to the TZ and connecting cilium in BBSome-depleted cells, its localization to centriolar satellites is disrupted and CEP290 appears to disperse throughout the cytoplasm in BBSome-depleted cells. Genetic interactions were tested using Cep290(rd16)- and Bbs4-null mutant mouse lines. Additional loss of Bbs4 alleles in Cep290(rd16/rd16) mice results in increased body weight and accelerated photoreceptor degeneration compared with mice without Bbs4 mutations. Furthermore, double-heterozygous mice (Cep290(+/rd16);Bbs4(+/-)) have increased body weight compared with single-heterozygous animals. Our data indicate that genetic interactions between BBSome components and CEP290 could underlie the variable expression and overlapping phenotypes of ciliopathies caused by CEP290 mutations.
Collapse
|
21
|
Raghuram A, Hansen RM, Moskowitz A, Fulton AB. Photoreceptor and postreceptor responses in congenital stationary night blindness. Invest Ophthalmol Vis Sci 2013; 54:4648-58. [PMID: 23761088 DOI: 10.1167/iovs.13-12111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate photoreceptor and postreceptor retinal function in patients with congenital stationary night blindness (CSNB). METHODS Forty-one patients with CSNB (ages 0.19-32 years) were studied. ERG responses to a series of full-field stimuli were obtained under scotopic and photopic conditions and were used to categorize the CSNB patients as complete (cCSNB) or incomplete (iCSNB). Rod and cone photoreceptor (R(ROD), S(ROD), R(CONE), S(CONE)) and rod-driven postreceptor (V(MAX), log σ) response parameters were calculated from the a- and b-waves. Cone-driven responses to 30 Hz flicker and ON and OFF responses to a long duration (150 ms) flash were also obtained. Dark-adapted thresholds were measured. Analysis of variance was used to compare data from patients with cCSNB, patients with iCSNB, and controls. RESULTS We found significant reduction in saturated photoreceptor amplitude (R(ROD), R(CONE)) but normal photoreceptor sensitivity (S(ROD), S(CONE)) in both CSNB groups. Rod-driven postreceptor response amplitude (V(MAX)) and sensitivity (log σ) were significantly reduced in CSNB. Log σ was significantly worse in cCSNB than in iCSNB; this was the only scotopic parameter that differed between the two CSNB groups. Photopic b-wave amplitude increased monotonically with stimulus strength in CSNB patients rather than showing a normal photopic hill. The amplitude of the 30-Hz flicker response was reduced compared with controls, more so in iCSNB than in cCSNB. The mean dark-adapted threshold was significantly elevated in CSNB, more so in cCSNB than in iCSNB. CONCLUSIONS These results are evidence of normal photoreceptor function (despite the low saturated photoresponse amplitude) and anomalous postreceptor retinal circuitry.
Collapse
Affiliation(s)
- Aparna Raghuram
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
22
|
Mapping cation entry in photoreceptors and inner retinal neurons during early degeneration in the P23H-3 rat retina. Vis Neurosci 2013; 30:65-75. [PMID: 23557623 DOI: 10.1017/s0952523813000047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The proline-23-histidine line 3 (P23H-3) transgenic rat carries a human opsin gene mutation leading to progressive photoreceptor loss characteristic of human autosomal dominant retinitis pigmentosa. The aim of the present study was to evaluate neurochemical modifications in the P23H-3 retina as a function of development and degeneration. Specifically, we investigated the ion channel permeability of photoreceptors by tracking an organic cation, agmatine (1-amino-4-guanidobutane, AGB), which permeates through nonspecific cation channels. We also investigated the activity of ionotropic glutamate receptors in distinct populations of bipolar, amacrine, and ganglion cells using AGB tracking in combination with macromolecular markers. We found elevated cation channel permeation in photoreceptors as early as postnatal day 12 (P12) suggesting that AGB labeling is an early indicator of impending photoreceptor degeneration. However, bipolar, amacrine, or ganglion cells displayed normal responses secondary to ionotropic glutamate receptor activation even at P138 when about one half of the photoreceptor layer was lost and apoptosis and gliosis were observed. These results suggest that possible therapeutic windows as downstream neurons in inner retina appear to retain normal function with regard to AGB permeation when photoreceptors are significantly reduced but not lost.
Collapse
|
23
|
Huang WC, Wright AF, Roman AJ, Cideciyan AV, Manson FD, Gewaily DY, Schwartz SB, Sadigh S, Limberis MP, Bell P, Wilson JM, Swaroop A, Jacobson SG. RPGR-associated retinal degeneration in human X-linked RP and a murine model. Invest Ophthalmol Vis Sci 2012; 53:5594-608. [PMID: 22807293 DOI: 10.1167/iovs.12-10070] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We investigated the retinal disease due to mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene in human patients and in an Rpgr conditional knockout (cko) mouse model. METHODS XLRP patients with RPGR-ORF15 mutations (n = 35, ages at first visit 5-72 years) had clinical examinations, and rod and cone perimetry. Rpgr-cko mice, in which the proximal promoter and first exon were deleted ubiquitously, were back-crossed onto a BALB/c background, and studied with optical coherence tomography and electroretinography (ERG). Retinal histopathology was performed on a subset. RESULTS Different patterns of rod and cone dysfunction were present in patients. Frequently, there were midperipheral losses with residual rod and cone function in central and peripheral retina. Longitudinal data indicated that central rod loss preceded peripheral rod losses. Central cone-only vision with no peripheral function was a late stage. Less commonly, patients had central rod and cone dysfunction, but preserved, albeit abnormal, midperipheral rod and cone vision. Rpgr-cko mice had progressive retinal degeneration detectable in the first months of life. ERGs indicated relatively equal rod and cone disease. At late stages, there was greater inferior versus superior retinal degeneration. CONCLUSIONS RPGR mutations lead to progressive loss of rod and cone vision, but show different patterns of residual photoreceptor disease expression. Knowledge of the patterns should guide treatment strategies. Rpgr-cko mice had onset of degeneration at relatively young ages and progressive photoreceptor disease. The natural history in this model will permit preclinical proof-of-concept studies to be designed and such studies should advance progress toward human therapy.
Collapse
Affiliation(s)
- Wei Chieh Huang
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Thompson DA, Khan NW, Othman MI, Chang B, Jia L, Grahek G, Wu Z, Hiriyanna S, Nellissery J, Li T, Khanna H, Colosi P, Swaroop A, Heckenlively JR. Rd9 is a naturally occurring mouse model of a common form of retinitis pigmentosa caused by mutations in RPGR-ORF15. PLoS One 2012; 7:e35865. [PMID: 22563472 PMCID: PMC3341386 DOI: 10.1371/journal.pone.0035865] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/27/2012] [Indexed: 11/18/2022] Open
Abstract
Animal models of human disease are an invaluable component of studies aimed at understanding disease pathogenesis and therapeutic possibilities. Mutations in the gene encoding retinitis pigmentosa GTPase regulator (RPGR) are the most common cause of X-linked retinitis pigmentosa (XLRP) and are estimated to cause 20% of all retinal dystrophy cases. A majority of RPGR mutations are present in ORF15, the purine-rich terminal exon of the predominant splice-variant expressed in retina. Here we describe the genetic and phenotypic characterization of the retinal degeneration 9 (Rd9) strain of mice, a naturally occurring animal model of XLRP. Rd9 mice were found to carry a 32-base-pair duplication within ORF15 that causes a shift in the reading frame that introduces a premature-stop codon. Rpgr ORF15 transcripts, but not protein, were detected in retinas from Rd9/Y male mice that exhibited retinal pathology, including pigment loss and slowly progressing decrease in outer nuclear layer thickness. The levels of rhodopsin and transducin in rod outer segments were also decreased, and M-cone opsin appeared mislocalized within cone photoreceptors. In addition, electroretinogram (ERG) a- and b-wave amplitudes of both Rd9/Y male and Rd9/Rd9 female mice showed moderate gradual reduction that continued to 24 months of age. The presence of multiple retinal features that correlate with findings in individuals with XLRP identifies Rd9 as a valuable model for use in gaining insight into ORF15-associated disease progression and pathogenesis, as well as accelerating the development and testing of therapeutic strategies for this common form of retinal dystrophy.
Collapse
Affiliation(s)
- Debra A. Thompson
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Naheed W. Khan
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Mohammad I. Othman
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Bo Chang
- Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Lin Jia
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Garrett Grahek
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Zhijian Wu
- Neurobiology-Neurodegeneration & Repair laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Suja Hiriyanna
- Neurobiology-Neurodegeneration & Repair laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jacob Nellissery
- Neurobiology-Neurodegeneration & Repair laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tiansen Li
- Neurobiology-Neurodegeneration & Repair laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hemant Khanna
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Peter Colosi
- Neurobiology-Neurodegeneration & Repair laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (AS); (JRH)
| | - John R. Heckenlively
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (AS); (JRH)
| |
Collapse
|
25
|
Moskowitz A, Hansen RM, Eklund SE, Fulton AB. Electroretinographic (ERG) responses in pediatric patients using vigabatrin. Doc Ophthalmol 2012; 124:197-209. [PMID: 22426576 DOI: 10.1007/s10633-012-9320-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/02/2012] [Indexed: 11/30/2022]
Abstract
The antiepileptic drug vigabatrin is known to cause retinal and visual dysfunction, particularly visual field defects, in some patients. Electroretinography (ERG) is used in an attempt to identify adverse effects of vigabatrin (VGB) in patients who are not candidates for conventional perimetry. We report data from 114 pediatric patients taking VGB referred for clinical evaluation; median age at test was 22.9 (2.4 to 266.1) months, and median duration of VGB use was 9.7 (0.3 to 140.7) months. Twenty-seven of them were tested longitudinally (3 to 12 ERG tests). ERG responses to full-field stimuli were recorded in scotopic and photopic conditions, and results were compared to responses from healthy control subjects. We found that abnormalities of photoreceptor and post-receptor ERG responses are frequent in these young patients. The most frequently abnormal scotopic parameter was post-receptor sensitivity, log σ, derived from the b-wave stimulus-response function; the most frequently abnormal photopic parameter was the implicit time of the OFF response (d-wave) to a long (150 ms) flash. Abnormal 30-Hz flicker response amplitude, previously reported to be a predictor of visual field loss, occurred infrequently. For the group as a whole, none of the ERG parameters changed significantly with increasing duration of VGB use. Four of the 27 patients tested longitudinally showed systematic worsening of log σ with duration of VGB use. In a subset of patients who underwent perimetry (N = 39), there was no significant association of any ERG parameter with visual field defects. We cannot determine whether the ERG abnormalities we found were due solely to the effects of VGB. We caution against over-reliance on the ERG to monitor pediatric patients for VGB toxicity and recommend further development of a reliable test of peripheral vision to supplant ERG testing.
Collapse
Affiliation(s)
- Anne Moskowitz
- Department of Ophthalmology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
26
|
Aleman TS, Cideciyan AV, Aguirre GK, Huang WC, Mullins CL, Roman AJ, Sumaroka A, Olivares MB, Tsai FF, Schwartz SB, Vandenberghe LH, Limberis MP, Stone EM, Bell P, Wilson JM, Jacobson SG. Human CRB1-associated retinal degeneration: comparison with the rd8 Crb1-mutant mouse model. Invest Ophthalmol Vis Sci 2011; 52:6898-910. [PMID: 21757580 DOI: 10.1167/iovs.11-7701] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To investigate the human disease due to CRB1 mutations and compare results with the Crb1-mutant rd8 mouse. METHODS Twenty-two patients with CRB1 mutations were studied. Function was assessed with perimetry and electroretinography (ERG) and retinal structure with optical coherence tomography (OCT). Cortical structure and function were quantified with magnetic resonance imaging (MRI). Rd8 mice underwent ERG, OCT, and retinal histopathology. RESULTS Visual acuities ranged from 20/25 to light perception. Rod ERGs were not detectable; small cone signals were recordable. By perimetry, small central visual islands were separated by midperipheral scotomas from far temporal peripheral islands. The central islands were cone mediated, whereas the peripheral islands retained some rod function. With OCT, there were small foveal islands of thinned outer nuclear layer (ONL) surrounded by thick delaminated retina with intraretinal hyperreflective lesions. MRI showed structurally normal optic nerves and only subtle changes to occipital lobe white and gray matter. Functional MRI indicated that whole-brain responses from patients were of reduced amplitude and spatial extent compared with those of normal controls. Rd8 mice had essentially normal ERGs; OCT and histopathology showed patchy retinal disorganization with pseudorosettes more pronounced in ventral than in dorsal retina. Photoreceptor degeneration was associated with dysplastic regions. CONCLUSIONS CRB1 mutations lead to early-onset severe loss of vision with thickened, disorganized, nonseeing retina. Impaired peripheral vision can persist in late disease stages. Rd8 mice also have a disorganized retina, but there is sufficient photoreceptor integrity to produce largely normal retinal function. Differences between human and mouse diseases will complicate proof-of-concept studies intended to advance treatment initiatives.
Collapse
Affiliation(s)
- Tomas S Aleman
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lopes VS, Gibbs D, Libby RT, Aleman TS, Welch DL, Lillo C, Jacobson SG, Radu RA, Steel KP, Williams DS. The Usher 1B protein, MYO7A, is required for normal localization and function of the visual retinoid cycle enzyme, RPE65. Hum Mol Genet 2011; 20:2560-70. [PMID: 21493626 PMCID: PMC3110002 DOI: 10.1093/hmg/ddr155] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/07/2011] [Indexed: 11/13/2022] Open
Abstract
Mutations in the MYO7A gene cause a deaf-blindness disorder, known as Usher syndrome 1B. In the retina, the majority of MYO7A is in the retinal pigmented epithelium (RPE), where many of the reactions of the visual retinoid cycle take place. We have observed that the retinas of Myo7a-mutant mice are resistant to acute light damage. In exploring the basis of this resistance, we found that Myo7a-mutant mice have lower levels of RPE65, the RPE isomerase that has a key role in the retinoid cycle. We show for the first time that RPE65 normally undergoes a light-dependent translocation to become more concentrated in the central region of the RPE cells. This translocation requires MYO7A, so that, in Myo7a-mutant mice, RPE65 is partly mislocalized in the light. RPE65 is degraded more quickly in Myo7a-mutant mice, perhaps due to its mislocalization, providing a plausible explanation for its lower levels. Following a 50-60% photobleach, Myo7a-mutant retinas exhibited increased all-trans-retinyl ester levels during the initial stages of dark recovery, consistent with a deficiency in RPE65 activity. Lastly, MYO7A and RPE65 were co-immunoprecipitated from RPE cell lysate by antibodies against either of the proteins, and the two proteins were partly colocalized, suggesting a direct or indirect interaction. Together, the results support a role for MYO7A in the translocation of RPE65, illustrating the involvement of a molecular motor in the spatiotemporal organization of the retinoid cycle in vision.
Collapse
Affiliation(s)
- Vanda S. Lopes
- Jules Stein Eye Institute and
- Department of Neurobiology, UCLA School of Medicine, 200 Stein Plaza, Los Angeles, CA 90095, USA
- Department of Pharmacology and Department of Neurosciences, UCSD School of Medicine, La Jolla, CA 92093, USA
- Centre of Ophthalmology, IBILI, University of Coimbra, 3048 Coimbra, Portugal
| | - Daniel Gibbs
- Department of Pharmacology and Department of Neurosciences, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Richard T. Libby
- MRC Institute of Hearing Research, University Park, Nottingham NG7 2RD, UK
| | - Tomas S. Aleman
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA and
| | | | - Concepción Lillo
- Department of Pharmacology and Department of Neurosciences, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Samuel G. Jacobson
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA and
| | | | - Karen P. Steel
- MRC Institute of Hearing Research, University Park, Nottingham NG7 2RD, UK
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - David S. Williams
- Jules Stein Eye Institute and
- Department of Neurobiology, UCLA School of Medicine, 200 Stein Plaza, Los Angeles, CA 90095, USA
- Department of Pharmacology and Department of Neurosciences, UCSD School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
28
|
Jensen RJ, Rizzo JF. Effects of GABA receptor antagonists on thresholds of P23H rat retinal ganglion cells to electrical stimulation of the retina. J Neural Eng 2011; 8:035002. [PMID: 21593547 DOI: 10.1088/1741-2560/8/3/035002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An electronic retinal prosthesis may provide useful vision for patients suffering from retinitis pigmentosa (RP). In animal models of RP, the amount of current needed to activate retinal ganglion cells (RGCs) is higher than in normal, healthy retinas. In this study, we sought to reduce the stimulation thresholds of RGCs in a degenerate rat model (P23H-line 1) by blocking GABA receptor mediated inhibition in the retina. We examined the effects of TPMPA, a GABA(C) receptor antagonist, and SR95531, a GABA(A) receptor antagonist, on the electrically evoked responses of RGCs to biphasic current pulses delivered to the subretinal surface through a 400 µm diameter electrode. Both TPMPA and SR95531 reduced the stimulation thresholds of ON-center RGCs on average by 15% and 20% respectively. Co-application of the two GABA receptor antagonists had the greatest effect, on average reducing stimulation thresholds by 32%. In addition, co-application of the two GABA receptor antagonists increased the magnitude of the electrically evoked responses on average three-fold. Neither TPMPA nor SR95531, applied alone or in combination, had consistent effects on the stimulation thresholds of OFF-center RGCs. We suggest that the effects of the GABA receptor antagonists on ON-center RGCs may be attributable to blockage of GABA receptors on the axon terminals of ON bipolar cells.
Collapse
Affiliation(s)
- Ralph J Jensen
- The Center for Innovative Visual Rehabilitation, VA Boston Healthcare System, Mail Stop 151E, 150 South Huntington Avenue, Boston, MA 02130, USA.
| | | |
Collapse
|
29
|
Harris ME, Moskowitz A, Fulton AB, Hansen RM. Long-term effects of retinopathy of prematurity (ROP) on rod and rod-driven function. Doc Ophthalmol 2011; 122:19-27. [PMID: 21046193 PMCID: PMC3041841 DOI: 10.1007/s10633-010-9251-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/11/2010] [Indexed: 01/25/2023]
Abstract
The purpose of this study was to determine whether recovery of scotopic sensitivity occurs in human ROP, as it does in the rat models of ROP. Following a cross-sectional design, scotopic electroretinographic (ERG) responses to full-field stimuli were recorded from 85 subjects with a history of preterm birth. In 39 of these subjects, dark adapted visual threshold was also measured. Subjects were tested post-term as infants (median age 2.5 months) or at older ages (median age 10.5 years) and stratified by severity of ROP: severe, mild, or none. Rod photoreceptor sensitivity, S (ROD), was derived from the a-wave, and post-receptor sensitivity, log σ, was calculated from the b-wave stimulus-response function. Dark adapted visual threshold was measured using a forced-choice preferential procedure. For S (ROD), the deficit from normal for age varied significantly with ROP severity but not with age group. For log σ, in mild ROP, the deficit was smaller in older subjects than in infants, while in severe ROP, the deficit was quite large in both age groups. In subjects who never had ROP, S (ROD) and log σ in both age groups were similar to those in term born controls. Deficits in dark adapted threshold and log σ were correlated in mild but not in severe ROP. The data are evidence that sensitivity of the post-receptor retina improves in those with a history of mild ROP. We speculate that beneficial reorganization of the post-receptor neural circuitry occurs in mild but not in severe ROP.
Collapse
Affiliation(s)
- Maureen E Harris
- Department of Ophthalmology, Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
30
|
Cideciyan AV, Rachel RA, Aleman TS, Swider M, Schwartz SB, Sumaroka A, Roman AJ, Stone EM, Jacobson SG, Swaroop A. Cone photoreceptors are the main targets for gene therapy of NPHP5 (IQCB1) or NPHP6 (CEP290) blindness: generation of an all-cone Nphp6 hypomorph mouse that mimics the human retinal ciliopathy. Hum Mol Genet 2011; 20:1411-23. [PMID: 21245082 DOI: 10.1093/hmg/ddr022] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Leber congenital amaurosis (LCA), a severe autosomal recessive childhood blindness, is caused by mutations in at least 15 genes. The most common molecular form is a ciliopathy due to NPHP6 (CEP290) mutations and subjects have profound loss of vision. A similarly severe phenotype occurs in the related ciliopathy NPHP5 (IQCB1)-LCA. Recent success of retinal gene therapy in one form of LCA prompted the question whether we know enough about human NPHP5 and NPHP6 disease to plan such treatment. We determined that there was early-onset rapid degeneration of rod photoreceptors in young subjects with these ciliopathies. Rod outer segment (OS) lamination, when detectable, was disorganized. Retinal pigment epithelium lipofuscin accumulation indicated that rods had existed in the past in most subjects. In contrast to early rod losses, the all-cone human fovea in NPHP5- and NPHP6-LCA of all ages retained cone nuclei, albeit with abnormal inner segments and OS. The rd16 mouse, carrying a hypomorphic Nphp6 allele, was a good model of the rod-dominant human extra-foveal retina. Rd16 mice showed normal genesis of photoreceptors, including the formation of cilia, followed by abnormal elaboration of OS and rapid degeneration. To produce a model of the all-cone human fovea in NPHP6-LCA, we generated rd16;Nrl-/- double-mutant mice. They showed substantially retained cone photoreceptors with disproportionate cone function loss, such as in the human disease. NPHP5- and NPHP6-LCA across a wide age spectrum are thus excellent candidates for cone-directed gene augmentation therapy, and the rd16;Nrl-/- mouse is an appropriate model for pre-clinical proof-of-concept studies.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yokoyama D, Machida S, Kondo M, Terasaki H, Nishimura T, Kurosaka D. Pharmacological dissection of multifocal electroretinograms of rabbits with Pro347Leu rhodopsin mutation. Jpn J Ophthalmol 2010; 54:458-66. [PMID: 21052910 DOI: 10.1007/s10384-010-0842-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 03/29/2010] [Indexed: 11/30/2022]
Abstract
PURPOSE To determine whether photoreceptor degeneration in transgenic (Tg) rabbits carrying the Pro347Leu rhodopsin mutation alters the neural activity of the middle and inner retinal neurons. METHODS Multifocal electroretinograms (mfERGs) were recorded from eight 12-week-old Tg rabbits both before and after intravitreal injection of the following: tetrodotoxin citrate (TTX), N-methyl-DL: -aspartic acid (NMDA), 2-amino-4-phosphonobutyric acid (APB), and cis-2,3-piperidine-dicarboxylic acid (PDA). Digital subtraction of the mfERGs recorded after the drugs were administered from those recorded before was used to extract the components that were eliminated by these drugs. Eight agematched, wild-type (WT) rabbits were studied with the same protocol. RESULTS There was no reduction in the amplitude of the cone photoreceptor response of the mfERGs in Tg rabbits. Both the first positive and the first negative waves of the ON-bipolar cell responses were significantly larger in the Tg than in the WT rabbits. Late negative waves of the ON-bipolar cell response were recorded only in the WT rabbits. The first negative wave of the inner retinal responses was larger in the Tg than in the Wt rabbits. The late positive waves were seen mainly in the WT rabbits. CONCLUSIONS The ON-bipolar cell and inner retinal responses were altered at the early stage of photoreceptor degeneration in Tg rabbits despite the preservation of the cone photoreceptor responses.
Collapse
Affiliation(s)
- Daisuke Yokoyama
- Department of Ophthalmology, Iwate Medical University School of Medicine, Morioka, Iwate, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Leber congenital amaurosis (LCA) is a rare hereditary retinal degeneration caused by mutations in more than a dozen genes. RPE65, one of these mutated genes, is highly expressed in the retinal pigment epithelium where it encodes the retinoid isomerase enzyme essential for the production of chromophore which forms the visual pigment in rod and cone photoreceptors of the retina. Congenital loss of chromophore production due to RPE65-deficiency together with progressive photoreceptor degeneration cause severe and progressive loss of vision. RPE65-associated LCA recently gained recognition outside of specialty ophthalmic circles due to early success achieved by three clinical trials of gene therapy using recombinant adeno-associated virus (AAV) vectors. The trials were built on multitude of basic, pre-clinical and clinical research defining the pathophysiology of the disease in human subjects and animal models, and demonstrating the proof-of-concept of gene (augmentation) therapy. Substantial gains in visual function of clinical trial participants provided evidence for physiologically relevant biological activity resulting from a newly introduced gene. This article reviews the current knowledge on retinal degeneration and visual dysfunction in animal models and human patients with RPE65 disease, and examines the consequences of gene therapy in terms of improvement of vision reported.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Scheie Eye Institute, University of Pennsylvania, 51 North 39th St, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Abstract
The continuing worldwide epidemic of retinopathy of prematurity (ROP), a leading cause of childhood visual impairment, strongly motivates further research into mechanisms of the disease. Although the hallmark of ROP is abnormal retinal vasculature, a growing body of evidence supports a critical role for the neural retina in the ROP disease process. The age of onset of ROP coincides with the rapid developmental increase in rod photoreceptor outer segment length and rhodopsin content of the retina with escalation of energy demands. Using a combination of non-invasive electroretinographic (ERG), psychophysical, and image analysis procedures, the neural retina and its vasculature have been studied in prematurely born human subjects, both with and without ROP, and in rats that model the key vascular and neural parameters found in human ROP subjects. These data are compared to comprehensive numeric summaries of the neural and vascular features in normally developing human and rat retina. In rats, biochemical, anatomical, and molecular biological investigations are paired with the non-invasive assessments. ROP, even if mild, primarily and persistently alters the structure and function of photoreceptors. Post-receptor neurons and retinal vasculature, which are intimately related, are also affected by ROP; conspicuous neurovascular abnormalities disappear, but subtle structural anomalies and functional deficits may persist years after clinical ROP resolves. The data from human subjects and rat models identify photoreceptor and post-receptor targets for interventions that promise improved outcomes for children at risk for ROP.
Collapse
Affiliation(s)
- Anne B Fulton
- Department of Ophthalmology, Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA 02115-5737, USA.
| | | | | | | |
Collapse
|
34
|
Misra GP, Singh RSJ, Aleman TS, Jacobson SG, Gardner TW, Lowe TL. Subconjunctivally implantable hydrogels with degradable and thermoresponsive properties for sustained release of insulin to the retina. Biomaterials 2009; 30:6541-7. [PMID: 19709741 DOI: 10.1016/j.biomaterials.2009.08.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/11/2009] [Indexed: 12/13/2022]
Abstract
The objective of this work is to develop subconjunctivally implantable, biodegradable hydrogels for sustained release of intact insulin to the retina to prevent and treat retinal neurovascular degeneration such as diabetic retinopathy. The hydrogels are synthesized by UV photopolymerization of N-isopropylacrylamide (NIPAAm) monomer and a dextran macromer containing multiple hydrolytically degradable oligolactate-(2-hydroxyetheyl methacrylate) units (Dex-lactateHEMA) in 25:75 (v:v) ethanol:water mixture solvent. Insulin is loaded into the hydrogels during the synthesis process with loading efficiency up to 98%. The hydrogels can release biologically active insulin in vitro for at least one week and the release kinetics can be modulated by varying the ratio between NIPAAm and Dex-lactateHEMA and altering the physical size of the hydrogels. The hydrogels are not toxic to R28 retinal neuron cells in culture medium with 100% cell viability. The hydrogels can be implanted under the conjunctiva without causing adverse effects to the retina based on hematoxylin and eosin stain, immunostaining for microglial cell activation, and electroretinography. These subconjunctivally implantable hydrogels have potential for long-term periocular delivery of insulin or other drugs to treat diabetic retinopathy and other retinal diseases.
Collapse
Affiliation(s)
- Gauri P Misra
- Department of Pharmaceutical Sciences, School of Pharmacy, Thomas Jefferson University, 130 South 9th Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
35
|
Williams DS, Aleman TS, Lillo C, Lopes VS, Hughes LC, Stone EM, Jacobson SG. Harmonin in the murine retina and the retinal phenotypes of Ush1c-mutant mice and human USH1C. Invest Ophthalmol Vis Sci 2009; 50:3881-9. [PMID: 19324851 PMCID: PMC2893298 DOI: 10.1167/iovs.08-3358] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the expression of harmonin in the mouse retina, test for ultrastructural and physiological mutant phenotypes in the retina of an Ush1c mutant mouse, and define in detail the retinal phenotype in human USH1C. METHODS Antibodies were generated against harmonin. Harmonin isoform distribution was examined by Western blot analysis and immunocytochemistry. Retinas of deaf circler (dfcr) mice, which possess mutant Ush1c, were analyzed by microscopy and electroretinography (ERG). Two siblings with homozygous 238_239insC (R80fs) USH1C mutations were studied with ERG, perimetry, and optical coherence tomography (OCT). RESULTS Harmonin isoforms a and c, but not b are expressed in the retina. Harmonin is concentrated in the photoreceptor synapse where the majority is postsynaptic. Dfcr mice do not undergo retinal degeneration and have normal synaptic ultrastructure and ERGs. USH1C patients had abnormal rod and cone ERGs. Rod- and cone-mediated sensitivities and retinal laminar architecture were normal across 50 degrees -60 degrees of visual field. A transition zone to severely abnormal function and structure was present at greater eccentricities. CONCLUSIONS The largest harmonin isoforms are not expressed in the retina. A major retinal concentration of harmonin is in the photoreceptor synapses, both pre- and post-synaptically. The dfcr mouse retina is unaffected by its mutant Ush1c. Patients with USH1C retained regions of normal central retina surrounded by degeneration. Perhaps the human disease is simply more aggressive than that in the mouse. Alternatively, the dfcr mouse may be a model for nonsyndromic deafness, due to the nonpathologic effect of its mutation on the retinal isoforms.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Adolescent
- Adult
- Animals
- Blotting, Western
- Carrier Proteins/metabolism
- Cell Cycle Proteins
- Child
- Child, Preschool
- Cytoskeletal Proteins
- Electroretinography
- Female
- Humans
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Microscopy, Confocal
- Microscopy, Immunoelectron
- Middle Aged
- Phenotype
- Photoreceptor Cells, Vertebrate/metabolism
- Photoreceptor Cells, Vertebrate/ultrastructure
- Protein Isoforms/metabolism
- Retina/metabolism
- Retinal Degeneration/metabolism
- Siblings
- Tomography, Optical Coherence
- Usher Syndromes/metabolism
Collapse
Affiliation(s)
- David S Williams
- Jules Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA 90095-7008, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Moskowitz A, Hansen RM, Akula JD, Eklund SE, Fulton AB. Rod and rod-driven function in achromatopsia and blue cone monochromatism. Invest Ophthalmol Vis Sci 2009; 50:950-8. [PMID: 18824728 PMCID: PMC2631615 DOI: 10.1167/iovs.08-2544] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE To evaluate rod photoreceptor and postreceptor retinal function in pediatric patients with achromatopsia (ACHR) and blue cone monochromatism (BCM) using contemporary electroretinographic (ERG) procedures. METHODS Fifteen patients (age range, 1-20 years) with ACHR and six patients (age range, 4-22 years) with BCM were studied. ERG responses to full-field stimuli were obtained in scotopic and photopic conditions. Rod photoreceptor (S(rod), R(rod)) and rod-driven postreceptor (log sigma, V(max)) response parameters were calculated from the a-wave and b-wave. ERG records were digitally filtered to demonstrate the oscillatory potentials (OPs); a sensitivity parameter, log SOPA(1/2), and an amplitude parameter, SOPA(max), were used to characterize the OP response. Response parameters were compared with those of 12 healthy control subjects. RESULTS As expected, photopic responses were nondetectable in patients with ACHR and BCM. In addition, mean scotopic photoreceptor (R(rod)) and postreceptor (V(max) and SOPA(max)) amplitude parameters were significantly reduced compared with those in healthy controls. The flash intensity required to evoke a half-maximum b-wave amplitude (log sigma) was significantly increased. CONCLUSIONS Results of this study provide evidence that deficits in rod and rod-mediated function occur in the primary cone dysfunction syndromes ACHR and BCM.
Collapse
Affiliation(s)
- Anne Moskowitz
- Department of Ophthalmology, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
37
|
Takada Y, Vijayasarathy C, Zeng Y, Kjellstrom S, Bush RA, Sieving PA. Synaptic pathology in retinoschisis knockout (Rs1-/y) mouse retina and modification by rAAV-Rs1 gene delivery. Invest Ophthalmol Vis Sci 2008; 49:3677-86. [PMID: 18660429 PMCID: PMC2556260 DOI: 10.1167/iovs.07-1071] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE At an early age, the retinoschisin knockout (Rs1-KO) mouse retina has progressive photoreceptor degeneration with severe disruption of the outer plexiform layer (OPL) that decreases at older ages. The electroretinogram (ERG) undergoes parallel changes. The b-wave amplitude from bipolar cells is reduced disproportionately to the photoreceptor a-wave at young but not at older ages. The protein expression and morphology of the OPL in Rs1-KO mice was investigated at different ages, to explore the role of the synaptic layer in these ERG changes. METHODS Retinas of wild-type (Wt) and Rs1-KO mice from postnatal day (P)7 to 12 months were evaluated by light and electron microscopy (EM) and biochemistry. PSD95 (postsynaptic density protein), mGluR6 (metabotropic glutamate receptor subtype 6), retinoschisin (Rs1), the Müller cell proteins glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS), the bipolar cell marker protein kinase C alpha (PKCalpha), and the horizontal cell marker calbindin were localized by immunofluorescence and immuno-EM. Levels of PSD95 and mGluR6 were determined by quantitative Western blot. Rs1-KO mice treated by intravitreous injection of rAAV(2/2)-CMV-Rs1 in one eye at P14 were evaluated at 8 months by full-field scotopic ERG responses and retinal immunohistochemistry. RESULTS Rs1 was associated with the outer surface of synaptic membranes in wild-type (Wt) retinas. PSD95 and mGluR6 were juxtaposed in the OPL of the Rs1-KO retinas by P14, implying that synaptic structures are formed. Light microscopic retinal morphology was similar in Wt and Rs1-KO at P14, but by P21, the OPL was disrupted in Rs1-KO, and some PSD95 and mGluR6 was mislocalized in the outer nuclear layer (ONL). GFAP expression spanned all retinal layers. EM showed synaptic structures adjacent to photoreceptor nuclei. PSD95 and mGluR6 levels were normal at 1 month on Western blot but declined to 59% (P < 0.001) and 55% (P < 0.05) of Wt, respectively, by 4 months. Levels thereafter showed no further reduction out to 12 months. Eyes injected with AAV-Rs1 were studied at 8 months by immunohistochemistry and had higher expression of PSD95 and mGluR6 and less GFAP expression compared with fellow untreated eyes. CONCLUSIONS In the Rs1-KO mouse, retinal layer formation and synaptic protein expression in the OPL is normal up to P14, implying normal development of synaptic connections. Aberrant localization of synaptic proteins by P21 indicates that displacement of developing and/or mature synapses contributes to the b-wave reduction at young ages, when photoreceptor numbers and synaptic protein levels are normal. The subsequent decline in PSD95 and mGluR6 between 1 and 12 months in Rs1-KO retina mirrors the course of b-wave change and provides evidence of causal relationship between the ERG and OPL changes. These findings and the improved structural integrity of the OPL and b-wave amplitude after Rs1 gene transfer therapy provide a cellular and molecular basis for interpreting the changes in retinal signaling in this model.
Collapse
Affiliation(s)
- Yuichiro Takada
- Section for Translational Research in Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders (NIDCD), Bethesda, Maryland
| | - Camasamudram Vijayasarathy
- Section for Translational Research in Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders (NIDCD), Bethesda, Maryland
| | - Yong Zeng
- Section for Translational Research in Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders (NIDCD), Bethesda, Maryland
| | - Sten Kjellstrom
- Section for Translational Research in Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders (NIDCD), Bethesda, Maryland
| | - Ronald A. Bush
- Section for Translational Research in Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders (NIDCD), Bethesda, Maryland
| | - Paul A. Sieving
- Section for Translational Research in Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders (NIDCD), Bethesda, Maryland
- National Eye Institute (NEI), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
38
|
Aleman TS, Cideciyan AV, Sumaroka A, Windsor EAM, Herrera W, White DA, Kaushal S, Naidu A, Roman AJ, Schwartz SB, Stone EM, Jacobson SG. Retinal laminar architecture in human retinitis pigmentosa caused by Rhodopsin gene mutations. Invest Ophthalmol Vis Sci 2008; 49:1580-90. [PMID: 18385078 DOI: 10.1167/iovs.07-1110] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To determine the underlying retinal micropathology in subclasses of autosomal dominant retinitis pigmentosa (ADRP) caused by rhodopsin (RHO) mutations. METHODS Patients with RHO-ADRP (n = 17, ages 6-73 years), representing class A (R135W and P347L) and class B (P23H, T58R, and G106R) functional phenotypes, were studied with optical coherence tomography (OCT), and colocalized visual thresholds were determined by dark- and light-adapted chromatic perimetry. Autofluorescence imaging was performed with near-infrared light. Retinal histology in hT17M-rhodopsin mice was compared with the human results. RESULTS Class A patients had only cone-mediated vision. The outer nuclear layer (ONL) thinned with eccentricity and was not detectable within 3 to 4 mm of the fovea. Scotomatous extracentral retina showed loss of ONL, thickening of the inner retina, and demelanization of RPE. Class B patients had superior-inferior asymmetry in function and structure. The superior retina could have normal rod and cone vision, normal lamination (including ONL) and autofluorescence of the RPE melanin; laminopathy was found in the scotomas. With Fourier-domain-OCT, there was apparent inner nuclear layer (INL) thickening in regions with ONL thinning. Retinal regions without ONL had a thick hyporeflective layer that was continuous with the INL from neighboring regions with normal lamination. Transgenic mice had many of the laminar abnormalities found in patients. CONCLUSIONS Retinal laminar abnormalities were present in both classes of RHO-ADRP and were related to the severity of colocalized vision loss. The results in human class B and the transgenic mice support the following disease sequence: ONL diminution with INL thickening; amalgamation of residual ONL with the thickened INL; and progressive retinal remodeling with eventual thinning.
Collapse
Affiliation(s)
- Tomas S Aleman
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Stasheff SF. Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. J Neurophysiol 2008; 99:1408-21. [PMID: 18216234 DOI: 10.1152/jn.00144.2007] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Complex alterations in the anatomy of outer retinal pathways accompany photoreceptor degeneration in the rd1 mouse model of retinitis pigmentosa, whereas inner retinal neurons appear relatively preserved. However, the progressive loss of photoreceptor input likely alters the neural circuitry of the inner retina. This study investigated resulting changes in the activity of surviving ganglion cells. Multielectrode recording monitored spontaneous and light-evoked extracellular action potentials simultaneously from 30 to 90 retinal ganglion cells of wild-type (wt) or rd1 mice. In rd1 mice, this activity evolves through three phases. First, normal spontaneous "waves" of correlated firing are seen at postnatal day 7 (P7) and last until shortly after eye opening. Second, at P14, full-field light flashes evoke reliable responses in many cells, with preferential preservation of off responses. These diminish as photoreceptor degeneration progresses. Third, once light-evoked responses have disappeared in early adulthood, surviving rd1 ganglion cells fire at a much higher spontaneous frequency than normal, sometimes in rhythmic bursts that are distinct from the developmental "waves." This hyperactivity is sustained well into adulthood, for weeks after photoreceptors have disappeared. Thus striking alterations occur in inner retinal physiology as retinal degeneration progresses in the rd1 mouse. Blindness occurs in the face of sustained hyperactivity among ganglion cells, which remain viable for months despite this activity. On and off responses are differentially affected in early stages of degeneration. While the source of these changes remains to be learned, such features should be considered in designing more effective treatments for these disorders.
Collapse
|
40
|
Xi Q, Pauer GJT, Ball SL, Rayborn M, Hollyfield JG, Peachey NS, Crabb JW, Hagstrom SA. Interaction between the photoreceptor-specific tubby-like protein 1 and the neuronal-specific GTPase dynamin-1. Invest Ophthalmol Vis Sci 2007; 48:2837-44. [PMID: 17525220 PMCID: PMC3021943 DOI: 10.1167/iovs.06-0059] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Tubby-like proteins (TULPs) are a family of four proteins, two of which have been linked to neurosensory disease phenotypes. TULP1 is a photoreceptor-specific protein that is mutated in retinitis pigmentosa, an inherited retinal disease characterized by the degeneration of rod and cone photoreceptor cells. To investigate the function of TULP1 in maintaining the health of photoreceptors, the authors sought the identification of interacting proteins. METHODS Immunoprecipitation from retinal lysates, followed by liquid chromatography tandem mass spectrometry and in vitro binding assays, were used to identify TULP1 binding partners. RT-PCR was performed on total RNA from wild-type mouse retina to identify the Dynamin-1 isoform expressed in the retina. Immunocytochemistry was used to determine the localization of TULP1 and Dynamin-1 in photoreceptor cells. Electroretinography (ERG) and light microscopy were used to phenotype tulp1-/- mice at a young age. RESULTS Immunoprecipitation from retinal lysate identified Dynamin-1 as a possible TULP1 binding partner. GST pull-down assays further supported an interaction between TULP1 and Dynamin-1. In photoreceptor cells, Dynamin-1 and TULP1 colocalized primarily to the outer plexiform layer, where photoreceptor terminals synapse on second-order neurons and, to a lesser extent, to the inner segments, where polarized protein translocation occurs. ERG analyses in young tulp1-/- mice indicated a decreased b-wave at ages when the retina retained a full complement of photoreceptor cells. CONCLUSIONS These data indicated that TULP1 interacts with Dynamin-1 and suggested that TULP1 is involved in the vesicular trafficking of photoreceptor proteins, both at the nerve terminal during synaptic transmission and at the inner segment during protein translocation to the outer segment. These results also raised the possibility that normal synaptic function requires TULP1, and they motivate a closer look at synaptic architecture in the developing tulp1-/- retina.
Collapse
Affiliation(s)
- Quansheng Xi
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Gayle J. T. Pauer
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Sherry L. Ball
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Cleveland Veterans Administration Medical Center, Cleveland, Ohio
| | - Mary Rayborn
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Joe G. Hollyfield
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Cleveland Veterans Administration Medical Center, Cleveland, Ohio
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - John W. Crabb
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Stephanie A. Hagstrom
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
41
|
Fliesler SJ, Vaughan DK, Jenewein EC, Richards MJ, Nagel BA, Peachey NS. Partial rescue of retinal function and sterol steady-state in a rat model of Smith-Lemli-Opitz syndrome. Pediatr Res 2007; 61:273-8. [PMID: 17314682 PMCID: PMC2072818 DOI: 10.1203/pdr.0b013e318030d1cf] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Smith-Lemli-Opitz syndrome (SLOS) is the first-described in a growing family of hereditary defects in cholesterol biosynthesis, and presents with a spectrum of serious abnormalities, including multiple dysmorphologies, failure to thrive, cognitive and behavioral impairments, and retinopathy. Using a pharmacologically induced rat model of SLOS that exhibits key hallmarks of the disease, including progressive retinal degeneration and dysfunction, we show that a high-cholesterol diet can substantially correct abnormalities in retinal sterol composition, with concomitant improvement of visual function, particularly within the cone pathway. Although histologic degeneration still occurred, a high-cholesterol diet reduced the number of pyknotic photoreceptor nuclei, relative to animals on a cholesterol-free diet. These findings demonstrate that cholesterol readily crosses the blood-retina barrier (unlike the blood-brain barrier) and suggest that cholesterol supplementation may be efficacious in treating SLOS-associated retinopathy.
Collapse
Affiliation(s)
- Steven J Fliesler
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Wen R, Song Y, Kjellstrom S, Tanikawa A, Liu Y, Li Y, Zhao L, Bush RA, Laties AM, Sieving PA. Regulation of rod phototransduction machinery by ciliary neurotrophic factor. J Neurosci 2007; 26:13523-30. [PMID: 17192435 PMCID: PMC6674721 DOI: 10.1523/jneurosci.4021-06.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) promotes photoreceptor survival but also suppresses electroretinogram (ERG) responses. This has caused concerns about whether CNTF is detrimental to the function of photoreceptors because it is considered to be a potential treatment for retinal degenerative disorders. Here we report that the suppression of ERG responses is attributable to negative regulation of the phototransduction machinery in rod photoreceptors. Intravitreal injection of recombinant human CNTF protein in rat results in a series of biochemical and morphological changes in rod photoreceptors. CNTF induces a decrease in rhodopsin expression and an increase in arrestin level. Morphologically, CNTF treatment causes a shortening of rod outer segments (ROS). All of these changes are fully reversible. The lower rhodopsin level and shortened ROS reduce the photon catch of rods. Less rhodopsin and more arrestin dramatically increase the arrestin-to-rhodopsin ratio so that more arrestin molecules are available to quench the photoexcited rhodopsin. The overall effect of CNTF is to negatively regulate the phototransduction machinery, which reduces the photoresponsiveness of rods, resulting in lower ERG amplitude at a given intensity of light stimulus. The CNTF-induced changes in rods are similar to those in light-induced photoreceptor plasticity. Whether CNTF-induced changes in rods are through the same mechanism that mediates light-induced photoreceptor plasticity remains to be answered.
Collapse
Affiliation(s)
- Rong Wen
- Department of Ophthalmology, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cheng H, Aleman TS, Cideciyan AV, Khanna R, Jacobson SG, Swaroop A. In vivo function of the orphan nuclear receptor NR2E3 in establishing photoreceptor identity during mammalian retinal development. Hum Mol Genet 2006; 15:2588-602. [PMID: 16868010 PMCID: PMC1592580 DOI: 10.1093/hmg/ddl185] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rod and cone photoreceptors in mammalian retina are generated from common pool(s) of neuroepithelial progenitors. NRL, CRX and NR2E3 are key transcriptional regulators that control photoreceptor differentiation. Mutations in NR2E3, a rod-specific orphan nuclear receptor, lead to loss of rods, increased density of S-cones and supernormal S-cone-mediated vision in humans. To better understand its in vivo function, NR2E3 was expressed ectopically in the Nrl-/- retina, where post-mitotic precursors fated to be rods develop into functional S-cones similar to the human NR2E3 disease. Expression of NR2E3 in the Nrl-/- retina completely suppressed cone differentiation and resulted in morphologically rod-like photoreceptors, which were however not functional. Gene profiling of FACS-purified photoreceptors confirmed the role of NR2E3 as a strong suppressor of cone genes but an activator of only a subset of rod genes (including rhodopsin) in vivo. Ectopic expression of NR2E3 in cone precursors and differentiating S-cones of wild-type retina also generated rod-like cells. The dual regulatory function of NR2E3 was not dependent upon the presence of NRL and/or CRX, but on the timing and level of its expression. Our studies reveal a critical role of NR2E3 in establishing functional specificity of NRL-expressing photoreceptor precursors during retinal neurogenesis.
Collapse
Affiliation(s)
- Hong Cheng
- Neuroscience Graduate Program
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center and
| | - Tomas S. Aleman
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ritu Khanna
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center and
| | | | - Anand Swaroop
- Neuroscience Graduate Program
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center and
- Department of Human Genetics, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USA and
- *To whom correspondence should be addressed: Tel: +1 7347633731; Fax: +1 7346470228;
| |
Collapse
|
44
|
Richards A, Emondi AA, Rohrer B. Long-term ERG analysis in the partially light-damaged mouse retina reveals regressive and compensatory changes. Vis Neurosci 2006; 23:91-7. [PMID: 16597353 DOI: 10.1017/s0952523806231080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 11/15/2005] [Indexed: 01/01/2023]
Abstract
Most of the blinding retinopathies are due to progressive photoreceptor degeneration. Treatment paradigms that are currently being investigated include strategies to either halt or slow down photoreceptor cell loss, or to replace useful vision with retinal prosthesis. However, more information is required on the pathophysiological changes of the diseased retina, in particular the inner retina, that occur as a consequence of photoreceptor cell loss. Here we wished to use light damage as a stoppable insult to determine the structural and functional consequences on inner and outer retina, with the overall goal of determining whether survival of a functional inner retina is possible even if the outer retina is damaged. Mice were exposed to a 20-day light-damage period. Electroretinograms (ERG) and morphology were used to assess subsequent recovery. Outer retina was monitored analyzing a-waves, which represent photoreceptor cell responses, and histology. Integrity of the inner retina was monitored, analyzing b-waves and oscillatory potentials (OP1-OP4) and immunohistochemical markers for known proteins of the inner retina. All six ERG components were significantly suppressed with respect to amplitudes and kinetics, but stabilized in a wave-dependent manner within 40-70 days after the end of light exposure. As expected, damage of the outer retina was permanent. However, function of the inner retina was found to recover significantly. While b-wave amplitudes remained suppressed to 60% of their baseline values, OP amplitudes recovered completely, and implicit times of all components of the inner retina (b-wave and OP1-OP4) recovered to a level close to baseline values. Histological analyses confirmed the lack of permanent damage to the inner retina. In summary, these data suggests that the inner retina has the potential for significant recovery as well as plasticity if treatment is available to stop the deterioration of the outer retina.
Collapse
Affiliation(s)
- Adam Richards
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
45
|
Maaswinkel H, Riesbeck LE, Riley ME, Carr AL, Mullin JP, Nakamoto AT, Li L. Behavioral screening for nightblindness mutants in zebrafish reveals three new loci that cause dominant photoreceptor cell degeneration. Mech Ageing Dev 2006; 126:1079-89. [PMID: 15922406 DOI: 10.1016/j.mad.2005.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/21/2005] [Accepted: 03/22/2005] [Indexed: 11/19/2022]
Abstract
Here we report three dominant nightblindness mutations in zebrafish: nightblindness e (nbe), nightblindness f (nbf) and nightblindness g (nbg). The mutants were isolated in the F1 generation of N-ethyl-N-nitrosourea (ENU) mutagenized zebrafish using a behavioral assay based on visually mediated escape responses. Subsequently, electroretinographic (ERG) recordings were made, and histological sections were screened for degenerative processes. For each mutant line, correlation analysis between behavioral, ERG and histological parameters was performed, and their relationships were determined by either calculating the Pearson correlation coefficient or by ANOVA. nbe is characterized by severe rod outer segments (ROS) degeneration. The degeneration correlates weakly with behavioral threshold and ERG b-wave amplitude, however, behavioral threshold correlates strongly with ERG b-wave. nbf is characterized by a dual histological pathology: patchy ROS-degeneration and 'gaps' homogeneously distributed over the outer nuclei layer (ONL) and between cone outer segments (COS). The correlations between histological pathology and behavioral threshold, and between behavioral threshold and ERG b-wave amplitude are obvious, but the correlation between histology and b-wave amplitude is less prominent. nbg is characterized by moderate ROS degeneration and moderate correlation between histology and behavioral threshold. Interestingly, behavioral threshold correlated inversely with ERG b-wave amplitude and threshold. Thus, contrary to what is normally seen in other nightblindness mutants, in nbg, the fish with the lowest behavioral threshold had the smallest b-waves amplitudes and the highest b-wave threshold. In our interpretation, the major impairment in nbe is photoreceptor-specific. In nbf, both photoreceptor degeneration and altered post-photoreceptor signaling are responsible for the behavioral deficit. In nbg, we find hypersensitivity at a post-photoreceptoral level concurrently with behavioral impairment.
Collapse
Affiliation(s)
- Hans Maaswinkel
- Department of Biological Sciences, University of Notre Dame, 107 Galvin Life Science Center, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Jones BW, Watt CB, Marc RE. Retinal remodelling. Clin Exp Optom 2006; 88:282-91. [PMID: 16255687 DOI: 10.1111/j.1444-0938.2005.tb06712.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 07/01/2005] [Accepted: 07/15/2005] [Indexed: 11/27/2022] Open
Abstract
Retinal degenerative diseases that progress through loss of photoreceptors initiate a sequence of events that culminates in negative remodelling of the retina. Initially, photoreceptor loss ablates glutamatergic signalling to the neural retina and eliminates coordinate Ca++-coupled homeostatic signalling. Retinal neurons react to this loss of glutamatergic input through retinal rewiring and migration of neurons throughout the axis of the retina. All diseases that kill photoreceptors trigger retinal remodelling as the final common pathway and cell death is a common feature. Retinal remodelling resembles CNS pathologic remodelling and constitutes a major challenge to all rescue strategies.
Collapse
Affiliation(s)
- Bryan W Jones
- Moran Eye Center, 75 N Medical Drive, Salt Lake City, Utah, 84132, USA.
| | | | | |
Collapse
|
47
|
Ueno S, Kondo M, Miyata K, Hirai T, Miyata T, Usukura J, Nishizawa Y, Miyake Y. Physiological function of S-cone system is not enhanced in rd7 mice. Exp Eye Res 2005; 81:751-8. [PMID: 16005871 DOI: 10.1016/j.exer.2005.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2004] [Revised: 04/12/2005] [Accepted: 04/23/2005] [Indexed: 10/25/2022]
Abstract
The rd7mouse is a mutant mouse with a relatively late development of retinal degeneration. Earlier studies have shown that rd7 mice have a distinctive pattern of retinal dysplasia with an increased number of cone cells, particularly those with S (short wavelength)-opsin immunoreactivity. These alterations of the rd7 retina are caused by a mutation in the photoreceptor cell-specific nuclear receptor gene, Nr2e3, which is involved in the signaling pathway regulating photoreceptor cell differentiation, cell maintenance, and cell-cell interactions. The purpose of this study was to determine the physiological properties of the rd7 retina using electroretinographic (ERG) techniques. We found that the maximal a-wave amplitude of the ERG in rd7 mice was already reduced to half of the congenic controls at 6 weeks of age with normal phototransduction sensitivity. The photopic ERGs of rd7 mice were not supernormal, and the amplitudes of the S-cone ERGs were not significantly different from those recorded in controls. These results suggested that even though the number of cones expressing S-opsin is increased, the physiological function of the S-cone system is not enhanced in rd7 mice.
Collapse
Affiliation(s)
- Shinji Ueno
- Department of Ophthalmology, Nagoya University School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Takahashi T, Machida S, Masuda T, Mukaida Y, Tazawa Y. Functional changes in rod and cone pathways after photoreceptor loss in light-damaged rats. Curr Eye Res 2005; 30:703-13. [PMID: 16109651 DOI: 10.1080/02713680590968592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To determine the functional changes in the rod and cone pathways after photoreceptor loss by continuous light exposure. METHODS Fifty-four male Sprague-Dawley rats were exposed to diffuse fluorescent light of 2000 lux for 24 or 48 hr. Two weeks after the light exposure, full-field scotopic and photopic electroretinograms (ERGs) were elicited by different stimulus intensities with a maximum luminance of 0.84 log cd-s/m2. The amplitudes of the a- and b-waves of the scotopic ERGs and the b-wave of the photopic ERGs were measured. The animals were sacrificed after the ERG recordings, and the number of surviving rod and cone nuclei in the outer nuclear layer was counted. RESULTS The logarithm (log) of the amplitudes of the maximum rod a-wave (rod Va(max)) and b-wave (rod Vb(max)) was reduced monotonically with a decrease in the rod nucleus counts (p < 0.0001). The regression line for the rod Va(max) decrease was significantly steeper than that for the rod Vb(max) (p < 0.005). The maximum b-wave amplitudes of the photopic ERGs (cone Vb(max)) were significantly correlated with the number of cone nuclei in a log-linear fashion. The slopes of the regression lines for the rod Vb(max) and cone Vb(max) were 0.0067 and 0.0140, respectively, which indicates that the amplitude of the cone b-wave was more severely affected than that of the rod b-waves by light-induced photoreceptor degeneration (p < 0.005). CONCLUSIONS The amplitudes of the rod and cone ERGs were correlated with rod and cone nuclei counts in a log-linear fashion in light-damaged rats. The functional loss from the photoreceptor death had a greater effect on the cone pathway than on the rod pathway when the retinal function was assessed by the b-wave.
Collapse
Affiliation(s)
- Tomomi Takahashi
- Department of Ophthalmology, Iwate Medical University, School of Medicine, Morioka, Iwate, Japan
| | | | | | | | | |
Collapse
|
49
|
Jones BW, Marc RE. Retinal remodeling during retinal degeneration. Exp Eye Res 2005; 81:123-37. [PMID: 15916760 DOI: 10.1016/j.exer.2005.03.006] [Citation(s) in RCA: 313] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Accepted: 03/17/2005] [Indexed: 11/28/2022]
Abstract
Retinal degenerations, regardless of the initiating event or gene defect, often result in a loss of photoreceptors. This formal deafferentation of the neural retina eliminates the intrinsic glutamatergic drive of the sensory retina and, perhaps more importantly, removes coordinated Ca++-coupled signaling to the neural retina. As in other central nervous system degenerations, deafferentation activates remodeling. Neuronal remodeling is the common fate of all photoreceptor degenerations.
Collapse
Affiliation(s)
- Bryan W Jones
- Moran Eye Center, 75 North Medical Drive, Rm 3339A, Salt Lake City, UT 84132, USA.
| | | |
Collapse
|
50
|
Brzezinski JA, Brown NL, Tanikawa A, Bush RA, Sieving PA, Vitaterna MH, Takahashi JS, Glaser T. Loss of circadian photoentrainment and abnormal retinal electrophysiology in Math5 mutant mice. Invest Ophthalmol Vis Sci 2005; 46:2540-51. [PMID: 15980246 PMCID: PMC1570190 DOI: 10.1167/iovs.04-1123] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine how the absence of retinal ganglion cells (RGCs) in Math5 (Atoh7) mutant mice affects circadian behavior and retinal function. METHODS The wheel-running behavior of wild-type and Math5 mutant mice was measured under various light-dark cycle conditions. To evaluate retinal input to the suprachiasmatic nuclei (SCN) anatomically, the retinohypothalamic tracts were labeled in vivo. To assess changes in retinal function, corneal flash electroretinograms (ERGs) from mutant and wild-type mice were compared under dark- and light-adapted conditions. Alterations in retinal neuron populations were evaluated quantitatively and with cell-type-specific markers. RESULTS The Math5-null mice did not entrain to light and exhibited free-running circadian behavior with a mean period (23.6 +/- 0.15 hours) that was indistinguishable from that of wild-type mice (23.4 +/- 0.19 hours). The SCN showed no anterograde labeling with a horseradish peroxidase-conjugated cholera toxin B (CT-HRP) tracer. ERGs recorded from mutant mice had diminished scotopic a- and b-wave and photopic b-wave amplitudes. The scotopic b-wave was more severely affected than the a-wave. The oscillatory potentials (OPs) and scotopic threshold response (STR) were also reduced. Consistent with these ERG findings, a pan-specific reduction in the number of bipolar cells and a smaller relative decrease in the number of rods in mutant mice were observed. CONCLUSIONS Math5-null mice are clock-blind and have no RGC projections to the SCN. RGCs are thus essential for photoentrainment in mice, but are not necessary for the development or intrinsic function of the SCN clock. RGCs are not required to generate any of the major ERG waveforms in mice, including the STR, which is produced by ganglion cells in some other species. The diminished amplitude of b-wave, OPs, and STR components in Math5 mutants is most likely caused by the decreased abundance of retinal interneurons.
Collapse
Affiliation(s)
- Joseph A. Brzezinski
- From the Departments of Human Genetics and
- Internal Medicine, University of Michigan, Ann Arbor, Michigan; the
| | - Nadean L. Brown
- Divisions of Developmental Biology and
- Ophthalmology, Children’s Hospital Research Foundation, Department of Pediatrics, University of Cincinnati Medical School, Cincinnati, Ohio
| | - Atsuhiro Tanikawa
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland
| | - Ronald A. Bush
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland
| | - Paul A. Sieving
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland
- National Eye Institute, Bethesda, Maryland
| | - Martha H. Vitaterna
- Center for Functional Genomics, Northwestern University, Evanston, Illinois; and the
| | - Joseph S. Takahashi
- Center for Functional Genomics, Northwestern University, Evanston, Illinois; and the
- Department of Neurobiology and Physiology, Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois
| | - Tom Glaser
- From the Departments of Human Genetics and
- Internal Medicine, University of Michigan, Ann Arbor, Michigan; the
- Corresponding author: Tom Glaser, Departments of Internal Medicine and Human Genetics, The University of Michigan, 1150 W. Medical Center Drive, 4520 MSRB I Box 0651, Ann Arbor, MI 48109;
| |
Collapse
|