1
|
Norcia AM. Development of human binocular vision: An electrophysiological perspective. Vision Res 2025; 231:108593. [PMID: 40239434 DOI: 10.1016/j.visres.2025.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
Vision with two eyes confers evolutionary advantages in terms of field of view, binocular summation and the sense of depth from disparity and motion. This review summarizes our current knowledge of the development of binocular vision through the lens of Visual Evoked Potentials (VEPs). The review begins with early studies of binocular summation that compared monocular to binocular VEP amplitude ratios. This is followed by a description of more definitive indices of binocular interaction afforded by studies of dichoptic masking and intermodulation. We then describe a striking immaturity of binocular motion processing - the developmental motion asymmetry - a monocular nasalward/temporalward asymmetry of motion processing that reflects the child's developmental history of normal binocular interaction. We end with a review of the development of sensitivity to the primary cue for depth - horizontal retinal disparity. Together, the available results paint a picture of early competency in some respects, combined with both quantitative and important qualitative differences from the adult that suggest the presence of distinct processing mechanisms with different developmental sequences.
Collapse
Affiliation(s)
- Anthony M Norcia
- Wu Tsai Neurosciences Institute, Department of Psychology, Stanford University, 290 Jane Stanford Way, Stanford, CA, USA.
| |
Collapse
|
2
|
Takahashi M, Veale R. Pathways for Naturalistic Looking Behavior in Primate I: Behavioral Characteristics and Brainstem Circuits. Neuroscience 2023; 532:133-163. [PMID: 37776945 DOI: 10.1016/j.neuroscience.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Organisms control their visual worlds by moving their eyes, heads, and bodies. This control of "gaze" or "looking" is key to survival and intelligence, but our investigation of the underlying neural mechanisms in natural conditions is hindered by technical limitations. Recent advances have enabled measurement of both brain and behavior in freely moving animals in complex environments, expanding on historical head-fixed laboratory investigations. We juxtapose looking behavior as traditionally measured in the laboratory against looking behavior in naturalistic conditions, finding that behavior changes when animals are free to move or when stimuli have depth or sound. We specifically focus on the brainstem circuits driving gaze shifts and gaze stabilization. The overarching goal of this review is to reconcile historical understanding of the differential neural circuits for different "classes" of gaze shift with two inconvenient truths. (1) "classes" of gaze behavior are artificial. (2) The neural circuits historically identified to control each "class" of behavior do not operate in isolation during natural behavior. Instead, multiple pathways combine adaptively and non-linearly depending on individual experience. While the neural circuits for reflexive and voluntary gaze behaviors traverse somewhat independent brainstem and spinal cord circuits, both can be modulated by feedback, meaning that most gaze behaviors are learned rather than hardcoded. Despite this flexibility, there are broadly enumerable neural pathways commonly adopted among primate gaze systems. Parallel pathways which carry simultaneous evolutionary and homeostatic drives converge in superior colliculus, a layered midbrain structure which integrates and relays these volitional signals to brainstem gaze-control circuits.
Collapse
Affiliation(s)
- Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental, Sciences, Tokyo Medical and Dental University, Japan.
| | - Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
3
|
Wagner H, Pappe I, Brill S, Nalbach HO. Development of the horizontal optocollic reflex in juvenile barn owls (Tyto furcata pratincola). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:479-492. [PMID: 35695937 PMCID: PMC9250920 DOI: 10.1007/s00359-022-01555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 10/25/2022]
Abstract
Adult barn owls and primates possess an almost symmetric monocular rotational horizontal optocollic reflex. In primates, the reflex is initially asymmetric and becomes symmetric with time after birth. The condition in barn owls has not been studied so far. Here, we present data on the development of this reflex in this bird. We tested juvenile barn owls from the time before they open their eyes after hatching to the time they reach adult feather length. Wide-field visual patterns served as stimuli. They were presented at different rotational speeds in binocular and monocular settings. The binocular horizontal optocollic responses of juvenile barn owls were symmetric and adult-like on the first day that the birds responded to the stimulus. The monocular responses showed different rates of development in respect to stimulus velocity and stimulus direction. For velocities up to 20 deg/s, the monocular reflex was also adult-like on the first day that the birds responded to the stimulus. An initially higher asymmetry for 30 deg/s compared to adults disappeared within about two weeks. The development at even higher velocities remained unclear.
Collapse
Affiliation(s)
- Hermann Wagner
- RWTH Aachen University, Institut für Biologie II, Worringerweg 3, D-52074, Aachen, Germany.
- Max-Planck-Institut für Biologische Kybernetik, Max-Planck-Ring 11, D-72076, Tübingen, Germany.
| | - Ina Pappe
- Universitätsklinik Für Anaesthesiologie, Waldhörnlestrasse 22, D-72072, Tübingen, Germany
- Max-Planck-Institut für Biologische Kybernetik, Max-Planck-Ring 11, D-72076, Tübingen, Germany
| | - Sandra Brill
- RWTH Aachen University, Institut für Biologie II, Worringerweg 3, D-52074, Aachen, Germany
| | - Hans-Ortwin Nalbach
- Max-Planck-Institut für Biologische Kybernetik, Max-Planck-Ring 11, D-72076, Tübingen, Germany
| |
Collapse
|
4
|
Wagner H, Pappe I, Nalbach HO. Optocollic responses in adult barn owls (Tyto furcata). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:239-251. [PMID: 34812911 PMCID: PMC8934767 DOI: 10.1007/s00359-021-01524-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/05/2022]
Abstract
Barn owls, like primates, have frontally oriented eyes, which allow for a large binocular overlap. While owls have similar binocular vision and visual-search strategies as primates, it is less clear whether reflexive visual behavior also resembles that of primates or is more similar to that of closer related, but lateral-eyed bird species. Test cases are visual responses driven by wide-field movement: the optokinetic, optocollic, and optomotor responses, mediated by eye, head and body movements, respectively. Adult primates have a so-called symmetric horizontal response: they show the same following behavior, if the stimulus, presented to one eye only, moves in the nasal-to-temporal direction or in the temporal-to-nasal direction. By contrast, lateral-eyed birds have an asymmetric response, responding better to temporal-to-nasal movement than to nasal-to-temporal movement. We show here that the horizontal optocollic response of adult barn owls is less asymmetric than that in the chicken for all velocities tested. Moreover, the response is symmetric for low velocities (< 20 deg/s), and similar to that of primates. The response becomes moderately asymmetric for middle-range velocities (20-40 deg/s). A definitive statement for the complex situation for higher velocities (> 40 deg/s) is not possible.
Collapse
Affiliation(s)
- Hermann Wagner
- Max-Planck-Institut für Biologische Kybernetik, Max-Planck-Ring 11, 72076, Tübingen, Germany.
- Institut für Biologie II, RWTH Aachen, Worringerweg 3, 52074, Aachen, Germany.
| | - Ina Pappe
- Max-Planck-Institut für Biologische Kybernetik, Max-Planck-Ring 11, 72076, Tübingen, Germany
- Universitätsklinik für Anaesthesiologie, Waldhörnlestrasse 22, 72072, Tübingen, Germany
| | - Hans-Ortwin Nalbach
- Max-Planck-Institut für Biologische Kybernetik, Max-Planck-Ring 11, 72076, Tübingen, Germany
| |
Collapse
|
5
|
Dehmelt FA, von Daranyi A, Leyden C, Arrenberg AB. Evoking and tracking zebrafish eye movement in multiple larvae with ZebEyeTrack. Nat Protoc 2019; 13:1539-1568. [PMID: 29988103 DOI: 10.1038/s41596-018-0002-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Reliable measurement of spontaneous and evoked eye movement is critical for behavioral vision research. Zebrafish are increasingly used as a model organism for visual neural circuits, but ready-to-use eye-tracking solutions are scarce. Here, we present a protocol for automated real-time measurement of angular horizontal eye position in up to six immobilized larval fish using a custom-built LabVIEW-based software, ZebEyeTrack. We provide its customizable source code, as well as a streamlined and compiled version, ZebEyeTrack Light. The full version of ZebEyeTrack controls all required hardware and synchronizes six essential aspects of the experiment: (i) stimulus design; (ii) visual stimulation with moving bars; (ii) eye detection and tracking, as well as general motion detection; (iv) real-time analysis; (v) eye-position-dependent closed-loop event control; and (vi) recording of external event times. This includes optional integration with external hardware such as lasers and scanning microscopes. Once installation is complete, experiments, including stimulus design, can be completed in <10 min, and recordings can last anywhere between seconds and many hours. Results include digitized angular eye positions and hardware status, which can be used to compute tuning curves, optokinetic gain, and other custom data analysis. After the experiment, or based on existing videos, optokinetic response (OKR) performance can be analyzed semi-automatically via the graphical user interface, and results can be exported. ZebEyeTrack has been used successfully for psychophysics experiments, for optogenetic stimulation, and in combination with calcium imaging.
Collapse
Affiliation(s)
- Florian A Dehmelt
- Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Adam von Daranyi
- Werner Reichardt Centre for Integrative Neuroscience, Central Office System Administration, University of Tübingen, Tübingen, Germany
| | - Claire Leyden
- Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tübingen, Tübingen, Germany.,Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Joshi AC, Agaoglu MN, Das VE. Comparison of Naso-temporal Asymmetry During Monocular Smooth Pursuit, Optokinetic Nystagmus, and Ocular Following Response in Strabismic Monkeys. Strabismus 2017; 25:47-55. [PMID: 28463578 DOI: 10.1080/09273972.2017.1317821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE Under monocular viewing conditions, humans and monkeys with infantile strabismus exhibit asymmetric naso-temporal (N-T) responses to motion stimuli. The goal of this study was to compare and contrast these N-T asymmetries during 3 visually mediated eye tracking tasks-optokinetic nystagmus (OKN), smooth pursuit (SP) response, and ocular following responses (OFR). METHODS Two adult strabismic monkeys were tested under monocular viewing conditions during OKN, SP, or OFR stimulation. OKN stimulus was unidirectional motion of a 30°x30° random dot pattern at 20°, 40°, or 80°/s for 1 minute. OFR stimulus was brief (200 ms) unidirectional motion of a 38°x28°whitenoise at 20°, 40°, or 80°/s. SP stimulus consisted of foveal step-ramp target motion at 10°, 20°, or 40°/s. RESULTS Mean nasalward steady state gain (0.87±0.16) was larger than temporalward gain (0.67±0.19) during monocular OKN (P<0.001). In monocular OFR, the asymmetry is manifested as a difference in OFR velocity gain (nasalward: 0.33±0.19, temporalward: 0.22±0.12; P=0.007). During monocular SP, mean nasal gain (0.97±0.2) was larger than temporal gain (0.66±0.14; P<0.001) and the mean nasalward acceleration during pursuit initiation (156±61°/s2) was larger than temporalward acceleration (118±77°/s2; P=0.04). Comparison of N-T asymmetry ratio across the 3 conditions using ANOVA showed no significant difference. CONCLUSIONS N-T asymmetries are identified in all 3 visual tracking paradigms in both monkeys with either eye viewing. Our data are consistent with the current hypothesis for the mechanism for N-T asymmetry that invokes an imbalance in cortical drive to brainstem circuits.
Collapse
Affiliation(s)
- Anand C Joshi
- a College of Optometry , University of Houston , Houston , TX
| | | | - Vallabh E Das
- a College of Optometry , University of Houston , Houston , TX
| |
Collapse
|
7
|
Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity. J Neurosci 2015; 35:8004-20. [PMID: 25995483 DOI: 10.1523/jneurosci.0089-15.2015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Amacrine interneurons, which are highly diversified in morphological, neurochemical, and physiological features, play crucial roles in visual information processing in the retina. However, the specification mechanisms and functions in vision for each amacrine subtype are not well understood. We found that the Prdm13 transcriptional regulator is specifically expressed in developing and mature amacrine cells in the mouse retina. Most Prdm13-positive amacrine cells are Calbindin- and Calretinin-positive GABAergic or glycinergic neurons. Absence of Prdm13 significantly reduces GABAergic and glycinergic amacrines, resulting in a specific defect of the S2/S3 border neurite bundle in the inner plexiform layer. Forced expression of Prdm13 distinctively induces GABAergic and glycinergic amacrine cells but not cholinergic amacrine cells, whereas Ptf1a, an upstream transcriptional regulator of Prdm13, induces all of these subtypes. Moreover, Prdm13-deficient mice showed abnormally elevated spatial, temporal, and contrast sensitivities in vision. Together, these results show that Prdm13 regulates development of a subset of amacrine cells, which newly defines an amacrine subtype to negatively modulate visual sensitivities. Our current study provides new insights into mechanisms of the diversification of amacrine cells and their function in vision.
Collapse
|
8
|
Ghasia F, Tychsen L. Horizontal and vertical optokinetic eye movements in macaque monkeys with infantile strabismus: directional bias and crosstalk. Invest Ophthalmol Vis Sci 2014; 55:265-74. [PMID: 24204052 PMCID: PMC3891268 DOI: 10.1167/iovs.13-12330] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/28/2014] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Optokinetic eye movements stabilize gaze by tracking motion of the visual scene during sustained movement of a creature's body. The purpose of this study was to describe vertical and horizontal optokinetic nystagmus (OKN) in nonhuman primates (NHPs) with normal binocular vision, and to compare their responses to NHPs with binocular maldevelopment induced by prism-rearing. METHODS Optical strabismus was created in infant macaques (n = 6) by fitting them with prism goggles. The goggles were removed after 3, 6, 9, or 12 weeks to determine the effects of increasing durations of binocular noncorrespondence. Infant NHPs (n = 2) reared wearing plano goggles served as controls. OKN was evoked by horizontal or vertical stripe motion. Eye movements were recorded by using binocular search coils. RESULTS NHPs reared in early infancy under conditions of binocular noncorrespondence for durations of 6 weeks or longer had horizontal OKN responses biased directionally in favor of nasalward motion. NHPs reared with prisms for any duration had vertical OKN responses more biased than normal NHPs in favor of upward motion. Diagonal "crosstalk" during horizontal or vertical OKN (vertical slow phases during horizontal stimulus motion, and vice versa) was present to some degree in all NHPs. However, crosstalk-upward during horizontal OKN and nasalward during vertical OKN-was most pronounced in NHPs reared with prism for durations long enough to induce a permanent esotropic strabismus (longer than 3 weeks). CONCLUSIONS With fusion maldevelopment, the OKN pathways retain a nasalward and upward bias. During forward locomotion, optic flow excites temporalward and downward visual motion in each eye. The OKN biases would act in counterbalance. The biases attenuate with emergence of fusion, but may persist and crosstalk when fusion is impeded.
Collapse
Affiliation(s)
- Fatema Ghasia
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Lawrence Tychsen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
9
|
Abstract
The horizontal optokinetic nystagmus (hOKN) in primates is immature at birth. To elucidate the early functional state of the visual pathway for hOKN, retinal slip neurons were recorded in the nucleus of the optic tract and dorsal terminal nucleus (NOT-DTN) of 4 anesthetized infant macaques. These neurons were direction selective for ipsiversive stimulus movement shortly after birth [postnatal day 9 (P9)], although at a lower direction selectivity index (DSI). The DSI in the older infants (P12, P14, P60) was not different from adults. A total of 96% of NOT-DTN neurons in P9, P12, and P14 were binocular, however, significantly more often dominated by the contralateral eye than in adults. Already in the youngest animals, NOT-DTN neurons were well tuned to different stimulus velocities; however, tuning was truncated toward lower stimulus velocities when compared with adults. As early as at P12, electrical stimulation in V1 elicited orthodromic responses in the NOT-DTN. However, the incidence of activated neurons was much lower in infants (40-60% of the tested NOT-DTN neurons) than in adults (97%). Orthodromic latencies from V1 were significantly longer in P12-P14 (x = 12.2 ± 8.9 ms) than in adults (x = 3.51 ± 0.81 ms). At the same age, electrical stimulation in motion-sensitive area MT was more efficient in activating NOT-DTN neurons (80% of the tested cells) and yielded shorter latencies than in V1 (x = 7.8 ± 3.02 ms; adult x = 2.99 ± 0.85 ms). The differences in discharge rate between neurons in the NOT-DTN contra- and ipsilateral to the stimulated eye are equivalent to the gain asymmetry between monocularly elicited OKN in temporonasal and nasotemporal direction at the various ages.
Collapse
|
10
|
Braddick O, Atkinson J. Development of human visual function. Vision Res 2011; 51:1588-609. [PMID: 21356229 DOI: 10.1016/j.visres.2011.02.018] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 11/19/2022]
Abstract
By 1985 newly devised behavioral and electrophysiological techniques had been used to track development of infants' acuity, contrast sensitivity and binocularity, and for clinical evaluation of developing visual function. This review focus on advances in the development and assessment of infant vision in the following 25 years. Infants' visual cortical function has been studied through selectivity for orientation, directional motion and binocular disparity, and the control of subcortical oculomotor mechanisms in fixation shifts and optokinetic nystagmus, leading to a model of increasing cortical dominance over subcortical pathways. Neonatal face processing remains a challenge for this model. Recent research has focused on development of integrative processing (hyperacuity, texture segmentation, and sensitivity to global form and motion coherence) in extra-striate visual areas, including signatures of dorsal and ventral stream processing. Asynchronies in development of these two streams may be related to their differential vulnerability in both acquired and genetic disorders. New methods and approaches to clinical disorders are reviewed, in particular the increasing focus on paediatric neurology as well as ophthalmology. Visual measures in early infancy in high-risk children are allowing measures not only of existing deficits in infancy but prediction of later visual and cognitive outcome. Work with early cataract and later recovery from blinding disorders has thrown new light on the plasticity of the visual system and its limitations. The review concludes with a forward look to future opportunities provided by studies of development post infancy, new imaging and eye tracking methods, and sampling infants' visual ecology.
Collapse
Affiliation(s)
- Oliver Braddick
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
11
|
Seno T, Ito H, Sunaga S, Nakamura S. Temporonasal motion projected on the nasal retina underlies expansion–contraction asymmetry in vection. Vision Res 2010; 50:1131-9. [DOI: 10.1016/j.visres.2010.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 03/19/2010] [Accepted: 03/26/2010] [Indexed: 11/29/2022]
|
12
|
Hou C, Gilmore RO, Pettet MW, Norcia AM. Spatio-temporal tuning of coherent motion evoked responses in 4-6 month old infants and adults. Vision Res 2009; 49:2509-17. [PMID: 19679146 DOI: 10.1016/j.visres.2009.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 11/26/2022]
Abstract
Motion cues provide a rich source of information about translations of the observer through the environment as well as the movements of objects and surfaces. While the direction of motion can be extracted locally these local measurements are, in general, insufficient for determining object and surface motions. To study the development of local and global motion processing mechanisms, we recorded Visual Evoked Potentials (VEPs) in response to dynamic random dot displays that alternated between coherent rotational motion and random motion at 0.8 Hz. We compared the spatio-temporal tuning of the evoked response in 4-6 months old infants to that of adults by recording over a range of dot displacements and temporal update rates. Responses recorded at the frequency of the coherent motion modulation were tuned for displacement at the occipital midline in both adults in infants. Responses at lateral electrodes were tuned for speed in adults, but not in infants. Infant responses were maximal at a larger range of spatial displacement than that of adults. In contrast, responses recorded at the dot-update rate showed a more similar parametric displacement tuning and scalp topography in infants and adults. Taken together, our results suggest that while local motion processing is relatively mature at 4-6 months, global integration mechanisms exhibit significant immaturities at this age.
Collapse
Affiliation(s)
- C Hou
- Smith-Kettlewell Eye Research Institute, San Francisco, CA 94115, United States of America.
| | | | | | | |
Collapse
|
13
|
Abstract
We studied the development of sensitivity to complex motion using plaid patterns. We hypothesized, based on neurophysiological data showing a dearth of pattern direction-selective (PDS) cells in area medial temporal (MT) of infant macaques, that sensitivity to pattern motion would develop later than other forms of global motion sensitivity. We tested 10 macaque monkeys (Macaca nemestrina) ranging in age from 7 weeks to 109-160 weeks (adult). The monkeys discriminated horizontal from vertical pattern motion; sensitivity for one-dimensional (1D) direction discrimination and detection were tested as control tasks. The results show that pattern motion discrimination ability develops relatively late, between 10 and 18 weeks, while performance on the 1D control tasks was excellent at the earliest test ages. Plaid discrimination performance depends on both the speed and spatial scale of the underlying patterns. However, development is not limited by contrast sensitivity. These results support the idea that pattern motion perception depends on a different mechanism than other forms of global motion perception and are consistent with the idea that the representation of PDS neurons in MT may limit the development of complex motion perception.
Collapse
|
14
|
Seno T, Sato T. Positional and directional preponderances in vection. Exp Brain Res 2008; 192:221-9. [DOI: 10.1007/s00221-008-1575-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
|
15
|
Abstract
In macaque monkeys, an optokinetic response (OKR) can be elicited monocularly both in temporonasal and, albeit weaker, in nasotemporal direction very early after birth. The further maturation of equal strengths of OKR in both directions depends on stimulus velocity: at low-stimulus velocities (10-20 degrees /s) symmetry is reached at 3-4 weeks of age, at higher-stimulus velocities (40-80 degrees /s) it is reached only at 4-5 months of age. Retinal slip neurons in the NOT-DTN are direction selective for ipsiversive stimulus movement shortly after birth. Most of these neurons receive input from both eyes; many are dominated by the contralateral eye. Electrophysiological and neuroanatomical evidence suggests that the cortical input to the NOT-DTN starts to become functional by postnatal day 14, at the latest. Based on these behavioral and physiological data, as well as on comparison with data from kittens and human infants, we hypothesize that the very early monocularly elicited bidirectional optokinetic response is due to the direct retinal input from both eyes to the NOT-DTN. As the cortical projection matures, it gains more and more influence upon the response properties of retinal slip neurons in the NOT-DTN, and the retinal influence gradually decreases.
Collapse
Affiliation(s)
- C Distler
- Allgemeine Zoologie Neurobiologie, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| | | |
Collapse
|
16
|
Bosworth RG, Birch EE. Motion detection in normal infants and young patients with infantile esotropia. Vision Res 2005; 45:1557-67. [PMID: 15781073 DOI: 10.1016/j.visres.2004.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 11/29/2004] [Accepted: 12/18/2004] [Indexed: 10/25/2022]
Abstract
The purpose of this study was to investigate asymmetries in detection of horizontal motion in normal infants and children and in patients with infantile esotropia. Motion detection thresholds (% motion signal) were measured in 75 normal infants and in 36 eyes of 27 infants with infantile esotropia (ET), using a forced-choice preferential looking paradigm with random-dot patterns. Absolute motion detection sensitivity and asymmetries in sensitivity for nasalward (N) vs. temporalward (T) directions of motion were compared in normal and patient populations, ranging in age from 1 month to 5 years. In normal infants, N and T thresholds were equivalent under 2.5 months of age, whereas a superiority for monocular detection of N motion was observed between 3.5 and 6.5 months of age. The nasalward advantage gradually diminished to symmetrical T:N performance by 8 months of age, matching that of adults. No asymmetry was observed in 15 normal infants who performed the task binocularly, hence, the asymmetry was not a leftward/rightward bias. In the youngest infantile ET patients tested, at 5 months of age, a nasalward superiority in motion detection was observed and was equivalent to that of same-age normal infants. However, unlike normals, this asymmetry persists in older patients. This greater asymmetry in infantile ET represents worse detection of T than N motion. This is the first report of an asymmetry in motion detection in normal infants across a wide age range. Initially, motion detection is normal in infants with infantile esotropia. Cumulative abnormal binocular experience in these patients may disrupt motion mechanisms.
Collapse
Affiliation(s)
- Rain G Bosworth
- Department of Psychology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | |
Collapse
|
17
|
Braddick O, Atkinson J, Wattam-Bell J. Normal and anomalous development of visual motion processing: motion coherence and 'dorsal-stream vulnerability'. Neuropsychologia 2003; 41:1769-84. [PMID: 14527540 DOI: 10.1016/s0028-3932(03)00178-7] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Directional motion processing is a pervasive and functionally important feature of the visual system. Behavioural and VEP studies indicate that it appears as a cortical function after about 7 weeks of age, with global processing, motion based segmentation, and the use of motion in complex perceptual tasks emerging shortly afterwards. A distinct, subcortical motion system controls optokinetic nystagmus (OKN) from birth, showing characteristic monocular asymmetries which disappear as binocular cortical function takes over in normal development. Asymmetries in cortical responses are linked to this interaction in a way that is not yet fully understood. Beyond infancy, a range of developmental disorders show a deficit of global motion compared to global form processing which we argue reflects a general 'dorsal-stream vulnerability'.
Collapse
Affiliation(s)
- Oliver Braddick
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
18
|
Garbutt S, Han Y, Kumar AN, Harwood M, Rahman R, Leigh RJ. Disorders of vertical optokinetic nystagmus in patients with ocular misalignment. Vision Res 2003; 43:347-57. [PMID: 12535992 DOI: 10.1016/s0042-6989(02)00387-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE To compare responses to vertical and horizontal optokinetic (OK) stimulation in patients with disorders of ocular alignment. METHODS Using the magnetic search coil technique, we measured horizontal and vertical rotations of both eyes in six patients with strabismus since childhood and eight normal subjects. The OK stimulus subtended 72 degrees horizontally and 60 degrees vertically, consisted of black-and-white stripes with a spatial frequency of 0.04 cycles/degree, and moved either vertically or horizontally at 22.5 or 12 degrees/s. All patients and controls were tested with both eyes viewing and monocularly. RESULTS Vertical OK responses were asymmetric in most normals and patients. The direction of this asymmetry varied between individuals, but upward stimuli more commonly elicited a greater response than downward stimuli. Monocular horizontal OK responses were symmetric in normals; patients showed either an asymmetry with greater responses for nasal motion, or a directional bias. During monocular and binocular viewing, vertical OK stimulation induced vertical nystagmus in normal subjects, but all patients showed diagonal responses, with horizontal components that were significantly greater than controls. The inappropriate horizontal component of the response increased at the higher stimulus speed, and was not simply due to latent nystagmus. CONCLUSIONS Patients with disorders of ocular alignment since childhood show an inappropriate horizontal response to vertical OK stimuli, indicating directional abnormality of either motion vision pathways or the ocular motor response.
Collapse
Affiliation(s)
- Siobhan Garbutt
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, and Institute of Child Health, WC1N 1EH, London, UK
| | | | | | | | | | | |
Collapse
|
19
|
Telkes I, Distler C, Hoffmann KP. Retinal ganglion cells projecting to the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic system in macaque monkeys. Eur J Neurosci 2000; 12:2367-75. [PMID: 10947815 DOI: 10.1046/j.1460-9568.2000.00133.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Using classical neuroanatomical retrograde tracing methods we investigated the retinal ganglion cells projecting to the nucleus of the optic tract and dorsal terminal nucleus of the accessory optic system (NOT-DTN) in macaque monkeys. Our main aim was to quantify the strength of the projection from the ipsilateral retina to the NOT-DTN. We therefore examined the number, distribution, and soma size of retinal ganglion cells involved in this projection. Electrophysiologically controlled small injections into the NOT-DTN revealed a clearly bilateral retinal projection originating mainly from the central retina but also involving peripheral retinal regions. Labelled cells were found nasally in the contralateral retina and temporally in the ipsilateral retina with some overlap in the fovea. The projection from the ipsilateral retina was 36-43% of that from the contralateral retina. On average, only 1-6% of the local population of ganglion cells projected to the NOT-DTN. Small soma size and large dendritic fields imply that in monkey rarely encountered, 'specialized' ganglion cells provide the direct retinal input to the accessory optic system (AOS). These results are discussed with respect to the symmetry of monocular horizontal optokinetic nystagmus (OKN) in primates.
Collapse
Affiliation(s)
- I Telkes
- Allgemeine Zoologie & Neurobiologie, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|