1
|
Ambite I, Wan MLY, Tran HT, Nazari A, Chaudhuri A, Krintel C, Gomes I, Sabari S, Ahmadi S, Carneiro ANBM, Ishac R, Haq F, Svanborg C. Multitarget mechanism of MYC inhibition by the bacterial lon protease in disease. Sci Rep 2025; 15:6778. [PMID: 40000737 PMCID: PMC11861601 DOI: 10.1038/s41598-025-88093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Identifying specific inhibitors of the MYC oncogene has been challenging, due to off target effects associated with MYC inhibition. This study investigated how the recombinant Escherichia coli Lon protease (rLon), which targets MYC in human cells, inhibits MYC over-activation in models of infection and cancer. In silico predictions identified specific peptide domains of bacterial Lon that target MYC and the affinity of these peptides for MYC was investigated by surface plasmon resonance. The N-terminal domain of rLon was shown to interact with the C-terminal, leucine zipper domain of MYC and MAX and to prevent MYC/MAX dimerization. Furthermore, rLon targeted and degraded c-MYC in vitro and in cellular models, through the peptidase domain. In a model of kidney infection, rLon treatment prevented, c-MYC, N-MYC and L-MYC over-expression, MYC-dependent gene expression, specifically renal toxicity genes and pathology, suggesting that rLon recognizes and corrects MYC dysregulation in this disease. The findings describe a multitarget mechanism of MYC inhibition by rLon, and the combined effects achieved by the Lon domains, targeting different MYC epitopes and MYC-dependent functions, with no evidence of toxicity or detrimental effects on homeostatic MYC expression.
Collapse
Affiliation(s)
- Ines Ambite
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Murphy Lam Yim Wan
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Hien Thi Tran
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Atefeh Nazari
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Arunima Chaudhuri
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Christian Krintel
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Inês Gomes
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Samudra Sabari
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Shahram Ahmadi
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - António N B M Carneiro
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Rita Ishac
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Farhan Haq
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Catharina Svanborg
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden.
| |
Collapse
|
2
|
Kabir ML, Kodikara S, Hoque M, Shiekh S, Alfehaid J, Basu S, Balci H. Combining CRISPR activation and interference capabilities using dCas9 and G-quadruplex structures. NAR MOLECULAR MEDICINE 2025; 2:ugaf001. [PMID: 39906285 PMCID: PMC11788920 DOI: 10.1093/narmme/ugaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
We demonstrate that both Clustered regularly interspaced short palindromic repeats (CRISPR) interference and CRISPR activation can be achieved at RNA and protein levels by targeting the vicinity of a putative G-quadruplex (GQ)-forming sequence (PQS) in the c-Myc promoter with nuclease-dead Cas9 (dCas9). The achieved suppression and activation in Burkitt's Lymphoma cell line and in in vitro studies are at or beyond those reported with alternative approaches. When the template strand (contains the PQS) was targeted with CRISPR-dCas9, the GQ was destabilized and c-Myc mRNA and protein levels increased by 2.1- and 1.6-fold, respectively, compared to controls in the absence of CRISPR-dCas9. Targeting individual sites in the nontemplate strand (NTS) with CRISPR-dCas9 reduced both the c-Myc mRNA and protein levels (by 1.8- and 2.5-fold, respectively), while targeting two sites simultaneously further suppressed both the mRNA (by 3.6-fold) and protein (by 9.8-fold) levels. These were consistent with cell viability assays when single or dual sites in the NTS were targeted (1.7- and 4.7-fold reduction in viability, respectively). We also report extensive in vitro biophysical studies which are in quantitative agreement with these cellular studies and provide important mechanistic details about how the transcription is modulated via the interactions of RNA polymerase, CRISPR-dCas9, and the GQ.
Collapse
Affiliation(s)
- Mohammad Lutful Kabir
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, United States
| | - Sineth G Kodikara
- Department of Physics, Kent State University, Kent, OH 44242, United States
| | - Mohammed Enamul Hoque
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, United States
| | - Sajad Shiekh
- Department of Physics, Kent State University, Kent, OH 44242, United States
| | - Janan Alfehaid
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, United States
- Department of Physics, College of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, United States
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, United States
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH 44242, United States
| |
Collapse
|
3
|
Zhong LT, Yuan JM, Fu WL, Zhang ZL, Li X, Ou TM, Tan JH, Huang ZS, Chen SB. Identification of sanguinarine as c-MYC transcription inhibitor through enhancing the G-quadruplex-NM23-H2 interactions. Bioorg Chem 2024; 153:107842. [PMID: 39342890 DOI: 10.1016/j.bioorg.2024.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
c-MYC is a proto-oncogene ubiquitously overexpressed in various cancers. The formation of G-quadruplex (G4) structures within the c-MYC promoter region can regulate its transcription by interfering with protein binding. Consequently, small molecules targeting c-MYC G4 have emerged as promising anticancer agents. Herein, we report that sanguinarine (SG) and its analogs exhibit a high affinity for c-MYC G4 and potently modulate G4-protein interactions within a natural product library. Notably, SG uniquely enhances NM23-H2 binding to c-MYC G4, both in vitro and in cellular contexts, leading to c-MYC transcriptional repression and subsequent inhibition of cancer cell growth in an NM23-H2-dependent manner. Mechanistic studies and molecular modeling suggest that SG binds to the c-MYC G4/NM23-H2 interface, acting as an orthosteric stabilizer of the DNA-protein complex and preventing c-MYC transcription. Our findings identify SG as a potent c-MYC transcription inhibitor and provide a novel strategy for developing G4-targeting anticancer therapeutics through modulation of G4-protein interactions.
Collapse
Affiliation(s)
- Li-Ting Zhong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing-Mei Yuan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Wen-Li Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zi-Lin Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoya Li
- Department of Nephrology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, Guangdong, China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Ascanelli C, Dahir R, Wilson CH. Manipulating Myc for reparative regeneration. Front Cell Dev Biol 2024; 12:1357589. [PMID: 38577503 PMCID: PMC10991803 DOI: 10.3389/fcell.2024.1357589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 04/06/2024] Open
Abstract
The Myc family of proto-oncogenes is a key node for the signal transduction of external pro-proliferative signals to the cellular processes required for development, tissue homoeostasis maintenance, and regeneration across evolution. The tight regulation of Myc synthesis and activity is essential for restricting its oncogenic potential. In this review, we highlight the central role that Myc plays in regeneration across the animal kingdom (from Cnidaria to echinoderms to Chordata) and how Myc could be employed to unlock the regenerative potential of non-regenerative tissues in humans for therapeutic purposes. Mastering the fine balance of harnessing the ability of Myc to promote transcription without triggering oncogenesis may open the door to many exciting opportunities for therapeutic development across a wide array of diseases.
Collapse
Affiliation(s)
| | | | - Catherine H. Wilson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Wu S, Dai X, Zhu Z, Fan D, Jiang S, Dong Y, Chen B, Xie Q, Yao Z, Li Q, Thorne RF, Lu Y, Gu H, Hu W. Reciprocal regulation of lncRNA MEF and c-Myc drives colorectal cancer tumorigenesis. Neoplasia 2024; 49:100971. [PMID: 38301392 PMCID: PMC10847691 DOI: 10.1016/j.neo.2024.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
More than half of all cancers demonstrate aberrant c-Myc expression, making this arguably the most important human oncogene. Deregulated long non-coding RNAs (lncRNAs) are also commonly implicated in tumorigenesis, and some limited examples have been established where lncRNAs act as biological tuners of c-Myc expression and activity. Here, we demonstrate that the lncRNA denoted c-Myc Enhancing Factor (MEF) enjoys a cooperative relationship with c-Myc, both as a transcriptional target and driver of c-Myc expression. Mechanistically, MEF functions by binding to and stabilizing the expression of hnRNPK in colorectal cancer cells. The MEF-hnRNPK interaction serves to disrupt binding between hnRNPK and the E3 ubiquitin ligase TRIM25, which attenuates TRIM25-dependent hnRNPK ubiquitination and proteasomal destruction. In turn, the stabilization of hnRNPK through MEF enhances c-Myc expression by augmenting the translation c-Myc. Moreover, modulating the expression of MEF in shRNA-mediated knockdown and overexpression studies revealed that MEF expression is essential for colorectal cancer cell proliferation and survival, both in vitro and in vivo. From the clinical perspective, we show that MEF expression is differentially increased in colorectal cancer tissues compared to normal adjacent tissues. Further, correlations exist between MEF, c-Myc, and hnRNPK suggesting the MEF-c-Myc positive feedback loop is active in patients. Together these data demonstrate that MEF is a pivotal partner of the c-Myc network and propose MEF as a valuable therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230027, China
| | - Xiangyu Dai
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230027, China; Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Zhipu Zhu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Dianhui Fan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230027, China
| | - Su Jiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230027, China
| | - Yi Dong
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Bing Chen
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Qi Xie
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Zhihui Yao
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Qun Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230027, China
| | - Rick Francis Thorne
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China
| | - Yao Lu
- Department of Anesthesiology, the First Affiliated of Anhui Medical University, Anhui Medical University, Hefei 230022, China.
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230027, China.
| | - Wanglai Hu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230027, China; Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
6
|
Esain-Garcia I, Kirchner A, Melidis L, Tavares RDCA, Dhir S, Simeone A, Yu Z, Madden SK, Hermann R, Tannahill D, Balasubramanian S. G-quadruplex DNA structure is a positive regulator of MYC transcription. Proc Natl Acad Sci U S A 2024; 121:e2320240121. [PMID: 38315865 PMCID: PMC10873556 DOI: 10.1073/pnas.2320240121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
DNA structure can regulate genome function. Four-stranded DNA G-quadruplex (G4) structures have been implicated in transcriptional regulation; however, previous studies have not directly addressed the role of an individual G4 within its endogenous cellular context. Using CRISPR to genetically abrogate endogenous G4 structure folding, we directly interrogate the G4 found within the upstream regulatory region of the critical human MYC oncogene. G4 loss leads to suppression of MYC transcription from the P1 promoter that is mediated by the deposition of a de novo nucleosome alongside alterations in RNA polymerase recruitment. We also show that replacement of the endogenous MYC G4 with a different G4 structure from the KRAS oncogene restores G4 folding and MYC transcription. Moreover, we demonstrate that the MYC G4 structure itself, rather than its sequence, recruits transcription factors and histone modifiers. Overall, our work establishes that G4 structures are important features of transcriptional regulation that coordinate recruitment of key chromatin proteins and the transcriptional machinery through interactions with DNA secondary structure, rather than primary sequence.
Collapse
Affiliation(s)
- Isabel Esain-Garcia
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Angie Kirchner
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Larry Melidis
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | | | - Somdutta Dhir
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Angela Simeone
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Zutao Yu
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Sarah K. Madden
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Regina Hermann
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - David Tannahill
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- School of Clinical Medicine, University of Cambridge, CambridgeCB2 0SP, United Kingdom
| |
Collapse
|
7
|
Katz LS, Brill G, Wang P, Lambertini L, Zhang P, Haldeman JM, Liu H, Newgard CB, Stewart AF, Garcia-Ocaña A, Scott DK. Transcriptional activation of the Myc gene by glucose in β-cells requires a ChREBP-dependent 3-D chromatin interaction between the Myc and Pvt1 genes. Mol Metab 2024; 79:101848. [PMID: 38042369 PMCID: PMC10714240 DOI: 10.1016/j.molmet.2023.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023] Open
Abstract
OBJECTIVE All forms of diabetes result from insufficient functional β-cell mass. Thus, achieving the therapeutic goal of expanding β-cell mass requires a better mechanistic understanding of how β-cells proliferate. Glucose is a natural β-cell mitogen that mediates its effects in part through the glucose-responsive transcription factor, carbohydrate response element binding protein (ChREBP) and the anabolic transcription factor, MYC. However, mechanistic details by which glucose activates Myc at the transcriptional level are poorly understood. METHODS Here, siRNA was used to test the role of ChREBP in the glucose response of MYC, ChIP and ChIPseq to identify potential regulatory binding sites, chromatin conformation capture to identify DNA/DNA interactions, and an adenovirus was constructed to expresses x-dCas9 and an sgRNA that specifically disrupts the recruitment of ChREBP to a specific targeted ChoRE. RESULTS We found that ChREBP is essential for glucose-mediated transcriptional induction of Myc, and for increases in Myc mRNA and protein abundance. Further, ChIPseq revealed that the carbohydrate response element (ChoRE) nearest to the Myc transcriptional start site (TSS) is immediately upstream of the gene encoding the lncRNA, Pvt1, 60,000 bp downstream of the Myc gene. Chromatin Conformation Capture (3C) confirmed a glucose-dependent interaction between these two sites. Transduction with an adenovirus expressing x-dCas9 and an sgRNA specifically targeting the highly conserved Pvt1 ChoRE, attenuates ChREBP recruitment, decreases Myc-Pvt1 DNA/DNA interaction, and decreases expression of the Pvt1 and Myc genes in response to glucose. Importantly, isolated and dispersed rat islet cells transduced with the ChoRE-disrupting adenovirus also display specific decreases in ChREBP-dependent, glucose-mediated expression of Pvt1 and Myc, as well as decreased glucose-stimulated β-cell proliferation. CONCLUSIONS The mitogenic glucose response of Myc is mediated via glucose-dependent recruitment of ChREBP to the promoter of the Pvt1 gene and subsequent DNA looping with the Myc promoter.
Collapse
Affiliation(s)
- Liora S Katz
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, NY 10029, USA
| | - Gabriel Brill
- Pharmacologic Sciences Department, Stony Brook University, Stony Brook, NY, USA(5)
| | - Peng Wang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, NY 10029, USA
| | - Luca Lambertini
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, NY 10029, USA
| | - Pili Zhang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, NY 10029, USA
| | | | - Hongtao Liu
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, NY 10029, USA
| | | | - Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, NY 10029, USA
| | - Adolfo Garcia-Ocaña
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, NY 10029, USA.
| |
Collapse
|
8
|
Liang JW, Gao ZC, Yang LL, Zhang W, Chen MZ, Meng FH. Development of Acridone Derivatives: Targeting c-MYC Transcription in Triple-Negative Breast Cancer with Inhibitory Potential. Antioxidants (Basel) 2023; 13:11. [PMID: 38275631 PMCID: PMC10812579 DOI: 10.3390/antiox13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Breast cancer, especially the aggressive triple-negative subtype, poses a serious health threat to women. Unfortunately, effective targets are lacking, leading to a grim prognosis. Research highlights the crucial role of c-MYC overexpression in this form of cancer. Current inhibitors targeting c-MYC focus on stabilizing its G-quadruplex (G4) structure in the promoter region. They can inhibit the expression of c-MYC, which is highly expressed in triple-negative breast cancer (TNBC), and then regulate the apoptosis of breast cancer cells induced by intracellular ROS. However, the clinical prospects for the application of such inhibitors are not promising. In this research, we designed and synthesized 29 acridone derivatives. These compounds were assessed for their impact on intracellular ROS levels and cell activity, followed by comprehensive QSAR analysis and molecular docking. Compound N8 stood out, significantly increasing ROS levels and demonstrating potent anti-tumor activity in the TNBC cell line, with excellent selectivity shown in the docking results. This study suggests that acridone derivatives could stabilize the c-MYC G4 structure. Among these compounds, the small molecule N8 shows promising effects and deserves further investigation.
Collapse
Affiliation(s)
- Jing-Wei Liang
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
- School of Pharmacy, Hainan Medical University, Haikou 570100, China
| | - Zhi-Chao Gao
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang 110044, China
| | - Lu-Lu Yang
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
| | - Wei Zhang
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
| | - Ming-Zhe Chen
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
| |
Collapse
|
9
|
Sergeev AV, Loiko AG, Genatullina AI, Petrov AS, Kubareva EA, Dolinnaya NG, Gromova ES. Crosstalk between G-Quadruplexes and Dnmt3a-Mediated Methylation of the c-MYC Oncogene Promoter. Int J Mol Sci 2023; 25:45. [PMID: 38203216 PMCID: PMC10779317 DOI: 10.3390/ijms25010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
The methylation of cytosines at CpG sites in DNA, carried out de novo by DNA methyltransferase Dnmt3a, is a basic epigenetic modification involved in gene regulation and genome stability. Aberrant CpG methylation in gene promoters leads to oncogenesis. In oncogene promoters, CpG sites often colocalize with guanine-rich sequences capable of folding into G-quadruplexes (G4s). Our in vitro study aimed to investigate how parallel G4s formed by a sequence derived from the c-MYC oncogene promoter region affect the activity of the Dnmt3a catalytic domain (Dnmt3a-CD). For this purpose, we designed synthetic oligonucleotide constructs: a c-MYC G4-forming oligonucleotide and linear double-stranded DNA containing an embedded stable extrahelical c-MYC G4. The topology and thermal stability of G4 structures in these DNA models were analyzed using physicochemical techniques. We showed that Dnmt3a-CD specifically binds to an oligonucleotide containing c-MYC G4, resulting in inhibition of its methylation activity. c-MYC G4 formation in a double-stranded context significantly reduces Dnmt3a-CD-induced methylation of a CpG site located in close proximity to the quadruplex structure; this effect depends on the distance between the non-canonical structure and the specific CpG site. One would expect DNA hypomethylation near the G4 structure, while regions distant from this non-canonical form would maintain a regular pattern of high methylation levels. We hypothesize that the G4 structure sequesters the Dnmt3a-CD and impedes its proper binding to B-DNA, resulting in hypomethylation and activation of c-MYC transcription.
Collapse
Affiliation(s)
- Alexander V. Sergeev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (A.V.S.); (A.G.L.); (A.I.G.); (A.S.P.); (N.G.D.); (E.S.G.)
| | - Andrei G. Loiko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (A.V.S.); (A.G.L.); (A.I.G.); (A.S.P.); (N.G.D.); (E.S.G.)
| | - Adelya I. Genatullina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (A.V.S.); (A.G.L.); (A.I.G.); (A.S.P.); (N.G.D.); (E.S.G.)
| | - Alexander S. Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (A.V.S.); (A.G.L.); (A.I.G.); (A.S.P.); (N.G.D.); (E.S.G.)
| | - Elena A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (A.V.S.); (A.G.L.); (A.I.G.); (A.S.P.); (N.G.D.); (E.S.G.)
| | - Elizaveta S. Gromova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (A.V.S.); (A.G.L.); (A.I.G.); (A.S.P.); (N.G.D.); (E.S.G.)
| |
Collapse
|
10
|
Kumari N, Das K, Sharma S, Dahal S, Desai SS, Roy U, Sharma A, Manjunath M, Gopalakrishnan V, Retheesh ST, Javadekar SM, Choudhary B, Raghavan SC. Evaluation of potential role of R-loop and G-quadruplex DNA in the fragility of c-MYC during chromosomal translocation associated with Burkitt's lymphoma. J Biol Chem 2023; 299:105431. [PMID: 37926284 PMCID: PMC10704377 DOI: 10.1016/j.jbc.2023.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
t(8;14) translocation is the hallmark of Burkitt's lymphoma and results in c-MYC deregulation. During the translocation, c-MYC gene on chromosome 8 gets juxtaposed to the Ig switch regions on chromosome 14. Although the promoter of c-MYC has been investigated for its mechanism of fragility, little is known about other c-MYC breakpoint regions. We have analyzed the translocation break points at the exon 1/intron 1 of c-MYC locus from patients with Burkitt's lymphoma. Results showed that the breakpoint region, when present on a plasmid, could fold into an R-loop confirmation in a transcription-dependent manner. Sodium bisulfite modification assay revealed significant single-strandedness on chromosomal DNA of Burkitt's lymphoma cell line, Raji, and normal lymphocytes, revealing distinct R-loops covering up to 100 bp region. Besides, ChIP-DRIP analysis reveals that the R-loop antibody can bind to the breakpoint region. Further, we show the formation of stable parallel intramolecular G-quadruplex on non-template strand of the genome. Finally, incubation of purified AID in vitro or overexpression of AID within the cells led to enhanced mutation frequency at the c-MYC breakpoint region. Interestingly, anti-γH2AX can bind to DSBs generated at the c-MYC breakpoint region within the cells. The formation of R-loop and G-quadruplex was found to be mutually exclusive. Therefore, our results suggest that AID can bind to the single-stranded region of the R-loop and G4 DNA, leading to the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, leading to double-strand break, which could culminate in t(8;14) chromosomal translocation.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Kohal Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Anju Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Department of Zoology, St Joseph's College, Irinjalakuda, Kerala, India
| | - S T Retheesh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
11
|
Harafuji N, Yang C, Wu M, Thiruvengadam G, Gordish-Dressman H, Thompson RG, Bell PD, Rosenberg AZ, Dafinger C, Liebau MC, Bebok Z, Caldovic L, Guay-Woodford LM. Differential regulation of MYC expression by PKHD1/Pkhd1 in human and mouse kidneys: phenotypic implications for recessive polycystic kidney disease. Front Cell Dev Biol 2023; 11:1270980. [PMID: 38125876 PMCID: PMC10731465 DOI: 10.3389/fcell.2023.1270980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD; MIM#263200) is a severe, hereditary, hepato-renal fibrocystic disorder that leads to early childhood morbidity and mortality. Typical forms of ARPKD are caused by pathogenic variants in the PKHD1 gene, which encodes the fibrocystin/polyductin (FPC) protein. MYC overexpression has been proposed as a driver of renal cystogenesis, but little is known about MYC expression in recessive PKD. In the current study, we provide the first evidence that MYC is overexpressed in kidneys from ARPKD patients and confirm that MYC is upregulated in cystic kidneys from cpk mutant mice. In contrast, renal MYC expression levels were not altered in several Pkhd1 mutant mice that lack a significant cystic kidney phenotype. We leveraged previous observations that the carboxy-terminus of mouse FPC (FPC-CTD) is proteolytically cleaved through Notch-like processing, translocates to the nucleus, and binds to double stranded DNA, to examine whether the FPC-CTD plays a role in regulating MYC/Myc transcription. Using immunofluorescence, reporter gene assays, and ChIP, we demonstrate that both human and mouse FPC-CTD can localize to the nucleus, bind to the MYC/Myc P1 promoter, and activate MYC/Myc expression. Interestingly, we observed species-specific differences in FPC-CTD intracellular trafficking. Furthermore, our informatic analyses revealed limited sequence identity of FPC-CTD across vertebrate phyla and database queries identified temporal differences in PKHD1/Pkhd1 and CYS1/Cys1 expression patterns in mouse and human kidneys. Given that cystin, the Cys1 gene product, is a negative regulator of Myc transcription, these temporal differences in gene expression could contribute to the relative renoprotection from cystogenesis in Pkhd1-deficient mice. Taken together, our findings provide new mechanistic insights into differential mFPC-CTD and hFPC-CTD regulation of MYC expression in renal epithelial cells, which may illuminate the basis for the phenotypic disparities between human patients with PKHD1 pathogenic variants and Pkhd1-mutant mice.
Collapse
Affiliation(s)
- Naoe Harafuji
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Chaozhe Yang
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Maoqing Wu
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Girija Thiruvengadam
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | | | - R. Griffin Thompson
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - P. Darwin Bell
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Claudia Dafinger
- Department of Pediatrics and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max C. Liebau
- Department of Pediatrics, Center for Family Health, Center for Rare Diseases and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Zsuzsanna Bebok
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
- Department of Genomics and Precision Medicine, School of Medical and Health Sciences, The George Washington University, Washington, DC, United States
| | - Lisa M. Guay-Woodford
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
| |
Collapse
|
12
|
Kimura K, Jackson TLB, Huang RCC. Interaction and Collaboration of SP1, HIF-1, and MYC in Regulating the Expression of Cancer-Related Genes to Further Enhance Anticancer Drug Development. Curr Issues Mol Biol 2023; 45:9262-9283. [PMID: 37998757 PMCID: PMC10670631 DOI: 10.3390/cimb45110580] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
Specificity protein 1 (SP1), hypoxia-inducible factor 1 (HIF-1), and MYC are important transcription factors (TFs). SP1, a constitutively expressed housekeeping gene, regulates diverse yet distinct biological activities; MYC is a master regulator of all key cellular activities including cell metabolism and proliferation; and HIF-1, whose protein level is rapidly increased when the local tissue oxygen concentration decreases, functions as a mediator of hypoxic signals. Systems analyses of the regulatory networks in cancer have shown that SP1, HIF-1, and MYC belong to a group of TFs that function as master regulators of cancer. Therefore, the contributions of these TFs are crucial to the development of cancer. SP1, HIF-1, and MYC are often overexpressed in tumors, which indicates the importance of their roles in the development of cancer. Thus, proper manipulation of SP1, HIF-1, and MYC by appropriate agents could have a strong negative impact on cancer development. Under these circumstances, these TFs have naturally become major targets for anticancer drug development. Accordingly, there are currently many SP1 or HIF-1 inhibitors available; however, designing efficient MYC inhibitors has been extremely difficult. Studies have shown that SP1, HIF-1, and MYC modulate the expression of each other and collaborate to regulate the expression of numerous genes. In this review, we provide an overview of the interactions and collaborations of SP1, HIF1A, and MYC in the regulation of various cancer-related genes, and their potential implications in the development of anticancer therapy.
Collapse
Affiliation(s)
| | | | - Ru Chih C. Huang
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| |
Collapse
|
13
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
14
|
Agudo-Ibáñez L, Morante M, García-Gutiérrez L, Quintanilla A, Rodríguez J, Muñoz A, León J, Crespo P. ERK2 stimulates MYC transcription by anchoring CDK9 to the MYC promoter in a kinase activity-independent manner. Sci Signal 2023; 16:eadg4193. [PMID: 37463244 DOI: 10.1126/scisignal.adg4193] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
The transcription factor MYC regulates cell proliferation, transformation, and survival in response to growth factor signaling that is mediated in part by the kinase activity of ERK2. Because ERK2 can also bind to DNA to modify gene expression, we investigated whether it more directly regulates MYC transcription. We identified ERK2 binding sites in the MYC promoter and detected ERK2 at the promoter in various serum-stimulated cell types. Expression of nuclear-localized ERK2 constructs in serum-starved cells revealed that ERK2 in the nucleus-regardless of its kinase activity-increased MYC mRNA expression and MYC protein abundance. ERK2 bound to the promoter through its amino-terminal insert domain and to the cyclin-dependent kinase CDK9 (which activates RNA polymerase II) through its carboxyl-terminal conserved docking domain. Both interactions were essential for ERK2-induced MYC expression, and depleting ERK impaired CDK9 occupancy and RNA polymerase II progression at the MYC promoter. Artificially tethering CDK9 to the MYC promoter by fusing it to the ERK2 insert domain was sufficient to stimulate MYC expression in serum-starved cells. Our findings demonstrate a role for ERK2 at the MYC promoter acting as a kinase-independent anchor for the recruitment of CDK9 to promote MYC expression.
Collapse
Affiliation(s)
- Lorena Agudo-Ibáñez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Marta Morante
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Andrea Quintanilla
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Javier Rodríguez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 2809, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 2809, Spain
| |
Collapse
|
15
|
Asha H, Green JA, Esposito L, Santoro F, Improta R. Computing the electronic circular dichroism spectrum of DNA quadruple helices of different topology: A critical test for a generalized excitonic model based on a fragment diabatization. Chirality 2023; 35:298-310. [PMID: 36775278 DOI: 10.1002/chir.23540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/14/2023]
Abstract
In this study, we exploit a recently developed fragment diabatization-based excitonic model, FrDEx, to simulate the electronic circular dichroism (ECD) spectra of three guanine-rich DNA sequences arranged in guanine quadruple helices with different topologies: thrombin binding aptamer (antiparallel), c-Myc promoter (parallel), and human telomeric sequence (3+1 hybrid). Starting from time-dependent density functional theory (TD-DFT) calculations with the M052X functional, we apply our protocol to parameterize the FrDEX Hamiltonian, which accounts for electron density overlap and includes both the coupling with charge transfer transitions and the effect of the surrounding bases on the local excitation of each chromophore. The TD-DFT/M052X spectral shapes are in good agreement with the experimental ones, the main source of discrepancy being related to the intrinsic error on the computed transition energies of guanine monomer. FrDEx spectra are fairly close to the reference TD-DFT ones, allowing a significant advance with respect to a more standard excitonic Hamiltonian. We also show that the ECD spectra are sensitive to the inclusion of the inner K + $$ {}^{+} $$ cation in the calculation.
Collapse
Affiliation(s)
- Haritha Asha
- Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
| | - James A Green
- Institut für Physikalische Theoretische Chemie, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Pisa, Italy
| | | |
Collapse
|
16
|
Banerjee N, Chatterjee O, Roychowdhury T, Basu D, Dutta A, Chowdhury M, Dastidar SG, Chatterjee S. Sequence driven interaction of amino acids in de-novo designed peptides determines c-Myc G-quadruplex unfolding inducing apoptosis in cancer cells. Biochim Biophys Acta Gen Subj 2023; 1867:130267. [PMID: 36334788 DOI: 10.1016/j.bbagen.2022.130267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
c-MYC proto-oncogene harbors a putative G-quadruplex structure (Pu27) at the NHEIII1 domain, which can shuffle between transcriptional inhibitor quadruplex and transcriptionally active duplex. In cancer cells this quadruplex destabilization is preferred and NHEIII1 domain assume a duplex topology thereby inducing c-MYC overexpression and tumorigenesis. Hence, the c-MYC quadruplex acts as an excellent target for anti-cancer therapy. Though researcher have tried to develop G-quadruplex targeted small molecules, work with G-quadruplex targeting peptides is very limited. Here we present a peptide that can bind to c-MYC quadruplex, destabilize the tetrad core, and permit the formation of a substantially different structure from the quartet core seen in the canonical G-quadruplexes. Such conformation potentially acted as a roadblock for transcription factors thereby reducing cMYC expression. This event sensitizes the cancer cell to activate apoptotic cascade via the c-MYC-VEGF-A-BCL2 axis. This study provides a detailed insight into the peptide-quadruplex interface that encourages better pharmacophore design to target dynamic quadruplex structure. We believe that our results will contribute to the development, characterization, and optimization of G-quadruplex binding peptides for potential clinical application.
Collapse
Affiliation(s)
- Nilanjan Banerjee
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Oishika Chatterjee
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Tanaya Roychowdhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Debadrita Basu
- Division of Bioinformatics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Anindya Dutta
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Madhurima Chowdhury
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Shubhra Ghosh Dastidar
- Division of Bioinformatics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India.
| |
Collapse
|
17
|
Abstract
Deregulation of transcription factors is critical to hallmarks of cancer. Genetic mutations, gene fusions, amplifications or deletions, epigenetic alternations, and aberrant post-transcriptional modification of transcription factors are involved in the regulation of various stages of carcinogenesis, including cancer initiation, progression, and metastasis. Thus, targeting the dysfunctional transcription factors may lead to new cancer therapeutic strategies. However, transcription factors are conventionally considered as "undruggable." Here, we summarize the recent progresses in understanding the regulation of transcription factors in cancers and strategies to target transcription factors and co-factors for preclinical and clinical drug development, particularly focusing on c-Myc, YAP/TAZ, and β-catenin due to their significance and interplays in cancer.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
18
|
An Update on the Metabolic Landscape of Oncogenic Viruses. Cancers (Basel) 2022; 14:cancers14235742. [PMID: 36497226 PMCID: PMC9738352 DOI: 10.3390/cancers14235742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Viruses play an important role in cancer development as about 12% of cancer types are linked to viral infections. Viruses that induce cellular transformation are known as oncoviruses. Although the mechanisms of viral oncogenesis differ between viruses, all oncogenic viruses share the ability to establish persistent chronic infections with no obvious symptoms for years. During these prolonged infections, oncogenic viruses manipulate cell signaling pathways that control cell cycle progression, apoptosis, inflammation, and metabolism. Importantly, it seems that most oncoviruses depend on these changes for their persistence and amplification. Metabolic changes induced by oncoviruses share many common features with cancer metabolism. Indeed, viruses, like proliferating cancer cells, require increased biosynthetic precursors for virion production, need to balance cellular redox homeostasis, and need to ensure host cell survival in a given tissue microenvironment. Thus, like for cancer cells, viral replication and persistence of infected cells frequently depend on metabolic changes. Here, we draw parallels between metabolic changes observed in cancers or induced by oncoviruses, with a focus on pathways involved in the regulation of glucose, lipid, and amino acids. We describe whether and how oncoviruses depend on metabolic changes, with the perspective of targeting them for antiviral and onco-therapeutic approaches in the context of viral infections.
Collapse
|
19
|
Yenamandra AK, Smith RB, Senaratne TN, Kang SHL, Fink JM, Corboy G, Hodge CA, Lu X, Mathew S, Crocker S, Fang M. Evidence-based review of genomic aberrations in diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS): Report from the cancer genomics consortium lymphoma working group. Cancer Genet 2022; 268-269:1-21. [PMID: 35970109 DOI: 10.1016/j.cancergen.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 01/25/2023]
Abstract
Diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS) is the most common type of non-Hodgkin lymphoma (NHL). The 2016 World Health Organization (WHO) classification defined DLBCL, NOS and its subtypes based on clinical findings, morphology, immunophenotype, and genetics. However, even within the WHO subtypes, it is clear that additional clinical and genetic heterogeneity exists. Significant efforts have been focused on utilizing advanced genomic technologies to further subclassify DLBCL, NOS into clinically relevant subtypes. These efforts have led to the implementation of novel algorithms to support optimal risk-oriented therapy and improvement in the overall survival of DLBCL patients. We gathered an international group of experts to review the current literature on DLBCL, NOS, with respect to genomic aberrations and the role they may play in the diagnosis, prognosis and therapeutic decisions. We comprehensively surveyed clinical laboratory directors/professionals about their genetic testing practices for DLBCL, NOS. The survey results indicated that a variety of diagnostic approaches were being utilized and that there was an overwhelming interest in further standardization of routine genetic testing along with the incorporation of new genetic testing modalities to help guide a precision medicine approach. Additionally, we present a comprehensive literature summary on the most clinically relevant genomic aberrations in DLBCL, NOS. Based upon the survey results and literature review, we propose a standardized, tiered testing approach which will help laboratories optimize genomic testing in order to provide the maximum information to guide patient care.
Collapse
Affiliation(s)
- Ashwini K Yenamandra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37215, United States.
| | | | - T Niroshi Senaratne
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Sung-Hae L Kang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - James M Fink
- Department of Pathology and Laboratory Medicine, Hennepin Healthcare, Minneapolis, MN, United States
| | - Gregory Corboy
- Haematology, Pathology Queensland, Herston, Queensland, Australia; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; School of Clinical Sciences, Monash University, Clayton, Vic, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Vic, Australia
| | - Casey A Hodge
- Department of Pathology and Immunology, Barnes Jewish Hospital, St. Louis, MO, United States
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Susan Mathew
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Crocker
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Min Fang
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, United States
| |
Collapse
|
20
|
Ma B, Wang T, Li J, Wang Q. Extracellular matrix derived from Wharton's Jelly-derived mesenchymal stem cells promotes angiogenesis via integrin αVβ3/c-Myc/P300/VEGF. Stem Cell Res Ther 2022; 13:327. [PMID: 35851415 PMCID: PMC9290299 DOI: 10.1186/s13287-022-03009-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Angiogenesis is required in many physiological conditions, including bone regeneration, wound healing, and tissue regeneration. Mesenchymal stem cells-derived extracellular matrix (MSCs-ECM) could guide intricate cellular and tissue processes such as homeostasis, healing and regeneration. METHODS The purpose of this study is to explore the effect and mechanism of ECM derived from decellularized Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) on endothelial cell viability and angiogenesis. The human umbilical vein endothelial cells (HUVECs) were pretreated with WJ-MSCs ECM for 2d/7d/14d, respectively. After pretreatment, the angiogenesis ability of HUVECs was detected. RESULTS In this study, we found for the first time that WJ-MSCs ECM could improve the angiogenesis ability of HUVECs with a time-dependent manner in vitro. Mechanically, WJ-MSCs ECM activated the focal adhesion kinase (FAK)/P38 signaling pathway via integrin αVβ3, which further promoted the expression of the cellular (c)-Myc. Further, c-Myc increased histone acetylation levels of the vascular endothelial growth factor (VEGF) promoter by recruiting P300, which ultimately promoting VEGF expression. CONCLUSIONS ECM derived from Wharton's Jelly-derived mesenchymal stem cells promotes angiogenesis via integrin αVβ3/c-Myc/P300/VEGF. This study is expected to provide a new approach to promote angiogenesis in bone and tissue regeneration.
Collapse
Affiliation(s)
- Beilei Ma
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Tengkai Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Qian Wang
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
21
|
Estrogen Induces c-myc Transcription by Binding to Upstream ERE Element in Promoter. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen Receptor α(ERα) is reported to regulate the expression of many target genes by binding to specific estrogen response elements (EREs) in their promoters. c-myc is known to be over-expressed in most of the human carcinomas due to dysregulated transcription, translation, or protein stability. Estrogen (E) can induce the c-myc expression by binding to an upstream enhancer element in its promoter. This suggests that elevated estradiol (E2), a potent form of estrogen, levels could induce the expression of c-myc in breast cancer (BC). The expression of c-myc and estradiol were induced at Stage III and Stage IV of breast cancer. c-myc and estradiol expression was also associated with the established risk factors of breast cancer, such as BMI. Age at the time of the disease was alsocorrelated with the relative expression of c-myc and estradiol (p < 0.0007 and p < 0.000001). The correlation coefficient (R = 0.462) shows a positive relationship between estradiol bound ER, ER, and c-myc. Docking energy −229 kJ/mol suggests the binding affinity of estradiol bound ER binding to 500 bp upstream of proximal promotor of c-myc at three distinct positions. The data presented in this study proposed that the expression of c-myc and estradiol are directly correlated in breast cancer. The prognostic utility of an induced level of c-myc associated with the normal status of the c-myc gene and estradiol for patients with metastatic carcinoma should be explored further.
Collapse
|
22
|
Alternative c-MYC mRNA Transcripts as an Additional Tool for c-Myc2 and c-MycS Production in BL60 Tumors. Biomolecules 2022; 12:biom12060836. [PMID: 35740961 PMCID: PMC9221284 DOI: 10.3390/biom12060836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/26/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
While studying c-Myc protein expression in several Burkitt lymphoma cell lines and in lymph nodes from a mouse model bearing a translocated c-MYC gene from the human BL line IARC-BL60, we surprisingly discovered a complex electrophoretic profile. Indeed, the BL60 cell line carrying the t(8;22) c-MYC translocation exhibits a simple pattern, with a single c-Myc2 isoform. Analysis of the c-MYC transcripts expressed by tumor lymph nodes in the mouse λc-MYC (Avy/a) showed for the first time five transcripts that are associated with t(8;22) c-MYC translocation. The five transcripts were correlated with the production of c-Myc2 and c-MycS, and loss of c-Myc1. The contribution of these transcripts to the oncogenic activation of the t(8;22) c-MYC is discussed.
Collapse
|
23
|
Pallotta MM, Di Nardo M, Sarogni P, Krantz ID, Musio A. Disease-associated c-MYC downregulation in human disorders of transcriptional regulation. Hum Mol Genet 2022; 31:1599-1609. [PMID: 34849865 PMCID: PMC9122636 DOI: 10.1093/hmg/ddab348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a rare multiorgan developmental disorder caused by pathogenic variants in cohesin genes. It is a genetically and clinically heterogeneous dominant (both autosomal and X-linked) rare disease. Increasing experimental evidence indicates that CdLS is caused by a combination of factors, such as gene expression dysregulation, accumulation of cellular damage and cellular aging, which collectively contribute to the CdLS phenotype. The CdLS phenotype overlaps with a number of related diagnoses such as KBG syndrome and Rubinstein-Taybi syndrome both caused by variants in chromatin-associated factors other than cohesin. The molecular basis underlying these overlapping phenotypes is not clearly defined. Here, we found that cells from individuals with CdLS and CdLS-related diagnoses are characterized by global transcription disturbance and share common dysregulated pathways. Intriguingly, c-MYC (subsequently referred to as MYC) is downregulated in all cell lines and represents a convergent hub lying at the center of dysregulated pathways. Subsequent treatment with estradiol restores MYC expression by modulating cohesin occupancy at its promoter region. In addition, MYC activation leads to modification in expression in hundreds of genes, which in turn reduce the oxidative stress level and genome instability. Together, these results show that MYC plays a pivotal role in the etiopathogenesis of CdLS and CdLS-related diagnoses and represents a potential therapeutic target for these conditions.
Collapse
Affiliation(s)
- Maria M Pallotta
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| | - Maddalena Di Nardo
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| | - Patrizia Sarogni
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| | - Ian D Krantz
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, The Department of Pediatrics, The Children's Hospital of Philadelphia, and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonio Musio
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| |
Collapse
|
24
|
Moree SE, Maneix L, Iakova P, Stossi F, Sahin E, Catic A. Imaging-Based Screening of Deubiquitinating Proteases Identifies Otubain-1 as a Stabilizer of c-MYC. Cancers (Basel) 2022; 14:806. [PMID: 35159073 PMCID: PMC8833929 DOI: 10.3390/cancers14030806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
The ubiquitin-proteasome pathway precisely controls the turnover of transcription factors in the nucleus, playing an important role in maintaining appropriate quantities of these regulatory proteins. The transcription factor c-MYC is essential for normal development and is a critical cancer driver. Despite being highly expressed in several tissues and malignancies, the c-MYC protein is also continuously targeted by the ubiquitin-proteasome pathway, which can either facilitate or inhibit c-MYC degradation. Deubiquitinating proteases can remove ubiquitin chains from target proteins and rescue them from proteasomal digestion. This study sought to determine novel elements of the ubiquitin-proteasome pathway that regulate c-MYC levels. We performed an overexpression screen with 41 human proteases to identify which deubiquitinases stabilize c-MYC. We discovered that the highly expressed Otubain-1 (OTUB1) protease increases c-MYC protein levels. Confirming its role in enhancing c-MYC activity, we found that elevated OTUB1 correlates with inferior clinical outcomes in the c-MYC-dependent cancer multiple myeloma, and overexpression of OTUB1 accelerates the growth of myeloma cells. In summary, our study identifies OTUB1 as a novel amplifier of the proto-oncogene c-MYC.
Collapse
Affiliation(s)
- Shannon E. Moree
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laure Maneix
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Polina Iakova
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Gulf Coast Consortia, Center for Advanced Microscopy and Image Informatics, Houston, TX 77030, USA
| | - Ergun Sahin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Andre Catic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| |
Collapse
|
25
|
Otani S, Date Y, Ueno T, Ito T, Kajikawa S, Omori K, Taniuchi I, Umeda M, Komori T, Toguchida J, Ito K. Runx3 is required for oncogenic Myc upregulation in p53-deficient osteosarcoma. Oncogene 2022; 41:683-691. [PMID: 34803166 DOI: 10.1038/s41388-021-02120-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 01/21/2023]
Abstract
Osteosarcoma (OS) in human patients is characterized by genetic alteration of TP53. Osteoprogenitor-specific p53-deleted mice (OS mice) have been widely used to study the process of osteosarcomagenesis. However, the molecular mechanisms responsible for the development of OS upon p53 inactivation remain largely unknown. In this study, we detected prominent RUNX3/Runx3 expression in human and mouse p53-deficient OS. Myc was aberrantly upregulated by Runx3 via mR1, a consensus Runx site in the Myc promoter, in a manner dependent on p53 deficiency. Reduction of the Myc level by disruption of mR1 or Runx3 knockdown decreased the tumorigenicity of p53-deficient OS cells and effectively suppressed OS development in OS mice. Furthermore, Runx inhibitors exerted therapeutic effects on OS mice. Together, these results show that p53 deficiency promotes osteosarcomagenesis in human and mouse by allowing Runx3 to induce oncogenic Myc expression.
Collapse
Affiliation(s)
- Shohei Otani
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Yuki Date
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Tomoya Ueno
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Tomoko Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Shuhei Kajikawa
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Keisuke Omori
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Masahiro Umeda
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Junya Toguchida
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan.
| |
Collapse
|
26
|
Isotretinoin and Thalidomide Down-Regulate c-MYC Gene Expression and Modify Proteins Associated with Cancer in Hepatic Cells. Molecules 2021; 26:molecules26195742. [PMID: 34641286 PMCID: PMC8510077 DOI: 10.3390/molecules26195742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer. The number of cases is increasing and the trend for the next few years is not encouraging. HCC is usually detected in the advanced stages of the disease, and pharmacological therapies are not entirely effective. For this reason, it is necessary to search for new therapeutic options. The objective of this work was to evaluate the effect of the drugs isotretinoin and thalidomide on c-MYC expression and cancer-related proteins in an HCC cellular model. The expression of c-MYC was measured using RT-qPCR and western blot assays. In addition, luciferase activity assays were performed for the c-MYC promoters P1 and P2 using recombinant plasmids. Dose-response-time analyses were performed for isotretinoin or thalidomide in cells transfected with the c-MYC promoters. Finally, a proteome profile analysis of cells exposed to these two drugs was performed and the results were validated by western blot. We demonstrated that in HepG2 cells, isotretinoin and thalidomide reduced c-MYC mRNA expression levels, but this decrease in expression was linked to the regulation of P1 and P1-P2 c-MYC promoter activity in isotretinoin only. Thalidomide did not exert any effect on c-MYC promoters. Also, isotretinoin and thalidomide were capable of inducing and repressing proteins associated with cancer. In conclusion, isotretinoin and thalidomide down-regulate c-MYC mRNA expression and this is partially due to P1 or P2 promoter activity, suggesting that these drugs could be promising options for modulating the expression of oncogenes and tumor suppressor genes in HCC.
Collapse
|
27
|
The Role of Non-Coding RNAs in the Regulation of the Proto-Oncogene MYC in Different Types of Cancer. Biomedicines 2021; 9:biomedicines9080921. [PMID: 34440124 PMCID: PMC8389562 DOI: 10.3390/biomedicines9080921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023] Open
Abstract
Alterations in the expression level of the MYC gene are often found in the cells of various malignant tumors. Overexpressed MYC has been shown to stimulate the main processes of oncogenesis: uncontrolled growth, unlimited cell divisions, avoidance of apoptosis and immune response, changes in cellular metabolism, genomic instability, metastasis, and angiogenesis. Thus, controlling the expression of MYC is considered as an approach for targeted cancer treatment. Since c-Myc is also a crucial regulator of many cellular processes in healthy cells, it is necessary to find ways for selective regulation of MYC expression in tumor cells. Many recent studies have demonstrated that non-coding RNAs play an important role in the regulation of the transcription and translation of this gene and some RNAs directly interact with the c-Myc protein, affecting its stability. In this review, we summarize current data on the regulation of MYC by various non-coding RNAs that can potentially be targeted in specific tumor types.
Collapse
|
28
|
Naso FD, Boi D, Ascanelli C, Pamfil G, Lindon C, Paiardini A, Guarguaglini G. Nuclear localisation of Aurora-A: its regulation and significance for Aurora-A functions in cancer. Oncogene 2021; 40:3917-3928. [PMID: 33981003 PMCID: PMC8195736 DOI: 10.1038/s41388-021-01766-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
The Aurora-A kinase regulates cell division, by controlling centrosome biology and spindle assembly. Cancer cells often display elevated levels of the kinase, due to amplification of the gene locus, increased transcription or post-translational modifications. Several inhibitors of Aurora-A activity have been developed as anti-cancer agents and are under evaluation in clinical trials. Although the well-known mitotic roles of Aurora-A point at chromosomal instability, a hallmark of cancer, as a major link between Aurora-A overexpression and disease, recent evidence highlights the existence of non-mitotic functions of potential relevance. Here we focus on a nuclear-localised fraction of Aurora-A with oncogenic roles. Interestingly, this pool would identify not only non-mitotic, but also kinase-independent functions of the kinase. We review existing data in the literature and databases, examining potential links between Aurora-A stabilisation and localisation, and discuss them in the perspective of a more effective targeting of Aurora-A in cancer therapy.
Collapse
Affiliation(s)
- Francesco Davide Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Georgiana Pamfil
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | | | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
29
|
G-quadruplex stabilization via small-molecules as a potential anti-cancer strategy. Biomed Pharmacother 2021; 139:111550. [PMID: 33831835 DOI: 10.1016/j.biopha.2021.111550] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
G-quadruplexes (G4) are secondary four-stranded DNA helical structures consisting of guanine-rich nucleic acids, which can be formed in the promoter regions of several genes under proper conditions. Several cancer cells have been shown to emerge from genomic changes in the expression of crucial growth-regulating genes that allow cells to develop and begin to propagate in an undifferentiated state. Recent attempts have focused on producing treatments targeted at particular protein products of genes that are abnormally expressed. Many of the proteins found are hard to target and considered undruggable due to structural challenges, protein overexpression, or mutations that affect treatment resistance. The utilization of small molecules that stabilize secondary DNA structures existing in several possible oncogenes' promoters and modulate their transcription is a new strategy that avoids some of these problems. In this review, we outline the function of G-quadruplex stabilization in cancer by small-molecules with the aim to improve cancer therapy.
Collapse
|
30
|
Savva L, Georgiades SN. Recent Developments in Small-Molecule Ligands of Medicinal Relevance for Harnessing the Anticancer Potential of G-Quadruplexes. Molecules 2021; 26:molecules26040841. [PMID: 33562720 PMCID: PMC7914483 DOI: 10.3390/molecules26040841] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
G-quadruplexes, a family of tetraplex helical nucleic acid topologies, have emerged in recent years as novel targets, with untapped potential for anticancer research. Their potential stems from the fact that G-quadruplexes occur in functionally-important regions of the human genome, such as the telomere tandem sequences, several proto-oncogene promoters, other regulatory regions and sequences of DNA (e.g., rDNA), as well as in mRNAs encoding for proteins with roles in tumorigenesis. Modulation of G-quadruplexes, via interaction with high-affinity ligands, leads to their stabilization, with numerous observed anticancer effects. Despite the fact that only a few lead compounds for G-quadruplex modulation have progressed to clinical trials so far, recent advancements in the field now create conditions that foster further development of drug candidates. This review highlights biological processes through which G-quadruplexes can exert their anticancer effects and describes, via selected case studies, progress of the last few years on the development of efficient and drug-like G-quadruplex-targeted ligands, intended to harness the anticancer potential offered by G-quadruplexes. The review finally provides a critical discussion of perceived challenges and limitations that have previously hampered the progression of G-quadruplex-targeted lead compounds to clinical trials, concluding with an optimistic future outlook.
Collapse
|
31
|
Rosselot C, Baumel-Alterzon S, Li Y, Brill G, Lambertini L, Katz LS, Lu G, Garcia-Ocaña A, Scott DK. The many lives of Myc in the pancreatic β-cell. J Biol Chem 2021; 296:100122. [PMID: 33239359 PMCID: PMC7949031 DOI: 10.1074/jbc.rev120.011149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes results from insufficient numbers of functional pancreatic β-cells. Thus, increasing the number of available functional β-cells ex vivo for transplantation, or regenerating them in situ in diabetic patients, is a major focus of diabetes research. The transcription factor, Myc, discovered decades ago lies at the nexus of most, if not all, known proliferative pathways. Based on this, many studies in the 1990s and early 2000s explored the potential of harnessing Myc expression to expand β-cells for diabetes treatment. Nearly all these studies in β-cells used pathophysiological or supraphysiological levels of Myc and reported enhanced β-cell death, dedifferentiation, or the formation of insulinomas if cooverexpressed with Bcl-xL, an inhibitor of apoptosis. This obviously reduced the enthusiasm for Myc as a therapeutic target for β-cell regeneration. However, recent studies indicate that "gentle" induction of Myc expression enhances β-cell replication without induction of cell death or loss of insulin secretion, suggesting that appropriate levels of Myc could have therapeutic potential for β-cell regeneration. Furthermore, although it has been known for decades that Myc is induced by glucose in β-cells, very little is known about how this essential anabolic transcription factor perceives and responds to nutrients and increased insulin demand in vivo. Here we summarize the previous and recent knowledge of Myc in the β-cell, its potential for β-cell regeneration, and its physiological importance for neonatal and adaptive β-cell expansion.
Collapse
Affiliation(s)
- Carolina Rosselot
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sharon Baumel-Alterzon
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yansui Li
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gabriel Brill
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luca Lambertini
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Liora S Katz
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Geming Lu
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo Garcia-Ocaña
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Donald K Scott
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
32
|
Moloudizargari M, Moradkhani F, Hekmatirad S, Fallah M, Asghari MH, Reiter RJ. Therapeutic targets of cancer drugs: Modulation by melatonin. Life Sci 2020; 267:118934. [PMID: 33385405 DOI: 10.1016/j.lfs.2020.118934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
The biological functions of melatonin range beyond the regulation of the circadian rhythm. With regard to cancer, melatonin's potential to suppress cancer initiation, progression, angiogenesis and metastasis as well as sensitizing malignant cells to conventional chemo- and radiotherapy are among its most interesting effects. The targets at which melatonin initiates its anti-cancer effects are in common with those of a majority of existing anti-cancer agents, giving rise to the notion that this molecule is a pleiotropic agent sharing many features with other antineoplastic drugs in terms of their mechanisms of action. Among these common mechanisms of action are the regulation of several major intracellular pathways including mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) and protein kinase B (AKT/PKB) signaling. The important mediators affected by melatonin include cyclins, nuclear factor-κB (NF-κB), heat shock proteins (HSPs) and c-Myc, all of which can serve as potential targets for cancer drugs. Melatonin also exerts some of its anti-cancer effects via inducing epigenetic modifications, DNA damage and mitochondrial disruption in malignant cells. The regulation of these mediators by melatonin mitigates tumor growth and invasiveness via modulating their downstream responsive genes, housekeeping enzymes, telomerase reverse transcriptase, apoptotic gene expression, angiogenic factors and structural proteins involved in metastasis. Increasing our knowledge on how melatonin affects its target sites will help find ways of exploiting the beneficial effects of this ubiquitously-acting molecule in cancer therapy. Acknowledging this, here we reviewed the most studied target pathways attributed to the anti-cancer effects of melatonin, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradkhani
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marjan Fallah
- Medicinal Plant Research Centre, Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX, USA.
| |
Collapse
|
33
|
Abstract
To screen and identify ideal leading compounds from a drug library (ZINC15 database) with potential inhibition effect against c-Myc to contribute to medication design and development.A series of computer-aided virtual screening techniques were performed to identify potential inhibitors of c-Myc. LibDock from the software Discovery Studio was used to do a structure-based screening after ADME (absorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was utilized to show the binding affinity and potential mechanism between ligands and c-Myc. Stability of the ligand-receptor complex was analyzed by molecular dynamic simulation at the end of the research.Compounds with more interactive energy which are confirmed to be the potential inhibitors for c-Myc were identified from the ZINC15 databases. Additionally, those compounds are also anticipated with fewer ames mutagenicity, rodent carcinogenicity, nondevelopmental toxic potential, and tolerant with cytochrome p450 2D6(CYP2D6). Dynamic simulation analysis also revealed that the very compounds had more favorable potential energy compared with 10058-F4(ZINC12406714). Furthermore, we prove that those compounds are stable and can exist in natural conditions.This study demonstrates that the compounds are potential therapeutic inhibitors for c-Myc. These compounds are safe and stable for drug candidates and may play a critical role in c-Myc inhibitor development.
Collapse
Affiliation(s)
- Junan Ren
- Clinical College, Jilin University, Changchun
| | | | - Junliang Ge
- Clinical College, Jilin University, Changchun
| | - Bo Wu
- Clinical College, Jilin University, Changchun
- Department of Orthopedics
| | - Weihang Li
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Xinhui Wang
- Clinical College, Jilin University, Changchun
- Department of Oncology, The First Hospital of Jilin University, Changchun
| | - Liyan Zhao
- Department of Clinical Laboratory, The Second Hospital of Jilin University
| |
Collapse
|
34
|
Tong Y, Song Y, Xia C, Deng S. Theoretical and in silico Analyses Reveal MYC as a Dynamic Network Biomarker in Colon and Rectal Cancer. Front Genet 2020; 11:555540. [PMID: 33193630 PMCID: PMC7606845 DOI: 10.3389/fgene.2020.555540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
In this article, we make a theoretical and in silico study for uncovering and evaluating biomarkers in colon and rectal cancer (CRC) by the dynamic network biomarker (DNB) theory. We propose a strategy to employ the theoretical concept of UICC TNM classification in CRC. To reveal the critical transition of CRC, the DNB algorithm was implemented to analyze the genome-wide dynamic network through temporal gene expression data. The relationship between gene sets and clinical features was evaluated by weighted gene co-expression network analysis. The results show that MYC was significantly associated with tumor amplification, tumor immune cells, and survival times. The candidate tumor suppressor genes were ZBTB16, MAL, LIFR, and SLIT2. Protein-protein interaction (PPI) analysis shows that these candidate tumor suppressor genes were significant in immune cells. Data from the Human Protein Atlas showed that a high expression of these candidate tumor suppressor genes was associated with favorable prognosis in TNM stages I-IV. In conclusion, this work provides significant and novel information regarding the TNM stage, cause, and consequences of elevated MYC expression in CRC. MYC expression levels had significant negative correlations with tumor suppressor genes and immune cells.
Collapse
Affiliation(s)
- Yanqiu Tong
- Department of Broadcasting and TV, Chongqing Jiaotong University, Chongqing, China
- Laboratory of Forensic Medicine and Biomedical Informatics, Chongqing Medical University, Chongqing, China
| | - Yang Song
- Department of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Chuanhui Xia
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing, China
| | - Shixiong Deng
- Laboratory of Forensic Medicine and Biomedical Informatics, Chongqing Medical University, Chongqing, China
| |
Collapse
|
35
|
Arman K, Möröy T. Crosstalk Between MYC and lncRNAs in Hematological Malignancies. Front Oncol 2020; 10:579940. [PMID: 33134177 PMCID: PMC7579998 DOI: 10.3389/fonc.2020.579940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
The human genome project revealed the existence of many thousands of long non-coding RNAs (lncRNAs). These transcripts that are over 200 nucleotides long were soon recognized for their importance in regulating gene expression. However, their poor conservation among species and their still controversial annotation has limited their study to some extent. Moreover, a generally lower expression of lncRNAs as compared to protein coding genes and their enigmatic biochemical mechanisms have impeded progress in the understanding of their biological roles. It is, however, known that lncRNAs engage in various kinds of interactions and can form complexes with other RNAs, with genomic DNA or proteins rendering their functional regulatory network quite complex. It has emerged from recent studies that lncRNAs exert important roles in gene expression that affect many cellular processes underlying development, cellular differentiation, but also the pathogenesis of blood cancers like leukemia and lymphoma. A number of lncRNAs have been found to be regulated by several well-known transcription factors including Myelocytomatosis viral oncogene homolog (MYC). The c-MYC gene is known to be one of the most frequently deregulated oncogenes and a driver for many human cancers. The c-MYC gene is very frequently activated by chromosomal translocations in hematopoietic cancers most prominently in B- or T-cell lymphoma or leukemia and much is already known about its role as a DNA binding transcriptional regulator. Although the understanding of MYC's regulatory role controlling lncRNA expression and how MYC itself is controlled by lncRNA in blood cancers is still at the beginning, an intriguing picture emerges indicating that c-MYC may execute part of its oncogenic function through lncRNAs. Several studies have identified lncRNAs regulating c-MYC expression and c-MYC regulated lncRNAs in different blood cancers and have unveiled new mechanisms how these RNA molecules act. In this review, we give an overview of lncRNAs that have been recognized as critical in the context of activated c-MYC in leukemia and lymphoma, describe their mechanism of action and their effect on transcriptional reprogramming in cancer cells. Finally, we discuss possible ways how an interference with their molecular function could be exploited for new cancer therapies.
Collapse
Affiliation(s)
- Kaifee Arman
- Institut de recherches cliniques de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
36
|
Zheng Y, Dubois W, Benham C, Batchelor E, Levens D. FUBP1 and FUBP2 enforce distinct epigenetic setpoints for MYC expression in primary single murine cells. Commun Biol 2020; 3:545. [PMID: 33005010 PMCID: PMC7530719 DOI: 10.1038/s42003-020-01264-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/01/2020] [Indexed: 11/24/2022] Open
Abstract
Physiologically, MYC levels must be precisely set to faithfully amplify the transcriptome, but in cancer MYC is quantitatively misregulated. Here, we study the variation of MYC amongst single primary cells (B-cells and murine embryonic fibroblasts, MEFs) for the repercussions of variable cellular MYC-levels and setpoints. Because FUBPs have been proposed to be molecular “cruise controls” that constrain MYC expression, their role in determining basal or activated MYC-levels was also examined. Growing cells remember low and high-MYC setpoints through multiple cell divisions and are limited by the same expression ceiling even after modest MYC-activation. High MYC MEFs are enriched for mRNAs regulating inflammation and immunity. After strong stimulation, many cells break through the ceiling and intensify MYC expression. Lacking FUBPs, unstimulated MEFs express levels otherwise attained only with stimulation and sponsor MYC chromatin changes, revealed by chromatin marks. Thus, the FUBPs enforce epigenetic setpoints that restrict MYC expression. Ying Zheng et al. characterize MYC gene and protein expression in single mammalian cells in response to various external signals. They find that individual cells show either high or low basal MYC expression setpoints, and that adherence to these setpoints as well as the magnitude of the response of MYC to stimulation, is controlled by FUBP1 and FUBP2.
Collapse
Affiliation(s)
- Ying Zheng
- Lab of Pathology, National Cancer Institutes, Bethesda, MD, USA
| | - Wendy Dubois
- Lab of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, Bethesda, MD, USA
| | - Craig Benham
- Biomedical Engineering, University of California, Davis, CA, USA
| | - Eric Batchelor
- Masonic Cancer Center and Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - David Levens
- Lab of Pathology, National Cancer Institutes, Bethesda, MD, USA.
| |
Collapse
|
37
|
Human MYC G-quadruplex: From discovery to a cancer therapeutic target. Biochim Biophys Acta Rev Cancer 2020; 1874:188410. [PMID: 32827579 DOI: 10.1016/j.bbcan.2020.188410] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Overexpression of the MYC oncogene is a molecular hallmark of both cancer initiation and progression. Targeting MYC is a logical and effective cancer therapeutic strategy. A special DNA secondary structure, the G-quadruplex (G4), is formed within the nuclease hypersensitivity element III1 (NHE III1) region, located upstream of the MYC gene's P1 promoter that drives the majority of its transcription. Targeting such G4 structures has been a focus of anticancer therapies in recent decades. Thus, a comprehensive review of the MYC G4 structure and its role as a potential therapeutic target is timely. In this review, we first outline the discovery of the MYC G4 structure and evidence of its formation in vitro and in cells. Then, we describe the functional role of G4 in regulating MYC gene expression. We also summarize three types of MYC G4-interacting proteins that can promote, stabilize and unwind G4 structures. Finally, we discuss G4-binding molecules and the anticancer activities of G4-stabilizing ligands, including small molecular compounds and peptides, and assess their potential as novel anticancer therapeutics.
Collapse
|
38
|
Grover J, Trujillo C, Saad M, Emandi G, Stipaničev N, Bernhard SSR, Guédin A, Mergny JL, Senge MO, Rozas I. Dual-binding conjugates of diaromatic guanidines and porphyrins for recognition of G-quadruplexes. Org Biomol Chem 2020; 18:5617-5624. [PMID: 32648871 DOI: 10.1039/d0ob01264e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first conceptualised class of dual-binding guanine quadruplex binders has been designed, synthesised and biophysically studied. These compounds combine diaromatic guanidinium systems and neutral tetra-phenylporphyrins (classical binding moiety for guanine quadruplexes) by means of a semi-rigid linker. An extensive screening of a variety of guanine quadruplex structures and double stranded DNA via UV-vis, FRET and CD experiments revealed the preference of the conjugates towards guanine quadruplexes. Additionally, docking studies indicate the potential dual mode of binding.
Collapse
Affiliation(s)
- Jagdeep Grover
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xu Z, Zhuang L, Wang X, Li Q, Sang Y, Xu J. FBXW7γ is a tumor-suppressive and prognosis-related FBXW7 transcript isoform in ovarian serous cystadenocarcinoma. Future Oncol 2020; 16:1921-1930. [PMID: 32915667 DOI: 10.2217/fon-2020-0371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: To explore FBXW7 protein-coding transcript isoform (α, β and γ) expression, their functions and prognostic value in ovarian serous cystadenocarcinoma (OSC). Materials & methods: FBXW7 transcript data were collected from The Cancer Genome Atlas and the Genotype-Tissue Expression project. IOSE, A2780 and SKOV3 cells were used for in vitro and in vivo studies. Results: FBXW7α and FBXW7γ are dominant protein-coding transcripts that were downregulated in OSC. FBXW7γ overexpression reduced the protein expression of c-Myc, Notch1 and Yap1 and suppressed OSC cell growth in vitro and in vivo. FBXW7γ expression was an independent indicator of longer disease-specific survival (HR: 0.588; 95% CI: 0.449-0.770) and progression-free survival (HR: 0.708; 95% CI: 0.562-0.892). Conclusion: FBXW7γ is a tumor-suppressive and might be the only prognosis-related FBXW7 transcript in OSC.
Collapse
Affiliation(s)
- Zhou Xu
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Lin Zhuang
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Xiaoyin Wang
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Qianrong Li
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Yan Sang
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Jiao Xu
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| |
Collapse
|
40
|
Enomoto K, Hotomi M. Amino Acid Transporters as Potential Therapeutic Targets in Thyroid Cancer. Endocrinol Metab (Seoul) 2020; 35:227-236. [PMID: 32615707 PMCID: PMC7386108 DOI: 10.3803/enm.2020.35.2.227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/09/2020] [Indexed: 12/31/2022] Open
Abstract
Thyroid cancer cells have a high amino acid demand for proliferation, invasion, and metastasis. Amino acids are taken up by thyroid cancer cells, both thyroid follicular cell and thyroid parafollicular cells (commonly called "C-cells"), via amino acid transporters. Amino acid transporters up-regulate in many cancers, and their expression level associate with clinical aggressiveness and prognosis. This is the review to discuss the therapeutic potential of amino acid transporters and as molecular targets in thyroid cancer.
Collapse
Affiliation(s)
- Keisuke Enomoto
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
41
|
Rauser V, Weinhold E. Quantitative Formation of Monomeric G-Quadruplex DNA from Multimeric Structures of c-Myc Promoter Sequence. Chembiochem 2020; 21:2445-2448. [PMID: 32267052 PMCID: PMC7496815 DOI: 10.1002/cbic.202000159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Indexed: 12/02/2022]
Abstract
G‐Quadruplex (G4)‐forming DNA sequences have a tendency to form stable multimeric structures. This can be problematic for studies with synthetic oligodeoxynucleotides. Herein, we describe a method that quantitatively converts multimeric intermolecular structures of the Pu27 sequence from the c‐myc promoter into the desired monomeric G4 by alkaline treatment and refolding.
Collapse
Affiliation(s)
- Valerie Rauser
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
42
|
Xia Y, Zhang X. The Spectrum of MYC Alterations in Diffuse Large B-Cell Lymphoma. Acta Haematol 2020; 143:520-528. [PMID: 32074595 DOI: 10.1159/000505892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/11/2020] [Indexed: 12/12/2022]
Abstract
MYC, as a powerful transcription factor, plays a vital role in various cancers. The clinical significance of MYC alterations in diffuse large B-cell lymphoma (DLBCL) has been investigated for a long time. In this study, we comprehensively summarize the different alterations of MYC in DLBCL, including MYC overexpression, MYC translocations, MYC mutations, and increased gene copy number of MYC. Noteworthy, lone MYC overexpression or MYC translocation is not significantly associated with poor clinical outcomes, and their detrimental effects depend on the genetic alterations of BCL2 or BCL6. Both double-expressor DLBCL (DE-DLBCL), defined as overexpression of MYC and BCL2 proteins, and double-hit lymphoma (DHL), defined as a dual translocation of MYC together with BCL2 or BCL6, represent the distinct subgroups of DLBCL with inferior clinical outcomes. The mechanism may be that MYC activation induces cell proliferation, without the threat of the apoptotic brake in the presence of BCL2 overexpression. In addition, most of MYC mutations are present with favorable prognosis, and the nonsignificant effect of MYC copy number amplification has been observed. It has been proved that cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab show limited effects for DHL or DE-DLBCL, and the rituximab plus dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin seem to be efficacious for DHL. The novel therapy is urgently needed for clinical improvement in DHL and DE-DLBCL.
Collapse
Affiliation(s)
- Yang Xia
- Department of Oncology, First People's Hospital of Lanzhou City, Lanzhou, China,
| | - Xinlian Zhang
- Department of Oncology, First People's Hospital of Lanzhou City, Lanzhou, China
| |
Collapse
|
43
|
Liu L, Ma C, Wells JW, Chalikian TV. Conformational Preferences of DNA Strands from the Promoter Region of the c-MYC Oncogene. J Phys Chem B 2020; 124:751-762. [PMID: 31923361 DOI: 10.1021/acs.jpcb.9b10518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We characterized the conformational preferences of DNA in an equimolar mixture of complementary G-rich and C-rich strands from the promoter region of the c-MYC oncogene. Our CD-based approach presupposes that the CD spectrum of such a mixture is the spectral sum of the constituent duplex, G-quadruplex, i-motif, and coiled conformations. Spectra were acquired over a range of temperatures at different pHs and concentrations of KCl. Each spectrum was unmixed in terms of the predetermined spectra of the constituent conformational states to obtain the corresponding weighting factors for their fractional contributions to the total population of DNA. The temperature dependences of those contributions then were analyzed in concert according to a model based on a thermodynamic representation of the underlying equilibria. Fitted estimates of the melting enthalpy and temperature obtained for the duplex, G-quadruplex, and i-motif imply that the driving force behind dissociation of the duplex and the concomitant formation of tetrahelical structures is the folding of the G-strand into the G-quadruplex. The liberated C-strand adopts the i-motif conformation at acidic pH and exists in the coiled state at neutral pH. The i-motif alone cannot induce dissociation of the duplex even at pH 5.0, at which it is most stable. Under the physiological conditions of neutral pH, elevated potassium, and room temperature, the duplex and G-quadruplex conformations coexist with the C-strand in the coiled state. Taken together, our results suggest a novel, thermodynamically controlled mechanism for the regulation of gene expression.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - Congshan Ma
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| |
Collapse
|
44
|
David AP, Pipier A, Pascutti F, Binolfi A, Weiner AMJ, Challier E, Heckel S, Calsou P, Gomez D, Calcaterra NB, Armas P. CNBP controls transcription by unfolding DNA G-quadruplex structures. Nucleic Acids Res 2019; 47:7901-7913. [PMID: 31219592 PMCID: PMC6735679 DOI: 10.1093/nar/gkz527] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/19/2019] [Accepted: 06/17/2019] [Indexed: 01/17/2023] Open
Abstract
Guanine-rich DNA strands can fold into non-canonical four-stranded secondary structures named G-quadruplexes (G4). Experimental evidences suggest that G4-DNA surrounding transcription start sites act as cis-regulatory elements by either stimulating or inhibiting gene transcription. Therefore, proteins able to target and regulate specific G4 formation/unfolding are crucial for G4-mediated transcriptional control. Here we present data revealing that CNBP acts in vitro as a G4-unfolding protein over a tetramolecular G4 formed by the TG4T oligonucleotide, as well as over the G4 folded in the promoters of several oncogenes. CNBP depletion in cellulo led to a reduction in the transcription of endogenous KRAS, suggesting a regulatory role of CNBP in relieving the transcriptional abrogation due to G4 formation. CNBP activity was also assayed over the evolutionary conserved G4 enhancing the transcription of NOGGIN (NOG) developmental gene. CNBP unfolded in vitro NOG G4 and experiments performed in cellulo and in vivo in developing zebrafish showed a repressive role of CNBP on the transcription of this gene by G4 unwinding. Our results shed light on the mechanisms underlying CNBP way of action, as well as reinforce the notion about the existence and function of G4s in whole living organisms.
Collapse
Affiliation(s)
- Aldana P David
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Angélique Pipier
- Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Federico Pascutti
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Andrés Binolfi
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Andrea M J Weiner
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Emilse Challier
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Sofía Heckel
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Dennis Gomez
- Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Nora B Calcaterra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Pablo Armas
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| |
Collapse
|
45
|
Caputo F, Santini C, Bardasi C, Cerma K, Casadei-Gardini A, Spallanzani A, Andrikou K, Cascinu S, Gelsomino F. BRAF-Mutated Colorectal Cancer: Clinical and Molecular Insights. Int J Mol Sci 2019; 20:E5369. [PMID: 31661924 PMCID: PMC6861966 DOI: 10.3390/ijms20215369] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. It is a heterogeneous disease, which can be classified into different subtypes, characterized by specific molecular and morphological alterations. In this context, BRAF mutations are found in about 10% of CRC patients and define a particular subtype, characterized by a dismal prognosis, with a median survival of less than 12 months. Chemotherapy plus bevacizumab is the current standard therapy in first-line treatment of BRAF-mutated metastatic CRC (mCRC), with triplet (FOLFOXIRI) plus bevacizumab as a valid option in patients with a good performance status. BRAF inhibitors are not so effective as compared to melanoma, because of various resistance mechanisms. However, the recently published results of the BEACON trial will establish a new standard of care in this setting. This review provides insights into the molecular underpinnings underlying the resistance to standard treatment of BRAF-mutated CRCs, with a focus on their molecular heterogeneity and on the research perspectives both from a translational and a clinical point of view.
Collapse
Affiliation(s)
- Francesco Caputo
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, 41121 Modena, Italy.
| | - Chiara Santini
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, 41121 Modena, Italy.
| | - Camilla Bardasi
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, 41121 Modena, Italy.
| | - Krisida Cerma
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, 41121 Modena, Italy.
| | - Andrea Casadei-Gardini
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, 41121 Modena, Italy.
| | - Andrea Spallanzani
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, 41121 Modena, Italy.
| | - Kalliopi Andrikou
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, 41121 Modena, Italy.
| | - Stefano Cascinu
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, 41121 Modena, Italy.
- IRCCS San Raffaele Scientific Institute Hospital, 20019 Milan, Italy.
| | - Fabio Gelsomino
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, 41121 Modena, Italy.
| |
Collapse
|
46
|
Spiniello M, Steinbrink MI, Cesnik AJ, Miller RM, Scalf M, Shortreed MR, Smith LM. Comprehensive in vivo identification of the c-Myc mRNA protein interactome using HyPR-MS. RNA (NEW YORK, N.Y.) 2019; 25:1337-1352. [PMID: 31296583 PMCID: PMC6800478 DOI: 10.1261/rna.072157.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/27/2019] [Indexed: 05/10/2023]
Abstract
Proteins bind mRNA through their entire life cycle from transcription to degradation. We analyzed c-Myc mRNA protein interactors in vivo using the HyPR-MS method to capture the crosslinked mRNA by hybridization and then analyzed the bound proteins using mass spectrometry proteomics. Using HyPR-MS, 229 c-Myc mRNA-binding proteins were identified, confirming previously proposed interactors, suggesting new interactors, and providing information related to the roles and pathways known to involve c-Myc. We performed structural and functional analysis of these proteins and validated our findings with a combination of RIP-qPCR experiments, in vitro results released in past studies, publicly available RIP- and eCLIP-seq data, and results from software tools for predicting RNA-protein interactions.
Collapse
Affiliation(s)
- Michele Spiniello
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Naples 80138, Italy
- Division of Immuno-Hematology and Transfusion Medicine, Cardarelli Hospital, Naples 80131, Italy
| | - Maisie I Steinbrink
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Anthony J Cesnik
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
47
|
DDX5 helicase resolves G-quadruplex and is involved in MYC gene transcriptional activation. Proc Natl Acad Sci U S A 2019; 116:20453-20461. [PMID: 31548374 DOI: 10.1073/pnas.1909047116] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G-quadruplexes (G4) are noncanonical secondary structures formed in guanine-rich DNA and RNA sequences. MYC, one of the most critical oncogenes, forms a DNA G4 in its proximal promoter region (MycG4) that functions as a transcriptional silencer. However, MycG4 is highly stable in vitro and its regulatory role would require active unfolding. Here we report that DDX5, one of the founding members of the DEAD-box RNA helicase family, is extremely proficient at unfolding MycG4-DNA. Our results show that DDX5 is a highly active G4-resolvase that does not require a single-stranded overhang and that ATP hydrolysis is not directly coupled to G4-unfolding of DDX5. The chromatin binding sites of DDX5 are G-rich sequences. In cancer cells, DDX5 is enriched at the MYC promoter and activates MYC transcription. The DDX5 interaction with the MYC promoter and DDX5-mediated MYC activation is inhibited by G4-interactive small molecules. Our results uncover a function of DDX5 in resolving DNA and RNA G4s and suggest a molecular target to suppress MYC for cancer intervention.
Collapse
|
48
|
Tokgun PE, Tokgun O, Kurt S, Tomatir AG, Akca H. MYC-driven regulation of long non-coding RNA profiles in breast cancer cells. Gene 2019; 714:143955. [PMID: 31326549 DOI: 10.1016/j.gene.2019.143955] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 11/25/2022]
Abstract
AIM MYC deregulation contributes to breast cancer development and progression. Deregulated expression levels of long non-coding RNAs (lncRNA) have been demonstrated to be critical players in development and/or maintenance of breast cancer. In this study we aimed to evaluate lncRNA expressions depending on MYC overexpression and knockdown in breast cancer cells. MATERIALS AND METHODS Cells were infected with lentiviral vectors by either knockdown or overexpression of c-MYC. LncRNA cDNA was transcribed from total RNA samples and lncRNAs were evaluated by qRT-PCR. RESULTS Our results indicated that some of the lncRNAs having tumor suppressor (GAS5, MEG3, lincRNA-p21) and oncogenic roles (HOTAIR) are regulated by c-MYC. CONCLUSION We observed that c-MYC regulates lncRNAs that have important roles on proliferation, cell cycle and etc. Further studies will give us a light to identify molecular mechanisms related to MYC-lncRNA regulatory pathways in breast cancer.
Collapse
Affiliation(s)
- Pervin Elvan Tokgun
- Department of Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Onur Tokgun
- Department of Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Serap Kurt
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Ayse Gaye Tomatir
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Hakan Akca
- Department of Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| |
Collapse
|
49
|
Kunkl M, Sambucci M, Ruggieri S, Amormino C, Tortorella C, Gasperini C, Battistini L, Tuosto L. CD28 Autonomous Signaling Up-Regulates C-Myc Expression and Promotes Glycolysis Enabling Inflammatory T Cell Responses in Multiple Sclerosis. Cells 2019; 8:cells8060575. [PMID: 31212712 PMCID: PMC6628233 DOI: 10.3390/cells8060575] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
The immunopathogenesis of multiple sclerosis (MS) depend on the expansion of specific inflammatory T cell subsets, which are key effectors of tissue damage and demyelination. Emerging studies evidence that a reprogramming of T cell metabolism may occur in MS, thus the identification of stimulatory molecules and associated signaling pathways coordinating the metabolic processes that amplify T cell inflammation in MS is pivotal. Here, we characterized the involvement of the cluster of differentiation (CD)28 and associated signaling mediators in the modulation of the metabolic programs regulating pro-inflammatory T cell functions in relapsing-remitting MS (RRMS) patients. We show that CD28 up-regulates glycolysis independent of the T cell receptor (TCR) engagement by promoting the increase of c-myc and the glucose transporter, Glut1, in RRMS CD4+ T cells. The increase of glycolysis induced by CD28 was important for the expression of inflammatory cytokines related to T helper (Th)17 cells, as demonstrated by the strong inhibition exerted by impairing the glycolytic pathway. Finally, we identified the class 1A phosphatidylinositol 3-kinase (PI3K) as the critical signaling mediator of CD28 that regulates cell metabolism and amplify specific inflammatory T cell phenotypes in MS.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy.
| | - Manolo Sambucci
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00185 Rome, Italy.
| | - Serena Ruggieri
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
| | - Carla Tortorella
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Claudio Gasperini
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00185 Rome, Italy.
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
50
|
Uda RM, Nishimoto N, Matsui T, Takagi S. Photoinduced binding of malachite green copolymer to parallel G-quadruplex DNA. SOFT MATTER 2019; 15:4454-4459. [PMID: 31073583 DOI: 10.1039/c9sm00411d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Designing ligands that selectively target G-quadruplex DNAs has gained attention due to their possible roles in regulation of gene expression and as anti-cancer agents. In this article, we report irradiation-induced ligand binding to G-quadruplex DNAs which offers a novel approach to targeting specific G-quadruplexes. Photoinduced binding to G-quadruplex DNAs was observed for copolymers of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). This molecule has an aromatic ring with cationic charge, which after irradiation becomes a binding site for G-quadruplex DNA. PVAMGs acted as neutral polymers with no binding affinity under dark conditions. The photoinduced binding was revealed by fluorescence spectroscopy, NMR spectroscopy, UV melting curve, and DNA polymerase stop assay. PVAMGs showed preference to parallel G-quadruplex structures over mixed parallel/antiparallel structures. PVAMGs were found to be noncytotoxic under both dark and irradiated conditions up to a concentration of 20 μM.
Collapse
Affiliation(s)
- Ryoko M Uda
- Department of Chemical Engineering, National Institute of Technology, Nara college, Yata 22, Yamato-koriyama, Nara 639-1080, Japan.
| | | | | | | |
Collapse
|