1
|
Chakravarty S, Logsdon G, Lonardi S. RAmbler resolves complex repeats in human Chromosomes 8, 19, and X. Genome Res 2025; 35:863-876. [PMID: 40037839 PMCID: PMC12047272 DOI: 10.1101/gr.279308.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025]
Abstract
Repetitive regions in eukaryotic genomes often contain important functional or regulatory elements. Despite significant algorithmic and technological advancements in genome sequencing and assembly over the past three decades, modern de novo assemblers still struggle to accurately reconstruct highly repetitive regions. In this work, we introduce RAmbler (Repeat Assembler), a reference-guided assembler specialized for the assembly of complex repetitive regions exclusively from Pacific Biosciences (PacBio) HiFi reads. RAmbler (1) identifies repetitive regions by detecting unusually high coverage regions after mapping HiFi reads to the draft genome assembly, (2) finds single-copy k-mers from the HiFi reads, (i.e., k-mers that are expected to occur only once in the genome), (3) uses the relative location of single-copy k-mers to barcode each HiFi read, (4) clusters HiFi reads based on their shared barcodes, (5) generates contigs by assembling the reads in each cluster, and (6) generates a consensus assembly from the overlap graph of the assembled contigs. Here, we show that RAmbler can reconstruct human centromeres and other complex repeats to a quality comparable to the manually curated Telomere-to-Telomere human genome assembly. Across more than 250 synthetic data sets, RAmbler outperforms hifiasm, LJA, HiCANU, and Verkko across various parameters such as repeat lengths, number of repeats, heterozygosity rates, and depth of sequencing.
Collapse
Affiliation(s)
- Sakshar Chakravarty
- Department of Computer Science and Engineering, University of California, Riverside, California 92521, USA
| | - Glennis Logsdon
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19103, USA
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, California 92521, USA;
| |
Collapse
|
2
|
Junior JDES, de Souza JL, da Silva LS, da Silva CC, do Nascimento TA, de Souza MLG, da Cunha AF, Batista JDS, Neto JPDM, Guerra MVDF, Ramasawmy R. A fine mapping of single nucleotide variants and haplotype analysis of IL13 gene in patients with Leishmania guyanensis-cutaneous leishmaniasis and plasma cytokines IL-4, IL-5, and IL-13. Front Immunol 2023; 14:1232488. [PMID: 37908348 PMCID: PMC10613733 DOI: 10.3389/fimmu.2023.1232488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Leishmaniasis continues to pose a substantial health burden in 97 countries worldwide. The progression and outcome of Leishmania infection are influenced by various factors, including the cytokine milieu, the skin microbiota at the infection site, the specific Leishmania species involved, the genetic background of the host, and the parasite load. In endemic regions to leishmaniasis, only a fraction of individuals infected actually develops the disease. Overexpression of IL-13 in naturally resistant C57BL/6 mice renders them susceptible to L. major infection. Haplotypes constructed from several single nucleotide variant (SNV) along a chromosome fragment may provide insight into any SNV near the fragment that may be genuinely associated with a phenotype in genetic association studies. Methods We investigated nine SNVs (SNV1rs1881457A>C, SNV2rs1295687C>G, SNV3rs2069744C>T, SNV4rs2069747C>T, SNV5rs20541A>G, SNV6rs1295685A>G, SNV7rs848A>C, SNV8rs2069750G >C, and SNV9rs847T>C) spanning the entire IL13 gene in patients with L. guyanensis cutaneous leishmaniasis (Lg-CL). Results Our analysis did not reveal any significant association between the SNVs and susceptibility/protection against Lg-CL development. However, haplotype analysis, excluding SNV4rs2069747 and SNV8rs2069750 due to low minor allele frequency, revealed that carriers of the haplotype CCCTAAC had a 93% reduced likelihood developing Lg-CL. Similarly, the haplotypes ACCCGCT (ORadj=0.02 [95% CI 0.00-0.07]; p-value, 6.0×10-19) and AGCTAAC (ORadj=0.00[95% CI 0.00-0.00]; p-value 2.7×10-12) appeared to provide protection against the development of Lg-CL. Conversely, carriers of haplotype ACCTGCC have 190% increased likelihood of developing Lg-CL (ORadj=2.9 [95%CI 1.68-5.2]; p-value, 2.5×10-6). Similarly, haplotype ACCCAAT (ORadj=2.7 [95%CI 1.5-4.7]; p-value, 3.2×10-5) and haplotype AGCCGCC are associated with susceptibility to the development of Lg-CL (ORadj=1.7[95%CI 1.04-2.8]; p-value, 0.01). In our investigation, we also found a correlation between the genotypes of rs2069744, rs20541, rs1295685, rs847, and rs848 and plasma IL-5 levels among Lg-Cl patients. Furthermore, rs20541 showed a correlation with plasma IL-13 levels among Lg-Cl patients, while rs2069744 and rs848 showed a correlation with plasma IL-4 levels among the same group. Conclusions Overall, our study identifies three haplotypes of IL13 associated with resistance to disease development and three haplotypes linked to susceptibility. These findings suggest the possibility of a variant outside the gene region that may contribute, in conjunction with other genes, to differences in susceptibility and partially to the pathology.
Collapse
Affiliation(s)
- José do Espírito Santo Junior
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
| | - Josué Lacerda de Souza
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazonia Legal (Rede Bionorte), Universidade do Estado do Amazonas, Manaus, Brazil
| | - Lener Santos da Silva
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazonia Legal (Rede Bionorte), Universidade do Estado do Amazonas, Manaus, Brazil
| | - Cilana Chagas da Silva
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Tuanny Arruda do Nascimento
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | | | | | | | | | - Marcus Vinitius de Farias Guerra
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazonia Legal (Rede Bionorte), Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas – REGESAM, Manaus, Amazonas, Brazil
| |
Collapse
|
3
|
Hayat S, Asad A, Hasan I, Jahan I, Papri N, Howlader ZH, Islam Z. Nucleotide oligomerization domain polymorphism confers no risk to Guillain-Barré syndrome. Acta Neurol Scand 2022; 146:177-185. [PMID: 35652365 DOI: 10.1111/ane.13649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Nucleotide oligomerization domain (NOD) proteins are cytoplasmic receptors that play important roles in host innate immune responses to pathogens by recognizing self or non-self-molecules and have been implicated in many autoimmune diseases including Guillain-Barré syndrome (GBS). The current study investigated whether NOD polymorphisms (NOD1-Glu266Lys, rs2075820, and NOD2- [Arg702Trp, rs2066844 and Gly908Arg, rs2066845]) contribute to ligand sensing and thus affect the susceptibility and/or severity of GBS. MATERIALS AND METHODS We determined single nucleotide polymorphisms (SNPs) of NOD gene (NOD1-Glu266Lys and NOD2-[Arg702Trp; Gly908Ar]) in 303 patients with GBS and 303 healthy controls from Bangladesh by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and Sanger sequencing. Genotypes and allele frequencies were compared by performing chi-squared or Fisher's exact test with Yates' continuity correction. Serology for Campylobacter jejuni and anti-GM1 antibodies were determined by enzyme-linked immunosorbent assay (ELISA) techniques. RESULTS NOD variants (NOD1-Glu266Lys and NOD2- [Arg702Trp; Gly908Arg]) were not associated with susceptibility and severity of GBS when compared with healthy controls and mild or severe form of disease. Moreover, NOD2 polymorphisms showed wild-type NOD2 C2104 and NOD2 G2722, respectively, with homozygous Arg/Arg genotype of NOD2 (Arg702Trp) polymorphism and homozygous Gly/Gly genotype of NOD2 (Gly908Arg) for all study subjects in Bangladesh. Homogenous distribution of NOD1 genotypes was observed in patients with axonal and demyelinating form of GBS. CONCLUSIONS NOD variants confer no risk to the susceptibility and severity of GBS. Moreover, NOD2 polymorphism is rare or absent in patients with GBS as well as in the healthy individuals of Bangladesh.
Collapse
Affiliation(s)
- Shoma Hayat
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| | - Asaduzzaman Asad
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| | - Imran Hasan
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| | - Israt Jahan
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| | - Nowshin Papri
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| | | | - Zhahirul Islam
- Laboratory of Gut‐Brain Signaling Laboratory Sciences and Services Division (LSSD) Dhaka Bangladesh
| |
Collapse
|
4
|
Sugrue JA, Bourke NM, O’Farrelly C. Type I Interferon and the Spectrum of Susceptibility to Viral Infection and Autoimmune Disease: A Shared Genomic Signature. Front Immunol 2021; 12:757249. [PMID: 34917078 PMCID: PMC8669998 DOI: 10.3389/fimmu.2021.757249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Type I interferons (IFN-I) and their cognate receptor, the IFNAR1/2 heterodimer, are critical components of the innate immune system in humans. They have been widely explored in the context of viral infection and autoimmune disease where they play key roles in protection against infection or shaping disease pathogenesis. A false dichotomy has emerged in the study of IFN-I where interferons are thought of as either beneficial or pathogenic. This 'good or bad' viewpoint excludes more nuanced interpretations of IFN-I biology - for example, it is known that IFN-I is associated with the development of systemic lupus erythematosus, yet is also protective in the context of infectious diseases and contributes to resistance to viral infection. Studies have suggested that a shared transcriptomic signature underpins both potential resistance to viral infection and susceptibility to autoimmune disease. This seems to be particularly evident in females, who exhibit increased viral resistance and increased susceptibility to autoimmune disease. The molecular mechanisms behind such a signature and the role of sex in its determination have yet to be precisely defined. From a genomic perspective, several single nucleotide polymorphisms (SNPs) in the IFN-I pathway have been associated with both infectious and autoimmune disease. While overlap between infection and autoimmunity has been described in the incidence of these SNPs, it has been overlooked in work and discussion to date. Here, we discuss the possible contributions of IFN-Is to the pathogenesis of infectious and autoimmune diseases. We comment on genetic associations between common SNPs in IFN-I or their signalling molecules that point towards roles in protection against viral infection and susceptibility to autoimmunity and propose that a shared transcriptomic and genomic immunological signature may underlie resistance to viral infection and susceptibility to autoimmunity in humans. We believe that defining shared transcriptomic and genomic immunological signatures underlying resistance to viral infection and autoimmunity in humans will reveal new therapeutic targets and improved vaccine strategies, particularly in females.
Collapse
Affiliation(s)
- Jamie A. Sugrue
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Nollaig M. Bourke
- Department of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Alam MS, Saleh MA, Mozibullah M, Riham AT, Solayman M, Gan SH. Computational algorithmic and molecular dynamics study of functional and structural impacts of non-synonymous single nucleotide polymorphisms in human DHFR gene. Comput Biol Chem 2021; 95:107587. [PMID: 34710812 DOI: 10.1016/j.compbiolchem.2021.107587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/21/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022]
Abstract
Human dihydrofolate reductase (DHFR) is a conserved enzyme that is central to folate metabolism and is widely targeted in pathogenic diseases as well as cancers. Although studies have reported the fact that genetic mutations in DHFR leads to a rare autosomal recessive inborn error of folate metabolism and drug resistance, there is a lack of an extensive study on how the deleterious non-synonymous SNPs (nsSNPs) disrupt its phenotypic effects. In this study, we aim at discovering the structural and functional consequences of nsSNPs in DHFR by employing a combined computational approach consisting of ten recently developed in silico tools for identification of damaging nsSNPs and molecular dynamics (MD) simulation for getting deeper insights into the magnitudes of damaging effects. Our study revealed the presence of 12 most deleterious nsSNPs affecting the native phenotypic effects, with three (R71T, G118D, Y122D) identified in the co-factor and ligand binding active sites. MD simulations also suggested that these three SNPs particularly Y122D, alter the overall structural flexibility and dynamics of the native DHFR protein which can provide more understandings into the crucial roles of these mutants in influencing the loss of DHFR function.
Collapse
Affiliation(s)
- Md Shahed Alam
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Abu Saleh
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Mozibullah
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Ashik Tanvir Riham
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Solayman
- Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia.
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
6
|
Choto ET, Mduluza T, Chimbari MJ. Interleukin-13 rs1800925/-1112C/T promoter single nucleotide polymorphism variant linked to anti-schistosomiasis in adult males in Murehwa District, Zimbabwe. PLoS One 2021; 16:e0252220. [PMID: 34048465 PMCID: PMC8162643 DOI: 10.1371/journal.pone.0252220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
Background Chronic schistosomiasis is predominantly induced through up-regulation of inflammatory cytokines such as interleukin (IL)-13. IL-13 may contribute to the disease outcomes by increasing eosinophil infiltration thereby promoting fibrosis. IL-13 may act as an immunosuppressive inflammatory cytokine that may promote carcinogenesis and also may offer protection against schistosomiasis thereby reducing risk of schistosome infections. Our study evaluated the frequency of the IL-13 rs1800925/-1112 C/ T promoter single nucleotide polymorphisms (SNPs) among schistosomiasis infected individuals and assessed the association of the variants on IL-13 cytokine levels. We also investigated IL-13 rs1800925 polymorphisms on prostate-specific antigen levels as an indicator for risk of prostate cancer development. Methodology The study was cross-sectional and included 50 schistosomiasis infected and 316 uninfected male participants residing in Murehwa District, Zimbabwe. IL-13 rs1800925 SNPs were genotyped by allele amplification refractory mutation system-polymerase chain reaction. Concentrations of serum prostate-specific antigens and plasma IL-13 were measured using enzyme-linked immunosorbent assay. Results Frequencies of the genotypes CC, CT and TT, were 20%, 58% and 22% in schistosomiasis infected, and 18.3%, 62.1% and 19.6% in uninfected participants with no statistical differences. There were significantly (p<0.05) higher IL-13 cytokine levels among both infected and uninfected participants with the genotypes CC and CT; median 92.25 pg/mL and 106.5 pg/mL, respectively, compared to TT variant individuals; 44.78 pg/mL. Within the schistosomiasis uninfected group, CC and CT variants had significantly (p<0.05) higher IL-13 levels; median 135.0 pg/mL and 113.6 pg/mL, respectively compared to TT variant individuals; 47.15 pg/mL. Within the schistosomiasis infected group, CC, CT and TT variant individuals had insignificant differences of IL-13 level. Using logistic regression, no association was observed between prostate-specific antigen levels, IL-13 cytokine levels and IL-13 rs1800925 variants (p>0.05). Conclusion IL-13 rs1800925 C variant individuals had the highest IL-13 cytokine levels among the schistosomiasis uninfected suggesting that they may be protective against Schistosoma infections. There was no association between IL-13 concentrations or IL-13 rs1800925 variants and risk of prostate cancer indicating that IL-13 levels and IL-13 rs10800925 may not be utilised as biomarker for risk of prostate cancer in schistosome infections.
Collapse
Affiliation(s)
- Emilia T. Choto
- School of Public Health Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- * E-mail:
| | - Takafira Mduluza
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Moses J. Chimbari
- School of Public Health Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Yu XX, Chu X, Wu WJ, Wei ZL, Song HL, Bai MR, Lu YJ, Gu BL, Gong YM, Cai W. Common variation of the NSD1 gene is associated with susceptibility to Hirschsprung's disease in Chinese Han population. Pediatr Res 2021; 89:694-700. [PMID: 32380506 DOI: 10.1038/s41390-020-0933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is the most common congenital cause of intestinal obstruction in children. Sotos syndrome (SoS) is an overgrowth disorder with constipation and sometimes accompanied by HSCR. NSD1 gene mutation is the main cause of SoS. We aimed to investigate association of NSD1 common single nucleotide polymorphisms (SNPs) with HSCR susceptibility in Chinese Han population. METHOD We genotyped 15 SNPs encompassing NSD1 gene region in 420 HSCR patients and 1665 controls on Fludigm EP1 platform. Association analysis was performed between cases and controls. RESULT Rs244709 was the most associated SNP with HSCR susceptibility of the sample set (PAllelic = 9.69 × 10-5, OR = 1.37, 95% CI: 1.17-1.61). Gender stratification analysis revealed that NSD1 SNPs were associated with HSCR in males, but not in females. The nonsynonymous coding SNP rs28932178 in NSD1 exon 5 represented the most significant signal in males (PAllelic = 6.43 × 10-5, OR = 1.42, 95% CI: 1.20-1.69). The associated SNPs were expression quantitative trait loci (eQTLs) of nearby genes in multiple tissues. NSD1 expression levels were higher in aganglionic colon tissues than ganglionic tissues (P = 3.00 × 10-6). CONCLUSION NSD1 variation conferred risk to HSCR in males, indicating SoS and HSCR may share common genetic factors. IMPACT This is the first study to reveal that NSD1 variation conferred risk to Hirschsprung's disease susceptibility in males of Chinese Han population, indicating Sotos syndrome and Hirschsprung's disease may share some common genetic background. This study indicates more attention should be paid to the symptom of constipation in patients with Sotos syndrome. Our results raise questions about the role of NSD1 in the development of enteric nervous system and the pathogenesis of Hirschsprung's disease.
Collapse
Affiliation(s)
- Xian-Xian Yu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Xun Chu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China. .,Shanghai Institute of Pediatric Research, Shanghai, China.
| | - Wen-Jie Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Zhi-Liang Wei
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Huan-Lei Song
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Mei-Rong Bai
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yan-Jiao Lu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Bei-Lin Gu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yi-Ming Gong
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China. .,Shanghai Institute of Pediatric Research, Shanghai, China.
| |
Collapse
|
8
|
Correa DD, Satagopan J, Martin A, Braun E, Kryza-Lacombe M, Cheung K, Sharma A, Dimitriadoy S, O'Connell K, Leong S, Karimi S, Lyo J, DeAngelis LM, Orlow I. Genetic variants and cognitive functions in patients with brain tumors. Neuro Oncol 2020; 21:1297-1309. [PMID: 31123752 PMCID: PMC6784270 DOI: 10.1093/neuonc/noz094] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Patients with brain tumors treated with radiotherapy (RT) and chemotherapy (CT) often experience cognitive dysfunction. We reported that single nucleotide polymorphisms (SNPs) in the APOE, COMT, and BDNF genes may influence cognition in brain tumor patients. In this study, we assessed whether genes associated with late-onset Alzheimer's disease (LOAD), inflammation, cholesterol transport, dopamine and myelin regulation, and DNA repair may influence cognitive outcome in this population. METHODS One hundred and fifty brain tumor patients treated with RT ± CT or CT alone completed a neurocognitive assessment and provided a blood sample for genotyping. We genotyped genes/SNPs in these pathways: (i) LOAD risk/inflammation/cholesterol transport, (ii) dopamine regulation, (iii) myelin regulation, (iv) DNA repair, (v) blood-brain barrier disruption, (vi) cell cycle regulation, and (vii) response to oxidative stress. White matter (WM) abnormalities were rated on brain MRIs. RESULTS Multivariable linear regression analysis with Bayesian shrinkage estimation of SNP effects, adjusting for relevant demographic, disease, and treatment variables, indicated strong associations (posterior association summary [PAS] ≥ 0.95) among tests of attention, executive functions, and memory and 33 SNPs in genes involved in: LOAD/inflammation/cholesterol transport (eg, PDE7A, IL-6), dopamine regulation (eg, DRD1, COMT), myelin repair (eg, TCF4), DNA repair (eg, RAD51), cell cycle regulation (eg, SESN1), and response to oxidative stress (eg, GSTP1). The SNPs were not significantly associated with WM abnormalities. CONCLUSION This novel study suggests that polymorphisms in genes involved in aging and inflammation, dopamine, myelin and cell cycle regulation, and DNA repair and response to oxidative stress may be associated with cognitive outcome in patients with brain tumors.
Collapse
Affiliation(s)
- Denise D Correa
- Department of Neurology and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Neurology, Weill Cornell Medical College, New York, New York
| | - Jaya Satagopan
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Axel Martin
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Erica Braun
- Department of Neurology and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Kryza-Lacombe
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Kenneth Cheung
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ajay Sharma
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sofia Dimitriadoy
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kelli O'Connell
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Siok Leong
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sasan Karimi
- Department of Neurology and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John Lyo
- Department of Neurology and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lisa M DeAngelis
- Department of Neurology and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Neurology, Weill Cornell Medical College, New York, New York
| | - Irene Orlow
- Department of Epidemiology and Biostatistics and Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
9
|
Wang Y, Jiang Q, Cai H, Xu Z, Wu W, Gu B, Li L, Cai W. Genetic variants in RET, ARHGEF3 and CTNNAL1, and relevant interaction networks, contribute to the risk of Hirschsprung disease. Aging (Albany NY) 2020; 12:4379-4393. [PMID: 32139661 PMCID: PMC7093166 DOI: 10.18632/aging.102891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
Hirschsprung disease (HSCR), the most common enteric neuropathy, stands as a model for complex genetic disorders. It has recently been demonstrated that both ARHGEF3 and CTNNAL1 map to the RET-dependent HSCR susceptibility loci. We therefore sought to explore whether genetic variants within RET, ARHGEF3 and CTNNAL1, and their genetic interaction networks are associated with HSCR. Taking advantage of a strategy that combined the MassArray system and gene-gene interaction analysis with case-control study, we interrogated 38 polymorphisms within RET, ARHGEF3 and CTNNAL1 in 1015 subjects (502 HSCR cases and 513 controls) of Han Chinese origin. There were statistically significant associations between 20 genetic variants in these three genes and HSCR. Haplotype analysis also revealed some significant global P values, i.e. RET_ rs2435357-rs752978-rs74400468-rs2435353-rs2075913-rs17028-rs2435355 (P = 3.79×10-58). Using the MDR and GeneMANIA platforms, we found strong genetic interactions among RET, ARHGEF3, and CTNNAL1 and our previously studied GAL, GAP43, NRSN1, PTCH1, GABRG2 and RELN genes. These results offer the first indication that genetic markers of RET, ARHGEF3 and CTNNAL1 and relevant genetic interaction networks confer the altered risk to HSCR in the Han Chinese population.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Hao Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ze Xu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wenjie Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Beilin Gu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
10
|
Wang Y, Jiang Q, Chakravarti A, Cai H, Xu Z, Wu W, Gu B, Li L, Cai W. MicroRNA-4516-mediated regulation of MAPK10 relies on 3' UTR cis-acting variants and contributes to the altered risk of Hirschsprung disease. J Med Genet 2020; 57:634-642. [PMID: 32066630 DOI: 10.1136/jmedgenet-2019-106615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hirschsprung disease (HSCR) is a life-threatening congenital disorder in which the enteric nervous system is completely missing from the distal gut. Recent studies have shown that miR-4516 markedly inhibits cell migration, and as one of its potential targets, MAPK10 functions as a modifier for developing HSCR. We thus aimed to evaluate the role of miR-4516 and MAPK10 in HSCR and how they contribute to the pathogenesis of HSCR. METHODS We examined 13 genetic variants using the MassArray system in a case-control study (n=1015). We further investigated miR-4516-mediated regulation of MAPK10 in HSCR cases and human neural cells, the effects of cis-acting elements in MAPK10 on miR-4516-mediated modulation and cell migration process. RESULTS Three positive 3' UTR variants in MAPK10 were associated with altered HSCR susceptibility. We also showed that miR-4516 directly regulates MAPK10 expression, and this regulatory mechanism is significantly affected by the 3' UTR cis-acting elements of MAPK10. In addition, knock-down of MAPK10 rescued the effect of miR-4516 on the migration of human neural cells. CONCLUSION Our findings indicate a key role of miR-4516 and its direct target MAPK10 in HSCR risk, and highlight the general importance of cis- and posttranscriptional modulation for HSCR pathogenesis.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China .,Department of Pediatric Gastroenterology, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, New York, USA
| | - Hao Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Gastroenterology, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ze Xu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Gastroenterology, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wenjie Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Gastroenterology, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Beilin Gu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China .,Department of Pediatric Gastroenterology, Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
11
|
Guo H, Liu B, Guan D, Fu Y, Wang Y. Fast read alignment with incorporation of known genomic variants. BMC Med Inform Decis Mak 2019; 19:265. [PMID: 31856811 PMCID: PMC6921400 DOI: 10.1186/s12911-019-0960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Many genetic variants have been reported from sequencing projects due to decreasing experimental costs. Compared to the current typical paradigm, read mapping incorporating existing variants can improve the performance of subsequent analysis. This method is supposed to map sequencing reads efficiently to a graphical index with a reference genome and known variation to increase alignment quality and variant calling accuracy. However, storing and indexing various types of variation require costly RAM space. Methods Aligning reads to a graph model-based index including the whole set of variants is ultimately an NP-hard problem in theory. Here, we propose a variation-aware read alignment algorithm (VARA), which generates the alignment between read and multiple genomic sequences simultaneously utilizing the schema of the Landau-Vishkin algorithm. VARA dynamically extracts regional variants to construct a pseudo tree-based structure on-the-fly for seed extension without loading the whole genome variation into memory space. Results We developed the novel high-throughput sequencing read aligner deBGA-VARA by integrating VARA into deBGA. The deBGA-VARA is benchmarked both on simulated reads and the NA12878 sequencing dataset. The experimental results demonstrate that read alignment incorporating genetic variation knowledge can achieve high sensitivity and accuracy. Conclusions Due to its efficiency, VARA provides a promising solution for further improvement of variant calling while maintaining small memory footprints. The deBGA-VARA is available at: https://github.com/hitbc/deBGA-VARA.
Collapse
Affiliation(s)
- Hongzhe Guo
- Center for Bioinformatics, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Bo Liu
- Center for Bioinformatics, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Dengfeng Guan
- Center for Bioinformatics, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Yilei Fu
- Center for Bioinformatics, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China
| | - Yadong Wang
- Center for Bioinformatics, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, China.
| |
Collapse
|
12
|
Bayesian statistical methods in genetic association studies: Empirical examination of statistically non-significant Genome Wide Association Study (GWAS) meta-analyses in cancers: A systematic review. Gene 2019; 685:170-178. [DOI: 10.1016/j.gene.2018.10.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/19/2018] [Indexed: 01/22/2023]
|
13
|
Mahdavi M, Nassiri M, Kooshyar MM, Vakili‐Azghandi M, Avan A, Sandry R, Pillai S, Lam AK, Gopalan V. Hereditary breast cancer; Genetic penetrance and current status with BRCA. J Cell Physiol 2018; 234:5741-5750. [DOI: 10.1002/jcp.27464] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Morteza Mahdavi
- Institute of Biotechnology, Ferdowsi University of Mashhad Mashhad Iran
| | | | | | | | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences Mashhad Iran
- Cancer Research Center and Surgical Oncology Research Center, Mashhad University of Medical Sciences Mashhad Iran
- School of Medicine, Griffith University Gold Coast QLD
| | - Ryan Sandry
- Department of Modern Sciences and Technologies Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland Brisbane Australia
| | | | - Vinod Gopalan
- Department of Modern Sciences and Technologies Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
14
|
Robert F, Pelletier J. Exploring the Impact of Single-Nucleotide Polymorphisms on Translation. Front Genet 2018; 9:507. [PMID: 30425729 PMCID: PMC6218417 DOI: 10.3389/fgene.2018.00507] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
Over the past 15 years, sequencing of the human genome and The Cancer Genome Atlas (TCGA) project have led to comprehensive lists of single-nucleotide polymorphisms (SNPs) and gene mutations across a large number of human samples. However, our ability to predict the functional impact of SNPs and mutations on gene expression is still in its infancy. Here, we provide key examples to help understand how mutations present in genes can affect translational output.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Department of Oncology, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Wang Y, Yan W, Wang J, Zhou Y, Chen J, Gu B, Cai W. Common genetic variants in GAL, GAP43 and NRSN1 and interaction networks confer susceptibility to Hirschsprung disease. J Cell Mol Med 2018; 22:3377-3387. [PMID: 29654647 PMCID: PMC6010875 DOI: 10.1111/jcmm.13612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/22/2018] [Indexed: 01/21/2023] Open
Abstract
Hirschsprung disease (HSCR) is a severe multifactorial genetic disorder. Microarray studies indicated GAL,GAP43 and NRSN1 might contribute to the altered risk in HSCR. Thus, we focused on genetic variations in GAL,GAP43 and NRSN1, and the gene‐gene interactions involved in HSCR susceptibility. We recruited a strategy combining case‐control study and MassArray system with interaction network analysis. For GAL,GAP43 and NRSN1, a total of 18 polymorphisms were assessed in 104 subjects with sporadic HSCR and 151 controls of Han Chinese origin. We found statistically significant differences between HSCR and control groups at 5 genetic variants. For each gene, the haplotypes combining all polymorphisms were the most significant. Based on SNPsyn, MDR and GeneMANIA analyses, we observed significant gene‐gene interactions among GAL,GAP43,NRSN1 and our previous identified RELN,GABRG2 and PTCH1. Our study for the first time indicates that genetic variants within GAL,GAP43 and NRSN1 and related gene‐gene interaction networks might be involved in the altered susceptibility to HSCR in the Han Chinese population, which might shed more light on HSCR pathogenesis.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Weihui Yan
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Jun Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ying Zhou
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Jie Chen
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Beilin Gu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
16
|
Spanou E, Kalisperati P, Pateras IS, Papalampros A, Barbouti A, Tzioufas AG, Kotsinas A, Sougioultzis S. Genetic Variability as a Regulator of TLR4 and NOD Signaling in Response to Bacterial Driven DNA Damage Response (DDR) and Inflammation: Focus on the Gastrointestinal (GI) Tract. Front Genet 2017; 8:65. [PMID: 28611823 PMCID: PMC5447025 DOI: 10.3389/fgene.2017.00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
The fundamental role of human Toll-like receptors (TLRs) and NOD-like receptors (NLRs), the two most studied pathogen recognition receptors (PRRs), is the protection against pathogens and excessive tissue injury. Recent evidence supports the association between TLR/NLR gene mutations and susceptibility to inflammatory, autoimmune, and malignant diseases. PRRs also interfere with several cellular processes, such as cell growth, apoptosis, cell proliferation, differentiation, autophagy, angiogenesis, cell motility and migration, and DNA repair mechanisms. We briefly review the impact of TLR4 and NOD1/NOD2 and their genetic variability in the process of inflammation, tumorigenesis and DNA repair, focusing in the gastrointestinal tract. We also review the available data on new therapeutic strategies utilizing TLR/NLR agonists and antagonists for cancer, allergic diseases, viral infections and vaccine development against both infectious diseases and cancer.
Collapse
Affiliation(s)
- Evagelia Spanou
- Gastroenterology Division, Department of Pathophysiology, “Laikon” General Hospital, University of AthensAthens, Greece
| | - Polyxeni Kalisperati
- Gastroenterology Division, Department of Pathophysiology, “Laikon” General Hospital, University of AthensAthens, Greece
| | - Ioannis S. Pateras
- Department of Histology and Embryology, University of AthensAthens, Greece
| | - Alexandros Papalampros
- 1st Department of Surgery, “Laikon” General Hospital, University of AthensAthens, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, University of IoanninaIoannina, Greece
| | - Athanasios G. Tzioufas
- Department of Pathophysiology, “Laikon” General Hospital, University of AthensAthens, Greece
| | | | - Stavros Sougioultzis
- Gastroenterology Division, Department of Pathophysiology, “Laikon” General Hospital, University of AthensAthens, Greece
| |
Collapse
|
17
|
Koster R, Chanock SJ. Hard Work Ahead: Fine Mapping and Functional Follow-up of Susceptibility Alleles in Cancer GWAS. CURR EPIDEMIOL REP 2015. [DOI: 10.1007/s40471-015-0049-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Gorlov IP, Gorlova OY, Amos CI. Allelic Spectra of Risk SNPs Are Different for Environment/Lifestyle Dependent versus Independent Diseases. PLoS Genet 2015; 11:e1005371. [PMID: 26201053 PMCID: PMC4511800 DOI: 10.1371/journal.pgen.1005371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/18/2015] [Indexed: 11/18/2022] Open
Abstract
Genome-wide association studies (GWAS) have generated sufficient data to assess the role of selection in shaping allelic diversity of disease-associated SNPs. Negative selection against disease risk variants is expected to reduce their frequencies making them overrepresented in the group of minor (<50%) alleles. Indeed, we found that the overall proportion of risk alleles was higher among alleles with frequency <50% (minor alleles) compared to that in the group of major alleles. We hypothesized that negative selection may have different effects on environment (or lifestyle)-dependent versus environment (or lifestyle)-independent diseases. We used an environment/lifestyle index (ELI) to assess influence of environmental/lifestyle factors on disease etiology. ELI was defined as the number of publications mentioning "environment" or "lifestyle" AND disease per 1,000 disease-mentioning publications. We found that the frequency distributions of the risk alleles for the diseases with strong environmental/lifestyle components follow the distribution expected under a selectively neutral model, while frequency distributions of the risk alleles for the diseases with weak environmental/lifestyle influences is shifted to the lower values indicating effects of negative selection. We hypothesized that previously selectively neutral variants become risk alleles when environment changes. The hypothesis of ancestrally neutral, currently disadvantageous risk-associated alleles predicts that the distribution of risk alleles for the environment/lifestyle dependent diseases will follow a neutral model since natural selection has not had enough time to influence allele frequencies. The results of our analysis suggest that prediction of SNP functionality based on the level of evolutionary conservation may not be useful for SNPs associated with environment/lifestyle dependent diseases.
Collapse
Affiliation(s)
- Ivan P. Gorlov
- The Geisel School of Medicine, Dartmouth College, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| | - Olga Y. Gorlova
- The Geisel School of Medicine, Dartmouth College, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| | - Christopher I. Amos
- The Geisel School of Medicine, Dartmouth College, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| |
Collapse
|
19
|
Petukh M, Kucukkal TG, Alexov E. On human disease-causing amino acid variants: statistical study of sequence and structural patterns. Hum Mutat 2015; 36:524-534. [PMID: 25689729 DOI: 10.1002/humu.22770] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 12/28/2022]
Abstract
Statistical analysis was carried out on large set of naturally occurring human amino acid variations, and it was demonstrated that there is a preference for some amino acid substitutions to be associated with diseases. At an amino acid sequence level, it was shown that the disease-causing variants frequently involve drastic changes in amino acid physicochemical properties of proteins such as charge, hydrophobicity, and geometry. Structural analysis of variants involved in diseases and being frequently observed in human population showed similar trends: disease-causing variants tend to cause more changes in hydrogen bond network and salt bridges as compared with harmless amino acid mutations. Analysis of thermodynamics data reported in the literature, both experimental and computational, indicated that disease-causing variants tend to destabilize proteins and their interactions, which prompted us to investigate the effects of amino acid mutations on large databases of experimentally measured energy changes in unrelated proteins. Although the experimental datasets were linked neither to diseases nor exclusory to human proteins, the observed trends were the same: amino acid mutations tend to destabilize proteins and their interactions. Having in mind that structural and thermodynamics properties are interrelated, it is pointed out that any large change in any of them is anticipated to cause a disease.
Collapse
Affiliation(s)
- Marharyta Petukh
- Department of Physics, Clemson University, Clemson, SC 29642, USA
| | - Tugba G Kucukkal
- Department of Physics, Clemson University, Clemson, SC 29642, USA
| | - Emil Alexov
- Department of Physics, Clemson University, Clemson, SC 29642, USA
| |
Collapse
|
20
|
Association between genetic variants on chromosome 15q25 locus and several nicotine dependence traits in Polish population: a case-control study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:350348. [PMID: 25632390 PMCID: PMC4303006 DOI: 10.1155/2015/350348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/19/2014] [Indexed: 11/28/2022]
Abstract
Tobacco smoking continues to be a leading cause of disease and mortality. Recent research has confirmed the important role of nicotinic acetylcholine receptor (nAChR) gene cluster on chromosome 15q 24-25 in nicotine dependence and smoking. In this study we tested the association of smoking initiation, age at onset of daily smoking, and heaviness of smoking with five single nucleotide polymorphisms (SNPs) within the CHRNA5-CHRNA3-CHRNB4 cluster. The group of 389 adult subjects of European ancestry from the north of Poland, including 212 ever (140 current and 72 former) and 177 never smokers with mean age 49.26, was genotyped for rs16969868, rs1051730, rs588765, rs6495308, and rs578776 polymorphisms. Distributions of genotypes for rs16969868 and rs1051730 were identical so they were analyzed together. Further analysis revealed the association between rs16969868-1051730 (OR = 2.66; 95% CI: 1.30–5.42) and number of cigarettes smoked per day (CPD) with heaviness of nicotine addiction measured by the Fagerström Test for Nicotine Dependence (FTND) (OR = 2.60; 95% CI: 1.24–5.43). No association between these polymorphisms and other phenotypes was found. Similarly, the association between rs588765, rs6495308, rs578776, and analyzed phenotypes was not confirmed. This study provides strong evidence for the role of the CHRNA5-CHRNA3-CHRNB4 cluster in heaviness of nicotine addiction.
Collapse
|
21
|
Abstract
Since the initial discovery of AEG-1/MTDH/LYRIC, our appreciation for this novel protein's involvement in cancer has increased dramatically over the past few years. AEG-1/MTDH/LYRIC is a key functional target of the 8q22 genomic gain that is frequently observed in poor-prognosis breast cancer, where it plays a dual role in promoting chemoresistance and metastasis. Beyond this, growing evidence from clinical research indicates a strong correlation between AEG-1/MTDH/LYRIC expression and the pathogenesis of a large spectrum of cancer types, and multiple studies employing in vitro cell culture systems and in vivo xenograft models have revealed multifaceted roles of AEG-1/MTDH/LYRIC in cancer biology, including tumor cell proliferation, apoptosis, angiogenesis, and autophagy. With increasing mechanistic understanding of AEG-1/MTDH/LYRIC, discovery of agents that can block AEG-1/MTDH/LYRIC and its regulated pathways will be beneficial to cancer patients with aberrant expression of AEG-1/MTDH/LYRIC.
Collapse
Affiliation(s)
- Liling Wan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
22
|
Common genetic variations in Patched1 (PTCH1) gene and risk of hirschsprung disease in the Han Chinese population. PLoS One 2013; 8:e75407. [PMID: 24073265 PMCID: PMC3779180 DOI: 10.1371/journal.pone.0075407] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/12/2013] [Indexed: 12/25/2022] Open
Abstract
Hirschsprung disease (HSCR) is the most frequent genetic cause of congenital intestinal obstruction with an incidence of 1:5000 live births. In a pathway-based epistasis analysis of data generated by genome-wide association study on HSCR, specific genotype of Patched 1 (PTCH1) has been linked to an increased risk for HSCR. The aim of the present study is to examine the contribution of genetic variants in PTCH1 to the susceptibility to HSCR in Han Chinese. Accordingly, we assessed 8 single nucleotide polymorphisms (SNPs) within PTCH1 gene in 104 subjects with sporadic HSCR and 151 normal controls of Han Chinese origin by the Sequenom MassArray technology (iPLEX GOLD). Two of the eight genetic markers were found to be significantly associated with Hirschsprung disease (rs357565, allele P = 0.005; rs2236405, allele P = 0.002, genotype P = 0.003). Both the C allele of rs357565 and the A allele of rs2236405 served as risk factors for HSCR. During haplotype analysis, one seven-SNP-based haplotype was the most significant, giving a global P = 0.0036. Our results firstly suggest common variations of PTCH1 may be involved in the altered risk for HSCR in the Han Chinese population, providing potential molecular markers for early diagnosis of Hirschsprung disease.
Collapse
|
23
|
Cho P, Gelinas L, Corbett NP, Tebbutt SJ, Turvey SE, Fortuno ES, Kollmann TR. Association of common single-nucleotide polymorphisms in innate immune genes with differences in TLR-induced cytokine production in neonates. Genes Immun 2013; 14:199-211. [DOI: 10.1038/gene.2013.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
Zayats T, Yang BZ, Xie P, Poling J, Farrer LA, Gelernter J. A complex interplay between personality domains, marital status and a variant in CHRNA5 on the risks of cocaine, nicotine dependences and cocaine-induced paranoia. PLoS One 2013; 8:e49368. [PMID: 23308091 PMCID: PMC3538653 DOI: 10.1371/journal.pone.0049368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/10/2012] [Indexed: 11/20/2022] Open
Abstract
Background Personality correlates highly with both cocaine and nicotine dependencies (CD, ND), and their co-morbid psychopathologies. However, little is known about the nature of these relationships. This study examined if environment (marriage) or genetics (a single SNP, CHRNA5*rs16969968) would moderate the correlation of personality with CD, ND and cocaine-induced paranoia (CIP) in African and European Americans (AAs, EAs). Methods 1432 EAs and 1513 AAs were examined using logistic regression. Personality was assessed by NEO-PI-R, while CD, ND and CIP were diagnosed according to DSM-IV. ND and CD were examined as binary traits and for the analysis of CIP, subjects were divided into 3 groups: (A) Controls with no CIP; (B) CD cases without CIP; and (C) CD cases with CIP. Multiple testing was Bonferroni-corrected. Results For CD and ND in the EA population, marital status proved to be a significant moderator in their relationship with openness only (OR = 1.90, 95%CI = 1.36–2.64, p = 1.54e-04 and OR = 2.12, 95%CI = 1.52–2.90, p = 4.65e-06 respectively). For CIP, marriage was observed to moderate its correlation with openness and neuroticism (OR = 1.39, 95%CI = 1.18–1.63, p = 7.64e-04 and OR = 1.26, 95%CI = 1.12–1.42, p = 1.27e-03 respectively). The correlations moderated by rs16969968 were those of conscientiousness and CD (OR = 1.62, 95%CI: 1.23–2.12, p = 8.94e-04) as well as CIP (OR = 1.21, 95%CI: 1.11–1.32, p = 4.93e-04 when comparing group A versus group C). No significant interactions were observed in AA population. The Bonferroni-corrected significance threshold was set to be 1.67e-03. Conclusion The role of personality in CD and CIP may be interceded by both environment and genetics, while in ND by environment only.
Collapse
Affiliation(s)
- Tetyana Zayats
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Bao-Zhu Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Pingxing Xie
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - James Poling
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- VACT Healthcare Center, West Haven, Connecticut, United States of America
| | - Lindsay A. Farrer
- Departments of Medicine, Neurology, Ophthalmology, Genetics and Genomics, Biostatistics and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- VACT Healthcare Center, West Haven, Connecticut, United States of America
- Departments of Neurobiology and Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
25
|
Panza E, Knowles CH, Graziano C, Thapar N, Burns AJ, Seri M, Stanghellini V, De Giorgio R. Genetics of human enteric neuropathies. Prog Neurobiol 2012; 96:176-89. [PMID: 22266104 DOI: 10.1016/j.pneurobio.2012.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/13/2011] [Accepted: 01/05/2012] [Indexed: 01/10/2023]
Abstract
Knowledge of molecular mechanisms that underlie development of the enteric nervous system has greatly expanded in recent decades. Enteric neuropathies related to aberrant genetic development are thus becoming increasingly recognized. There has been no recent review of these often highly morbid disorders. This review highlights advances in knowledge of the molecular pathogenesis of these disorders from a clinical perspective. It includes diseases characterized by an infantile aganglionic Hirschsprung phenotype and those in which structural abnormalities are less pronounced. The implications for diagnosis, screening and possible reparative approaches are presented.
Collapse
Affiliation(s)
- Emanuele Panza
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu CM, Yeh CJ, Yu CC, Chou MY, Lin CH, Wei LH, Lin CW, Yang SF, Chien MH. Impact of interleukin-8 gene polymorphisms and environmental factors on oral cancer susceptibility in Taiwan. Oral Dis 2011; 18:307-14. [PMID: 22151543 DOI: 10.1111/j.1601-0825.2011.01882.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Interleukin-8 (IL-8), which is an angiogenic chemokine with a high expression level in tumor tissues, plays important roles in developing many human malignancies including oral squamous cell carcinoma (OSCC). This study was designed to examine the association of IL-8 gene polymorphisms with the susceptibility and clinicopathological characteristics of OSCC. METHODS A total of 270 patients with OSCC and 350 healthy control subjects were recruited. Four single nucleotide polymorphisms (SNPs) of IL-8 genes were analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) genotyping analysis. RESULTS Results showed that four IL-8 SNPs (-251 T/A, +781 C/T, +1633 C/T, and +2767 A/T) were not associated with oral cancer susceptibility as well as clinicopathological parameters. But among 345 smokers, IL-8 polymorphisms carriers with betel quid chewing were found to have a 17.41- to 23.14-fold risk to have oral cancer compared to IL-8 wild-type carriers without betel quid chewing. Among 262 betel quid chewers, IL-8 polymorphisms carriers with smoking have a 10.54- to 20.44-fold risk to have oral cancer compared to those who carried wild type without smoking. CONCLUSIONS Our results suggest that the combination of IL-8 gene polymorphisms and environmental carcinogens might be highly related to the risk of oral cancer.
Collapse
Affiliation(s)
- C-M Liu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Panagiotou OA, Ioannidis JPA. What should the genome-wide significance threshold be? Empirical replication of borderline genetic associations. Int J Epidemiol 2011; 41:273-86. [PMID: 22253303 DOI: 10.1093/ije/dyr178] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Robust replication is a sine qua non for the rigorous documentation of proposed associations in the genome-wide association (GWA) setting. Currently, associations of common variants reaching P ≤ 5 × 10(-8) are considered replicated. However, there is some ambiguity about the most suitable threshold for claiming genome-wide significance. METHODS We defined as 'borderline' associations those with P > 5 × 10(-8) and P ≤ 1 × 10(-7). The eligible associations were retrieved using the 'Catalog of Published Genome-Wide Association Studies'. For each association we assessed whether it reached P ≤ 5 × 10(-8) with inclusion of additional data from subsequent GWA studies. RESULTS Thirty-four eligible genotype-phenotype associations were evaluated with data and clarifications contributed from diverse investigators. Replication data from subsequent GWA studies could be obtained for 26 of them. Of those, 19 associations (73%) reached P ≤ 5 × 10(-8) for the same or a related trait implicating either the exact same allele or one in very high linkage disequilibrium and 17 reached P < 10(-8). If the seven associations that did not reach P ≤ 5 × 10(-8) when additional data were considered are assumed to have been false-positives, the false-discovery rate for borderline associations is estimated to be 27% [95% confidence interval (CI) 12-48%]. For five associations, the current P-value is > 10(-6) [corresponding false-discovery rate 19% (95% CI 7-39%)]. CONCLUSION A substantial proportion, but not all, of the associations with borderline genome-wide significance represent replicable, possibly genuine associations. Our empirical evaluation suggests a possible relaxation in the current GWS threshold.
Collapse
Affiliation(s)
- Orestis A Panagiotou
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | | | | |
Collapse
|
28
|
|
29
|
Weitzel JN, Blazer KR, MacDonald DJ, Culver JO, Offit K. Genetics, genomics, and cancer risk assessment: State of the Art and Future Directions in the Era of Personalized Medicine. CA Cancer J Clin 2011; 61:327-59. [PMID: 21858794 PMCID: PMC3346864 DOI: 10.3322/caac.20128] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Scientific and technologic advances are revolutionizing our approach to genetic cancer risk assessment, cancer screening and prevention, and targeted therapy, fulfilling the promise of personalized medicine. In this monograph, we review the evolution of scientific discovery in cancer genetics and genomics, and describe current approaches, benefits, and barriers to the translation of this information to the practice of preventive medicine. Summaries of known hereditary cancer syndromes and highly penetrant genes are provided and contrasted with recently discovered genomic variants associated with modest increases in cancer risk. We describe the scope of knowledge, tools, and expertise required for the translation of complex genetic and genomic test information into clinical practice. The challenges of genomic counseling include the need for genetics and genomics professional education and multidisciplinary team training, the need for evidence-based information regarding the clinical utility of testing for genomic variants, the potential dangers posed by premature marketing of first-generation genomic profiles, and the need for new clinical models to improve access to and responsible communication of complex disease risk information. We conclude that given the experiences and lessons learned in the genetics era, the multidisciplinary model of genetic cancer risk assessment and management will serve as a solid foundation to support the integration of personalized genomic information into the practice of cancer medicine.
Collapse
Affiliation(s)
- Jeffrey N Weitzel
- Division of Clinical Cancer Genetics, Department of Population Sciences, City of Hope, Duarte, CA.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Personalized medicine uses traditional, as well as emerging concepts of the genetic and environmental basis of disease to individualize prevention, diagnosis and treatment. Personalized genomics plays a vital, but not exclusive role in this evolving model of personalized medicine. The distinctions between genetic and genomic medicine are more quantitative than qualitative. Personalized genomics builds on principles established by the integration of genetics into medical practice. Principles shared by genetic and genomic aspects of medicine, include the use of variants as markers for diagnosis, prognosis, prevention, as well as targets for treatment, the use of clinically validated variants that may not be functionally characterized, the segregation of these variants in non-Mendelian as well as Mendelian patterns, the role of gene--environment interactions, the dependence on evidence for clinical utility, the critical translational role of behavioral science, and common ethical considerations. During the current period of transition from investigation to practice, consumers should be protected from harms of premature translation of research findings, while encouraging the innovative and cost-effective application of those genomic discoveries that improve personalized medical care.
Collapse
Affiliation(s)
- Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Program in Cancer Biology and Genetics, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
31
|
A computational approach to candidate gene prioritization for X-linked mental retardation using annotation-based binary filtering and motif-based linear discriminatory analysis. Biol Direct 2011; 6:30. [PMID: 21668950 PMCID: PMC3142252 DOI: 10.1186/1745-6150-6-30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/13/2011] [Indexed: 01/07/2023] Open
Abstract
Background Several computational candidate gene selection and prioritization methods have recently been developed. These in silico selection and prioritization techniques are usually based on two central approaches - the examination of similarities to known disease genes and/or the evaluation of functional annotation of genes. Each of these approaches has its own caveats. Here we employ a previously described method of candidate gene prioritization based mainly on gene annotation, in accompaniment with a technique based on the evaluation of pertinent sequence motifs or signatures, in an attempt to refine the gene prioritization approach. We apply this approach to X-linked mental retardation (XLMR), a group of heterogeneous disorders for which some of the underlying genetics is known. Results The gene annotation-based binary filtering method yielded a ranked list of putative XLMR candidate genes with good plausibility of being associated with the development of mental retardation. In parallel, a motif finding approach based on linear discriminatory analysis (LDA) was employed to identify short sequence patterns that may discriminate XLMR from non-XLMR genes. High rates (>80%) of correct classification was achieved, suggesting that the identification of these motifs effectively captures genomic signals associated with XLMR vs. non-XLMR genes. The computational tools developed for the motif-based LDA is integrated into the freely available genomic analysis portal Galaxy (http://main.g2.bx.psu.edu/). Nine genes (APLN, ZC4H2, MAGED4, MAGED4B, RAP2C, FAM156A, FAM156B, TBL1X, and UXT) were highlighted as highly-ranked XLMR methods. Conclusions The combination of gene annotation information and sequence motif-orientated computational candidate gene prediction methods highlight an added benefit in generating a list of plausible candidate genes, as has been demonstrated for XLMR. Reviewers: This article was reviewed by Dr Barbara Bardoni (nominated by Prof Juergen Brosius); Prof Neil Smalheiser and Dr Dustin Holloway (nominated by Prof Charles DeLisi).
Collapse
|
32
|
Rosset S, Tzur S, Behar DM, Wasser WG, Skorecki K. The population genetics of chronic kidney disease: insights from the MYH9-APOL1 locus. Nat Rev Nephrol 2011; 7:313-26. [PMID: 21537348 DOI: 10.1038/nrneph.2011.52] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many rare kidney disorders exhibit a monogenic, Mendelian pattern of inheritance. Population-based genetic studies have identified many genetic variants associated with an increased risk of developing common kidney diseases. Strongly associated variants have potential clinical uses as predictive markers and may advance our understanding of disease pathogenesis. These principles are elegantly illustrated by a region within chromosome 22q12 that has a strong association with common forms of kidney disease. Researchers had identified DNA sequence variants in this locus that were highly associated with an increased prevalence of common chronic kidney diseases in people of African ancestry. Initial research concentrated on MYH9 as the most likely candidate gene; however, population-based whole-genome analysis enabled two independent research teams to discover more strongly associated mutations in the neighboring APOL1 gene. The powerful evolutionary selection pressure of an infectious pathogen in West Africa favored the spread of APOL1 variants that protect against a lethal form of African sleeping sickness but are highly associated with an increased risk of kidney disease. We describe the data sources, process of discovery, and reasons for initial misidentification of the candidate gene, as well as the lessons that can be learned for future population genetics research.
Collapse
Affiliation(s)
- Saharon Rosset
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Orr N, Back W, Gu J, Leegwater P, Govindarajan P, Conroy J, Ducro B, Van Arendonk JAM, MacHugh DE, Ennis S, Hill EW, Brama PAJ. Genome-wide SNP association-based localization of a dwarfism gene in Friesian dwarf horses. Anim Genet 2010; 41 Suppl 2:2-7. [DOI: 10.1111/j.1365-2052.2010.02091.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Wang T, Zeng Z, Li T, Liu J, Li J, Li Y, Zhao Q, Wei Z, Wang Y, Li B, Feng G, He L, Shi Y. Common SNPs in myelin transcription factor 1-like (MYT1L): association with major depressive disorder in the Chinese Han population. PLoS One 2010; 5:e13662. [PMID: 21048971 PMCID: PMC2965102 DOI: 10.1371/journal.pone.0013662] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 10/01/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Myelin transcription factor 1-like (MYT1L) is a member of the myelin transcription factor 1 (MYT1) gene family, and the neural specific, zinc-finger-containing, DNA-binding protein that it encodes plays a role in the development of the nervous system. On the basis of a recent copy number variation (CNV) study showing that this gene is disrupted in mental disorder patients, we investigated whether MYT1L also plays a role in MDD. METHODS In this study, 8 SNPs were analyzed in 1139 MDD patients and 1140 controls of Chinese Han origin. RESULTS Statistically significant differences were noted between cases and controls for rs3748989 (allele: permutated p = 0.0079, corrected p = 0.0048, genotype: corrected p = 0.0204). A haplotype of rs1617213 and rs6759709 G-C was also significant (permutated p = 0.00007). CONCLUSION Our results indicate that MYT1L may be a potential risk gene for MDD in the Chinese Han population.
Collapse
Affiliation(s)
- Ti Wang
- Bio-X Center and Affiliated Changning Mental Health Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhen Zeng
- Bio-X Center and Affiliated Changning Mental Health Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Tao Li
- Bio-X Center and Affiliated Changning Mental Health Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jie Liu
- Bio-X Center and Affiliated Changning Mental Health Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Junyan Li
- Bio-X Center and Affiliated Changning Mental Health Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - You Li
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Qian Zhao
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhiyun Wei
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yang Wang
- Bio-X Center and Affiliated Changning Mental Health Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Baojie Li
- Shanghai Institute of Mental Health, Shanghai, People's Republic of China
| | - Guoyin Feng
- Shanghai Institute of Mental Health, Shanghai, People's Republic of China
| | - Lin He
- Bio-X Center and Affiliated Changning Mental Health Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yongyong Shi
- Bio-X Center and Affiliated Changning Mental Health Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
36
|
Diamandis M, White NMA, Yousef GM. Personalized medicine: marking a new epoch in cancer patient management. Mol Cancer Res 2010; 8:1175-87. [PMID: 20693306 DOI: 10.1158/1541-7786.mcr-10-0264] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Personalized medicine (PM) is defined as "a form of medicine that uses information about a person's genes, proteins, and environment to prevent, diagnose, and treat disease." The promise of PM has been on us for years. The suite of clinical applications of PM in cancer is broad, encompassing screening, diagnosis, prognosis, prediction of treatment efficacy, patient follow-up after surgery for early detection of recurrence, and the stratification of patients into cancer subgroup categories, allowing for individualized therapy. PM aims to eliminate the "one size fits all" model of medicine, which has centered on reaction to disease based on average responses to care. By dividing patients into unique cancer subgroups, treatment and follow-up can be tailored for each individual according to disease aggressiveness and the ability to respond to a certain treatment. PM is also shifting the emphasis of patient management from primary patient care to prevention and early intervention for high-risk individuals. In addition to classic single molecular markers, high-throughput approaches can be used for PM including whole genome sequencing, single-nucleotide polymorphism analysis, microarray analysis, and mass spectrometry. A common trend among these tools is their ability to analyze many targets simultaneously, thus increasing the sensitivity, specificity, and accuracy of biomarker discovery. Certain challenges need to be addressed in our transition to PM including assessment of cost, test standardization, and ethical issues. It is clear that PM will gradually continue to be incorporated into cancer patient management and will have a significant impact on our health care in the future.
Collapse
Affiliation(s)
- Maria Diamandis
- Department of Laboratory Medicine, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
37
|
Grucza RA, Johnson EO, Krueger RF, Breslau N, Saccone NL, Chen LS, Derringer J, Agrawal A, Lynskey M, Bierut LJ. Incorporating age at onset of smoking into genetic models for nicotine dependence: evidence for interaction with multiple genes. Addict Biol 2010; 15:346-57. [PMID: 20624154 DOI: 10.1111/j.1369-1600.2010.00220.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nicotine dependence is moderately heritable, but identified genetic associations explain only modest portions of this heritability. We analyzed 3369 SNPs from 349 candidate genes and investigated whether incorporation of SNP-by-environment interaction into association analyses might bolster gene discovery efforts and prediction of nicotine dependence. Specifically, we incorporated the interaction between allele count and age at onset of regular smoking (AOS) into association analyses of nicotine dependence. Subjects were from the Collaborative Genetic Study of Nicotine Dependence and included 797 cases ascertained for Fagerström nicotine dependence and 811 non-nicotine-dependent smokers as controls, all of European descent. Compared with main effect models, SNP x AOS interaction models resulted in higher numbers of nominally significant tests, increased predictive utility at individual SNPs and higher predictive utility in a multi-locus model. Some SNPs previously documented in main effect analyses exhibited improved fits in the joint analysis, including rs16969968 from CHRNA5 and rs2314379 from MAP3K4. CHRNA5 exhibited larger effects in later-onset smokers, in contrast with a previous report that suggested the opposite interaction (Weiss et al. 2008). However, a number of SNPs that did not emerge in main effect analyses were among the strongest findings in the interaction analyses. These include SNPs located in GRIN2B (P = 1.5 x 10(-5)), which encodes a subunit of the N-methyl-D-aspartate receptor channel, a key molecule in mediating age-dependent synaptic plasticity. Incorporation of logically chosen interaction parameters, such as AOS, into genetic models of substance use disorders may increase the degree of explained phenotypic variation and constitutes a promising avenue for gene discovery.
Collapse
Affiliation(s)
- Richard A Grucza
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Ave., St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tweardy DJ, Belmont JW. "Personalizing" academic medicine: opportunities and challenges in implementing genomic profiling. Transl Res 2009; 154:288-94. [PMID: 19931194 PMCID: PMC2830892 DOI: 10.1016/j.trsl.2009.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 09/19/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
Abstract
BCM faculty members spearheaded the development of a first-generation Personal Genome Profile (Baylor PGP) assay to assist physicians in diagnosing and managing patients in this new era of medicine. The principles that guided the design and implementation of the Baylor PGP were high quality, robustness, low expense, flexibility, practical clinical utility, and the ability to facilitate broad areas of clinical research. The most distinctive feature of the approach taken is an emphasis on extensive screening for rare disease-causing mutations rather than common risk-increasing polymorphisms. Because these variants have large direct effects, the ability to screen for them inexpensively could have a major immediate clinical impact in disease diagnosis, carrier detection, presymptomatic detection of late onset disease, and even prenatal diagnosis. In addition to creating a counseling tool for individual "consumers," this system will fit into the established medical record and be used by physicians involved in direct patient care. This article describes an overall framework for clinical diagnostic array genotyping and the available technologies, as well as highlights the opportunities and challenges for implementation.
Collapse
Affiliation(s)
- David J Tweardy
- Department of Medicine (Section of Infectious Diseases), Baylor College of Medicine, Houston, Tex. 77030, USA.
| | | |
Collapse
|
39
|
Chung CC, Magalhaes WCS, Gonzalez-Bosquet J, Chanock SJ. Genome-wide association studies in cancer--current and future directions. Carcinogenesis 2009; 31:111-20. [PMID: 19906782 DOI: 10.1093/carcin/bgp273] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have emerged as an important tool for discovering regions of the genome that harbor genetic variants that confer risk for different types of cancers. The success of GWAS in the last 3 years is due to the convergence of new technologies that can genotype hundreds of thousands of single-nucleotide polymorphism markers together with comprehensive annotation of genetic variation. This approach has provided the opportunity to scan across the genome in a sufficiently large set of cases and controls without a set of prior hypotheses in search of susceptibility alleles with low effect sizes. Generally, the susceptibility alleles discovered thus far are common, namely, with a frequency in one or more population of >10% and each allele confers a small contribution to the overall risk for the disease. For nearly all regions conclusively identified by GWAS, the per allele effect sizes estimated are <1.3. Consequently, the findings of GWAS underscore the complex nature of cancer and have focused attention on a subset of the genetic variants that comprise the genomic architecture of each type of cancer, which already can differ substantially by the number of regions associated with specific types of cancer. For instance, in prostate cancer, there could be >30 distinct regions harboring common susceptibility alleles identified by GWAS, whereas in lung cancer, a disease strongly driven by exposure to tobacco products, so far, only three regions have been conclusively established. To date, >85 regions have been conclusively associated in over a dozen different cancers, yet no more than five regions have been associated with more than one distinct cancer type. GWAS are an important discovery tool that require extensive follow-up to map each region, investigate the biological mechanism underpinning the association and eventually test the optimal markers for assessing risk for a disease or its outcome, such as in pharmacogenomics, the study of the effect of genetic variation on pharmacological interventions. The success of GWAS has opened new horizons for exploration and highlighted the complex genomic architecture of disease susceptibility.
Collapse
Affiliation(s)
- Charles C Chung
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-4608, USA
| | | | | | | |
Collapse
|
40
|
Harley IJG, Narod SA. Single nucleotide polymorphisms - variation on a theme. BJOG 2009; 116:1556-7. [DOI: 10.1111/j.1471-0528.2009.02352.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Collins FA. Genetics terminology for respiratory physicians. Paediatr Respir Rev 2009; 10:124-33. [PMID: 19651383 DOI: 10.1016/j.prrv.2009.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genes affect our susceptibility to almost all diseases, from the rare single gene disorders such as cystic fibrosis to common multifactorial disorders such as asthma. They also influence our response to specific therapies. Scientific advances in genetics, starting with projects such as the mapping of the human genome [International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004; 431: 931-945] are likely to improve healthcare in the coming decades. Internationally, government initiatives have been established to address strategies to implement these changes [NHS Genetics White Paper. "Our Inheritance - Our Future": Realising the potential of Genetics in the NHS. UK: Department of Health 2003; Family Health History Initiative. National Human Genome Research Institute and Office of Surgeon General, Department of Health and Human Services. 2004]. A knowledge of basic genetic principles and familiarity with genetic 'jargon' associated with new technologies will be important for those practicing in this era of 'genomic medicine' [Collins FS, Green ED, Guttmacher AE, Guyer MS. A vision for the future of genomics research. Nature 2003; 422; April 24; 835-847]. The aim of this article is to review genetic terminology using examples from paediatric respiratory medicine.
Collapse
Affiliation(s)
- Felicity A Collins
- Dept of Clinical Genetics, Children's Hospital at Westmead Clinical School, Locked Bag 4001, Westmead, New South Wales 2145, Australia.
| |
Collapse
|
42
|
Breunis WB, Tarazona-Santos E, Chen R, Kiley M, Rosenberg SA, Chanock SJ. Influence of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) common polymorphisms on outcome in treatment of melanoma patients with CTLA-4 blockade. J Immunother 2008; 31:586-90. [PMID: 18528295 PMCID: PMC3276400 DOI: 10.1097/cji.0b013e31817fd8f3] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Blockade of the cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), a down-regulator of T-cell activation, can cause cancer regression in patients with metastatic melanoma. However, not all patients respond well to the therapy and some develop severe autoimmune reactions. We hypothesized that common genetic variation in the CTLA4 gene could contribute to response to CTLA-4 blockade and the occurrence of autoimmune reactions. We investigated 7 common single nucleotide polymorphisms, SNPs, (rs733618, rs4553808, rs11571317, rs5742909, rs231775, rs3087243, and rs7565213) in 152 white melanoma patients who received CTLA-4 blockade. Three SNPs were associated with response to therapy: proximal promoter SNPs, rs4553808 [P=0.002; odds ratio (OR) 3.39; 95% confidence interval (CI), 1.62-7.10] and rs11571327 (P=0.02; OR 2.89; 95% CI, 1.23-6.83) and the nonsynonymous SNP rs231775 (Thr17Ala, P=0.009; OR 0.39; 95% CI, 0.18-0.82). A haplotype analysis including the 7 SNPs suggested that the common haplotype, TACCGGG could be associated with no response (P=0.02) whereas the haplotype TGCCAGG (P=0.06; OR 4.13; 95% CI, 1.17-14.5) could be associated with response to the treatment. No significant association was observed for occurrence of severe autoimmune reactions (grade III/IV) either by single SNP or haplotype analyses. Our results suggest that genetic variation in CTLA4 could influence response to CTLA-4 blockade therapy in metastatic melanoma patients, but further studies are necessary to confirm the observed associations.
Collapse
Affiliation(s)
- Willemijn B Breunis
- Section on Genomic Variation, Pediatric Oncology Branch, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|