1
|
Barbosa PT, Dos Santos AB, da Silva MER, Firmino PIM. Color removal in acidogenic reactor followed by aerobic granular sludge reactor: Operational and microbiological aspects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123175. [PMID: 39488956 DOI: 10.1016/j.jenvman.2024.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
This work investigated the operational and microbiological aspects of the decolorization of the azo dye Reactive Black 5 in acidogenic reactors followed by aerobic granular sludge (AGS) reactors, evaluating the effect of the acidogenic hydraulic retention time (HRT) (3, 2, and 1 h), effluent recirculation in the AGS reactor (50 mL min-1), dye concentration (50 and 100 mg L-1), and the redox mediator sodium anthraquinone-2-disulfonate (AQS) (50 μM). The acidogenic reactors were mainly responsible for the dye decolorization, with AQS significantly improving its efficiency and enabling the use of a shorter HRT (2 h). The recirculation effect was not so evident, probably masked by the adaptation of the acidogenic microbiota. Increasing the dye concentration did not affect the total decolorization, but reduced nitrogen removal in the AGS reactors. Furthermore, the dye and its byproducts may have negatively affected the long-term AGS stability. While the acidogenic microbiota maintained its diversity, the AGS tended to become more specialist. However, in both, some abundant genera that may have acted in reducing the dye were found, such as Clostridium_sensu_stricto_1 and Raoutella in the acidogenic sludge and Dechloromonas and Defluviicoccus in the AGS.
Collapse
Affiliation(s)
- Plínio Tavares Barbosa
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
2
|
Setianingsih NI, Hadiyanto, Budihardjo MA, Yuliasni R, Malik RA, Budiono, Sudarno, Warsito B. Potential application and strategies of aerobic granular sludge (AGS) technology for wastewater treatment in Indonesia: A review. DESALINATION AND WATER TREATMENT 2024; 320:100756. [DOI: 10.1016/j.dwt.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Nuid M, Aris A, Krishnen R, Chelliapan S, Muda K. Pineapple wastewater as co-substrate in treating real alkaline, non-biodegradable textile wastewater using biogranulation technology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118501. [PMID: 37418913 DOI: 10.1016/j.jenvman.2023.118501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/25/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
This study was to develop biogranules using a sequencing batch reactor (SBR) and to evaluate the effect of pineapple wastewater (PW) as a co-substrate for treating real textile wastewater (RTW). The biogranular system cycle was 24 h (2 stages of phase), with an anaerobic phase (17.8 h) followed by an aerobic phase (5.8 h) for every stage of the phase. The concentration of pineapple wastewater was the main factor studied in influencing COD and color removal efficiency. Pineapple wastewater with different concentrations (7, 5, 4, 3, and 0% v/v) makes a total volume of 3 L and causes the OLRs to vary from 2.90 to 0.23 kg COD/m3day. The system achieved 55% of average color removal and 88% of average COD removal at 7%v/v PW concentration during treatment. With the addition of PW, the removal increased significantly. The experiment on the treatment of RTW without any added nutrients proved the importance of co-substrate in dye degradation.
Collapse
Affiliation(s)
- Maria Nuid
- Centre for Environmental Sustainability and Water Security, Research Institute for Sustainable Environment, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia
| | - Azmi Aris
- Centre for Environmental Sustainability and Water Security, Research Institute for Sustainable Environment, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia; Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia.
| | - Ranjeni Krishnen
- Bactiguard South East Asia SDN. BHD., 308b, Jalan Perindustrian Bukit Minyak 18, Penang Science Park, 14100 Penang, Malaysia
| | - Shreeshivadasan Chelliapan
- Centre for Environmental Sustainability and Water Security, Research Institute for Sustainable Environment, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia; Department of Engineering and Technology, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Khalida Muda
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia
| |
Collapse
|
4
|
Yeruva DK, S VM. Electrogenic engineered flow through tri-phasic wetland system for azo dye treatment: Microbial dynamics and functional metagenomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122107. [PMID: 37369299 DOI: 10.1016/j.envpol.2023.122107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/12/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Electrogenic engineered flow through tri-phasic wetland (EEFW) system based on nature-based ecological principles was studied by integrating successive biological microenvironments. The potential mechanism of the plant root-based microbial community and its functional diversity with the influence of plant-microbe-electrode synergism towards dye degradation was evaluated. The EEFW system was operated at three varied dye loads of 10, 25 and 50 mg L-1, where the results from the cumulative outlets revealed a maximum dye removal efficiency of 96%, 96.5% and 93%, respectively. Microbial community analysis depicted synergistic dependence on the plant-microbe-electrode interactions, influencing their functional diversity and metabolism towards detoxification of pollutants. The core microbial taxa enriched against the microenvironment variation were mostly associated with carbon and dye removal viz., Desulfomonile tiedjei and Rhodopseudomonas palustris in Tank 1 and Chloroflexi bacterium and Steroidobacter denitrificans in Tank 2. The degradation of polycyclic aromatic hydrocarbons, chloroalkane/chloroalkene, nitrotoluene, bisphenol, caprolactam and 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) were observed to be predominant in Tank 1. EEFW system could be one of the option for utilizing nature-based processes for the treatment of wastewater by self-induced bioelectrogenesis to augment process efficiency.
Collapse
Affiliation(s)
- Dileep Kumar Yeruva
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Venkata Mohan S
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Inaba T, Yamaguchi M, Taniguchi A, Sato Y, Aoyagi T, Hori T, Inoue H, Fujita M, Iwata M, Iwata Y, Habe H. Evaluation of dye decolorization using anaerobic granular sludge from an expanded granular sludge bed based on spectrometric and microbiome analyses. J GEN APPL MICROBIOL 2023; 68:242-247. [PMID: 35691891 DOI: 10.2323/jgam.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The decolorization of 11 dyes by granular sludge from an anaerobic expanded granular sludge bed (EGSB) reactor was evaluated. Biological decolorization of Reactive Red 21, 23, and 180, and Reactive Yellow 15, 17, and 23 in model textile wastewater was observed for the first time after a 7-day incubation (over 94% decolorization). According to the sequencing analysis of 16S rRNA gene amplicons from EGSB granular sludge, the operational taxonomic unit related to Paludibacter propionicigenes showed the highest increase in relative abundance ratios in the presence of dyes (7.12 times on average over 11 dyes) compared to those without dyes.
Collapse
Affiliation(s)
- Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Mami Yamaguchi
- Textile Technology Center, Ehime Institute of Industrial Technology
| | | | - Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Hiroyuki Inoue
- Textile Technology Center, Ehime Institute of Industrial Technology
| | - Masahiko Fujita
- Textile Technology Center, Ehime Institute of Industrial Technology
| | | | | | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
6
|
A Review on Chemoselective Reduction of Nitroarenes for Wastewater Remediation Using Biochar Supported Metal Catalysts: Kinetic and Mechanistic Studies. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Synthesis of Ag2CrO4/Ag/Fe3O4/RGO nanocomposite as a suitable photocatalyst for degradation of methylene blue in aqueous media: RSM modeling, kinetic and energy consumption studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Xia Y, Jiang X, Wang Y, Huang Q, Chen D, Hou C, Mu Y, Shen J. Enhanced anaerobic reduction of nitrobenzene at high salinity by betaine acting as osmoprotectant and regulator of metabolism. WATER RESEARCH 2022; 223:118982. [PMID: 36058098 DOI: 10.1016/j.watres.2022.118982] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/24/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic technology is extensively applied in the treatment of industrial organic wastewater, but high salinity always triggers microbial cell dehydration, causing the failure of the anaerobic process. In this work, betaine, one kind of compatible solutes which could balance the osmotic pressure of anaerobic biomass, was exogenously added for enhancing the anaerobic reduction of nitrobenzene (NB) at high salinity. Only 100 mg L-1 betaine dosing could significantly promote the removal efficiency of NB within 35 h at 9% salinity (36.92 ± 4.02% without betaine and 72.94 ± 6.57% with betaine). The relieving effects on salt stress could be observed in the promotion of more extracellular polymeric substances (EPS) secretion with betaine addition. Additionally, the oxidation-reduction potential (ORP), as well as the electron transfer system (ETS) value, was increased with betaine addition, which was reflected in the improvement of system removal efficiency and enzyme activity. Microbial community analysis demonstrated that Bacillus and Clostridiisalibacter which were positively correlated with the stability of the anaerobic process were enriched with betaine addition at high salinity. Metagenomic analysis speculated that the encoding genes for salt tolerance (kdpB/oadA/betA/opuD/epsP/epsH) and NB degradation (nfsA/wrbA/ccdA/menC) obtained higher relative abundance with betaine addition under high salt environment, which might be the key to improving salt tolerance of anaerobic biomass. The long-term assessment demonstrated that exogenous addition betaine played an important role in maintaining the stability of the anaerobic system, which would be a potential strategy to achieve a high-efficiency anaerobic process under high salinity conditions.
Collapse
Affiliation(s)
- Yan Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yuxuan Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qian Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Cheng Hou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
9
|
Yadav A, Kumar P, Rawat D, Garg S, Mukherjee P, Farooqi F, Roy A, Sundaram S, Sharma RS, Mishra V. Microbial fuel cells for mineralization and decolorization of azo dyes: Recent advances in design and materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154038. [PMID: 35202698 DOI: 10.1016/j.scitotenv.2022.154038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Microbial fuel cells (MFCs) exhibit tremendous potential in the sustainable management of dye wastewater via degrading azo dyes while generating electricity. The past decade has witnessed advances in MFC configurations and materials; however, comprehensive analyses of design and material and its association with dye degradation and electricity generation are required for their industrial application. MFC models with high efficiency of dye decolorization (96-100%) and a wide variation in power generation (29.4-940 mW/m2) have been reported. However, only 28 out of 104 studies analyzed dye mineralization - a prerequisite to obviate dye toxicity. Consequently, the current review aims to provide an in-depth analysis of MFCs potential in dye degradation and mineralization and evaluates materials and designs as crucial factors. Also, structural and operation parameters critical to large-scale applicability and complete mineralization of azo dye were evaluated. Choice of materials, i.e., bacteria, anode, cathode, cathode catalyst, membrane, and substrate and their effects on power density and dye decolorization efficiency presented in review will help in economic feasibility and MFCs scalability to develop a self-sustainable solution for treating azo dye wastewater.
Collapse
Affiliation(s)
- Archana Yadav
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Pankaj Kumar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Deepak Rawat
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India; Department of Environmental Studies, Janki Devi Memorial College, University of Delhi, Delhi 110060, India
| | - Shafali Garg
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Paromita Mukherjee
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Furqan Farooqi
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Anurag Roy
- Environment and Sustainability Institute ESI Solar Lab, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Senthilarasu Sundaram
- Environment and Sustainability Institute ESI Solar Lab, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK; Electrical & Electronic Engineering, School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| | - Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India; Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi 110007, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
10
|
Araújo S, Damianovic M, Foresti E, Florencio L, Kato MT, Gavazza S. Biological treatment of real textile wastewater containing sulphate, salinity, and surfactant through an anaerobic-aerobic system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2882-2898. [PMID: 35638794 DOI: 10.2166/wst.2022.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Real textile wastewater containing high salinity (up to 12.6 g·kg-1) and surfactant (up to 5.9 mg·L-1 of linear alkylbenzene sulfonate - LAS) was submitted to biological treatment for colour (up to 652 mg Pt-Co·L-1) and sulphate (up to 1,568.6 mg SO4-2·L-1) removal. The influence of ethanol and molasses supplementation was firstly evaluated in anaerobic batch reactors for the removal of dyes and sulphate. Subsequently, aiming to remove aromatic amines (dye degradation by-products), an anaerobic-aerobic continuous system supplemented with molasses was applied. Supplementation had no influence on colour removal (maximum efficiencies around 70%), while it improved sulphate reduction (23% without supplementation against 87% with supplementation), and conferred robustness to the reactors, which recovered quickly after higher salinity impact. The aerobic reactor removed aromatic amines when the level of surfactants was lower than 1.0 mg LAS·L-1, but the performance of the system was hindered when the concentration was increased to 5.9 mg LAS·L-1. Findings suggest that the supplementation of an easily biodegradable organic matter might be a strategy to overcome wastewater fluctuation in composition.
Collapse
Affiliation(s)
- Sofia Araújo
- Departamento de Engenharia Civil e Ambiental, Laboratório de Saneamento Ambiental, Universidade Federal de Pernambuco, Recife, PE, Brazil E-mail:
| | - Márcia Damianovic
- Universidade de São Paulo, Escola de Engenharia de São Carlos, Departamento de Hidráulica e Saneamento, São Carlos, SP, Brazil
| | - Eugenio Foresti
- Universidade de São Paulo, Escola de Engenharia de São Carlos, Departamento de Hidráulica e Saneamento, São Carlos, SP, Brazil
| | - Lourdinha Florencio
- Departamento de Engenharia Civil e Ambiental, Laboratório de Saneamento Ambiental, Universidade Federal de Pernambuco, Recife, PE, Brazil E-mail:
| | - Mario Takayuki Kato
- Departamento de Engenharia Civil e Ambiental, Laboratório de Saneamento Ambiental, Universidade Federal de Pernambuco, Recife, PE, Brazil E-mail:
| | - Sávia Gavazza
- Departamento de Engenharia Civil e Ambiental, Laboratório de Saneamento Ambiental, Universidade Federal de Pernambuco, Recife, PE, Brazil E-mail:
| |
Collapse
|
11
|
Silva AR, Alves MM, Pereira L. Progress and prospects of applying carbon-based materials (and nanomaterials) to accelerate anaerobic bioprocesses for the removal of micropollutants. Microb Biotechnol 2022; 15:1073-1100. [PMID: 34586713 PMCID: PMC8966012 DOI: 10.1111/1751-7915.13822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 11/28/2022] Open
Abstract
Carbon-based materials (CBM), including activated carbon (AC), activated fibres (ACF), biochar (BC), nanotubes (CNT), carbon xenogels (CX) and graphene nanosheets (GNS), possess unique properties such as high surface area, sorption and catalytic characteristics, making them very versatile for many applications in environmental remediation. They are powerful redox mediators (RM) in anaerobic processes, accelerating the rates and extending the level of the reduction of pollutants and, consequently, affecting positively the global efficiency of their partial or total removal. The extraordinary conductive properties of CBM, and the possibility of tailoring their surface to address specific pollutants, make them promising as catalysts in the treatment of effluents containing diverse pollutants. CBM can be combined with magnetic nanoparticles (MNM) assembling catalytic and magnetic properties in a single composite (C@MNM), allowing their recovery and reuse after the treatment process. Furthermore, these composites have demonstrated extraordinary catalytic properties. Evaluation of the toxicological and environmental impact of direct and indirect exposure to nanomaterials is an important issue that must be considered when nanomaterials are applied. Though the chemical composition, size and physical characteristics may contribute to toxicological effects, the potential toxic impact of using CBM is not completely clear and is not always assessed. This review gives an overview of the current research on the application of CBM and C@MNM in bioremediation and on the possible environmental impact and toxicity.
Collapse
Affiliation(s)
- Ana Rita Silva
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| | - Maria Madalena Alves
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| | - Luciana Pereira
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| |
Collapse
|
12
|
In vitro and in silico analysis of Brilliant Black degradation by Actinobacteria and a Paraburkholderia sp. Genomics 2022; 114:110266. [PMID: 35031427 DOI: 10.1016/j.ygeno.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/20/2021] [Accepted: 01/08/2022] [Indexed: 11/24/2022]
Abstract
The soil bacteria isolated in this study, including three strains of actinobacteria and one Paraburkholderia sp., showed decolorization activity of azo dyes in the resting cell assay and were shown to use methyl red as the sole carbon source to proliferate. Therefore, their ability to degrade, bioabsorb, or a combination of both was investigated using the substrate brilliant black. The strains DP-A9 and DP-L11, within 24 h of incubation, showed complete biodegradation of 173.54 mg/L brilliant black and the strains DP-D10 and DP-P12 showed partial decolorization of 83.3 mg/L and 36.4 mg/L, respectively, by both biosorption and biodegradation. In addition, the shotgun assembled genome of strains studied included a highly diverse set of genes encoding for candidate dye degrading enzymes, providing avenues to study azo dye metabolism in more detail.
Collapse
|
13
|
Novel N,C,S-TiO 2/WO 3/rGO Z-scheme heterojunction with enhanced visible-light driven photocatalytic performance. J Colloid Interface Sci 2021; 610:49-60. [PMID: 34920216 DOI: 10.1016/j.jcis.2021.12.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2023]
Abstract
Novel N,C,S-TiO2/WO3/rGO Z scheme photocatalyst was successfully synthesized from graphite, TIOT, and ammonium metatungstate precursors. Material characteristics such as crystal structure, surface morphology, functional groups, specific surface area, elemental composition, band gap energy, and electron-hole recombination were characterized by XRD, TEM, BET, SEM/EDX, FT-IR, UV-VIS, and PL methods. The as-synthesized novel N,C,S-TiO2/WO3/rGO Z-scheme heterojunction photocatalyst exhibited visible light-driven photocatalytic activity (the band gap energy = 2.24 eV), could generate both effective electrons and holes, and presented the lowest electron-hole recombination rate compared to all individual components. Different factors impacting the photocatalytic decomposition of Direct Blue 71 (DB 71) by the N,C,S-TiO2/WO3/rGO system were studied. The results showed that pH of the solution, catalyst load, DB 71 initial concentration, and reaction time affected the DB 71 photocatalytic degradation efficiency. The DB 71 degradation completed after 100 min with a typical efficiency of over 91%, which was much better than other photocatalytic systems. The DB 71 degradation process followed the pseudo-first-order kinetics model with coefficients of determination > 0.95 for all conditions. The photocatalyst was easily regenerated, and exhibited a very good stability, with a photocatalytic degradation efficiency of over 83.0% after 3 cycles.
Collapse
|
14
|
Yan Y, Geng ZQ, Dai K, Guo X, Zeng RJ, Zhang F. Decoupling mechanism of Acid Orange 7 decolorization and sulfate reduction by a Caldanaerobacter dominated extreme-thermophilic consortium. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126498. [PMID: 34214849 DOI: 10.1016/j.jhazmat.2021.126498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The biological treatment of textile wastewater discharged from the dye baths and rinsing processes are challenged by both high temperatures of 50-80 °C and sulfate reduction. At present, most studies report azo dyes can be removed under mesophilic conditions, but the sulfate reduction is inevitable, consuming extra electron donors and producing undesirable sulfide. In this work, a Caldanaerobacter (> 97%) dominated extreme-thermophilic consortium (EX-AO7) was enriched using xylose as the substrate. The typical sulfate-reducing enzymes such as sulfite oxidase and sulfite reductase were not identified in enriched EX-AO7 by the metagenomic analysis. Then, the decolorization and sulfate reduction were expectedly decoupled by enriched EX-AO7 in extreme-thermophilic conditions, in which no sulfide was detected during the AO7 decolorization process. AO7 of 100 and 200 mg/L could be totally decolorized by EX-AO7. However, when 400 mg/L AO7 was added, the residual AO7 concentration was 22 ± 19 mg/L after 24 h, which was mainly due to the toxicity of AO7. Dosing zero-valent iron (ZVI) could also promote AO7 decolorization by 1.7 times since the addition of ZVI could provide a proliferative environment for EX-AO7 growth. Thereby, our work provides a new paradigm to promote the AZO dyes decolorization and minimize sulfate reduction.
Collapse
Affiliation(s)
- Yang Yan
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zi-Qian Geng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xuan Guo
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
15
|
Meydan E, Demirci S, Aktas N, Sahiner N, Ozturk OF. Catalytic performance of boron-containing magnetic metal nanoparticles in methylene blue degradation reaction and mixture with other pollutants. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Menezes O, Melo N, Paraiso M, Freitas D, Florêncio L, Kato MT, Gavazza S. The key role of oxygen in the bioremoval of 2,4-diaminoanisole (DAAN), the biotransformation product of the insensitive munitions compound 2,4-dinitroanisole (DNAN), over other electron acceptors. CHEMOSPHERE 2021; 267:128862. [PMID: 33183786 DOI: 10.1016/j.chemosphere.2020.128862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/19/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Insensitive munitions compounds, such as 2,4-dinitroanisole (DNAN), are replacing conventional explosives. DNAN is anaerobically reduced to 2,4-diaminoanisole (DAAN), a toxic aromatic amine. However, the removal of DAAN under different redox conditions is yet to be elucidated. Herein, we analyzed DAAN consumption in biotic and abiotic microcosms when exposed to different redox conditions (without added electron acceptor, without added electron acceptor but with pyruvate as a co-substrate, with sulfate, with nitrate, and with oxygen), using an anaerobic sludge as inoculum. We observed that DAAN autoxidation, an abiotic reaction, was significant in microaerobic environments. DAAN also reacted abiotically with heat-killed sludge up to a saturation limit of 67.4 μmol DAAN (g VSS heat-killed sludge)-1. Oxygen caused the fastest removal of DAAN in live sludge among the conditions tested. Treatments without added electron acceptors (with or without pyruvate) presented similar DAAN removal performances, although slower than the treatment with oxygen. Sulfate did not exhibit any effect on DAAN removal compared to the treatment without added electron acceptors. Nitrate, however, inhibited the process. An enrichment culture from the microcosms exposed to oxygen could be developed using DAAN as the sole substrate in microaerobic conditions. The enrichment profoundly changed the microbial community. Unclassified microorganisms accounted for 85% of the relative abundance in the enrichment culture, suggesting that DAAN microaerobic removal might have involved organisms that were not yet described. Our results suggest that DAAN microaerobic treatment can be coupled to DNAN anaerobic reduction in sludge, improving the treatment of DNAN-containing wastewaters.
Collapse
Affiliation(s)
- Osmar Menezes
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, PE, 50740-530, Brazil.
| | - Natanna Melo
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, PE, 50740-530, Brazil
| | - Matheus Paraiso
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, PE, 50740-530, Brazil
| | - Danúbia Freitas
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, PE, 50740-530, Brazil
| | - Lourdinha Florêncio
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, PE, 50740-530, Brazil
| | - Mario T Kato
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, PE, 50740-530, Brazil
| | - Savia Gavazza
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, PE, 50740-530, Brazil.
| |
Collapse
|
17
|
An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129195] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Nas MS, Kaya H. Synthesis and sonocatalytic performance of bimetallic AgCu@MWCNT nanocatalyst for the degradation of methylene blue under ultrasonic irradiation. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1799406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mehmet Salih Nas
- Department of Environmental Engineering, Faculty of Engineering, Igdir University, Igdir, Turkey
| | - Halis Kaya
- Department of Environmental Engineering, Faculty of Engineering, Igdir University, Igdir, Turkey
| |
Collapse
|
19
|
ABBAS M, TRARI M. Contribution of adsorption and photo catalysis for the elimination of Black Eriochrome (NET) in an aqueous medium-Optimization of the parameters and kinetics modeling. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
20
|
A Comprehensive review on the hierarchical performances of eco-friendly and functionally advanced modified and recyclable carbon materials. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01900-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Xu Y, Guo X, Zha F, Tang X, Tian H. Efficient photocatalytic removal of orange II by a Mn 3O 4-FeS 2/Fe 2O 3 heterogeneous catalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 253:109695. [PMID: 31634744 DOI: 10.1016/j.jenvman.2019.109695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/12/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Elemental doping has been proven to be an effective strategy for increasing the catalytic activity and structural stability of Fenton catalysts. Therefore, this work reports that Mn-doped FeS2/Fe2O3 (Mn3O4-FeS2/Fe2O3) has excellent catalytic performance for the degradation of Orange II under simulated solar energy. Degradation experiment results showed that the sample with a manganese-iron molar ratio of 1:2 exhibited higher activity than others. The degradation rate of 20 mg/L OII reached 99.0% in 18 min under the conditions of 0.3 g/L Mn3O4-FeS2/Fe2O3, 5 mM H2O2 and pH = 2.8. In addition to, the Mn3O4-FeS2/Fe2O3 catalyst shows good reusability for Orange II and high activity for other dyes (MB, MG, Rh B and MO) under optimal conditions. Degradation mechanism study indicated that the heterogeneous Fenton reaction was promoted by retarding the recombination of photogenerated charge carriers and accelerating the cycle between Fe3+/Mn2+ and Fe2+/Mn3+, which improved photo-Fenton-like catalytic performance, resulting in the enhanced degradation of organic pollutant. Finally, a possible degradation pathway was proposed according to the results of liquid chromatography-mass spectrometry (LC-MS). In short, the catalyst has potential application value in wastewater treatment.
Collapse
Affiliation(s)
- Yanan Xu
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Xiaojun Guo
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Fei Zha
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Xiaohua Tang
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Haifeng Tian
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
22
|
Design and Preparation of Chitosan-Crosslinked Bismuth Ferrite/Biochar Coupled Magnetic Material for Methylene Blue Removal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010006. [PMID: 31861304 PMCID: PMC6981408 DOI: 10.3390/ijerph17010006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 01/31/2023]
Abstract
Biochar obtained by pyrolysis of the fiber plant kenaf was mixed with bismuth ferrite (BiFeO3) in a chitosan-containing acetic acid solution, magnetized, and modified to prepare a chitosan-crosslinked BiFeO3/biochar coupled magnetic material. The adsorption properties of the composite were investigated using methylene blue dissolved in water, and the effects of external conditions, such as pH, methylene blue concentration, reaction time, and temperature, on the adsorption performance were studied. The adsorption data were fitted and analyzed with kinetic and isotherm models, and the results showed that the BiFeO3/biochar coupled magnetic material effectively adsorbed methylene blue. The amounts adsorbed onto this magnetic material increased with increasing initial methylene blue concentration, reaction time, and temperature, and the adsorption performance improved under neutral and alkaline conditions. The pseudo-first-order kinetic and Langmuir isotherm models satisfactorily fitted the adsorption data, showing that the adsorption of methylene blue involved both chemical and physical adsorption. The maximum adsorption capacity of methylene blue onto the BiFeO3/biochar coupled magnetic material reached 18.942 mg·g−1 at 25 °C, confirming the excellent dye binding activity of this material.
Collapse
|
23
|
Ajaz M, Shakeel S, Rehman A. Microbial use for azo dye degradation-a strategy for dye bioremediation. Int Microbiol 2019; 23:149-159. [PMID: 31741129 DOI: 10.1007/s10123-019-00103-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 01/11/2023]
Abstract
Azo dyes are aromatic compounds with one to many -N=N- groups as well as the leading class of synthetic dyes utilised in commercial solicitations. Azo dyes, released in the environment through textile effluents, have hazardous effects on the aquatic as well as human life. Their persistence and discharge into the environment are becoming a global concern; thus, the remediation of these contaminants has acquired great attention. The current review comprehensively discusses some of the main aspects of biodegradation of azo dyes. A variety of physicochemical approaches has already been utilised for treatment of textile effluents counting filtration, coagulation and chemical flocculation. Though these conventional techniques are effective, yet they are lavish and also comprise formation of concentrated sludge that makes a secondary disposal problem. In this regard, microbial usage is an effective, economical, bio-friendly and ecologically benign approach.
Collapse
Affiliation(s)
- Mehvish Ajaz
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore, 54590, Pakistan
| | - Sana Shakeel
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore, 54590, Pakistan
| | - Abdul Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
24
|
Zhang F, Guo X, Qian DK, Sun T, Zhang W, Dai K, Zeng RJ. Decolorization of Acid Orange 7 by extreme-thermophilic mixed culture. BIORESOURCE TECHNOLOGY 2019; 291:121875. [PMID: 31362846 DOI: 10.1016/j.biortech.2019.121875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Although a large amount of textile wastewater is discharged at high temperatures, azo dye reduction under extreme-thermophilic conditions by mixed cultures has gained little attention. In this study, Acid Orange 7 (AO7) was used as the model azo dye to demonstrate the decolorization ability of an extreme-thermophilic mixed culture. The results showed that a decolorization efficiency of over 90% was achieved for AO7. The neutral red (NR, 0.1 mM) could promote AO7 decolorization, in which the group of Cell + NR offered the highest decolorization rate of 1.568 1/h and t1/2 was only 0.44 h, whereas after CuCl2 addition, the decolorization rate (0.141 1/h) was lower and t1/2 (4.92 h) was much longer. Thus, CuCl2 notably inhibited this process. Caldanaerobacter (64.0%) and Pseudomonas (25.4%) were the main enriched bacteria, which were not reported to have the ability for dye decolorization. Therefore, this study extends the application of extreme-thermophilic biotechnology.
Collapse
Affiliation(s)
- Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xuan Guo
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ding-Kang Qian
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ting Sun
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wei Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond J Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
25
|
Tanji K, Navio J, Naja J, Hidalgo M, Chaqroune A, Jaramillo-Páez C, Kherbeche A. Extraordinary visible photocatalytic activity of a Co0.2Zn0.8O system studied in the Remazol BB oxidation. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111877] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Silver nanoparticle-decorated on tannic acid-modified magnetite nanoparticles (Fe3O4@TA/Ag) for highly active catalytic reduction of 4-nitrophenol, Rhodamine B and Methylene blue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:445-452. [DOI: 10.1016/j.msec.2019.03.036] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/16/2022]
|
27
|
Menezes O, Brito R, Hallwass F, Florêncio L, Kato MT, Gavazza S. Coupling intermittent micro-aeration to anaerobic digestion improves tetra-azo dye Direct Black 22 treatment in sequencing batch reactors. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Eshaq G, ElMetwally AE. Bmim[OAc]-Cu 2O/g-C 3N 4 as a multi-function catalyst for sonophotocatalytic degradation of methylene blue. ULTRASONICS SONOCHEMISTRY 2019; 53:99-109. [PMID: 30655122 DOI: 10.1016/j.ultsonch.2018.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 05/07/2023]
Abstract
In this study, ionic liquid, 1-butyl-3-methylimidazolium acetate (Bmim[OAc]) modified cuprous oxide immobilized over graphitic carbon nitride (Bmim[OAc]-Cu2O/g-C3N4) as an efficient heterogeneous catalyst was successfully prepared by depositing Bmim[OAc]-Cu2O over the surface of g-C3N4. The deposition of cuprous oxide over the surface of g-C3N4 leads to the formation of a heterojunction that promotes the charge separation. Cu2O enhances the degradation capability owing to its dual function where it acts as a photocatalyst and Fenton like catalyst. Bmim[OAc] plays a vital role in trapping the photogenerated electrons, which in turn reduce the chances of electron-hole pairs recombination. Sonophotocatalytic degradation of methylene blue (MB) was investigated using the prepared Bmim[OAc]-Cu2O/g-C3N4 at room temperature and pH = 7 in presence of ultraviolet (UV, 6 W, λ = 254 nm) and ultrasonic (US, 20 kHz) as a dual irradiation system and H2O2 as an oxidant. Only 30 min of dual irradiation was enough for Bmim[OAc]-Cu2O/g-C3N4 (0.1 gL-1) to achieve a complete degradation using 10 mM H2O2 at 25 °C and pH = 7. The value of band gap of tested catalyst plays a vital role in boosting the degradation capability of the sonophotocatalytic system through the generated reactive radicals especially the hydroxyl radicals and superoxide radicals, which play a major role in the system. The kinetics of the reaction was investigated and the activation energy was calculated from the slope of the Arrhenius plot and found to be 19.77 kJ/mol.
Collapse
Affiliation(s)
- Ghada Eshaq
- Petrochemicals Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Ahmed E ElMetwally
- Petrochemicals Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt.
| |
Collapse
|
29
|
Livani MJ, Ghorbani M. Fabrication of NiFe 2O 4 magnetic nanoparticles loaded on activated carbon as novel nanoadsorbent for Direct Red 31 and Direct Blue 78 adsorption. ENVIRONMENTAL TECHNOLOGY 2018; 39:2977-2993. [PMID: 28825381 DOI: 10.1080/09593330.2017.1370024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this research, magnetic nickel ferrite NiFe2O4/hazelnut-shell-based activated carbon (NiFe2O4/AC) was used to eliminate anionic dyes (Direct Red 31(DR31) and Direct Blue 78 (DB78)) from aqueous solution. The morphological, structural, particle size and surface charge properties of as-prepared nanoadsorbent were characterized. TEM (Transmission electron microscopy) images revealed that the size of NiFe2O4 particles in the structure of AC was in the range of 8-12 nm, which is compatible with the results obtained by the analysis of DLS (Dynamic light scattering). The results of the BET (Brunauer-Emmett-Teller) analysis indicated that the surface area, the pore volume and average pore diameters of the NiFe2O4 were 288 m2/g, 0.3338 cm3/g and 5.05nm, respectively. The as-prepared nanocomposite showed excellent adsorption capacity for DR31 and DB78 dyes with the highest adsorption capacity obtained at pH=2.0 and rapid dye adsorption equilibrium attained after 20 and 25 min for DR31 and DB78, respectively. The equilibrium study showed the maximum adsorption capacity (qmax) of 299.67 mg/g and 209.13 mg/g for DR31 and DB78, respectively. In addition, thermodynamic study revealed the endothermic and spontaneous nature of adsorption process. The adsorption of DR31 and DB78 onto the NiFe2O4/AC is a physisorption process, during which electrostatic adsorption was the main driving force.
Collapse
Affiliation(s)
- Milad Jamal Livani
- a Department of Chemical Engineering , Babol Noshirvani University of Technology , Babol , Iran
| | - Mohsen Ghorbani
- a Department of Chemical Engineering , Babol Noshirvani University of Technology , Babol , Iran
| |
Collapse
|
30
|
Pan Y, Zhu T, He Z. Enhanced Removal of Azo Dye by a Bioelectrochemical System Integrated with a Membrane Biofilm Reactor. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04725] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan Pan
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Tong Zhu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
31
|
Wang Y, Pan Y, Zhu T, Wang A, Lu Y, Lv L, Zhang K, Li Z. Enhanced performance and microbial community analysis of bioelectrochemical system integrated with bio-contact oxidation reactor for treatment of wastewater containing azo dye. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:616-627. [PMID: 29635204 DOI: 10.1016/j.scitotenv.2018.03.346] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Feasibility and superiority of the bioelectrochemical system integrated with biocontact oxidation (BES-BCO) for degradation and/or mineralization of azo dyes have been confirmed. In this study, the effects of hydraulic retention time (HRT), applied voltage, and dissolved oxygen (DO) concentration at the bioanode on the performance of BES-BCO and traditional BES were investigated. Using the response surface methodology, the optimum values of HRT, applied voltage, and DO concentration at the bioanode of BES-BCO were investigated to obtain the maximum decolouration and COD removal efficiency and minimum specific energy consumption (SEC). The microbial community structure in BES-BCO was studied for analyzing the change following the introduction of oxygen. The optimised solution was an applied voltage of 0.59V, HRT of 12h, and DO concentration of 0.96mg/L at the bioanode. Under such conditions, the DE, COD removal efficiency, and SEC values were 94.62±0.63%, 89.12±0. 32%, and 687.57±3.86J/g, respectively. In addition, after changing from BES to BES-BCO, the bacterial community structure of the bioanode underwent significant changes. Several aerobic aniline-degrading bacteria and anode-respiration bacteria (ARB) were found to dominate the community of the anode biofilm. The results showed that the removal of azo dye degradation by-products was closely correlated with the o-bioanode and the BCO bacterial community structure.
Collapse
Affiliation(s)
- Youzhao Wang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China
| | - Yuan Pan
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China.
| | - Tong Zhu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China.
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yalun Lu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China
| | - Liting Lv
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China
| | - Kuo Zhang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China
| | - Zijun Li
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China
| |
Collapse
|
32
|
Guadie A, Gessesse A, Xia S. Halomonas sp. strain A55, a novel dye decolorizing bacterium from dye-uncontaminated Rift Valley Soda lake. CHEMOSPHERE 2018; 206:59-69. [PMID: 29730566 DOI: 10.1016/j.chemosphere.2018.04.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 03/29/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Considering the saline-alkaline nature of textile wastewater and treatment requirements, microbial samples were collected from Ethiopian Rift Valley Soda Lakes. A large number of bacteria (121) were isolated from dye-uncontaminated Lakes Chitu (81.0%), Abijata (15.7%) and Arenguadie (3.3%), of which 95 isolates (78.5%) were found dye decolorizer. Many dye decolorizer from Lake Chitu positively correlated with higher pH (10.3 ± 0.1), salinity (64.6 ± 2.0%), conductivity (6.1 ± 0.3 mS cm-1) and Na+ (18.4 ± 0.6 g L-1) values observed than Abijata and Arenguadie Lakes. Through subsequent screening mechanism, strain A55 was selected to investigate the effect of nutrient (carbon and nitrogen), dissolved oxygen and dye concentration using Reactive Red 184 (RR 184). Based on morphological, biochemical and 16S rRNA gene sequence analysis, the strain was identified as Halomonas sp. Decolorization efficiencies were significantly enhanced with carbon (≥98%) and organic nitrogen (∼100%) than non-carbon/nitrogen (both<55%) supplements. Complete decolorization efficiencies were also observed under anoxic and anaerobic growth conditions. However, growing the isolate with nitrate (<30%) and aerobic (<10%) condition significantly decreased (p < 0.05) color removal efficiency. Kinetic analysis showed that pseudo-first-order best describes RR 184 decolorization process. Overall, the ability of Halomonas sp. strain A55 decolorized different dyes indicate that alkaline soda lake isolates are the potential candidate for treating color containing effluent.
Collapse
Affiliation(s)
- Awoke Guadie
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch 21, Ethiopia
| | - Amare Gessesse
- Institute of Biotechnology, Addis Ababa University, Addis Ababa 1176, Ethiopia
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
33
|
Katančić Z, Gavran I, Smolković J, Hrnjak-Murgić Z. Fly ash supported photocatalytic nanocomposite poly(3,4-ethylenedioxythiophene)/TiO2
for azo dye removal under simulated solar irradiation. J Appl Polym Sci 2018. [DOI: 10.1002/app.46316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zvonimir Katančić
- Faculty of Chemical Engineering and Technology; University of Zagreb, Marulićev trg 19; Zagreb 10000 Croatia
| | - Iva Gavran
- Faculty of Chemical Engineering and Technology; University of Zagreb, Marulićev trg 19; Zagreb 10000 Croatia
| | - Josipa Smolković
- Faculty of Chemical Engineering and Technology; University of Zagreb, Marulićev trg 19; Zagreb 10000 Croatia
| | - Zlata Hrnjak-Murgić
- Faculty of Chemical Engineering and Technology; University of Zagreb, Marulićev trg 19; Zagreb 10000 Croatia
| |
Collapse
|
34
|
Dai R, Chen X, Xiang X, Wang Y, Wang F. Understanding azo dye anaerobic bio-decolorization with artificial redox mediator supplement: Considering the methane production. BIORESOURCE TECHNOLOGY 2018; 249:799-808. [PMID: 29136935 DOI: 10.1016/j.biortech.2017.10.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Artificial redox mediators (ARM) have been proven to accelerate the azo dye anaerobic bio-reduction (ADAB) but the mechanisms involved are still unclear. Previous studies do seldom focus on the production of methane during the ADAB, particularly if supplemented with ARM. Our studies revealed that the supplement of ARM could significantly accelerate the decolorization rate, recover the inhibited methanogenesis and decrease extracellular polymeric substance secretion in an ADAB system. Supplement of an ARM only enhanced the pre-existing metabolic pathway of the ADAB system. Significant differences in metabolic pathway and microbial community were found between traditional methanogenic system and ADAB system by high-throughput sequencing technique. The ADAB system performed an "over-requirement for electron donor" phenomenon and the requirement amount can be altered by regulating ARM dosage. Response surface methodology was then successfully employed to optimize the dosage of ARM and possible additional electron donor required for ADAB under different conditions.
Collapse
Affiliation(s)
- Ruobin Dai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoguang Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai 201620, China.
| | - Xinyi Xiang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yu Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Fengbo Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
35
|
Yunessnia lehi A, Akbari A. Thin-film composite membranes incorporated with large-area graphene oxide sheets and adjustable surface charges. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Ahmad Akbari
- Institute of Nanoscience and Nanotechnology; University of Kashan; Kashan Iran
- Department of Carpet, Faculty of Architecture and Art; University of Kashan; Kashan Iran
| |
Collapse
|
36
|
Lehl HK, Ong SA, Ho LN, Wong YS, Saad FNM, Oon YL, Oon YS, Thung WE, Yong CY. Decolorization and mineralization of Amaranth dye using multiple zoned aerobic and anaerobic baffled constructed wetland. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:725-731. [PMID: 28448169 DOI: 10.1080/15226514.2017.1284748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The objective of this study is to determine the reduction efficiency of Chemical Oxygen Demand (COD) as well as the removal of color and Amaranth dye metabolites by the Aerobic-anaerobic Baffled Constructed Wetland Reactor (ABCW). The ABCW reactor was planted with common reed (Phragmite australis) where the hydraulic retention time (HRT) was set to 1 day and was fed with synthetic wastewater with the addition of Amaranth dye. Supplementary aeration was supplied in designated compartments of the ABCW reactor to control the aerobic and anaerobic zones. After Amaranth dye addition the COD reduction efficiency dropped from 98 to 91% while the color removal efficiency was 100%. Degradation of azo bond in Amaranth dye is shown by the UV-Vis spectrum analysis which demonstrates partial degradation of Amaranth dye metabolites. The performance of the baffled unit is due to the longer pathway as there is the up-flow and down-flow condition sequentially, thus allowing more contact of the wastewater with the rhizomes and micro-aerobic zones.
Collapse
Affiliation(s)
- Harvinder Kaur Lehl
- a Water Research Group (WAREG), School of Environmental Engineering , Universiti Malaysia Perlis , Perlis , Malaysia
| | - Soon-An Ong
- a Water Research Group (WAREG), School of Environmental Engineering , Universiti Malaysia Perlis , Perlis , Malaysia
| | - Li-Ngee Ho
- b School of Materials Engineering, Universiti Malaysia Perlis , Perlis , Malaysia
| | - Yee-Shian Wong
- a Water Research Group (WAREG), School of Environmental Engineering , Universiti Malaysia Perlis , Perlis , Malaysia
| | - Farah Naemah Mohd Saad
- a Water Research Group (WAREG), School of Environmental Engineering , Universiti Malaysia Perlis , Perlis , Malaysia
| | - Yoong-Ling Oon
- a Water Research Group (WAREG), School of Environmental Engineering , Universiti Malaysia Perlis , Perlis , Malaysia
| | - Yoong-Sin Oon
- a Water Research Group (WAREG), School of Environmental Engineering , Universiti Malaysia Perlis , Perlis , Malaysia
| | - Wei-Eng Thung
- a Water Research Group (WAREG), School of Environmental Engineering , Universiti Malaysia Perlis , Perlis , Malaysia
| | - Chin-Yii Yong
- a Water Research Group (WAREG), School of Environmental Engineering , Universiti Malaysia Perlis , Perlis , Malaysia
| |
Collapse
|
37
|
Comparative study on the biodegradation of mixed remazol dyes wastewater between integrated anaerobic/aerobic and aerobic sequencing batch reactors. RENDICONTI LINCEI 2017. [DOI: 10.1007/s12210-017-0622-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Abiri F, Fallah N, Bonakdarpour B. Sequential anaerobic-aerobic biological treatment of colored wastewaters: case study of a textile dyeing factory wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:1261-1269. [PMID: 28333043 DOI: 10.2166/wst.2016.531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the present study the feasibility of the use of a bacterial batch sequential anaerobic-aerobic process, in which activated sludge was used in both parts of the process, for pretreatment of wastewater generated by a textile dyeing factory has been considered. Activated sludge used in the process was obtained from a municipal wastewater treatment plant and adapted to real dyeing wastewater using either an anaerobic-only or an anaerobic-aerobic process over a period of 90 days. The use of activated sludge adapted using the anaerobic-aerobic process resulted in a higher overall decolorization efficiency compared to that achieved with activated sludge adapted using the anaerobic-only cycles. Anaerobic and aerobic periods of around 34 and 22 hours respectively resulted in an effluent with chemical oxygen demand (COD) and color content which met the standards for discharge into the centralized wastewater treatment plant of the industrial estate in which the dyeing factory was situated. Neutralization of the real dyeing wastewater and addition of carbon source to it, both of which results in significant increase in the cost of the bacterial treatment process, was not found to be necessary to achieve the required discharge standards.
Collapse
Affiliation(s)
- Fardin Abiri
- Department of Chemical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran E-mail:
| | - Narges Fallah
- Department of Chemical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran E-mail:
| | - Babak Bonakdarpour
- Department of Chemical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran E-mail:
| |
Collapse
|
39
|
|
40
|
Hou Y, Zhang R, Yu Z, Huang L, Liu Y, Zhou Z. Accelerated azo dye degradation and concurrent hydrogen production in the single-chamber photocatalytic microbial electrolysis cell. BIORESOURCE TECHNOLOGY 2017; 224:63-68. [PMID: 27810247 DOI: 10.1016/j.biortech.2016.10.069] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 06/06/2023]
Abstract
The single-chamber microbial electrolysis cell constructed with a TiO2-coated photocathode, termed photocatalytic microbial electrolysis cell (PMEC), was developed to accelerate methyl orange (MO) degradation and concurrent hydrogen (H2) recovery under UV irradiation. Results showed that faster MO decolorization rates were achieved from the PMEC compared with those without UV irradiation or with open circuit. With increase of MO concentrations (acetate as co-substrate) from 50 to 300mg/L at an applied voltage of 0.8V, decolorization efficiencies decreased from 98% to 76% within 12h, and cyclic H2 production declined from 113 to 68mL. As the possible mechanism of MO degradation, bioelectrochemical reduction, co-metabolism reduction, and photocatalysis were involved; and degradation intermediates (mainly sulfanilic acid and N,N-dimethylaniline) were further degraded by OH generated from photocatalysis. This makes MO mineralization be possible in the single-chamber PMEC. Hence, the PMEC is a promising system for dyeing wastewater treatment and simultaneous H2 production.
Collapse
Affiliation(s)
- Yanping Hou
- School of Environmental Science & Engineering, Guangxi University, Guangxi Colleges and Universities Key Laboratory of Environmental Protection, Nanning 530004, China.
| | - Renduo Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zebin Yu
- School of Environmental Science & Engineering, Guangxi University, Guangxi Colleges and Universities Key Laboratory of Environmental Protection, Nanning 530004, China
| | - Lirong Huang
- School of Environmental Science & Engineering, Guangxi University, Guangxi Colleges and Universities Key Laboratory of Environmental Protection, Nanning 530004, China
| | - Yuxin Liu
- School of Environmental Science & Engineering, Guangxi University, Guangxi Colleges and Universities Key Laboratory of Environmental Protection, Nanning 530004, China
| | - Zili Zhou
- School of Environmental Science & Engineering, Guangxi University, Guangxi Colleges and Universities Key Laboratory of Environmental Protection, Nanning 530004, China
| |
Collapse
|
41
|
Hasantabar V, Mansour Lakouraj M, Tashakkorian H, Rouhi M. Novel nanocomposite based on poly (xanthoneamide-triazole-ethercalix) and TiO2 nanoparticles: preparation, characterization, and investigation of nanocomposite capability in removal of cationic water pollutants. Des Monomers Polym 2016. [DOI: 10.1080/15685551.2016.1187440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Vahid Hasantabar
- Faculty of Chemistry, Polymer Chemistry Laboratory, Department of Organic Chemistry, University of Mazandaran, Babolsar, Iran
| | - Moslem Mansour Lakouraj
- Faculty of Chemistry, Polymer Chemistry Laboratory, Department of Organic Chemistry, University of Mazandaran, Babolsar, Iran
| | - Hamed Tashakkorian
- Paramedical Department, Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of MedicalSciences, Babol, Iran
| | - Mona Rouhi
- Faculty of Chemistry, Polymer Chemistry Laboratory, Department of Organic Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
42
|
Olivares CI, Abrell L, Khatiwada R, Chorover J, Sierra-Alvarez R, Field JA. (Bio)transformation of 2,4-dinitroanisole (DNAN) in soils. JOURNAL OF HAZARDOUS MATERIALS 2016; 304:214-21. [PMID: 26551225 PMCID: PMC4695256 DOI: 10.1016/j.jhazmat.2015.10.059] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/25/2015] [Indexed: 05/17/2023]
Abstract
Recent studies have begun to assess the environmental fate and toxicity of 2,4-dinitroanisole (DNAN), an insensitive munition compound of interest to defense agencies. Aerobic and anaerobic DNAN biotransformation in soils was evaluated in this study. Under aerobic conditions, there was little evidence of transformation; most observed removal was attributed to adsorption and subsequent slow chemical reactions. Under anaerobic conditions, DNAN was reductively (bio)transformed and the rate of the transformation was positively correlated with soil organic carbon (OC) up to a threshold of 2.07% OC. H2 addition enhanced the nitroreduction rate compared to endogenous treatments lacking H2. Heat-killed treatments provided rates similar to the endogenous treatment, suggesting that abiotic factors play a role in DNAN reduction. Ten (bio)transformation products were detected by high-resolution mass spectrometry. The proposed transformation pathway involves reduction of DNAN to aromatic amines, with putative reactive nitroso-intermediates coupling with the amines to form azo dimers. Secondary reactions include N-alkyl substitution, O-demethylation (sometimes followed by dehydroxylation), and removal of an N-containing group. Globally, our results suggest that the main reaction DNAN undergoes in anaerobic soils is nitroreduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN), followed by anaerobic coupling reactions yielding azo-dimers. The dimers were subsequently subject to further (bio)transformations.
Collapse
Affiliation(s)
- Christopher I Olivares
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ 85721, USA.
| | - Leif Abrell
- Department of Soil, Water & Environmental Science, University of Arizona, P.O. Box 210011, Tucson, AZ 85721, USA; Department of Chemistry & Biochemistry, University of Arizona, P.O. Box 210011, Tucson, AZ 85721, USA
| | - Raju Khatiwada
- Department of Soil, Water & Environmental Science, University of Arizona, P.O. Box 210011, Tucson, AZ 85721, USA
| | - Jon Chorover
- Department of Soil, Water & Environmental Science, University of Arizona, P.O. Box 210011, Tucson, AZ 85721, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ 85721, USA
| | - Jim A Field
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ 85721, USA
| |
Collapse
|
43
|
Gowthaman NSK, Sinduja B, John SA. Tuning the composition of gold–silver bimetallic nanoparticles for the electrochemical reduction of hydrogen peroxide and nitrobenzene. RSC Adv 2016. [DOI: 10.1039/c6ra05658j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gold@silver core–shell nanoparticles were synthesized by galvanic displacement reaction and modified on glassy carbon electrode for the reduction of hydrogen peroxide and nitrobenzene.
Collapse
Affiliation(s)
- N. S. K. Gowthaman
- Centre for Nanoscience and Nanotechnology
- Department of Chemistry
- Gandhigram Rural Institute
- Dindigul
- India
| | - Bharathi Sinduja
- Centre for Nanoscience and Nanotechnology
- Department of Chemistry
- Gandhigram Rural Institute
- Dindigul
- India
| | - S. Abraham John
- Centre for Nanoscience and Nanotechnology
- Department of Chemistry
- Gandhigram Rural Institute
- Dindigul
- India
| |
Collapse
|
44
|
Mata A, Pinheiro H, Lourenço N. Effect of sequencing batch cycle strategy on the treatment of a simulated textile wastewater with aerobic granular sludge. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Chen BY, Xu B, Yueh PL, Han K, Qin LJ, Hsueh CC. Deciphering electron-shuttling characteristics of thionine-based textile dyes in microbial fuel cells. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2014.12.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
London Singh RK. Applicability of Positive Cooperativity Model of Enzyme Catalysis on Surfactant-Mediated Reaction of Pararosaniline Hydrochloride Carbocation with Hydroxide Ion. J DISPER SCI TECHNOL 2015. [DOI: 10.1080/01932691.2015.1039025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two major gaseous signaling molecules that regulate diverse physiological functions. Recent publications indicate the regulatory role of H2S on NO metabolism. In this chapter, we discuss the latest findings on H2S-NO interactions through formation of novel chemical derivatives and experimental approaches to study these adducts. This chapter also addresses potential H2S interference on various NO detection techniques, along with precautions for analyzing biological samples from various sources. This information will facilitate critical evaluation and clearer insight into H2S regulation of NO signaling and its influence on various physiological functions.
Collapse
Affiliation(s)
- Gopi K Kolluru
- Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA.
| | - Shuai Yuan
- Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Xinggui Shen
- Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA.
| |
Collapse
|
48
|
Bacterial Enzymes and Their Role in Decolorization of Azo Dyes. MICROBIAL DEGRADATION OF SYNTHETIC DYES IN WASTEWATERS 2015. [DOI: 10.1007/978-3-319-10942-8_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Tee HC, Lim PE, Seng CE, Mohd Nawi MA, Adnan R. Enhancement of azo dye Acid Orange 7 removal in newly developed horizontal subsurface-flow constructed wetland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 147:349-355. [PMID: 25284799 DOI: 10.1016/j.jenvman.2014.09.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 06/03/2023]
Abstract
Horizontal subsurface-flow (HSF) constructed wetland incorporating baffles was developed to facilitate upflow and downflow conditions so that the treatment of pollutants could be achieved under multiple aerobic, anoxic and anaerobic conditions sequentially in the same wetland bed. The performances of the baffled and conventional HSF constructed wetlands, planted and unplanted, in the removal of azo dye Acid Orange 7 (AO7) were compared at the hydraulic retention times (HRT) of 5, 3 and 2 days when treating domestic wastewater spiked with AO7 concentration of 300 mg/L. The planted baffled unit was found to achieve 100%, 83% and 69% AO7 removal against 73%, 46% and 30% for the conventional unit at HRT of 5, 3 and 2 days, respectively. Longer flow path provided by baffled wetland units allowed more contact of the wastewater with the rhizomes, microbes and micro-aerobic zones resulting in relatively higher oxidation reduction potential (ORP) and enhanced performance as kinetic studies revealed faster AO7 biodegradation rate under aerobic condition. In addition, complete mineralization of AO7 was achieved in planted baffled wetland unit due to the availability of a combination of aerobic, anoxic and anaerobic conditions.
Collapse
Affiliation(s)
- Heng-Chong Tee
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Poh-Eng Lim
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Chye-Eng Seng
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Mohd Asri Mohd Nawi
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Rohana Adnan
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
50
|
Alvarez LH, Valdez-Espinoza R, García-Reyes RB, Olivo-Alanis D, Garza-González MT, Meza-Escalante ER, Gortáres-Moroyoqui P. Decolorization and biogas production by an anaerobic consortium: effect of different azo dyes and quinoid redox mediators. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:794-801. [PMID: 26287839 DOI: 10.2166/wst.2015.284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The inhibitory effect of azo dyes and quinoid compounds on an anaerobic consortium was evaluated during a decolorization process and biogas production. In addition, the impact of quinoid compounds such as lawsone (LAW) and anthraquinone-2,6-disulfonate (AQDS) on the rate of decolorization of Direct Blue 71 (DB71) was assessed. The anaerobic consortium was not completely inhibited under all tested dye concentrations (0.1-2 mmol l(-1)), evidenced by an active decolorization process and biogas production. The presence of quinoid compounds at different concentrations (4, 8, and 12 mmol l(-1)) also inhibited biogas production compared to the control incubated without the quinoid compounds. In summary, the anaerobic consortium was affected to a greater extent by increasing the quantity of azo dyes or quinoid compounds. Nevertheless, at a lower concentration (1 mmol l(-1)) of quinoid compounds, the anaerobic consortium effectively decolorized 2 mmol l(-1) of DB71, increasing up to 5.2- and 20.4-fold the rate of decolorization with AQDS and LAW, respectively, compared to the control lacking quinoid compounds.
Collapse
Affiliation(s)
- L H Alvarez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, 66451 Nuevo León, México E-mail:
| | - R Valdez-Espinoza
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora (ITSON), Ciudad Obregón, Sonora, México
| | - R B García-Reyes
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, 66451 Nuevo León, México E-mail:
| | - D Olivo-Alanis
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, 66451 Nuevo León, México E-mail:
| | - M T Garza-González
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, 66451 Nuevo León, México E-mail:
| | - E R Meza-Escalante
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora (ITSON), Ciudad Obregón, Sonora, México
| | - P Gortáres-Moroyoqui
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), Ciudad Obregón, Sonora, México
| |
Collapse
|