1
|
Zhang FX, Li HL, Wan JZ, Wang CJ. Identifying key monitoring areas for tree insect pest risks in China under climate change. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2355-2367. [PMID: 39460732 DOI: 10.1093/jee/toae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/19/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024]
Abstract
Climate change can exacerbate pest population growth, posing significant threats to ecosystem functions and services, social development, and food security. Risk assessment is a valuable tool for effective pest management that identifies potential pest expansion and ecosystem dispersal patterns. We applied a habitat suitability model coupled with priority protection planning software to determine key monitoring areas (KMA) for tree insect pest risks under climate change and used forest ecoregions and nature reserves to assess the ecological risk of insect pest invasion. Finally, we collated the prevention and control measures for reducing future pest invasions. The KMA for tree insect pests in our current and future climate is mainly concentrated in eastern and southern China. However, with climate change, the KMA gradually expands from southeastern to northeastern China. In the current and future climate scenarios, ecoregions requiring high monitoring levels were restricted to the eastern and southern coastal areas of China, and nature reserves requiring the highest monitoring levels were mainly distributed in southeastern China. Tree insect pest invasion assessment using ecoregions and nature reserves identified that future climates increase the risk of pest invasions in forest ecoregions and nature reserves, especially in northeastern China. The increased risk and severity of tree insect pest invasions require implementing monitoring and preventative measures in these areas. We effectively assessed the pest invasion risks using forest ecoregions and nature reserves under climate change. Our assessments suggest that monitoring and early prevention should focus on southeastern and northeastern China.
Collapse
Affiliation(s)
- Fei-Xue Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Hong-Li Li
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Ji-Zhong Wan
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Chun-Jing Wang
- Grupo de Biología Integrativa, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Brush M, Lewis MA. Eruptive Insect Outbreaks from Endemic Populations Under Climate Change. Bull Math Biol 2024; 87:16. [PMID: 39715936 DOI: 10.1007/s11538-024-01399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Insects, especially forest pests, are frequently characterized by eruptive dynamics. These types of species can stay at low, endemic population densities for extended periods of time before erupting in large-scale outbreaks. We here present a mechanistic model of these dynamics for mountain pine beetle. This extends a recent model that describes key aspects of mountain pine beetle biology coupled with a forest growth model by additionally including a fraction of low-vigor trees. These low-vigor trees, which may represent hosts with weakened defenses from drought, disease, other bark beetles, or other stressors, give rise to an endemic equilibrium in biologically plausible parameter ranges. The mechanistic nature of the model allows us to study how each model parameter affects the existence and size of the endemic equilibrium. We then show that under certain parameter shifts that are more likely under climate change, the endemic equilibrium can disappear entirely, leading to an outbreak.
Collapse
Affiliation(s)
- Micah Brush
- Department of Biology, University of Victoria, Victoria, BC, Canada.
| | - Mark A Lewis
- Department of Biology, University of Victoria, Victoria, BC, Canada
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
3
|
Sellamuthu G, Chakraborty A, Vetukuri RR, Sarath S, Roy A. RNAi-biofungicides: a quantum leap for tree fungal pathogen management. Crit Rev Biotechnol 2024:1-28. [PMID: 39647992 DOI: 10.1080/07388551.2024.2430478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 12/10/2024]
Abstract
Fungal diseases threaten the forest ecosystem, impacting tree health, productivity, and biodiversity. Conventional approaches to combating diseases, such as biological control or fungicides, often reach limits regarding efficacy, resistance, non-target organisms, and environmental impact, enforcing alternative approaches. From an environmental and ecological standpoint, an RNA interference (RNAi) mediated double-stranded RNA (dsRNA)-based strategy can effectively manage forest fungal pathogens. The RNAi approach explicitly targets and suppresses gene expression through a conserved regulatory mechanism. Recently, it has evolved to be an effective tool in combating fungal diseases and promoting sustainable forest management approaches. RNAi bio-fungicides provide efficient and eco-friendly disease control alternatives using species-specific gene targeting, minimizing the off-target effects. With accessible data on fungal disease outbreaks, genomic resources, and effective delivery systems, RNAi-based biofungicides can be a promising tool for managing fungal pathogens in forests. However, concerns regarding the environmental fate of RNAi molecules and their potential impact on non-target organisms require an extensive investigation on a case-to-case basis. The current review critically evaluates the feasibility of RNAi bio-fungicides against forest pathogens by delving into the accessible delivery methods, environmental persistence, regulatory aspects, cost-effectiveness, community acceptance, and plausible future of RNAi-based forest protection products.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amrita Chakraborty
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saravanasakthi Sarath
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
4
|
Sivault E, Koane B, Chmurova L, Sam K. Birds and bats reduce herbivory damage in Papua New Guinean highland forests. Ecology 2024; 105:e4421. [PMID: 39297807 DOI: 10.1002/ecy.4421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 07/10/2024] [Indexed: 11/05/2024]
Abstract
Insectivorous predators, including birds and bats, play crucial roles in trophic cascades. However, previous research on these cascades has often relied on permanent predator exclosures, which prevent the isolation of specific effects of birds and bats, given their different activity patterns throughout the day. Moreover, limited knowledge exists regarding the variations in individual effects of these predators under different biotic and abiotic conditions, such as changes in elevation. To address these uncertainties, our study aimed to investigate the distinct effects of bats and birds on arthropod densities in foliage and herbivory damage in lowland and highland rainforests of Papua New Guinea (PNG). Predator exclosures were established for one month to exclude diurnal or nocturnal predators across 120 saplings (ca. 2.5-4 m tall) selected from two lowland and two highland forests (i.e., 30 saplings per study site) along the Mt. Wilhelm transect in PNG. Arthropods were collected and measured, and herbivory damage was analyzed at the end of the experiment. Birds significantly reduced arthropod densities by 30%, particularly in arthropods longer than 10 mm, regardless of elevation. Additionally, both birds and bats appeared to mitigate herbivory damage in highland forests, with protected saplings displaying up to 189% more herbivory. Our results support previous studies that have demonstrated the ability of insectivorous predators to reduce leaf damage through the control of arthropods. Furthermore, our approach highlights the importance and necessity of further research on the role of seasons and elevations in trophic cascades.
Collapse
Affiliation(s)
- Elise Sivault
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Bonny Koane
- The New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Lucia Chmurova
- Buglife - The Invertebrate Conservation Trust, G.06, Allia future Business Centre, Peterborough, UK
| | - Katerina Sam
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| |
Collapse
|
5
|
Li B, Dopman EB, Dong Y, Yang Z. Forecasting habitat suitability and niche shifts of two global maize pests: Ostrinia furnacalis and Ostrinia nubilalis (Lepidoptera: Crambidae). PEST MANAGEMENT SCIENCE 2024; 80:5286-5298. [PMID: 38924623 DOI: 10.1002/ps.8257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Ostrinia furnacalis (ACB) and Ostrinia nubilalis (ECB) are devastating pests of the agricultural crop maize worldwide. However, little is known about their potential distribution and niche shifts during their global invasion. Since long-term selection to past climate variability has shaped their historical niche breadth, such niche shifts may provide an alternative basis for understanding their responses to present and future climate change. By integrating the niche unfilling, stability, and expansion situations into a single framework, our study quantifies the patterns of niche shift in the spatial distribution of these two pests during the different periods. RESULTS Our results show that the overall suitable habitats of ACB and ECB in the future decrease but highly and extremely suitable habitat will become more widespread, suggesting these two insects may occur more frequently in specific regions. Compared with Southeast Asia and Australia, the ACB niche in China exhibited expansion rather than unfilling. For ECB, initial niches have a tendency to be retained in Eurasia despite there also being potential for expansion in North America. The niche equivalency and similarity test results further indicate that niche shifts were common for both ACB and ECB in different survival regions during their colonization of new habitat and their suitable habitat changes during the paleoclimate were associated with climatic changes. CONCLUSIONS These findings improve our understanding of the ecological characteristics of ACB and ECB worldwide, and will be useful in the development of prevention and control strategies for two insect pests worldwide. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bing Li
- College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, China
| | - Erik B Dopman
- Department of Biology, Tufts University, Medford, MA, USA
| | - Yanling Dong
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhaofu Yang
- College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Novick KA, Ficklin DL, Grossiord C, Konings AG, Martínez-Vilalta J, Sadok W, Trugman AT, Williams AP, Wright AJ, Abatzoglou JT, Dannenberg MP, Gentine P, Guan K, Johnston MR, Lowman LEL, Moore DJP, McDowell NG. The impacts of rising vapour pressure deficit in natural and managed ecosystems. PLANT, CELL & ENVIRONMENT 2024; 47:3561-3589. [PMID: 38348610 DOI: 10.1111/pce.14846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 08/16/2024]
Abstract
An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.
Collapse
Affiliation(s)
- Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Darren L Ficklin
- Department of Geography, Indiana University, Bloomington, Indiana, USA
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering (EPFL), Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra, Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Walid Sadok
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, California, USA
| | - A Park Williams
- Department of Geography, University of California, Los Angeles, California, USA
| | - Alexandra J Wright
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - John T Abatzoglou
- Management of Complex Systems Department, University of California, Merced, California, USA
| | - Matthew P Dannenberg
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
- Center for Learning the Earth with Artificial Intelligence and Physics (LEAP), Columbia University, New York, New York, USA
| | - Kaiyu Guan
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Miriam R Johnston
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Lauren E L Lowman
- Department of Engineering, Wake Forest University, Winston-Salem, North Carolina, USA
| | - David J P Moore
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
7
|
Chen Z, Ren L, Li J, Fu N, Yun Q, Luo Y. Chromosomal-level genome assembly of Hylurgus ligniperda: insights into host adaptation and environmental tolerance. BMC Genomics 2024; 25:792. [PMID: 39164658 PMCID: PMC11337627 DOI: 10.1186/s12864-024-10711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Hylurgus ligniperda (Coleoptera: Curculionidae) is a worldwide forest quarantine pest. It is widely distributed, has many host tree species, and possesses strong adaptability. To explore its environmental adaptability and the related molecular mechanisms, we conducted chromosome-level genome sequencing and analyzed the transcriptome under different environmental factors, identifying key expressed genes. RESULTS We employed PacBio, Illumina, and Hi-C sequencing techniques to assemble a 520 Mb chromosomal-level genome of H. ligniperda, obtaining an N50 of 39.97 Mb across 138 scaffolds. A total of 10,765 protein-coding genes were annotated after repeat masking. Fourteen chromosomes were identified, among which Hyli14 was determined to be the sex chromosome. Survival statistics were tested over various growth periods under high temperature and low humidity conditions. The maximum survival period of adults reached 292 days at 25 °C, 65% relative humidity. In comparison, the maximum survival period was 14 days under 35 °C, 65% relative humidity, and 106 days under 25°C, 40% relative humidity. This indicated that environmental stress conditions significantly reduced adults' survival period. We further conducted transcriptome analysis to screen for potentially influential differentially expressed genes, such as CYP450 and Histone. Subsequently, we performed gene family analysis to gain insights into their functions and interactions, such as CYP450 and Histone. CYP450 genes affected the detoxification metabolism of enzymes in the Cytochrome P450 pathway to adapt to different environments. Histone genes are involved in insect hormone biosynthesis and longevity-regulating pathways in H. ligniperda to adapt to environmental stress. CONCLUSIONS The genome at the chromosome level of H. ligniperda was assembled for the first time. The mortality of H. ligniperda increased significantly at 35 ℃, 65% RH, and 25 ℃, 40% RH. CYP450 and Histone genes played an important role in response to environmental stress. This genome offers a substantial genetic resource for investigating the molecular mechanisms behind beetle invasion and spread.
Collapse
Affiliation(s)
- Zhiqian Chen
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| | - Jiaxing Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Ningning Fu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding, 071033, China
| | | | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Bian H, Li W, Yu S, Mao J, Hong Y, Song Y, Cai P. How Climate Warming Influences the Phenology of Grapholita molesta (Busck, 1916) (Lepidoptera: Tortricidae) in China: Insight from Long-Term Historical Data. INSECTS 2024; 15:474. [PMID: 39057207 PMCID: PMC11276667 DOI: 10.3390/insects15070474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Grapholita molesta (Busck, 1916), a significant pest affecting various fruits such as pears, apples, peaches, etc., is highly adaptable to changing temperatures. However, the phenological response mechanism of this pest to climate warming remains unclear. To address this issue, we collected population dynamics data of G. molesta in China over the years along with corresponding climate data. We analyzed five phenological indexes: the first, end, and peak occurrence dates of contemporary adults as well as the first and peak occurrence dates of overwintering adults in China. Results revealed an upward trend in the annual average temperature and average temperature of the four seasons in regions infested by G. molesta in eastern, northeastern, northwestern, northern, and southwestern China from 1980 to 2020. Notably, the population peak date of overwintering adults in northeastern and eastern China significantly advanced along with the first occurrence date and the population peak date of overwintering adults in northern China. Additionally, the population peak date of contemporary adults in northwestern China significantly advanced. However, the end occurrence date of contemporary adults in northern China was significantly delayed, as was the first occurrence date of overwintering adults in northwestern China. Furthermore, our study demonstrated spatial heterogeneity in the phenological response of G. molesta to climate warming across China. This study elucidates the phenological response of G. molesta to climate warming, offering valuable insights for predicting future pest infestations and informing adaptive pest management strategies in fruit tree cultivation.
Collapse
Affiliation(s)
- Haotian Bian
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China; (H.B.); (W.L.); (S.Y.); (J.M.); (Y.H.)
| | - Wenzhuo Li
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China; (H.B.); (W.L.); (S.Y.); (J.M.); (Y.H.)
| | - Shengjun Yu
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China; (H.B.); (W.L.); (S.Y.); (J.M.); (Y.H.)
| | - Jianxiang Mao
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China; (H.B.); (W.L.); (S.Y.); (J.M.); (Y.H.)
| | - Yongcong Hong
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China; (H.B.); (W.L.); (S.Y.); (J.M.); (Y.H.)
| | - Yunzhe Song
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China; (H.B.); (W.L.); (S.Y.); (J.M.); (Y.H.)
| | - Pumo Cai
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China; (H.B.); (W.L.); (S.Y.); (J.M.); (Y.H.)
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350001, China
| |
Collapse
|
9
|
Siddiqui ZS, Nida K, Cho JI, Rehman Y, Abideen Z. Physiological and photochemical profiling of soybean plant using biological and chemical methods of treatment against biotic stress management. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108454. [PMID: 38452449 DOI: 10.1016/j.plaphy.2024.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Phyto-pathogenic fungal species is a leading biotic stress factor to agri-food production and ecosystem of globe. Chemical (Systemic fungicides) and biological treatment (micro-organism) are globally accepted methods that are being used against biotic stress (disease) management. Plant Growth-Promoting Microbes are being used as an alternative to ease chemical dependency as their overdoses have generated injurious effects on plants and environment. Therefore, present study performs to evaluate the photochemical and physiological profiling of plants exposed to chemical and biological treatment in biotic stress (disease) environment. Two concentrations of each chemical treatment i.e. Topsin-M 70 (Dimethyl 4,4'-o-phenylene bis 3-thioallaphanate, MF1 = 3 g kg-1 and MF2 = 6 g kg-1 seeds) and biological treatment i.e. Trichoderma harzianum strain Th-6 (MT1 = 106 spores mL-1and MT2 = 107 spores mL-1) were used in this experiment. Macrophomina phaseolina (MP) were used as biotic stress factor causing root rot disease in soybean plants. Morpho-physiological assessments and light harvesting efficiency of photosystem II were conducted after 52 days of treatment. Maximum quantum yield (Fv/Fm), number and size of active reaction center (Fv/Fo), photochemical quenching (qP), efficiency of photosystem II (ΦPSII), electron transport rate (ETR), chlorophyll content index (CCI), relative water content (RWC) and stomatal conductance (SC) were increased in MT2 and MF1 treatments as compared to stress plants (MP). Biological (MT2) and chemical (MF1) treatment lessen the production of stress markers showing -48.0 to -54.3% decline in malondialdehyde (MDA) and -42.0 to -53.7% in hydrogen peroxide (H2O2) as compared to stress plant (MP). Biological treatment in both concentration (MF1 & MF2) while chemical treatment at low dose effectively mitigates biotic stress and eases the magnitude of disease. Increasing doses of chemical treatment persuaded deleterious effects on the physiology and light harvesting efficiency of stressed plant suggesting the role of biological treatment (T. harzianum) against biotic stress management in future of crop protection.
Collapse
Affiliation(s)
| | - Komal Nida
- Stress Physiology Lab., Department of Botany, University of Karachi, Pakistan
| | - Jung-Il Cho
- Crop Production and Physiology Division, National Institute of Crop Science, Rural Development Administration, Wanju, 55365, South Korea
| | - Yusra Rehman
- Stress Physiology Lab., Department of Botany, University of Karachi, Pakistan
| | - Zainul Abideen
- MAK Institute of Sustainable Halophyte Utilization, University of Karachi, Pakistan
| |
Collapse
|
10
|
Ran WW, Luo GM, Zhao YQ, Li C, Dietrich CH, Song YH. Climate change may drive the distribution of tribe Zyginelline pests in China and the Indo-China Peninsula to shift towards higher latitude river-mountain systems. PEST MANAGEMENT SCIENCE 2024; 80:613-626. [PMID: 37740940 DOI: 10.1002/ps.7788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Tribe Zyginelline leafhoppers can transmit plant viruses and are important pests that affect agriculture, forestry, and animal husbandry, causing serious economic losses. The potential distribution patterns of Zyginellini will change under climate change. Therefore, the best-performing random forest and maximum entropy models among 12 commonly used ecological niche models, alongside an ensemble model, were selected to predict the changes in habitat suitability distribution of Zyginellini under current and future climate scenarios [represented by two shared socio-economic pathways (SSPs), namely SSP126 and SSP585, for three periods (2050s, 2070s, and 2090s)] in China and the Indo-China Peninsula for the first time. RESULTS The results revealed that the distribution of Zyginellini was mainly dominated by minimum temperature of coldest month. Under current and future climate scenarios, Zyginellini was mostly distributed southeast of the 400 mm equivalent precipitation line in China, and Vietnam. Under the future SSP126 scenario, the alert areas will mainly be concentrated in Hunan, Jiangxi, Zhejiang, Anhui, and Hebei in China, alongside Myanmar and Thailand in the Indo-China Peninsula. Meanwhile, in the SSP585 scenario, the alert areas in China will increase, whereas there will be little change in the Indo-China Peninsula. Interestingly, from the current to the future, the cores of Zyginelline distribution occurred around rivers and mountains, and shifted from Guizhou along the Yuanjiang River system to higher latitudes in Hunan. CONCLUSION Zyginellini prefers higher latitude river-mountain systems under climate change. Our results will contribute to effective pest control strategies and biogeographical research for Zyginellini alongside other Cicadellidae insects. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei-Wei Ran
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, China
| | - Gui-Mei Luo
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, China
| | - Yuan-Qi Zhao
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, China
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Yue-Hua Song
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
| |
Collapse
|
11
|
Irving MR, Goolsby EW, Stanford H, Lim-Hing S, Urrea M, Mason CM. Temperature alters the toxicological impacts of plant terpenoids on the polyphagous model herbivore Vanessa cardui. J Chem Ecol 2023; 49:666-680. [PMID: 37695522 PMCID: PMC10781811 DOI: 10.1007/s10886-023-01449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
Terpenes are a major class of secondary metabolites present in all plants, and long hypothesized to have diversified in response to specific plant-herbivore interactions. Herbivory is a major biotic interaction that plays out across broad temporal and spatial scales that vary dramatically in temperature regimes, both due to climatic variation across geographic locations as well as the effect of seasonality. In addition, there is an emerging understanding that global climate change will continue to alter the temperature regimes of nearly every habitat on Earth over the coming centuries. Regardless of source, variation in temperature may influence herbivory, in particular via changes in the efficacy and impacts of plant defensive chemistry. This study aims to characterize temperature-driven variation in toxicological effects across several structural classes of terpenes in the model herbivore Vanessa cardui, the painted lady butterfly. We observed a general increase in monoterpene toxicity to larvae, pupa, and adults at higher temperatures, as well as an increase in development time as terpene concentration increased. Results obtained from this study yield insights into possible drivers of seasonal variation in plant terpene production as well as inform effects of rising global temperatures on plant-insect interactions. In the context of other known effects of climate change on plant-herbivore interactions like carbon fertilization and compensatory feeding, temperature-driven changes in plant chemical defense efficacy may further complicate the prediction of climate change impacts on the fundamental ecological process of herbivory.
Collapse
Affiliation(s)
- Mari R Irving
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA.
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Hannah Stanford
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Simone Lim-Hing
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Maria Urrea
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
12
|
Ganthaler A, Guggenberger A, Stöggl W, Kranner I, Mayr S. Elevated nutrient supply can exert worse effects on Norway spruce than drought, viewed through chemical defence against needle rust. TREE PHYSIOLOGY 2023; 43:1745-1757. [PMID: 37405989 PMCID: PMC10565715 DOI: 10.1093/treephys/tpad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Abiotic factors such as water and nutrient availability can exert a dominant influence on the susceptibility of plants to various pathogens. Effects of abiotic environmental factors on phenolic compound concentrations in the plant tissue may represent one of the major underlying mechanisms, as these compounds are known to play a substantial role in plant resistance to pests. In particular, this applies to conifer trees, in which a large range of phenolic compounds are produced constitutively and/or induced by pathogen attack. We subjected Norway spruce saplings to water limitation and elevated nutrient supply over 2 years and subsequently controlled infection with the needle rust Chrysomyxa rhododendri (DC.) de Bary and analysed both constitutive and inducible phenolic compound concentrations in the needles as well as the degree of infection. Compared with the control group, both drought and fertilization profoundly modified the constitutive and pathogen-induced profiles of phenolic compounds, but had little impact on the total phenolic content. Fertilization predominantly affected the inducible phenolic response and led to higher infection rates by C. rhododendri. Drought stress, in contrast, mainly shaped the phenolic profiles in healthy plant parts and had no consequences on the plant susceptibility. The results show that specific abiotic effects on individual compounds seem to be decisive for the infection success of C. rhododendri, whereby the impaired induced response in saplings subjected to nutrient supplementation was most critical. Although drought effects were minor, they varied depending on the time and length of water limitation. The results indicate that prolonged drought periods in the future may not significantly alter the foliar defence of Norway spruce against C. rhododendri, but fertilization, often propagated to increase tree growth and forest productivity, can be counterproductive in areas with high pathogen pressure. HIGHLIGHTS
Collapse
Affiliation(s)
- Andrea Ganthaler
- Department of Botany, Universität Innsbruck, Sternwartestrasse 15, Innsbruck A-6020, Austria
| | - Andreas Guggenberger
- Department of Botany, Universität Innsbruck, Sternwartestrasse 15, Innsbruck A-6020, Austria
| | - Wolfgang Stöggl
- Department of Botany, Universität Innsbruck, Sternwartestrasse 15, Innsbruck A-6020, Austria
| | - Ilse Kranner
- Department of Botany, Universität Innsbruck, Sternwartestrasse 15, Innsbruck A-6020, Austria
| | - Stefan Mayr
- Department of Botany, Universität Innsbruck, Sternwartestrasse 15, Innsbruck A-6020, Austria
| |
Collapse
|
13
|
Putzenlechner B, Koal P, Kappas M, Löw M, Mundhenk P, Tischer A, Wernicke J, Koukal T. Towards precision forestry: Drought response from remote sensing-based disturbance monitoring and fine-scale soil information in Central Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163114. [PMID: 37011694 DOI: 10.1016/j.scitotenv.2023.163114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/23/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023]
Abstract
Prolonged drought and susceptibility to biotic stressors induced an extensive calamity in Norway spruce (Picea abies (L.) Karst.) and widespread crown defoliation in European beech (Fagus sylvatica L.) in Central Europe. For future management decisions, it is crucial to link changes in canopy cover to site conditions. However, current knowledge on the role of soil properties for drought-induced forest disturbance is limited due to the scarcity and low spatial resolution of soil information. We present a fine-scale assessment on the role of soil properties for forest disturbance in Norway spruce and European beech derived from optical remote sensing. A forest disturbance modeling framework based on Sentinel-2 time series was applied on 340 km2 in low mountain ranges of Central Germany. Spatio-temporal information on forest disturbance was calculated at 10 m spatial resolution in the period 2019-2021 and intersected with high-resolution soil information (1:10,000) based on roughly 2850 soil profiles. We found distinct differences in disturbed area, depending on soil type, texture, stoniness, effective rooting depth and available water capacity (AWC). For spruce, we found a polynomial relationship between AWC (R2 = 0.7) and disturbance, with highest disturbed area (65 %) for AWC between 90 and 160 mm. Interestingly, we found no evidence for generally higher disturbance on shallow soils, although stands on the deepest soils were significantly less affected. Noteworthy, sites affected first did not necessarily exhibit highest proportions of disturbed area post-drought, indicating recovery or adaptation. We conclude that site- and species-specific understanding of drought impacts benefits from a combination of remote sensing and fine-scale soil information. Since our approach revealed which sites were affected first and most, it qualifies for prioritizing in situ monitoring activities to most vulnerable stands in acute drought conditions as well as for developing long-term strategies for reforestation and site-specific risk assessment for precision forestry.
Collapse
Affiliation(s)
- Birgitta Putzenlechner
- Institute of Geography, Dep. Cartography, GIS and Remote Sensing, Georg-August-University, Goldschmidtstr. 5, 37077 Göttingen, Germany.
| | - Philipp Koal
- Forestry Research and Competence Centre, ThüringenForst AöR, Jägerstr. 1, 99867 Gotha, Germany
| | - Martin Kappas
- Institute of Geography, Dep. Cartography, GIS and Remote Sensing, Georg-August-University, Goldschmidtstr. 5, 37077 Göttingen, Germany
| | - Markus Löw
- Federal Research and Training Centre for Forests Natural Hazards and Landscape, Seckendorff-Gudent-Weg 8, 1130 Vienna, Austria
| | - Philip Mundhenk
- Forestry Research and Competence Centre, ThüringenForst AöR, Jägerstr. 1, 99867 Gotha, Germany
| | - Alexander Tischer
- Institute of Geography, Friedrich-Schiller-University, Löbdergraben 32, 07743 Jena, Germany
| | - Jakob Wernicke
- Forestry Research and Competence Centre, ThüringenForst AöR, Jägerstr. 1, 99867 Gotha, Germany
| | - Tatjana Koukal
- Federal Research and Training Centre for Forests Natural Hazards and Landscape, Seckendorff-Gudent-Weg 8, 1130 Vienna, Austria
| |
Collapse
|
14
|
Lucash MS, Marshall AM, Weiss SA, McNabb JW, Nicolsky DJ, Flerchinger GN, Link TE, Vogel JG, Scheller RM, Abramoff RZ, Romanovsky VE. Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
15
|
Vacek Z, Vacek S, Cukor J. European forests under global climate change: Review of tree growth processes, crises and management strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117353. [PMID: 36716544 DOI: 10.1016/j.jenvman.2023.117353] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/07/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The ongoing global climate change is challenging all sectors, forestry notwithstanding. On the one hand, forest ecosystems are exposed to and threatened by climate change, but on the other hand, forests can influence the course of climate change by regulating the water regime, air quality, carbon sequestration, and even reduce climate extremes. Therefore, it is crucial to see climate change not only as a risk causing forest disturbances and economic consequences but also as an opportunity for innovative approaches to forest management, conservation, and silviculture based on the results of long-term research. We reviewed 365 studies evaluating the impact of climate change on European forest ecosystems, all published during the last 30 years (1993-2022). The most significant consequences of climate change include more frequent and destructive large-scale forest disturbances (wildfire, windstorm, drought, flood, bark beetle, root rot), and tree species migration. Species distribution shifts and changes in tree growth rate have substantial effects on ecosystem carbon storage. Diameter/volume increment changed from -1 to +99% in Central and Northern Europe, while it decreased from -12 to -49% in Southern Europe across tree species over the last ca. 50 years. However, it is important to sharply focus on the causes of climate change and subsequently, on adaptive strategies, which can successfully include the creation of species-diverse, spatially and age-wise structured stands (decrease drought stress and increase production), prolongation of the regenerative period, or the use of suitable introduced tree species (e.g., Douglas fir, black pine, and Mediterranean oaks). But the desired changes are based on increasing diversity and the mitigation of climate change, and will require significantly higher initial costs for silviculture practices. In conclusion, the scope and complexity of the topic require further comprehensive and long-term studies focusing on international cooperation. We see a critical gap in the transfer of research results into actual forest practice, which will be the key factor influencing afforestation of forest stands and forest growth in the following decades. What our forests will look like for future generations and what the resulting impact of climate change will be on forestry is in the hands of forest managers, depending on supportive forestry research and climate change policy, including adaptive and mitigation strategies.
Collapse
Affiliation(s)
- Zdeněk Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6-Suchdol, Czech Republic.
| | - Stanislav Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6-Suchdol, Czech Republic
| | - Jan Cukor
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6-Suchdol, Czech Republic; Forestry and Game Management Research Institute, Strnady 136, 252 02 Jíloviště, Czech Republic
| |
Collapse
|
16
|
Tree insect pests and pathogens: a global systematic review of their impacts in urban areas. Urban Ecosyst 2023. [DOI: 10.1007/s11252-022-01317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Abstract
Trees contribute greatly to urban environments and human well-being, yet relatively little is known about the extent to which a rising incidence of tree insect pests and pathogens may be affecting these contributions. To address this issue, we undertook a systematic review and synthesis of the diverse global empirical evidence on the impacts of urban tree insect pests and pathogens, using bibliographic databases. Following screening and appraisal of over 3000 articles from a wide range of fields, 100 studies from 28 countries, spanning 1979–2021, were conceptually sorted into a three-part framework: (1) environmental impacts, representing 95 of the studies, including those reporting on tree damage, mortality, reduced growth, and changes in tree function; (2) social impacts were reported by 35 of studies, including on aesthetics, human health, and safety hazards; and (3) economic impacts, reported in 24 of studies, including on costs of pest management, and economic losses. There has been a considerable increase in urban impact studies since 2011. Evidence gaps exist on impacts on climate-regulating capacity, including temperature regulation, water retention, soil erosion, and wind protection, but also on specific hazards, nuisances, human well-being, property damages, and hazard liabilities. As a knowledge synthesis, this article presents the best available evidence of urban tree insect / pathogen impacts to guide policy, management and further research. It will enable us to better forecast how growing threats will affect the urban forest and plan for these eventualities.
Collapse
|
17
|
Abik F, Palasingh C, Bhattarai M, Leivers S, Ström A, Westereng B, Mikkonen KS, Nypelö T. Potential of Wood Hemicelluloses and Their Derivates as Food Ingredients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2667-2683. [PMID: 36724217 PMCID: PMC9936590 DOI: 10.1021/acs.jafc.2c06449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
A holistic utilization of all lignocellulosic wood biomass, instead of the current approach of using only the cellulose fraction, is crucial for the efficient, ecological, and economical use of the forest resources. Use of wood constituents in the food and feed sector is a potential way of promoting the global economy. However, industrially established food products utilizing such components are still scarce, with the exception of cellulose derivatives. Hemicelluloses that include xylans and mannans are major constituents of wood. The wood hemicelluloses are structurally similar to hemicelluloses from crops, which are included in our diet, for example, as a part of dietary fibers. Hence, structurally similar wood hemicelluloses have the potential for similar uses. We review the current status and future potential of wood hemicelluloses as food ingredients. We include an inventory of the extraction routes of wood hemicelluloses, their physicochemical properties, and some of their gastrointestinal characteristics, and we also consider the regulatory route that research findings need to follow to be approved for food solutions, as well as the current status of the wood hemicellulose applications on that route.
Collapse
Affiliation(s)
- Felix Abik
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
| | - Chonnipa Palasingh
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Mamata Bhattarai
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Espoo 00076, Finland
| | - Shaun Leivers
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Anna Ström
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Bjørge Westereng
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Kirsi S. Mikkonen
- Department
of Food and Nutrition, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
- Helsinki
Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Tiina Nypelö
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
- Wallenberg
Wood Science Center, Chalmers University
of Technology, Gothenburg 41296, Sweden
- Department
of Bioproducts and Biosystems, Aalto University, Espoo 00760, Finland
| |
Collapse
|
18
|
Lu Z, Liu X, Wang T, Zhang P, Wang Z, Zhang Y, Kriticos DJ, Zalucki MP. Malice at the Gates of Eden: current and future distribution of Agrilus mali threatening wild and domestic apples. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:745-757. [PMID: 35414375 DOI: 10.1017/s000748532200013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The apple buprestid, Agrilus mali Matsumura, that was widespread in north-eastern China, was accidently introduced to the wild apple forest ecosystem in mountainous areas of Xinjiang, China. This invasive beetle feeds on domesticated apples and many species of Malus and presents a serious threat to ancestral apple germplasm sources and apple production worldwide. Estimating the potential area at risk of colonization by A. mali is crucial for instigating appropriate preventative management strategies, especially under global warming. We developed a CLIMEX model of A. mali to project this pest's potential distribution under current and future climatic scenarios in 2100 using CSIRO-Mk 3.0 GCM running the SRES A1B emissions scenario. Under current climate, A. mali could potentially invade neighbouring central Asia and eventually the mid-latitude temperate zone, and some subtropical areas and Pampas Steppe in the Southern Hemisphere. This potential distribution encompasses wild apples species, the ancestral germplasm for domesticated apples. With global warming, the potential distribution shifts to higher latitudes, with the potential range expanding slightly, though the overall suitability could decline in both hemispheres. In 2100, the length of the growing season of this pest in the mid-latitude temperature zone could increase by 1-2 weeks, with higher growth rates in most sites compared with current climate in mid-latitudes, at least in China. Our work highlights the need for strategies to prevent the spread of this pest, managing the threats to wild apples in Tian Shan Mountain forests in Central Asia, and commercial apple production globally. We discuss practical management tactics to reduce the spread of this pest and mitigate its impacts.
Collapse
Affiliation(s)
- Zhaozhi Lu
- College of Plant Health and Medicine of Qingdao Agriculture University, Qingdao 266109, China
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoxian Liu
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Ecology and Environment of Central Asia, CAS, Urumqi 830011, China
| | - Ting Wang
- College of Plant Health and Medicine of Qingdao Agriculture University, Qingdao 266109, China
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Ping Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Ecology and Environment of Central Asia, CAS, Urumqi 830011, China
| | - Zhenlin Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Ecology and Environment of Central Asia, CAS, Urumqi 830011, China
| | - Yanlong Zhang
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Darren J Kriticos
- CSIRO Health & Biosecurity, Canberra ACT, Australia 2601
- School of Biological Sciences, The University of Queensland, Brisbane, Australia 4072
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, Brisbane, Australia 4072
| |
Collapse
|
19
|
Nyman T, Wutke S, Koivisto E, Klemola T, Shaw M, Andersson T, Haraldseide H, Hagen SB, Nakadai R, Ruohomäki K. A curated DNA barcode reference library for parasitoids of northern European cyclically outbreaking geometrid moths. Ecol Evol 2022; 12:e9525. [PMID: 36415871 PMCID: PMC9674473 DOI: 10.1002/ece3.9525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022] Open
Abstract
Large areas of forests are annually damaged or destroyed by outbreaking insect pests. Understanding the factors that trigger and terminate such population eruptions has become crucially important, as plants, plant-feeding insects, and their natural enemies may respond differentially to the ongoing changes in the global climate. In northernmost Europe, climate-driven range expansions of the geometrid moths Epirrita autumnata and Operophtera brumata have resulted in overlapping and increasingly severe outbreaks. Delayed density-dependent responses of parasitoids are a plausible explanation for the 10-year population cycles of these moth species, but the impact of parasitoids on geometrid outbreak dynamics is unclear due to a lack of knowledge on the host ranges and prevalences of parasitoids attacking the moths in nature. To overcome these problems, we reviewed the literature on parasitism in the focal geometrid species in their outbreak range and then constructed a DNA barcode reference library for all relevant parasitoid species based on reared specimens and sequences obtained from public databases. The combined recorded parasitoid community of E. autumnata and O. brumata consists of 32 hymenopteran species, all of which can be reliably identified based on their barcode sequences. The curated barcode library presented here opens up new opportunities for estimating the abundance and community composition of parasitoids across populations and ecosystems based on mass barcoding and metabarcoding approaches. Such information can be used for elucidating the role of parasitoids in moth population control, possibly also for devising methods for reducing the extent, intensity, and duration of outbreaks.
Collapse
Affiliation(s)
- Tommi Nyman
- Department of Ecosystems in the Barents Region, Svanhovd Research StationNorwegian Institute of Bioeconomy ResearchSvanvikNorway
| | - Saskia Wutke
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Elina Koivisto
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Tero Klemola
- Department of BiologyUniversity of TurkuTurkuFinland
| | | | - Tommi Andersson
- Kevo Subarctic Research Institute, Biodiversity UnitUniversity of TurkuTurkuFinland
| | | | - Snorre B. Hagen
- Department of Ecosystems in the Barents Region, Svanhovd Research StationNorwegian Institute of Bioeconomy ResearchSvanvikNorway
| | - Ryosuke Nakadai
- Biodiversity DivisionNational Institute for Environmental StudiesTsukubaJapan
| | - Kai Ruohomäki
- Department of BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
20
|
Cassidy VA, Asaro C, McCarty EP. Management Implications for the Nantucket Pine Tip Moth From Temperature-Induced Shifts in Phenology and Voltinism Attributed to Climate Change. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1331-1341. [PMID: 35552738 DOI: 10.1093/jee/toac071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 06/15/2023]
Abstract
Forest insect pest phenology and infestation pressure may shift as temperatures continue to warm due to climate change, resulting in greater challenges for sustainable forest management . The Nantucket pine tip moth (NPTM) (Rhyacionia frustrana Comstock) (Lepidoptera: Tortricidae) is a native forest regeneration pest in the southeastern U.S. with multiple generations per year. Changes in NPTM voltinism may result from temperature-induced shifts in NPTM phenology. Degree-day models have been used to develop optimal spray dates (OSDs) for NPTM. The 2000 Spray Timing Model (STM), based on temperature data from 1960 to 2000, provided generation-specific 5-d OSDs to effectively time applications of contact insecticides. An updated degree-day model, the 2019 STM, is based on temperature data from 2000 to 2019 and was used to detect changes in voltinism as well as shifts in phenology and OSDs. Based on the model, increased voltinism occurred at 6 of the 28 study locations (21%). Changes in voltinism occurred in the Piedmont and Coastal Plain of Georgia, U.S., with shifts from three to four or four to five generations a year, depending on location. The OSDs from the 2019 STM were compared to the 2000 STM OSDs. Over half (57%) of the OSDs differed by 5-15 d, with the majority (66%) resulting in earlier spray dates. The 2019 STM will help growers adapt NPTM control tactics to temperature-induced phenology shifts. NPTM serves as an example of temperature-induced changes attributed to climate change in a forest insect pest with important implications to forest management.
Collapse
Affiliation(s)
- V A Cassidy
- Warnell School of Forestry and Natural Resources, University of Georgia, 2360, Rainwater Road, Tifton, GA, 31793, USA
| | - C Asaro
- Forest Health Protection, USDA Forest Service, 1720, Peachtree Road, NW, Suite 700, Atlanta, GA, 30309, USA
| | - E P McCarty
- Warnell School of Forestry and Natural Resources, University of Georgia, 2360, Rainwater Road, Tifton, GA, 31793, USA
| |
Collapse
|
21
|
Gauff RPM, Lejeusne C, Greff S, Loisel S, Bohner O, Davoult D. Impact of in Situ Simulated Climate Change on Communities and Non-Indigenous Species: Two Climates, Two Responses. J Chem Ecol 2022; 48:761-771. [PMID: 36100819 DOI: 10.1007/s10886-022-01380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Climate change constitutes a major challenge for marine urban ecosystems and ocean warming will likely strongly affect local communities. Non-Indigenous Species (NIS) have been shown to often have higher heat resistance than natives, but studies investigating how forthcoming global warming might affect them in marine urban environments remain scarce, especially in Situ studies. Here we used an in Situ warming experiment in a NW Mediterranean (warm temperate) and a NE Atlantic (cold temperate) marina to see how global warming might affect recruited communities in the near future. In both marinas, warming resulted in significantly different community structure, lower biomass, and more empty space compared to control. However, while in the warm temperate marina, NIS showed an increased surface cover, it was reduced in the cold temperate one. Metabolomic analyses on Bugula neritina in the Atlantic marina revealed potential heat stress experienced by this introduced bryozoan and a potential link between heat stress and the expression of a halogenated alkaloid, Caelestine A. The present results might indicate that the effects of global warming on the prevalence of NIS may differ between geographical provinces, which could be investigated by larger scale studies.
Collapse
Affiliation(s)
- Robin P M Gauff
- Adaptation et Diversité en Milieu Marin, Sorbonne Université, CNRS, UMR 7144, Station Biologique Roscoff, Place Georges Teissier, 29680, Roscoff, France.
| | - Christophe Lejeusne
- Aix Marseille Univ, CNRS, IRD, Avignon Université, IMBE, UMR 7263, Station Marine d'Endoume, Rue de la Batterie des Lions, 13007, Marseille, France
| | - Stephane Greff
- Aix Marseille Univ, CNRS, IRD, Avignon Université, IMBE, UMR 7263, Station Marine d'Endoume, Rue de la Batterie des Lions, 13007, Marseille, France
| | - Stephane Loisel
- Adaptation et Diversité en Milieu Marin, Sorbonne Université, CNRS, UMR 7144, Station Biologique Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Olivier Bohner
- Adaptation et Diversité en Milieu Marin, Sorbonne Université, CNRS, UMR 7144, Station Biologique Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Dominique Davoult
- Adaptation et Diversité en Milieu Marin, Sorbonne Université, CNRS, UMR 7144, Station Biologique Roscoff, Place Georges Teissier, 29680, Roscoff, France
| |
Collapse
|
22
|
Olenici N, Duduman ML, Popa I, Isaia G, Paraschiv M. Geographical Distribution of Three Forest Invasive Beetle Species in Romania. INSECTS 2022; 13:insects13070621. [PMID: 35886797 PMCID: PMC9316972 DOI: 10.3390/insects13070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022]
Abstract
Ips duplicatus (Sahlberg, 1836), Xylosandrus germanus (Blandford, 1894) and Neoclytus acuminatus (Fabricius, 1775) are invasive species reported in Romania, but their current distribution is poorly known. The research aim was to provide new information on this issue. A survey was conducted over the period 2015–2017 in 82 locations, using flight-interception traps and bottle traps, baited with different attractants. Data obtained in our other unpublished studies were also taken into account. A total of 35,136 I. duplicatus beetles were collected in 30 survey locations. The highest captures were in the log yards of some factories processing logs of Norway spruce (Picea abies (L.) H. Karst.). Considering all known records so far, most of these are in the eastern part of Romania, where an outbreak took place during the years 2005–2014, mainly in spruce stands growing outside their natural range. During the survey, 4259 specimens of X. germanus were collected in 35 locations, but in our other studies the species was found in 13 additional places. It was collected at altitudes of 18–1200 m, and the largest catches were from beech stands, growing at 450–950 m. N. acuminatus was found in only six locations, in the western and southern parts of the country, at low altitudes, in tree stands composed of Fraxinus excelsior L., Quercus spp. and other broadleaf species, as well as in broadleaf log yards. The results suggest that I. duplicatus is established in most parts of the Norway spruce’s range, X. germanus is still spreading in the country, with some areas having quite high populations, while N. acuminatus is present only in the warmest regions of the country.
Collapse
Affiliation(s)
- Nicolai Olenici
- National Institute for Research and Development in Forestry “Marin Drăcea”, Campulung Moldovenesc Station, Calea Bucovinei 73 bis, 725100 Campulung Moldovenesc, Romania; (N.O.); (I.P.)
| | - Mihai-Leonard Duduman
- Applied Ecology Laboratory, Forestry Faculty, “Ștefan cel Mare” University of Suceava, Universității Street 13, 720229 Suceava, Romania
- Correspondence:
| | - Ionel Popa
- National Institute for Research and Development in Forestry “Marin Drăcea”, Campulung Moldovenesc Station, Calea Bucovinei 73 bis, 725100 Campulung Moldovenesc, Romania; (N.O.); (I.P.)
| | - Gabriela Isaia
- Faculty of Silviculture and Forest Engineering, “Transilvania” University of Brasov, Șirul Beethoven 1, 500123 Brașov, Romania;
| | - Marius Paraschiv
- National Institute for Research and Development in Forestry “Marin Dracea”, Brasov Station, Closca 13, 500040 Brasov, Romania;
| |
Collapse
|
23
|
Rubini M, Clopeau A, Sandak J, Dumarcay S, Sandak A, Gerardin P, Charrier B. Characterization and classification of Pinus oleoresin samples according to Pinus species, tapping method, and geographical origin based on chemical composition and chemometrics. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Xu P, Fan X, Mao Y, Cheng H, Xu A, Lai W, Lv T, Hu Y, Nie Y, Zheng X, Meng Q, Wang Y, Cernava T, Wang M. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. J Adv Res 2022; 39:49-60. [PMID: 35777916 PMCID: PMC9263646 DOI: 10.1016/j.jare.2021.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION A broad spectrum of rhizosphere bacteria and fungi were shown to play a central role for health, fitness and productivity of their host plants. However, implications of host metabolism on microbiota assembly in the phyllosphere and potential consequences for holobiont functioning were sparsely addressed. Previous observations indicated that tea plants might reduce disease occurrence in various forests located in their proximity; the underlying mechanisms and potential implications of the phyllosphere microbiota remained elusive. OBJECTIVES This study aimed atdeciphering microbiome assembly in the tea plant phyllosphere throughout shoot development as well as elucidating potential implications of host metabolites in this process. The main focus was to explore hidden interconnections between the homeostasis of the phyllosphere microbiome and resistance to fungal pathogens. METHODS Profiling of host metabolites and microbiome analyses based on high-throughput sequencing were integrated to identify drivers of microbiome assembly throughout shoot development in the phyllosphere of tea plants. This was complemented by tracking of beneficial microorganisms in all compartments of the plant. Synthetic assemblages (SynAss), bioassays and field surveys were implemented to verify functioning of the phyllosphere microbiota. RESULTS Theophylline and epigallocatechin gallate, two prevalent metabolites at the early and late shoot development stage respectively, were identified as the main drivers of microbial community assembly. Flavobacterium and Myriangium were distinct microbial responders at the early stage, while Parabacteroides and Mortierella were more enriched at the late stage. Reconstructed, stage-specific SynAss suppressed various tree phytopathogens by 13.0%-69.3% in vitro and reduced disease incidence by 8.24%-41.3% in vivo. CONCLUSION The findings indicate that a functional phyllosphere microbiota was assembled along with development-specific metabolites in tea plants, which continuously suppressed prevalent fungal pathogens. The insights gained into the temporally resolved metabolite response of the tea plant microbiota could provide novel solutions for disease management.
Collapse
Affiliation(s)
- Ping Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Fan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Yuxiao Mao
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Haiyan Cheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Anan Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Wanyi Lai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Tianxing Lv
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Yang Hu
- Zhejiang Provincial Key Laboratory of Biological and Chemical Utilization of Forest Resources, Zhejiang Academy of Forestry, Hangzhou 310023, Zhejiang, China
| | - Yanxia Nie
- Ecology and Environmental Sciences Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuxia Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Qing Meng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuefei Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria.
| | - Mengcen Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Abstract
Droughts are a climatic phenomenon with local, regional, and large-scale repercussions. Historical knowledge of droughts generated by modeled data allows the development of more accurate climate reconstructions to propose better approaches for the management of hydric resources. The objective of this research was to evaluate the association of precipitation and temperature with data from the NLDAS-002 to develop a reconstruction of droughts in the center of Chihuahua, Mexico using the SPEI from tree rings. We also identified the influence of ocean–atmospheric phenomena on the reconstructed drought index. The best association among chronologies was obtained with the earlywood band and accumulated seasonal precipitation from November of the previous year to June of the current year (r = 0.82, p < 0.05) and for temperature from January to July (r = −0.81, p < 0.05). The reconstructed drought index extended from 1775 to 2017 (243 years), where seven extreme drought events were identified. We found significant correlations between the reconstructed Standardized Precipitation Evapotranspiration Index and the Pacific Decadal Oscillation (r = 0.46, p < 0.05), Atlantic Multidecadal Oscillation (r = −0.34, p < 0.05), Multivariate El Niño Southern Oscillation Index (r = 0.29, p < 0.05), and Southern Oscillation Index (r = −0.22, p < 0.05). The historical reconstruction of hydroclimatology in the center of Chihuahua is important for planning a long-term assessment and for the management of water resources shared by Mexico and the United States.
Collapse
|
26
|
Forest Vulnerability to Climate Change: A Review for Future Research Framework. FORESTS 2022. [DOI: 10.3390/f13060917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Climate change has caused vulnerability not only to the forest ecosystem but also to forest-dependent communities. Therefore, its management is essential to increase forest ecosystem services and reduce vulnerability to climate change using an integrated approach. Although many scientific studies examined climate change impact on forest ecosystems, forest vulnerability assessment, including forest sensitivity, adaptability, sustainability and effective management was found to be scant in the existing literature. Through a systematic review from 1990 to 2019, this paper examined forest vulnerability to climate change and its management practices. In this paper, descriptive, mechanism and thematic analyses were carried out to analyze the state of existing research, in order to understand the concept of vulnerability arising from climate change and forest management issues. The present study proposed a framework for integrated forest assessment and management for addressing such issues in future research. The conversion of forest land into other land uses, forest fragmentation, forest disturbance and the effects of climate change on the forest ecosystem are the existing problems. Forest vulnerability, effective adaptation to forest ecosystems and long-term sustainability are priority areas for future research. This study also calls for undertaking researchers at a local scale to involve communities for the effective management of forest ecosystems.
Collapse
|
27
|
Climate Drivers of Pine Shoot Beetle Outbreak Dynamics in Southwest China. REMOTE SENSING 2022. [DOI: 10.3390/rs14122728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Outbreaks of pine shoot beetles (Tomicus spp.) have caused widespread tree mortality in Southwest China. However, the understanding of the role of climatic drivers in pine shoot beetle outbreaks is limited. This study aimed to characterize the relationships between climate variables and pine shoot beetle outbreaks in the forests of Yunnan pine (Pinus yunnanensis Franch) in Southwest China. The pine shoot beetle-infested total area from 2000 to 2017 was extracted from multi-data Landsat images and obtained from field survey plots. A temporal prediction model was developed by partial least squares regression. The results indicated that multi consecutive year droughts was the strongest predictor, as such a condition greatly reduced the tree resistance to the beetles. The beetle-infested total area increased with spring temperature, associated with a higher success rate of trunk colonization and accelerated larval development. Warmer temperatures and longer solar radiation duration promoted flight activity during the trunk transfer to the shoot period and allowed the completion of sister broods. Multi consecutive year droughts combined with the warmer temperatures and higher solar radiation duration could provide favorable conditions for shoot beetle outbreaks. Generally, identifying the climate variables that drive pine shoot beetle outbreaks could help improve current strategies for outbreak control.
Collapse
|
28
|
A Review on Climate Change Impacts on Forest Ecosystem Services in the Mediterranean Basin. JOURNAL OF LANDSCAPE ECOLOGY 2022. [DOI: 10.2478/jlecol-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The Mediterranean Basin covers more than 2 million square kilometres and is surrounded by three continents: Africa, Asia and Europe. The Basin that is rich in biodiversity has tilted towards warmer and drier conditions over the last decades. The emerging climatic conditions particularly the increase in the number of climate extremes are bringing new threats and risks that will exacerbate existing pressures. The present study thoroughly reviewed the recent scientific literature and synthesized existing body of knowledge on the impacts (direct and indirect) of climate change on forest ecosystem services in the Mediterranean Basin. Despite many uncertainties about climate change in the Basin, there appears to be a consensus among a number of studies that climate change is having and will continue to have mostly negative impacts on the Mediterranean forest ecosystem services (wood and non-wood forest products, water resources, carbon storage and recreation and tourism) with possible substantial impacts in the future. Further, evidence is mounting that climate-induced natural disturbances (fires, insect pests, and pathogenic diseases) are becoming frequent and severe. The Mediterranean plants are known for their resilience to natural disturbances. However, the novel climatic conditions may exceed their resilience and alter the ecosystem services. Therefore, there is the need to mitigate the challenges posed by climate change and adapt forest management practices to impending changes to sustain the forest ecosystem services.
Collapse
|
29
|
Lakkana T, Ashton MS, Hooper ER, Perera A, Ediriweera S. Tropical montane forest in South Asia: Composition, structure, and dieback in relation to soils and topography. Ecosphere 2022. [DOI: 10.1002/ecs2.4049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Tithira Lakkana
- Faculty of Applied Science Uva Wellassa University Badulla Sri Lanka
| | - Mark S. Ashton
- The Forest School, Yale School of Environment Yale University New Haven Connecticut USA
| | - Elaine R. Hooper
- The Forest School, Yale School of Environment Yale University New Haven Connecticut USA
| | - Anoma Perera
- Department of Botany University of Peradeniya Peradeniya Sri Lanka
| | - Sisira Ediriweera
- Faculty of Applied Science Uva Wellassa University Badulla Sri Lanka
| |
Collapse
|
30
|
Holt JR, Smetzer JR, Borsuk ME, Laflower D, Orwig DA, Thompson JR. Emerald ash borer intensifies harvest regimes on private land. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2508. [PMID: 34870359 DOI: 10.1002/eap.2508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Invasive forest insects have significant direct impacts on forest ecosystems and they are also generating new risks, uncertainties, and opportunities for forest landowners. The growing prevalence and inexorable spread of invasive insects across the United States, combined with the fact that the majority of the nation's forests are controlled by thousands of autonomous private landowners, raises an important question: To what extent will private landowners alter their harvest practices in response to insect invasions? Using a quasi-experimental design, we conducted a causal analysis to investigate the influence of the highly impactful emerald ash borer (EAB) on (1) annual probability of harvest; (2) intensity of harvest; and (3) diameter of harvested trees, for both ash and non-ash species on private land throughout the Midwest and mid-Atlantic regions of the United States. We found that EAB detection had a negative impact on annual harvest probability and a positive impact on harvest intensity, resulting in a net increase in harvested biomass. Furthermore, our estimates suggest that EAB detection will influence private landowners to harvest greater quantities of ash, relative to non-ash species. We also found that harvested trees in EAB-infested areas had smaller diameters, on average, compared with those unaffected by EAB. These results can help policymakers, forest managers, and extension programs to anticipate and better advise landowners and managers about their options and the associated outcomes for forests.
Collapse
Affiliation(s)
- Jonathan R Holt
- Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA
| | | | - Mark E Borsuk
- Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA
| | - Danelle Laflower
- Harvard Forest, Harvard University, Petersham, Massachusetts, USA
| | - David A Orwig
- Harvard Forest, Harvard University, Petersham, Massachusetts, USA
| | | |
Collapse
|
31
|
Numbers matter: how irruptive bark beetles initiate transition to self-sustaining behavior during landscape-altering outbreaks. Oecologia 2022; 198:681-698. [DOI: 10.1007/s00442-022-05129-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
|
32
|
Kozhar O, Kim M, Ibarra Caballero J, Klopfenstein NB, Cannon PG, Stewart JE. Long evolutionary history of an emerging fungal pathogen of diverse tree species in eastern Asia, Australia, and the Pacific Islands. Mol Ecol 2022; 31:2013-2031. [DOI: 10.1111/mec.16384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Olga Kozhar
- Colorado State University Fort Collins CO USA
| | - Mee‐Sook Kim
- USDA Forest Service Pacific Northwest Research Station Corvallis OR USA
| | | | | | - Phil G. Cannon
- USDA Forest Service Forest Health Protection Vallejo CA USA
| | | |
Collapse
|
33
|
Zhan J, Zheng Y, Xia Q, Wang J, Liu S, Yang Z. Diversity investigation by application of DNA barcoding: A case study of lepidopteran insects in Xinjiang wild fruit forests, China. Ecol Evol 2022; 12:e8678. [PMID: 35309745 PMCID: PMC8901863 DOI: 10.1002/ece3.8678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/23/2022] [Accepted: 02/06/2022] [Indexed: 11/10/2022] Open
Abstract
To investigate the species diversity of lepidopteran insects in Xinjiang wild fruit forests, establish insect community monitoring systems, and determine the local species pool, we test the applicability of DNA barcoding based on cytochrome c oxidase subunit I (COI) gene for accurate and rapid identification of insect species. From 2017 to 2019, a total of 212 samples with ambiguous morphological identification were selected for DNA barcoding analysis. Five sequence-based methods for species delimitation (ABGD, BINs, GMYC, jMOTU, and bPTP) were conducted for comparison to traditional morphology-based identification. In total, 2,422 samples were recorded, representing 143 species of 110 genera in 17 families in Lepidoptera. The diversity analysis showed that the richness indices for Noctuidae was the highest (54 species), and for Pterophoridae, Cossidae, Limacodidae, Lasiocampidae, Pieridae, and Lycaenidae were the lowest (all with 1 species). The Shannon-Wiener species diversity index (H') and Pielou's evenness (J') of lepidopteran insects first increased and then decreased across these 3 years, while the Simpson diversity index showed a trend of subtracted then added. For molecular-based identification, 67 lepidopteran species within 61 genera in 14 families were identified through DNA barcoding. Neighbor-joining (NJ) analysis showed that conspecific individuals were clustered together and formed monophyletic groups with a high support value, except for Lacanobia contigua (Denis & Schiffermüller, 1775) (Noctuidae: Hadeninae). Sixty-seven morphospecies were classified into various numbers of MOTUs based on ABGD, BINs, GMYC, jMOTU, and bPTP (70, 96, 2, 71, and 71, respectively). In Xinjiang wild fruit forests, the family with the largest number of species is Noctuidae, followed by Geometridae, Crambidae, and the remaining families. The highest Shannon diversity index is observed for the family Noctuidae. Our results indicate that the distance-based methods (ABGD and jMOTU) and character-based method (bPTP) outperform GMYC. BINs is inclined to overestimate species diversity compared to other methods.
Collapse
Affiliation(s)
- Jinyu Zhan
- Key Laboratory of Plant Protection Resources and Pest ManagementMinistry of EducationNorthwest A&F UniversityYanglingChina
- Entomological MuseumCollege of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Yufeng Zheng
- Key Laboratory of Plant Protection Resources and Pest ManagementMinistry of EducationNorthwest A&F UniversityYanglingChina
- Entomological MuseumCollege of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Qing Xia
- Key Laboratory of Plant Protection Resources and Pest ManagementMinistry of EducationNorthwest A&F UniversityYanglingChina
- Entomological MuseumCollege of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jin Wang
- Key Laboratory of Plant Protection Resources and Pest ManagementMinistry of EducationNorthwest A&F UniversityYanglingChina
- Entomological MuseumCollege of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Sibo Liu
- Key Laboratory of Plant Protection Resources and Pest ManagementMinistry of EducationNorthwest A&F UniversityYanglingChina
- Entomological MuseumCollege of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Zhaofu Yang
- Key Laboratory of Plant Protection Resources and Pest ManagementMinistry of EducationNorthwest A&F UniversityYanglingChina
- Entomological MuseumCollege of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
34
|
Ding W, Li H, Wen J. Climate Change Impacts on the Potential Distribution of Apocheima cinerarius (Erschoff) (Lepidoptera: Geometridae). INSECTS 2022; 13:insects13010059. [PMID: 35055902 PMCID: PMC8778446 DOI: 10.3390/insects13010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Among the impacts of ongoing and projected climate change are shifts in the distribution and severity of insect pests. Projecting those impacts is necessary to ensure effective pest management in the future. Apocheima cinerarius (Erschoff) (Lepidoptera: Geometridae) is an important polyphagous forest pest in China where causes huge economic and ecological losses in 20 provinces. Under historical climatic conditions, the suitable areas for A. cinerarius in China are mainly in the northern temperate zone (30-50° N) and the southern temperate zone (20-60° S). Using the CLIMEX model, the potential distribution of the pest in China and globally, both historically and under climate change, were estimated. Suitable habitats for A. cinerarius occur in parts of all continents. With climate change, its potential distribution extends northward in China and generally elsewhere in the northern hemisphere, although effects vary depending on latitude. In other areas of the world, some habitats become less suitable for the species. Based on the simulated growth index in CLIMEX, the onset of A. cinerarius would be earlier under climate change in some of its potential range, including Spain and Korea. Measures should anticipate the need for prevention and control of A. cinerarius in its potential extended range in China and globally.
Collapse
Affiliation(s)
- Weicheng Ding
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (W.D.); (H.L.)
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Hongyu Li
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (W.D.); (H.L.)
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Junbao Wen
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (W.D.); (H.L.)
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
35
|
Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies. J Chem Ecol 2021; 47:889-906. [PMID: 34415498 PMCID: PMC8613123 DOI: 10.1007/s10886-021-01303-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 10/28/2022]
Abstract
How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO2, temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle (Diabrotica balteata), and the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora. Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO2 levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO2 further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO2 showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.
Collapse
|
36
|
Osland MJ, Stevens PW, Lamont MM, Brusca RC, Hart KM, Waddle JH, Langtimm CA, Williams CM, Keim BD, Terando AJ, Reyier EA, Marshall KE, Loik ME, Boucek RE, Lewis AB, Seminoff JA. Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. GLOBAL CHANGE BIOLOGY 2021; 27:3009-3034. [PMID: 33605004 DOI: 10.1111/gcb.15563] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Tropicalization is a term used to describe the transformation of temperate ecosystems by poleward-moving tropical organisms in response to warming temperatures. In North America, decreases in the frequency and intensity of extreme winter cold events are expected to allow the poleward range expansion of many cold-sensitive tropical organisms, sometimes at the expense of temperate organisms. Although ecologists have long noted the critical ecological role of winter cold temperature extremes in tropical-temperate transition zones, the ecological effects of extreme cold events have been understudied, and the influence of warming winter temperatures has too often been left out of climate change vulnerability assessments. Here, we examine the influence of extreme cold events on the northward range limits of a diverse group of tropical organisms, including terrestrial plants, coastal wetland plants, coastal fishes, sea turtles, terrestrial reptiles, amphibians, manatees, and insects. For these organisms, extreme cold events can lead to major physiological damage or landscape-scale mass mortality. Conversely, the absence of extreme cold events can foster population growth, range expansion, and ecological regime shifts. We discuss the effects of warming winters on species and ecosystems in tropical-temperate transition zones. In the 21st century, climate change-induced decreases in the frequency and intensity of extreme cold events are expected to facilitate the poleward range expansion of many tropical species. Our review highlights critical knowledge gaps for advancing understanding of the ecological implications of the tropicalization of temperate ecosystems in North America.
Collapse
Affiliation(s)
| | - Philip W Stevens
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, USA
| | | | | | | | | | | | | | - Barry D Keim
- Louisiana State University, Baton Rouge, LA, USA
| | | | - Eric A Reyier
- Herndon Solutions Group, LLC, NASA Environmental and Medical Contract, Mail Code: NEM-022, Kennedy Space Center, FL, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kozlov MV, Sokolova IV, Zverev V, Zvereva EL. Changes in plant collection practices from the 16th to 21st centuries: implications for the use of herbarium specimens in global change research. ANNALS OF BOTANY 2021; 127:865-873. [PMID: 33556168 PMCID: PMC8225282 DOI: 10.1093/aob/mcab016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Herbaria were recently advertised as reliable sources of information regarding historical changes in plant traits and biotic interactions. To justify the use of herbaria in global change research, we asked whether the characteristics of herbarium specimens have changed during the past centuries and whether these changes were due to shifts in plant collection practices. METHODS We measured nine characteristics from 515 herbarium specimens of common European trees and large shrubs collected from 1558 to 2016. We asked botanists to rank these specimens by their scientific quality, and asked artists to rank these specimens by their beauty. KEY RESULTS Eight of 11 assessed characteristics of herbarium specimens changed significantly during the study period. The average number of leaves in plant specimens increased 3-fold, whereas the quality of specimen preparation decreased. Leaf size negatively correlated with leaf number in specimens in both among-species and within-species analyses. The proportion of herbarium sheets containing plant reproductive structures peaked in the 1850s. The scientific value of herbarium specimens increased until the 1700s, but then did not change, whereas their aesthetic value showed no systematic trends. CONCLUSIONS Our findings strongly support the hypothesis that many characteristics of herbarium specimens have changed systematically and substantially from the 16th to 21st centuries due to changes in plant collection and preservation practices. These changes may both create patterns which could be erroneously attributed to environmental changes and obscure historical trends in plant traits. The utmost care ought to be taken to guard against the possibility of misinterpretation of data obtained from herbarium specimens. We recommend that directional changes in characters of herbarium specimens which occurred during the past 150‒200 years, primarily in specimen size and in the presence of reproductive structures, are accounted for when searching for the effects of past environmental changes on plant traits.
Collapse
Affiliation(s)
| | - Irina V Sokolova
- Herbarium, V. L. Komarov Botanical Institute, Professora Popova Str. 2, 197376, St. Petersburg, Russia
| | - Vitali Zverev
- Department of Biology, University of Turku, Turku, Finland
| | | |
Collapse
|
38
|
Trends in Outbreaks of Defoliating Insects Highlight Growing Threats for Central European Forests and Implications for Eastern Baltic Region. FORESTS 2021. [DOI: 10.3390/f12060799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To identify general patterns in the effect of climate-driven changes in the outbreak frequency of forest defoliating species, we examined 60 years of records (1950–2010) of outbreaks of five defoliating species. Data on Lymantria dispar, Lymantria monacha, Bupalus piniarius, Panolis flammea, and Operophtera brumata from five Central European countries (Slovakia, Czech Republic, Austria, Hungary, and Germany), where the current climate is comparable with the projections of climate for the Eastern Baltic region by the end of the 21st century, were analyzed. Time series approach was applied to estimate the linkage between outbreaks and climate warming. Mean annual, summer, and winter deviations for the period of 1850 to 1900 were assessed as proxies of warming. To estimate the legacy effect, warming proxies were lagged by one year. Among those tested, warming proxies showed a linkage with outbreaks. Three significant outbreaks occurred in the analyzed period (at the beginning and end of the period). During the middle part of the analyzed period, the frequency and magnitude of outbreaks were low, implicating a higher insect outbreak risk with warming in Central Europe. In the latter part of the analyzed period, more frequent yet smaller outbreaks occurred, which supports the outbreak linkage with one-year lag, summer, and annual temperatures.
Collapse
|
39
|
Kneeshaw DD, Sturtevant BR, DeGrandpé L, Doblas-Miranda E, James PMA, Tardif D, Burton PJ. The Vision of Managing for Pest-Resistant Landscapes: Realistic or Utopic? CURRENT FORESTRY REPORTS 2021; 7:97-113. [PMID: 35620173 PMCID: PMC8050513 DOI: 10.1007/s40725-021-00140-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE OF REVIEW Forest managers have long suggested that forests can be made more resilient to insect pests by reducing the abundance of hosts, yet this has rarely been done. The goal of our paper is to review whether recent scientific evidence supports forest manipulation to decrease vulnerability. To achieve this goal, we first ask if outbreaks of forest insect pests have been more severe in recent decades. Next, we assess the relative importance of climate change and forest management-induced changes in forest composition/structure in driving these changes in severity. RECENT FINDINGS Forest structure and composition continue to be implicated in pest outbreak severity. Mechanisms, however, remain elusive. Recent research elucidates how forest compositional and structural diversity at neighbourhood, stand, and landscape scales can increase forest resistance to outbreaks. Many recent outbreaks of herbivorous forest insects have been unprecedented in terms of duration and spatial extent. Climate change may be a contributing factor, but forest structure and composition have been clearly identified as contributing to these unprecedented outbreaks. SUMMARY Current research supports using silviculture to create pest-resistant forest landscapes. However, the precise mechanisms by which silviculture can increase resistance remains uncertain. Further, humans tend to more often create pest-prone forests due to political, economic, and human resistance to change and a short-sighted risk management perspective that focuses on reactive rather than proactive responses to insect outbreak threats. Future research efforts need to focus on social, political, cultural, and educational mechanisms to motivate implementation of proven ecological solutions if pest-resistant forests are to be favoured by management.
Collapse
Affiliation(s)
- Daniel D. Kneeshaw
- Centre for Forest Research, University of Québec in Montréal, Montreal, Canada
| | | | - Louis DeGrandpé
- Laurentian Forestry Centre, Canadian Forestry Service, Quebec City, Canada
| | - Enrique Doblas-Miranda
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | | | - Dominique Tardif
- Centre for Forest Research, University of Québec in Montréal, Montreal, Canada
| | | |
Collapse
|
40
|
McNellis BE, Smith AMS, Hudak AT, Strand EK. Tree mortality in western U.S. forests forecasted using forest inventory and Random Forest classification. Ecosphere 2021. [DOI: 10.1002/ecs2.3419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Brandon E. McNellis
- Department of Forest, Rangeland, and Fire Sciences University of Idaho Moscow Idaho83844USA
| | - Alistair M. S. Smith
- Department of Forest, Rangeland, and Fire Sciences University of Idaho Moscow Idaho83844USA
| | - Andrew T. Hudak
- USDA Forest Service Rocky Mountain Research Station Forestry Sciences Laboratory Moscow Idaho83843USA
| | - Eva K. Strand
- Department of Forest, Rangeland, and Fire Sciences University of Idaho Moscow Idaho83844USA
| |
Collapse
|
41
|
Manea A, Tabassum S, Leishman MR. Eucalyptus
species maintain secondary metabolite production under water stress conditions at the expense of growth. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Anthony Manea
- Department of Biological Sciences Macquarie University North Ryde New South Wales 2109 Australia
| | - Samiya Tabassum
- Department of Biological Sciences Macquarie University North Ryde New South Wales 2109 Australia
| | - Michelle R. Leishman
- Department of Biological Sciences Macquarie University North Ryde New South Wales 2109 Australia
| |
Collapse
|
42
|
Netherer S, Kandasamy D, Jirosová A, Kalinová B, Schebeck M, Schlyter F. Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. JOURNAL OF PEST SCIENCE 2021; 94:591-614. [PMID: 34720785 PMCID: PMC8550215 DOI: 10.1007/s10340-021-01341-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 05/04/2023]
Abstract
Resilience and functionality of European Norway spruce forests are increasingly threatened by mass outbreaks of the bark beetle Ips typographus promoted by heat, wind throw and drought. Here, we review current knowledge on Norway spruce and I. typographus interactions from the perspective of drought-stressed trees, host selection, colonisation behaviour of beetles, with multi-level effects of symbiotic ophiostomatoid fungi. By including chemo-ecological, molecular and behavioural perspectives, we provide a comprehensive picture on this complex, multitrophic system in the light of climate change. Trees invest carbon into specialised metabolism to produce defence compounds against biotic invaders; processes that are strongly affected by physiological stress such as drought. Spruce bark contains numerous terpenoid and phenolic substances, which are important for bark beetle aggregation and attack success. Abiotic stressors such as increased temperatures and drought affect composition, amounts and emission rates of volatile compounds. Thus, drought events may influence olfactory responses of I. typographus, and further the pheromone communication enabling mass attack. In addition, I. typographus is associated with numerous ophiostomatoid fungal symbionts with multiple effects on beetle life history. Symbiotic fungi degrade spruce toxins, help to exhaust tree defences, produce beetle semiochemicals, and possibly provide nutrition. As the various fungal associates have different temperature optima, they can influence the performance of I. typographus differently under changing environmental conditions. Finally, we discuss why effects of drought on tree-killing by bark beetles are still poorly understood and provide an outlook on future research on this eruptive species using both, field and laboratory experiments.
Collapse
Affiliation(s)
- Sigrid Netherer
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, BOKU, Vienna, Austria
| | - Dineshkumar Kandasamy
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Anna Jirosová
- ETM Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, CULS, Praha-Suchdol, Czech Republic
| | - Blanka Kalinová
- ETM Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, CULS, Praha-Suchdol, Czech Republic
| | - Martin Schebeck
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, BOKU, Vienna, Austria
| | - Fredrik Schlyter
- ETM Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, CULS, Praha-Suchdol, Czech Republic
- Chemical Ecology Plant Protection Department, Swedish University of Agricultural Sciences, SLU, Alnarp, Sweden
| |
Collapse
|
43
|
Climate Change Effects on Trophic Interactions of Bark Beetles in Inner Alpine Scots Pine Forests. FORESTS 2021. [DOI: 10.3390/f12020136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased tree mortality has become a widespread phenomenon and is largely attributed to climate change. Little field research has addressed the complex interactions between trees, herbivores, and their natural enemies as affected by temperature. We recorded the densities of bark insects and their natural enemies emerging from felled trees in Scots pine forests at 17 study sites along 6 elevation gradients encompassing different temperature ranges in 3 regions in Switzerland and Italy. We additionally measured tree resin defense at different elevations. The density of aggressive bark beetles decreased with increasing temperatures while that of non-aggressive species did not respond to temperature. Contrasting patterns were also found for natural enemies, with the densities of most predatory taxa decreasing with increasing temperature whereas densities of parasitoids increased. Consequently, bark beetle mortality by predators decreased and that by parasitoids increased with temperature. Exudation of resin increased with temperature. As the number of resin ducts did not change with temperature, this is assumed a physical effect of reduced viscosity. Despite lower densities of aggressive bark beetles and improved tree resin flow under higher temperatures, the currently experienced drought-induced reduction in tree vigor is likely to increase tree mortality under the ongoing climate warming.
Collapse
|
44
|
Kedves O, Shahab D, Champramary S, Chen L, Indic B, Bóka B, Nagy VD, Vágvölgyi C, Kredics L, Sipos G. Epidemiology, Biotic Interactions and Biological Control of Armillarioids in the Northern Hemisphere. Pathogens 2021; 10:pathogens10010076. [PMID: 33467216 PMCID: PMC7830283 DOI: 10.3390/pathogens10010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Armillarioids, including the genera Armillaria, Desarmillaria and Guyanagaster, represent white-rot specific fungal saprotrophs with soilborne pathogenic potentials on woody hosts. They propagate in the soil by root-like rhizomorphs, connecting between susceptible root sections of their hosts, and often forming extended colonies in native forests. Pathogenic abilities of Armillaria and Desarmillaria genets can readily manifest in compromised hosts, or hosts with full vigour can be invaded by virulent mycelia when exposed to a larger number of newly formed genets. Armillaria root rot-related symptoms are indicators of ecological imbalances in native forests and plantations at the rhizosphere levels, often related to abiotic environmental threats, and most likely unfavourable changes in the microbiome compositions in the interactive zone of the roots. The less-studied biotic impacts that contribute to armillarioid host infection include fungi and insects, as well as forest conditions. On the other hand, negative biotic impactors, like bacterial communities, antagonistic fungi, nematodes and plant-derived substances may find applications in the environment-friendly, biological control of armillarioid root diseases, which can be used instead of, or in combination with the classical, but frequently problematic silvicultural and chemical control measures.
Collapse
Affiliation(s)
- Orsolya Kedves
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - Danish Shahab
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - Simang Champramary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
- Functional Genomics and Bioinformatics Group, Research Center for Forestry and Wood Industry, University of Sopron, Bajcsy-Zsilinszky str. 4., H-9400 Sopron, Hungary;
| | - Liqiong Chen
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - Boris Indic
- Functional Genomics and Bioinformatics Group, Research Center for Forestry and Wood Industry, University of Sopron, Bajcsy-Zsilinszky str. 4., H-9400 Sopron, Hungary;
| | - Bettina Bóka
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - Viktor Dávid Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
- Correspondence: (L.K.); (G.S.); Tel.: +36-62-544516 (L.K.); +36-99-518769 (G.S.)
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Research Center for Forestry and Wood Industry, University of Sopron, Bajcsy-Zsilinszky str. 4., H-9400 Sopron, Hungary;
- Correspondence: (L.K.); (G.S.); Tel.: +36-62-544516 (L.K.); +36-99-518769 (G.S.)
| |
Collapse
|
45
|
Verrall B, Pickering CM. Alpine vegetation in the context of climate change: A global review of past research and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141344. [PMID: 32814293 DOI: 10.1016/j.scitotenv.2020.141344] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Climate change is causing extensive alterations to ecosystems globally, with some more vulnerable than others. Alpine ecosystems, characterised by low-temperatures and cryophilic vegetation, provide ecosystems services for billions of people but are considered among the most susceptible to climate change. Therefore, it is timely to review research on climate change on alpine vegetation including assessing trends, topics, themes and gaps. Using a multicomponent bibliometric approach, we extracted bibliometric metadata from 3143 publications identified by searching titles, keywords and abstracts for research on 'climate change' and 'alpine vegetation' from Scopus and Web of Science. While primarily focusing on 'alpine vegetation', some literature that also assessed vegetation below the treeline was captured. There has been an exponential increase in research over 50 years, greater engagement and diversification in who does research, and where it is published and conducted, with increasing focus beyond Europe, particularly in China. Content analysis of titles, keywords and abstracts revealed that most of the research has focused on alpine grasslands but there have been relatively few publications that examine specialist vegetation communities such as snowbeds, subnival vegetation and fellfields. Important themes emerged from analysis of keywords, including treelines and vegetation dynamics, biodiversity, the Tibetan Plateau as well as grasslands and meadows. Traditional ecological monitoring techniques were important early on, but remote sensing has become the primary method for assessment. A key book on alpine plants, the IPCC reports and a few papers in leading journals underpin much of the research. Overall, research on this topic is increasing, with new methods and directions but thematic and geographical gaps remain particularly for research on extreme climatic events, and research in South America, in part due to limited capacity for research on these rare but valuable ecosystems.
Collapse
Affiliation(s)
- Brodie Verrall
- Environment Futures Research Institute and School of Environment and Sciences, Griffith University, Queensland, Australia.
| | - Catherine Marina Pickering
- Environment Futures Research Institute and School of Environment and Sciences, Griffith University, Queensland, Australia
| |
Collapse
|
46
|
Castaño C, Camarero JJ, Zas R, Sampedro L, Bonet JA, Alday JG, Oliva J. Insect defoliation is linked to a decrease in soil ectomycorrhizal biomass and shifts in needle endophytic communities. TREE PHYSIOLOGY 2020; 40:1712-1725. [PMID: 32785638 DOI: 10.1093/treephys/tpaa104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Insect outbreaks of increasing frequency and severity in forests are predicted due to climate change. Insect herbivory is known to promote physiological changes in forest trees. However, little is known about whether these plant phenotypic adjustments have cascading effects on tree microbial symbionts such as fungi in roots and foliage. We studied the impact of defoliation by the pine processionary moth in two infested Pinus nigra forests through a multilevel sampling of defoliated and non-defoliated trees. We measured tree growth, nutritional status and carbon allocation to chemical defenses. Simultaneously, we analysed the putative impact of defoliation on the needle endophytes and on the soil fungal communities. Higher concentrations of chemical defenses were found in defoliated trees, likely as a response to defoliation; however, no differences in non-structural carbohydrate reserves were found. In parallel to the reductions in tree growth and changes in chemical defenses, we observed shifts in the composition of needle endophytic and soil fungal communities in defoliated trees. Defoliated trees consistently corresponded with a lower biomass of ectomycorrhizal fungi in both sites, and a higher alpha diversity and greater relative abundance of belowground saprotrophs and pathogens. However, ectomycorrhizal alpha diversity was similar between non-defoliated and defoliated trees. Specific needle endophytes in old needles were strongly associated with non-defoliated trees. The potential role of these endophytic fungi in pine resistance should be further investigated. Our study suggests that lower biomass of ectomycorrhizal fungi in defoliated trees might slow down tree recovery since fungal shifts might affect tree-mycorrhizal feedbacks and can potentially influence carbon and nitrogen cycling in forest soils.
Collapse
Affiliation(s)
- Carles Castaño
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), 50192 Zaragoza, Spain
| | - Rafael Zas
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Apdo 28, 36080 Pontevedra, Spain
| | - Luis Sampedro
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Apdo 28, 36080 Pontevedra, Spain
| | - José Antonio Bonet
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Av. Rovira Roure, 191, E-25198 Lleida, Spain
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain
| | - Josu G Alday
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Av. Rovira Roure, 191, E-25198 Lleida, Spain
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain
| | - Jonàs Oliva
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Av. Rovira Roure, 191, E-25198 Lleida, Spain
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain
| |
Collapse
|
47
|
Kanle Satishchandra N, Geerts S. Modeling the Distribution of the Invasive Alien Cycad Aulacaspis Scale in Africa Under Current and Future Climate Scenarios. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2276-2284. [PMID: 32725195 DOI: 10.1093/jee/toaa156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Indexed: 06/11/2023]
Abstract
The cycad aulacaspis scale, Aulacaspis yasumatsui Takagi (Hemiptera: Coccoidea: Diaspididae), is native to Southeast Asia but an invasive pest of the gymnosperm order Cycadales in many parts of the world. Aulacaspis yasumatsui was recently reported on the cycad genus Encephalartos in South Africa and is currently categorized as a 'prohibited terrestrial invertebrate' in the invasive species legislation, National Environmental Management: Biodiversity Act, 2004 (NEM:BA). Encephalartos is endemic to Africa, and 11 species are listed as critically endangered and four species as endangered. Seeing the limited distribution of A. yasumatsui in South Africa and only one unconfirmed record from the Ivory Coast, understanding the potential distribution range is essential for control and management. Here we model the potential distribution of A. yasumatsui under current and future climate scenarios in Africa, with a focus on South Africa. Future climatic scenarios were simulated using a bio-climatic software, CLIMEX. The model indicates that, under the current climatic scenario, all 17 African countries possessing Encephalartos are susceptible to A. yasumatsui establishment. However, under climatic change, the suitability decreases for large parts of Africa. In South Africa, 93% of the winter rainfall areas, and 90% of the temperate, summer rainfall areas are suitable for A. yasumatsui establishment. In this study, we highlight the urgent need for regulation, management, and research on A. yasumatsui in African countries with native cycads.
Collapse
Affiliation(s)
- Nitin Kanle Satishchandra
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont, South Africa
| | - Sjirk Geerts
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
48
|
|
49
|
Jayawardena RS, Hyde KD, Chen YJ, Papp V, Palla B, Papp D, Bhunjun CS, Hurdeal VG, Senwanna C, Manawasinghe IS, Harischandra DL, Gautam AK, Avasthi S, Chuankid B, Goonasekara ID, Hongsanan S, Zeng X, Liyanage KK, Liu N, Karunarathna A, Hapuarachchi KK, Luangharn T, Raspé O, Brahmanage R, Doilom M, Lee HB, Mei L, Jeewon R, Huanraluek N, Chaiwan N, Stadler M, Wang Y. One stop shop IV: taxonomic update with molecular phylogeny for important phytopathogenic genera: 76–100 (2020). FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00460-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThis is a continuation of a series focused on providing a stable platform for the taxonomy of phytopathogenic fungi and fungus-like organisms. This paper focuses on one family: Erysiphaceae and 24 phytopathogenic genera: Armillaria, Barriopsis, Cercospora, Cladosporium, Clinoconidium, Colletotrichum, Cylindrocladiella, Dothidotthia,, Fomitopsis, Ganoderma, Golovinomyces, Heterobasidium, Meliola, Mucor, Neoerysiphe, Nothophoma, Phellinus, Phytophthora, Pseudoseptoria, Pythium, Rhizopus, Stemphylium, Thyrostroma and Wojnowiciella. Each genus is provided with a taxonomic background, distribution, hosts, disease symptoms, and updated backbone trees. Species confirmed with pathogenicity studies are denoted when data are available. Six of the genera are updated from previous entries as many new species have been described.
Collapse
|
50
|
Park DS, Willis CG, Xi Z, Kartesz JT, Davis CC, Worthington S. Machine learning predicts large scale declines in native plant phylogenetic diversity. THE NEW PHYTOLOGIST 2020; 227:1544-1556. [PMID: 32339295 DOI: 10.1111/nph.16621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Though substantial effort has gone into predicting how global climate change will impact biodiversity patterns, the scarcity of taxon-specific information has hampered the efficacy of these endeavors. Further, most studies analyzing spatiotemporal patterns of biodiversity focus narrowly on species richness. We apply machine learning approaches to a comprehensive vascular plant database for the United States and generate predictive models of regional plant taxonomic and phylogenetic diversity in response to a wide range of environmental variables. We demonstrate differences in predicted patterns and potential drivers of native vs nonnative biodiversity. In particular, native phylogenetic diversity is likely to decrease over the next half century despite increases in species richness. We also identify that patterns of taxonomic diversity can be incongruent with those of phylogenetic diversity. The combination of macro-environmental factors that determine diversity likely varies at continental scales; thus, as climate change alters the combinations of these factors across the landscape, the collective effect on regional diversity will also vary. Our study represents one of the most comprehensive examinations of plant diversity patterns to date and demonstrates that our ability to predict future diversity may benefit tremendously from the application of machine learning.
Collapse
Affiliation(s)
- Daniel S Park
- Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| | - Charles G Willis
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, MN, 55108, USA
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - John T Kartesz
- Biota of North America Program, 9319 Bracken Lane, Chapel Hill, NC, 27516, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| | - Steven Worthington
- Institute for Quantitative Social Science, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|