1
|
Mao C, Jiang Y, Li Z, Zhou W, Lai Y, Wang C, Lu M, Chen W. Embryonic exposure to Smoothened Agonist disrupts tongue development in mice. Dev Biol 2025; 524:36-46. [PMID: 40311729 DOI: 10.1016/j.ydbio.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
The tongue is an important muscular organ for chewing and speech, and its development is regulated by multiple molecular signaling pathways, such as the hedgehog and TGF pathways. These pathways are particularly crucial in muscle patterning, which determines the structural and functional integrity of the tongue. Proper hedgehog signaling is essential for craniofacial tissue development, influencing muscle arrangement and differentiation critical for normal tongue morphology. In this study, we administered the Smoothened Agonist (SAG) 25 mg/kg to pregnant mice via intraperitoneal injection at E10.5 to further investigate the regulatory role of overexpressed hedgehog signaling in the early developmental process of the tongue. The intraperitoneal injection of SAG at E10.5 resulted in reduced tongue height and abnormal muscle development. Consequently, these alterations led to a midline cleft. Detection of cell proliferation using PHH3 and Ki67 showed that cell proliferation was significantly inhibited in the experimental group, while apoptosis showed no significant difference compared to the control group. At E11.5, the expression levels of downstream markers of hedgehog signaling, including Gli1, Ptch1, Foxf1, and Foxf2, were significantly elevated in the experimental group compared to the control group, whereas TGF-β2 mRNA expression was significantly downregulated(P < 0.05). Thus, overexpression of hedgehog signaling, induced by SAG, disrupts normal cellular processes by inhibiting proliferation and downregulating TGF-β2, ultimately leading to cleft tongue malformations.
Collapse
Affiliation(s)
- Chuanqing Mao
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yuanjing Jiang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Zuhui Li
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Wenjie Zhou
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yongzhen Lai
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Chengyong Wang
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Meng Lu
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Weihui Chen
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Zoglio V, de Lima JE, Relaix F. [Role of the transcription factor PAX3 during myogenesis: from the embryo to the adult stage]. Med Sci (Paris) 2024; 40 Hors série n° 1:56-59. [PMID: 39555880 DOI: 10.1051/medsci/2024139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
PAX3 plays a crucial role in embryonic myogenesis, controlling the specification, migration, proliferation, and differentiation of muscle progenitor cells to ensure normal skeletal muscle development in the embryo. However, PAX3 potential role in a context of muscle homeostasis and regeneration remains poorly investigated. The adult muscle stem cells, known as satellite cells (SCs) exhibit heterogeneity in Pax3 expression in various muscles throughout the body and display a bimodal response to environmental stress exposure. To explore the role of PAX3 in the context of tissue damage, we performed regeneration studies, which unveiled a functional heterogeneity of the SCs populations depending on Pax3 expression. Together, this project aims to decipher cell-type specific dysregulations linked to tissue damage and identify PAX3 downstream gene regulatory networks that can lead to specific SC behavior, thus potentially providing novel strategies for muscle disease preventive therapies.
Collapse
Affiliation(s)
- Virginia Zoglio
- Université Paris Est Créteil, Inserm, EnvA, EFS, AP-HP, IMRB, Créteil, France
| | | | - Frédéric Relaix
- Université Paris Est Créteil, Inserm, EnvA, EFS, AP-HP, IMRB, Créteil, France
| |
Collapse
|
3
|
Zhang W, Yu J, Fu G, Li J, Huang H, Liu J, Yu D, Qiu M, Li F. ISL1/SHH/CXCL12 signaling regulates myogenic cell migration during mouse tongue development. Development 2022; 149:277065. [DOI: 10.1242/dev.200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
ABSTRACT
Migration of myoblasts derived from the occipital somites is essential for tongue morphogenesis. However, the molecular mechanisms of myoblast migration remain elusive. In this study, we report that deletion of Isl1 in the mouse mandibular epithelium leads to aglossia due to myoblast migration defects. Isl1 regulates the expression pattern of chemokine ligand 12 (Cxcl12) in the first branchial arch through the Shh/Wnt5a cascade. Cxcl12+ mesenchymal cells in Isl1ShhCre embryos were unable to migrate to the distal region, but instead clustered in a relatively small proximal domain of the mandible. CXCL12 serves as a bidirectional cue for myoblasts expressing its receptor CXCR4 in a concentration-dependent manner, attracting Cxcr4+ myoblast invasion at low concentrations but repelling at high concentrations. The accumulation of Cxcl12+ mesenchymal cells resulted in high local concentrations of CXCL12, which prevented Cxcr4+ myoblast invasion. Furthermore, transgenic activation of Ihh alleviated defects in tongue development and rescued myoblast migration, confirming the functional involvement of Hedgehog signaling in tongue development. In summary, this study provides the first line of genetic evidence that the ISL1/SHH/CXCL12 axis regulates myoblast migration during tongue development.
Collapse
Affiliation(s)
- Wei Zhang
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Jiaojiao Yu
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Guoquan Fu
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Jianying Li
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Huarong Huang
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Department of Environmental Sciences, College of Environmental and Resource Sciences, Zhejiang University 2 , Hangzhou 310058 , People's Republic of China
| | - Dongliang Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University 3 , Hangzhou 310018 , People's Republic of China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Feixue Li
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| |
Collapse
|
4
|
Yu B, Liu J, Zhang J, Mu T, Feng X, Ma R, Gu Y. Regulatory role of RNA N6-methyladenosine modifications during skeletal muscle development. Front Cell Dev Biol 2022; 10:929183. [PMID: 35990615 PMCID: PMC9389409 DOI: 10.3389/fcell.2022.929183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 01/07/2023] Open
Abstract
Functional cells in embryonic myogenesis and postnatal muscle development undergo multiple stages of proliferation and differentiation, which are strict procedural regulation processes. N6-methyladenosine (m6A) is the most abundant RNA modification that regulates gene expression in specific cell types in eukaryotes and regulates various biological activities, such as RNA processing and metabolism. Recent studies have shown that m6A modification-mediated transcriptional and post-transcriptional regulation plays an essential role in myogenesis. This review outlines embryonic and postnatal myogenic differentiation and summarizes the important roles played by functional cells in each developmental period. Furthermore, the key roles of m6A modifications and their regulators in myogenesis were highlighted, and the synergistic regulation of m6A modifications with myogenic transcription factors was emphasized to characterize the cascade of transcriptional and post-transcriptional regulation during myogenesis. This review also discusses the crosstalk between m6A modifications and non-coding RNAs, proposing a novel mechanism for post-transcriptional regulation during skeletal muscle development. In summary, the transcriptional and post-transcriptional regulatory mechanisms mediated by m6A and their regulators may help develop new strategies to maintain muscle homeostasis, which are expected to become targets for animal muscle-specific trait breeding and treatment of muscle metabolic diseases.
Collapse
|
5
|
Function and regulation of muscle stem cells in skeletal muscle development and regeneration: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
Yaseen W, Kraft-Sheleg O, Zaffryar-Eilot S, Melamed S, Sun C, Millay DP, Hasson P. Fibroblast fusion to the muscle fiber regulates myotendinous junction formation. Nat Commun 2021; 12:3852. [PMID: 34158500 PMCID: PMC8219707 DOI: 10.1038/s41467-021-24159-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Vertebrate muscles and tendons are derived from distinct embryonic origins yet they must interact in order to facilitate muscle contraction and body movements. How robust muscle tendon junctions (MTJs) form to be able to withstand contraction forces is still not understood. Using techniques at a single cell resolution we reexamine the classical view of distinct identities for the tissues composing the musculoskeletal system. We identify fibroblasts that have switched on a myogenic program and demonstrate these dual identity cells fuse into the developing muscle fibers along the MTJs facilitating the introduction of fibroblast-specific transcripts into the elongating myofibers. We suggest this mechanism resulting in a hybrid muscle fiber, primarily along the fiber tips, enables a smooth transition from muscle fiber characteristics towards tendon features essential for forming robust MTJs. We propose that dual characteristics of junctional cells could be a common mechanism for generating stable interactions between tissues throughout the musculoskeletal system.
Collapse
Affiliation(s)
- Wesal Yaseen
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ortal Kraft-Sheleg
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shelly Zaffryar-Eilot
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shay Melamed
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
7
|
Zhang H, Wen J, Bigot A, Chen J, Shang R, Mouly V, Bi P. Human myotube formation is determined by MyoD-Myomixer/Myomaker axis. SCIENCE ADVANCES 2020; 6:eabc4062. [PMID: 33355126 PMCID: PMC11206528 DOI: 10.1126/sciadv.abc4062] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Myoblast fusion is essential for formations of myofibers, the basic cellular and functional units of skeletal muscles. Recent genetic studies in mice identified two long-sought membrane proteins, Myomaker and Myomixer, which cooperatively drive myoblast fusion. It is unknown whether and how human muscles, with myofibers of tremendously larger size, use this mechanism to achieve multinucleations. Here, we report an interesting fusion model of human myoblasts where Myomaker is sufficient to induce low-grade fusion, while Myomixer boosts its efficiency to generate giant myotubes. By CRISPR mutagenesis and biochemical assays, we identified MyoD as the key molecular switch of fusion that is required and sufficient to initiate Myomixer and Myomaker expression. Mechanistically, we defined the E-box motifs on promoters of Myomixer and Myomaker by which MyoD induces their expression for multinucleations of human muscle cells. Together, our study uncovered the key molecular apparatus and the transcriptional control mechanism underlying human myoblast fusion.
Collapse
Affiliation(s)
- Haifeng Zhang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Junfei Wen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Anne Bigot
- Center for Research in Myology UMRS974, Sorbonne Université, INSERM, Myology Institute AIM, Paris, France
| | - Jiacheng Chen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Renjie Shang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Vincent Mouly
- Center for Research in Myology UMRS974, Sorbonne Université, INSERM, Myology Institute AIM, Paris, France
| | - Pengpeng Bi
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA.
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Immunofluorescence Evaluation of Myf5 and MyoD in Masseter Muscle of Unilateral Posterior Crossbite Patients. J Funct Morphol Kinesiol 2020; 5:jfmk5040080. [PMID: 33467295 PMCID: PMC7739332 DOI: 10.3390/jfmk5040080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A unilateral posterior crossbite is a malocclusion where the low activity of the affected masseter muscle is compensated by the contralateral muscle hypertrophy. It is still unknown if, in the same condition, myogenesis with new fibre formation takes place. AIM the aim of the present study was to evaluate the expression of myogenesis markers, such as Myf5 and MyoD, in masseter muscles of unilateral posterior crossbite patients. MATERIALS AND METHODS biopsies from fifteen surgical patients with unilateral posterior crossbites have been analysed by immunofluorescence reactions. The results show the expression of Myf5 and MyoD in the contralateral muscle but not in the ipsilateral one. Moreover, statistical analysis shows the higher number of satellite cells in the contralateral side if compared to the ipsilateral one. CONCLUSIONS these results suggest that in contralateral muscle, hyperplastic events take place, as well as hypertrophy.
Collapse
|
9
|
Regulation of the Mammalian SWI/SNF Family of Chromatin Remodeling Enzymes by Phosphorylation during Myogenesis. BIOLOGY 2020; 9:biology9070152. [PMID: 32635263 PMCID: PMC7407365 DOI: 10.3390/biology9070152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
Abstract
Myogenesis is the biological process by which skeletal muscle tissue forms. Regulation of myogenesis involves a variety of conventional, epigenetic, and epigenomic mechanisms that control chromatin remodeling, DNA methylation, histone modification, and activation of transcription factors. Chromatin remodeling enzymes utilize ATP hydrolysis to alter nucleosome structure and/or positioning. The mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) family of chromatin remodeling enzymes is essential for myogenesis. Here we review diverse and novel mechanisms of regulation of mSWI/SNF enzymes by kinases and phosphatases. The integration of classic signaling pathways with chromatin remodeling enzyme function impacts myoblast viability and proliferation as well as differentiation. Regulated processes include the assembly of the mSWI/SNF enzyme complex, choice of subunits to be incorporated into the complex, and sub-nuclear localization of enzyme subunits. Together these processes influence the chromatin remodeling and gene expression events that control myoblast function and the induction of tissue-specific genes during differentiation.
Collapse
|
10
|
Wu J, Matthias N, Lo J, Ortiz-Vitali JL, Shieh AW, Wang SH, Darabi R. A Myogenic Double-Reporter Human Pluripotent Stem Cell Line Allows Prospective Isolation of Skeletal Muscle Progenitors. Cell Rep 2019; 25:1966-1981.e4. [PMID: 30428361 DOI: 10.1016/j.celrep.2018.10.067] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 10/08/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
Myogenic differentiation of human pluripotent stem cells (hPSCs) has been done by gene overexpression or directed differentiation. However, viral integration, long-term culture, and the presence of unwanted cells are the main obstacles. By using CRISPR/Cas9n, a double-reporter human embryonic stem cell (hESC) line was generated for PAX7/MYF5, allowing prospective readout. This strategy allowed pathway screen to define efficient myogenic induction in hPSCs. Next, surface marker screen allowed identification of CD10 and CD24 for purification of myogenic progenitors and exclusion of non-myogenic cells. CD10 expression was also identified on human satellite cells and skeletal muscle progenitors. In vitro and in vivo studies using transgene and/or reporter-free hPSCs further validated myogenic potential of the cells by formation of new fibers expressing human dystrophin as well as donor-derived satellite cells in NSG-mdx4Cv mice. This study provides biological insights for myogenic differentiation of hPSCs using a double-reporter cell resource and defines an improved myogenic differentiation and purification strategy.
Collapse
Affiliation(s)
- Jianbo Wu
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nadine Matthias
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jonathan Lo
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jose L Ortiz-Vitali
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Annie W Shieh
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sidney H Wang
- Center for Human Genetics, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Valladares-Ide D, Peñailillo L, Collao N, Marambio H, Deldicque L, Zbinden-Foncea H. Activation of protein synthesis, regeneration, and MAPK signaling pathways following repeated bouts of eccentric cycling. Am J Physiol Endocrinol Metab 2019; 317:E1131-E1139. [PMID: 31593504 DOI: 10.1152/ajpendo.00216.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this study was to examine the activation of skeletal muscle signaling pathways related to protein synthesis and the gene expression of regeneration/degradation markers following repeated bouts of eccentric cycling. Nine untrained men (25.4 ± 1.9 yr) performed two 30-min eccentric cycling bouts (ECC1, ECC2) at 85% of maximal concentric workload, separated by 2 wk. Muscle biopsies were taken from the vastus lateralis before and 2 h after each bout. Indirect markers of muscle damage were assessed before and 24-48 h after exercise. Changes in the Akt/mammalian target of rapamycin (mTOR)/rbosomal protein S6 kinase 1 (S6K1)/ribosomal protein S6 (rpS6) and MAPK signaling pathways were measured by Western blot and changes in mRNA expression of IL-6 and IL-1β, and myogenic regulatory factors (MRFs) were measured by real-time PCR. ECC1 induced greater increases in indirect markers of muscle damage compared with ECC2. Phosphorylation of S6K1 and rpS6 increased after both exercise bouts (P < 0.05), whereas phosphorylation of mTOR increased after ECC2 only (P = 0.03). Atrogin-1 mRNA expression decreased after ECC1 and ECC2 (P < 0.05) without changes in muscle RING-finger protein-1 mRNA. Basal mRNA levels of myoblast determination protein-1 (MyoD), MRF4, and myogenin were higher 2 wk after ECC1 (P < 0.05). MRF4 mRNA increased after ECC1 and ECC2 (P < 0.05), whereas MyoD mRNA expression increased only after ECC1 (P = 0.03). Phosphorylation of JNK and p38 MAPK increased after both exercise bouts (P < 0.05), similar to IL-6 and IL-1β mRNA expression. All together, these results suggest that differential regulation of the mTOR pathway and MRF expression could mediate the repeated bout effect observed between an initial and secondary bout of eccentric exercise.
Collapse
Affiliation(s)
- Denisse Valladares-Ide
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Luis Peñailillo
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Nicolás Collao
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Hugo Marambio
- Centro de Salud Deportiva, Clínica Santa María, Santiago, Chile
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hermann Zbinden-Foncea
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
- Centro de Salud Deportiva, Clínica Santa María, Santiago, Chile
| |
Collapse
|
12
|
Yang Z, Song C, Jiang R, Huang Y, Lan X, Lei C, Chen H. Micro-Ribonucleic Acid-216a Regulates Bovine Primary Muscle Cells Proliferation and Differentiation via Targeting SMAD Nuclear Interacting Protein-1 and Smad7. Front Genet 2019; 10:1112. [PMID: 31798627 PMCID: PMC6865218 DOI: 10.3389/fgene.2019.01112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs), belonging to a class of evolutionarily conserved small noncoding RNA of ∼22 nucleotides, are widely involved in skeletal muscle growth and development by regulating gene expression at the post-transcriptional level. While the expression feature and underlying function of miR-216a in mammal skeletal muscle development, especially in cattle, remains to be further elucidated. The aim of this study was to investigate the function and mechanism of miR-216a during bovine primary muscle cells proliferation and differentiation. Herein, we found that the expression level of miR-216a both presented a downward trend during the proliferation and differentiation phases, which suggested that it might have a potential role in the development of bovine skeletal muscle. Functionally, during the cells proliferation phase, overexpression of miR-216a inhibited the expression of proliferation-related genes, reduced the cell proliferation status, and resulted in cells G1 phase arrest. In cells differentiation stages, overexpression of miR-216a suppressed myogenic maker genes mRNA, protein, and myotube formation. Mechanistically, we found that SNIP1 and smad7 were the directly targets of miR-216a in regulating bovine primary muscle cells proliferation and differentiation, respectively. Altogether, these findings suggested that miR-216a functions as a suppressive miRNA in development of bovine primary muscle cells via targeting SNIP1 and smad7.
Collapse
Affiliation(s)
- Zhaoxin Yang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chengchuang Song
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Rui Jiang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Master control: transcriptional regulation of mammalian Myod. J Muscle Res Cell Motil 2019; 40:211-226. [PMID: 31301002 PMCID: PMC6726840 DOI: 10.1007/s10974-019-09538-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022]
Abstract
MYOD is a master regulator of the skeletal myogenic program. But what regulates expression of Myod? More than 20 years ago, studies established that Myod expression is largely controlled by just two enhancer regions located within a region 24 kb upstream of the transcription start site in mammals, which regulate Myod expression in the embryo, fetus and adult. Despite this apparently simple arrangement, Myod regulation is complex, with different combinations of transcription factors acting on these enhancers in different muscle progenitor cells and phases of differentiation. A range of epigenetic modifications in the Myod upstream region also play a part in activating and repressing Myod expression during development and regeneration. Here the evidence for this binding at Myod control regions is summarized, giving an overview of our current understanding of Myod expression regulation in mammals.
Collapse
|
14
|
Boudjadi S, Chatterjee B, Sun W, Vemu P, Barr FG. The expression and function of PAX3 in development and disease. Gene 2018; 666:145-157. [PMID: 29730428 DOI: 10.1016/j.gene.2018.04.087] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
Abstract
The PAX3 gene encodes a member of the PAX family of transcription factors that is characterized by a highly conserved paired box motif. The PAX3 protein is a transcription factor consisting of an N-terminal DNA binding domain (containing a paired box and homeodomain) and a C-terminal transcriptional activation domain. This protein is expressed during development of skeletal muscle, central nervous system and neural crest derivatives, and regulates expression of target genes that impact on proliferation, survival, differentiation and motility in these lineages. Germline mutations of the murine Pax3 and human PAX3 genes cause deficiencies in these developmental lineages and result in the Splotch phenotype and Waardenburg syndrome, respectively. Somatic genetic rearrangements that juxtapose the PAX3 DNA binding domain to the transcriptional activation domain of other transcription factors deregulate PAX3 function and contribute to the pathogenesis of the soft tissue cancers alveolar rhabdomyosarcoma and biphenotypic sinonasal sarcoma. The wild-type PAX3 protein is also expressed in other cancers related to developmental lineages that normally express this protein and exerts phenotypic effects related to its normal developmental role.
Collapse
Affiliation(s)
- Salah Boudjadi
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | | | - Wenyue Sun
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Prasantha Vemu
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Frederic G Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
15
|
Mattyasovszky SG, Langendorf EK, Ritz U, Schmitz C, Schmidtmann I, Nowak TE, Wagner D, Hofmann A, Rommens PM, Drees P. Exposure to radial extracorporeal shock waves modulates viability and gene expression of human skeletal muscle cells: a controlled in vitro study. J Orthop Surg Res 2018; 13:75. [PMID: 29625618 PMCID: PMC5889540 DOI: 10.1186/s13018-018-0779-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/23/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recent clinical and animal studies have shown that extracorporeal shock wave therapy has a promoting influence on the healing process of musculoskeletal disorders. However, the underlying biological effects of extracorporeal shock wave therapy on human skeletal muscle cells have not yet been investigated. METHODS In this study, we investigated human skeletal muscle cells after exposure to radial extracorporeal shock waves in a standardized in vitro setup. Cells were isolated from muscle specimens taken from adult patients undergoing spine surgery. Primary muscle cells were exposed once or twice to radial extracorporeal shock waves in vitro with different energy flux densities. Cell viability and gene expression of the paired box protein 7 (Pax7), neural cell adhesion molecule (NCAM), and myogenic factor 5 (Myf5) and MyoD as muscle cell markers were compared to non-treated muscle cells that served as controls. RESULTS Isolated muscle cells were positive for the hallmark protein of satellite cells, Pax7, as well as for the muscle cell markers NCAM, MyoD, and Myf5. Exposure to radial extracorporeal shock waves at low energy flux densities enhanced cell viability, whereas higher energy flux densities had no further significant impact. Gene expression analyses of muscle specific genes (Pax7, NCAM, Myf5, and MyoD) demonstrated a significant increase after single exposure to the highest EFD (4 bar, 0.19 mJ/mm2) and after double exposure with the medium EFDs (2 and 3 bar; 0.09 and 0.14 mJ/mm2, respectively). Double exposure of the highest EFD, however, results in a significant down-regulation when compared to single exposure with this EFD. CONCLUSIONS This is the first study demonstrating that radial extracorporal shock wave therapy has the potential to modulate the biological function of human skeletal muscle cells. Based on our experimental findings, we hypothesize that radial extracorporal shock wave therapy could be a promising therapeutic modality to improve the healing process of sports-related structural muscle injuries.
Collapse
Affiliation(s)
- Stefan G Mattyasovszky
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
| | - Eva K Langendorf
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Christoph Schmitz
- Extracorporeal Shock Wave Research Unit, Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Irene Schmidtmann
- Institue for Medical Biometry, Epidemiology and Computer Science, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Tobias E Nowak
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Daniel Wagner
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Pol M Rommens
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Philipp Drees
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| |
Collapse
|
16
|
Hernandez-Torres F, Rodríguez-Outeiriño L, Franco D, Aranega AE. Pitx2 in Embryonic and Adult Myogenesis. Front Cell Dev Biol 2017; 5:46. [PMID: 28507987 PMCID: PMC5410577 DOI: 10.3389/fcell.2017.00046] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is a heterogeneous tissue that represents between 30 and 38% of the human body mass and has important functions in the organism, such as maintaining posture, locomotor impulse, or pulmonary ventilation. The genesis of skeletal muscle during embryonic development is a process controlled by an elaborate regulatory network combining the interplay of extrinsic and intrinsic regulatory mechanisms that transform myogenic precursor cells into functional muscle fibers through a finely tuned differentiation program. However, the capacity of generating muscle still remains once these fibers have matured. Adult myogenesis resembles many of the embryonic morphogenetic episodes and depends on the activation of satellite cells that have the potential to differentiate into new muscle fibers. Pitx2 is a member of the bicoid family of homeodomain transcription factors that play an important role in morphogenesis. In the last decade, Pitx2 has emerged as a key element involved in the fine-tuning mechanism that regulates skeletal-muscle development as well as the differentiation and cell fate of satellite cells in adult muscle. Here we present an integrative view of all aspects of embryonic and adult myogenesis in which Pitx2 is involved, from embryonic development to satellite-cell proliferation, fate specification, and differentiation. Those new Pitx2 functions on satellite-cell biology might open new perspectives to develop therapeutic strategies for muscular disorders.
Collapse
Affiliation(s)
- Francisco Hernandez-Torres
- Cardiac and Skeletal Myogenesis Group, Departmento de Biología Experimental, Universidad de JaénJaén, Spain.,Cardiac and Skeletal Myogenesis Group, Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaGranada, Spain
| | - Lara Rodríguez-Outeiriño
- Cardiac and Skeletal Myogenesis Group, Departmento de Biología Experimental, Universidad de JaénJaén, Spain.,Cardiac and Skeletal Myogenesis Group, Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaGranada, Spain
| | - Diego Franco
- Cardiac and Skeletal Myogenesis Group, Departmento de Biología Experimental, Universidad de JaénJaén, Spain.,Cardiac and Skeletal Myogenesis Group, Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaGranada, Spain
| | - Amelia E Aranega
- Cardiac and Skeletal Myogenesis Group, Departmento de Biología Experimental, Universidad de JaénJaén, Spain.,Cardiac and Skeletal Myogenesis Group, Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaGranada, Spain
| |
Collapse
|
17
|
Nassari S, Duprez D, Fournier-Thibault C. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues. Front Cell Dev Biol 2017; 5:22. [PMID: 28386539 PMCID: PMC5362625 DOI: 10.3389/fcell.2017.00022] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/07/2017] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.
Collapse
Affiliation(s)
- Sonya Nassari
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| | - Delphine Duprez
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| | - Claire Fournier-Thibault
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| |
Collapse
|
18
|
Regulation of Skeletal Myoblast Differentiation by Drebrin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:361-373. [DOI: 10.1007/978-4-431-56550-5_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Temporal correlation between differentiation factor expression and microRNAs in Holstein bovine skeletal muscle. Animal 2016; 11:227-235. [PMID: 27406318 DOI: 10.1017/s1751731116001488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Satellite cells are adult stem cells located between the basal lamina and sarcolemma of muscle fibers. Under physiological conditions, satellite cells are quiescent, but they maintain a strong proliferative potential and propensity to differentiate, which underlies their critical role in muscle preservation and growth. MicroRNAs (miRNAs) play essential roles during animal development as well as in stem cell self-renewal and differentiation regulation. MiRNA-1, miRNA-133a and miRNA-206 are closely related muscle-specific miRNAs, and are thus defined myomiRNAs. MyomiRNAs are integrated into myogenic regulatory networks. Their expression is under the transcriptional and post-transcriptional control of myogenic factors and, in turn, they exhibit widespread control of muscle gene expression. Very little information is available about the regulation and behavior of satellite cells in large farm animals, in particular during satellite cell differentiation. Here, we study bovine satellite cells (BoSCs) undergoing a differentiation process and report the expression pattern of selected genes and miRNAs involved. Muscle samples of longissimus thoracis from Holstein adult male animals were selected for the collection of satellite cells. All satellite cell preparations demonstrated myotube differentiation. To characterize the dynamics of several transcription factors expressed in BoSCs, we performed real-time PCR on complementary DNA generated from the total RNA extracted from BoSCs cultivated in growth medium (GM) or in differentiation medium (DM) for 4 days. In the GM condition, BoSCs expressed the satellite cell lineage markers as well as transcripts for the myogenic regulatory factors. At the time of isolation from muscle, PAX7 was expressed in nearly 100% of BoSCs; however, its messenger RNA (mRNA) levels dramatically decreased between 3 and 6 days post isolation (P<0.01). MyoD mRNA levels increased during the 1st day of cultivation in DM (day 7; P<0.02), showing a gradual activation of the myogenic gene program. During the subsequent 4 days of culture in DM, several tested genes, including MRF4, MYOG, MEF2C, TMEM8C, DES and MYH1, showed increased expression (P<0.05), and these levels remained high throughout the culture period investigated. Meanwhile, the expression of genes involved in the differentiation process also miRNA-1, miRNA-133a and miRNA-206 were strongly up-regulated on the 1st day in DM (day 7; P<0.05). Analysis revealed highly significant correlations between myomiRNAs expression and MEF2C, MRF4, TMEM8C, DES and MYH1 gene expression (P<0.001). Knowledge about the transcriptional changes correlating with the growth and differentiation of skeletal muscle fibers could be helpful for developing strategies to improve production performance in livestock.
Collapse
|
20
|
Sajko S, Kubínová L, Cvetko E, Kreft M, Wernig A, Erzen I. Frequency of M-Cadherin-stained Satellite Cells Declines in Human Muscles During Aging. J Histochem Cytochem 2016; 52:179-85. [PMID: 14729869 DOI: 10.1177/002215540405200205] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To answer the question of whether the satellite cell pool in human muscle is reduced during aging, we detected satellite cells in 30-μm-thick transverse sections under the confocal microscope by binding of M-cadherin antibody. The basal lamina was detected with laminin. Nuclei were stained with bisbenzimide or propidium iodide. Satellite cells were counted by applying the disector method and unbiased sampling design. To determine if there are age-related differences in muscle fiber types, morphometric characteristics of muscle fibers were examined on thin sections stained for myofibrillar ATPase. Autopsy samples of vastus lateralis muscle from six young (28.7 ± 2.3 years) and six old (70.8 ± 1.3 years) persons who had suffered sudden death were analyzed. Numbers of satellite cells per fiber length (Nsc/Lfib) and number of satellite cells per total number of nuclei (satellite cell nuclei + myonuclei) (Nsc/Nnucl) were significantly lower in the old group ( p<0.05). We demonstrate the importance of proper sampling and counting in estimation of sparsely distributed structures such as satellite cells. Our results support the hypothesis that the satellite cell fraction declines during aging.
Collapse
Affiliation(s)
- Spela Sajko
- Institute of Anatomy, Medical Faculty, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
21
|
Alonso-Martin S, Rochat A, Mademtzoglou D, Morais J, de Reyniès A, Auradé F, Chang THT, Zammit PS, Relaix F. Gene Expression Profiling of Muscle Stem Cells Identifies Novel Regulators of Postnatal Myogenesis. Front Cell Dev Biol 2016; 4:58. [PMID: 27446912 PMCID: PMC4914952 DOI: 10.3389/fcell.2016.00058] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/02/2016] [Indexed: 01/02/2023] Open
Abstract
Skeletal muscle growth and regeneration require a population of muscle stem cells, the satellite cells, located in close contact to the myofiber. These cells are specified during fetal and early postnatal development in mice from a Pax3/7 population of embryonic progenitor cells. As little is known about the genetic control of their formation and maintenance, we performed a genome-wide chronological expression profile identifying the dynamic transcriptomic changes involved in establishment of muscle stem cells through life, and acquisition of muscle stem cell properties. We have identified multiple genes and pathways associated with satellite cell formation, including set of genes specifically induced (EphA1, EphA2, EfnA1, EphB1, Zbtb4, Zbtb20) or inhibited (EphA3, EphA4, EphA7, EfnA2, EfnA3, EfnA4, EfnA5, EphB2, EphB3, EphB4, EfnBs, Zfp354c, Zcchc5, Hmga2) in adult stem cells. Ephrin receptors and ephrins ligands have been implicated in cell migration and guidance in many tissues including skeletal muscle. Here we show that Ephrin receptors and ephrins ligands are also involved in regulating the adult myogenic program. Strikingly, impairment of EPHB1 function in satellite cells leads to increased differentiation at the expense of self-renewal in isolated myofiber cultures. In addition, we identified new transcription factors, including several zinc finger proteins. ZFP354C and ZCCHC5 decreased self-renewal capacity when overexpressed, whereas ZBTB4 increased it, and ZBTB20 induced myogenic progression. The architectural and transcriptional regulator HMGA2 was involved in satellite cell activation. Together, our study shows that transcriptome profiling coupled with myofiber culture analysis, provides an efficient system to identify and validate candidate genes implicated in establishment/maintenance of muscle stem cells. Furthermore, tour de force transcriptomic profiling provides a wealth of data to inform for future stem cell-based muscle therapies.
Collapse
Affiliation(s)
- Sonia Alonso-Martin
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France
| | - Anne Rochat
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Despoina Mademtzoglou
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France
| | - Jessica Morais
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer Paris, France
| | - Frédéric Auradé
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, Center for Research in Myology Paris, France
| | - Ted Hung-Tse Chang
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London London, UK
| | - Frédéric Relaix
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France; Etablissement Français du SangCréteil, France; APHP, Hopitaux Universitaires Henri Mondor, DHU Pepsy and Centre de Référence des Maladies Neuromusculaires GNMHCréteil, France
| |
Collapse
|
22
|
Cutroneo G, Vermiglio G, Centofanti A, Rizzo G, Runci M, Favaloro A, Piancino MG, Bracco P, Ramieri G, Bianchi F, Speciale F, Arco A, Trimarchi F. Morphofunctional compensation of masseter muscles in unilateral posterior crossbite patients. Eur J Histochem 2016; 60:2605. [PMID: 27349311 PMCID: PMC4933822 DOI: 10.4081/ejh.2016.2605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 11/23/2022] Open
Abstract
Unilateral posterior crossbite is a widespread, asymmetric malocclusion characterized by an inverse relationship of the upper and lower buccal dental cusps, in the molar and premolar regions, on one side only of the dental arch. Patients with unilateral posterior crossbite exhibit an altered chewing cycles and the crossbite side masseter results to be less active with respect to the contralateral one. Few studies about morphological features of masticatory muscle in malocclusion disorders exist and most of these have been performed on animal models. The aim of the present study was to evaluate morphological and protein expression characteristics of masseter muscles in patients affected by unilateral posterior crossbite, by histological and immunofluorescence techniques. We have used antibody against PAX-7, marker of satellite cells, and against α-, β-, γ-, δ-, ε- and ζ-sarcoglycans which are transmembrane glycoproteins involved in sarcolemma stabilization. By statistical analysis we have evaluated differences in amount of myonucley between contralateral and ipsilateral side. Results have shown: i) altered fibers morphology and atrophy of ipsilateral muscle if compared to the contralateral one; ii) higher number of myonuclei and PAX-7 positive cells in contralateral side than ipsilateral one; iii) higher pattern of fluorescence for all tested sarcoglycans in contralateral side than ipsilateral one. Results show that in unilateral posterior crossbite hypertrophic response of contralateral masseter and atrophic events in ipsilateral masseter take place; by that, in unilateral posterior crossbite malocclusion masticatory muscles modify their morphology depending on the function. That could be relevant in understanding and healing of malocclusion disorders; in fact, the altered balance about structure and function between ipsilateral and contralateral muscles could, long-term, lead and/ or worsen skeletal asymmetries.
Collapse
|
23
|
|
24
|
Zhu X, Li YL, Liu L, Wang JH, Li HH, Wu P, Chu WY, Zhang JS. Molecular characterization of Myf5 and comparative expression patterns of myogenic regulatory factors in Siniperca chuatsi. Gene Expr Patterns 2015; 20:1-10. [PMID: 26547039 DOI: 10.1016/j.gep.2015.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 01/20/2023]
Abstract
Myogenic regulatory factors (MRFs) are muscle-specific basic helix-loop-helix (bHLH) transcription factor that plays an essential role in regulating skeletal muscle development and growth. To investigate molecular characterization of Myf5 and compare the expressional patterns of the four MRFs, we cloned the Myf5 cDNA sequence and analyzed the MRFs expressional patterns using quantitative real-time polymerase chain reaction in Chinese perch (Siniperca chuatsi). Sequence analysis indicated that Chinese perch Myf5 and other MRFs shared a highly conserved bHLH domain with those of other vertebrates. Sequence alignment and phylogenetic tree showed that Chinese perch MRFs had the highest identity with the MRFs of Epinephelus coioides. Spatio-temporal expressional patterns revealed that the MRFs were primarily expressed in muscle, especially in white muscle. During embryonic development period, Myf5, MyoD and MyoG mRNAs had a steep increase at neurula stage, and their highest expressional level was predominantly observed at hatching period. Whereas the highest expressional level of the MRF4 was observed at the muscular effect stage. The expressional patterns of post-embryonic development showed that the Myf5, MyoD and MyoG mRNAs were highest at 90 days post-hatching (dph). Furthermore, starvation and refeeding results showed that the transcription of the MRFs in the fast skeletal muscle of Chinese perch responded quickly to a single meal after 7 days of fasting. It indicated that the MRFs might contribute to muscle recovery after refeeding in Chinese perch.
Collapse
Affiliation(s)
- Xin Zhu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu-Long Li
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - Li Liu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - Jian-Hua Wang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - Hong-Hui Li
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - Ping Wu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - Wu-Ying Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China.
| | - Jian-She Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China.
| |
Collapse
|
25
|
Daubas P, Duval N, Bajard L, Langa Vives F, Robert B, Mankoo BS, Buckingham M. Fine-tuning the onset of myogenesis by homeobox proteins that interact with the Myf5 limb enhancer. Biol Open 2015; 4:1614-24. [PMID: 26538636 PMCID: PMC4736032 DOI: 10.1242/bio.014068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Skeletal myogenesis in vertebrates is initiated at different sites of skeletal muscle formation during development, by activation of specific control elements of the myogenic regulatory genes. In the mouse embryo, Myf5 is the first myogenic determination gene to be expressed and its spatiotemporal regulation requires multiple enhancer sequences, extending over 120 kb upstream of the Mrf4-Myf5 locus. An enhancer, located at −57/−58 kb from Myf5, is responsible for its activation in myogenic cells derived from the hypaxial domain of the somite, that will form limb muscles. Pax3 and Six1/4 transcription factors are essential activators of this enhancer, acting on a 145-bp core element. Myogenic progenitor cells that will form the future muscle masses of the limbs express the factors necessary for Myf5 activation when they delaminate from the hypaxial dermomyotome and migrate into the forelimb bud, however they do not activate Myf5 and the myogenic programme until they have populated the prospective muscle masses. We show that Msx1 and Meox2 homeodomain-containing transcription factors bind in vitro and in vivo to specific sites in the 145-bp element, and are implicated in fine-tuning activation of Myf5 in the forelimb. Msx1, when bound between Pax and Six sites, prevents the binding of these key activators, thus inhibiting transcription of Myf5 and consequent premature myogenic differentiation. Meox2 is required for Myf5 activation at the onset of myogenesis via direct binding to other homeodomain sites in this sequence. Thus, these homeodomain factors, acting in addition to Pax3 and Six1/4, fine-tune the entry of progenitor cells into myogenesis at early stages of forelimb development. Summary: Homeodomain factors Msx1 and Meox2, acting in addition to Pax3 and Six1/4, fine-tune the entry of progenitor cells into myogenesis at early stages of forelimb development via modulation of limb enhancer gene Myf5.
Collapse
Affiliation(s)
- Philippe Daubas
- CNRS URA 2578, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
| | - Nathalie Duval
- CNRS URA 2578, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
| | - Lola Bajard
- CNRS URA 2578, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
| | | | - Benoît Robert
- CNRS URA 2578, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
| | - Baljinder S Mankoo
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Margaret Buckingham
- CNRS URA 2578, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
| |
Collapse
|
26
|
Abstract
The tongue and mandible have common origins. They arise simultaneously from the mandibular arch and are coordinated in their development and growth, which is evident from several clinical conditions such as Pierre Robin sequence. Here, we review in detail the molecular networks controlling both mandible and tongue development. We also discuss their mechanical relationship and evolution as well as the potential for stem cell-based therapies for disorders affecting these organs.
Collapse
Affiliation(s)
- Carolina Parada
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, USA.
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
27
|
Buckingham M, Relaix F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol 2015; 44:115-25. [PMID: 26424495 DOI: 10.1016/j.semcdb.2015.09.017] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Like other subclasses within the PAX transcription factor family, PAX3 and PAX7 play important roles in the emergence of a number of different tissues during development. PAX3 regulates neural crest and, together with its orthologue PAX7, is also expressed in parts of the central nervous system. In this chapter we will focus on their role in skeletal muscle. Both factors are key regulators of myogenesis where Pax3 plays a major role during early skeletal muscle formation in the embryo while Pax7 predominates during post-natal growth and muscle regeneration in the adult. We review the expression and functions of these factors in the myogenic context. We also discuss mechanistic aspects of PAX3/7 function and modulation of their activity by interaction with other proteins, as well as the post-transcriptional and transcriptional regulation of their expression.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.
| | - Frédéric Relaix
- INSERM U955 IMRB, Team 10, 94000 Creteil, France; UPEC Paris Est-Creteil University, Faculty of Medicine, F-94000 Creteil, France; Etablissement Français du Sang, 94017 Creteil, France; Université Paris Est, Ecole Nationale Veterinaire d'Alfort, 94700 Maison Alfort, France.
| |
Collapse
|
28
|
Lozano-Velasco E, Vallejo D, Esteban FJ, Doherty C, Hernández-Torres F, Franco D, Aránega AE. A Pitx2-MicroRNA Pathway Modulates Cell Proliferation in Myoblasts and Skeletal-Muscle Satellite Cells and Promotes Their Commitment to a Myogenic Cell Fate. Mol Cell Biol 2015; 35:2892-909. [PMID: 26055324 PMCID: PMC4525317 DOI: 10.1128/mcb.00536-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 01/21/2023] Open
Abstract
The acquisition of a proliferating-cell status from a quiescent state as well as the shift between proliferation and differentiation are key developmental steps in skeletal-muscle stem cells (satellite cells) to provide proper muscle regeneration. However, how satellite cell proliferation is regulated is not fully understood. Here, we report that the c-isoform of the transcription factor Pitx2 increases cell proliferation in myoblasts by downregulating microRNA 15b (miR-15b), miR-23b, miR-106b, and miR-503. This Pitx2c-microRNA (miRNA) pathway also regulates cell proliferation in early-activated satellite cells, enhancing Myf5(+) satellite cells and thereby promoting their commitment to a myogenic cell fate. This study reveals unknown functions of several miRNAs in myoblast and satellite cell behavior and thus may have future applications in regenerative medicine.
Collapse
Affiliation(s)
- Estefanía Lozano-Velasco
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Daniel Vallejo
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Francisco J Esteban
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Chris Doherty
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Francisco Hernández-Torres
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Amelia Eva Aránega
- Cardiac and Skeletal Myogenesis Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| |
Collapse
|
29
|
Gurevich D, Siegel A, Currie PD. Skeletal myogenesis in the zebrafish and its implications for muscle disease modelling. Results Probl Cell Differ 2015; 56:49-76. [PMID: 25344666 DOI: 10.1007/978-3-662-44608-9_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Current evidence indicates that post-embryonic muscle growth and regeneration in amniotes is mediated almost entirely by stem cells derived from muscle progenitor cells (MPCs), known as satellite cells. Exhaustion and impairment of satellite cell activity is involved in the severe muscle loss associated with degenerative muscle diseases such as Muscular Dystrophies and is the main cause of age-associated muscle wasting. Understanding the molecular and cellular basis of satellite cell function in muscle generation and regeneration (myogenesis) is critical to the broader goal of developing treatments that may ameliorate such conditions. Considerable knowledge exists regarding the embryonic stages of amniote myogenesis. Much less is known about how post-embryonic amniote myogenesis proceeds, how adult myogenesis relates to embryonic myogenesis on a cellular or genetic level. Of the studies focusing on post-embryonic amniote myogenesis, most are post-mortem and in vitro analyses, precluding the understanding of cellular behaviours and genetic mechanisms in an undisturbed in vivo setting. Zebrafish are optically clear throughout much of their post-embryonic development, facilitating their use in live imaging of cellular processes. Zebrafish also possess a compartment of MPCs, which appear similar to satellite cells and persist throughout the post-embryonic development of the fish, permitting their use in examining the contribution of these cells to muscle tissue growth and regeneration.
Collapse
Affiliation(s)
- David Gurevich
- Australian Regenerative Medicine Institute, Monash University, Level 1, Building 75, Wellington Road, Clayton, VIC, 3800, Australia
| | | | | |
Collapse
|
30
|
Comai G, Sambasivan R, Gopalakrishnan S, Tajbakhsh S. Variations in the Efficiency of Lineage Marking and Ablation Confound Distinctions between Myogenic Cell Populations. Dev Cell 2014; 31:654-67. [DOI: 10.1016/j.devcel.2014.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 06/16/2014] [Accepted: 11/04/2014] [Indexed: 11/24/2022]
|
31
|
Buckingham M. Interactions with John Gurdon--muscle as a mesodermal read-out and the community effect. Differentiation 2014; 88:13-15. [PMID: 25113967 DOI: 10.1016/j.diff.2014.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 11/25/2022]
Abstract
John Gurdon has made major contributions to developmental biology in addition to his Nobel prize winning work on nuclear reprogramming. With the frog, Xenopus, as a vertebrate model, his work on mesoderm induction led him to identify a community effect required for tissue differentiation after progenitor cells have entered a specific mesodermal programme. It is in the context of this biologically important concept, with myogenesis as an example, that we have had most scientific exchanges. Here I trace my contacts with him, from an interest in histone regulation of gene expression and reprogramming, to myogenic determination factors as markers of early mesodermal induction, to the role of the community effect in the spatiotemporal control of skeletal muscle formation. I also recount some personal anecdotes from encounters in Oxford, Paris and Cambridge, to illustrate my appreciation of him as a scientist and a colleague.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, Institut Pasteur, 25-28 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
32
|
Sandiford SDE, Kennedy KAM, Xie X, Pickering JG, Li SSC. Dual oxidase maturation factor 1 (DUOXA1) overexpression increases reactive oxygen species production and inhibits murine muscle satellite cell differentiation. Cell Commun Signal 2014; 12:5. [PMID: 24410844 PMCID: PMC3895674 DOI: 10.1186/1478-811x-12-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/23/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dual oxidase maturation factor 1 (DUOXA1) has been associated with the maturation of the reactive oxygen species (ROS) producing enzyme, dual oxidase 1 (DUOX1) in the adult thyroid. However, ROS have also been implicated in the development of several tissues. We found that activated muscle satellite cells and primary myoblasts isolated from mice express robust levels of DUOXA1 and that its levels are altered as cells differentiate. RESULTS To determine whether DUOXA1 levels affect muscle differentiation, we used an adenoviral construct (pCMV5-DUOXA1-GFP) to drive constitutive overexpression of this protein in primary myoblasts. High levels of DUOXA1 throughout myogenesis resulted in enhanced H2O2 production, fusion defects, reduced expression of early (myogenin) and late (myosin heavy chain) markers of differentiation, and elevated levels of apoptosis compared to control cells infected with an empty adenoviral vector (pCMV5-GFP). DUOXA1 knockdown (using a DUOXA1 shRNA construct) resulted in enhanced differentiation compared to cells subjected to a control shRNA, and subjecting DUOXA1 overexpressing cells to siRNAs targeting DUOX1 or apoptosis signal-regulating kinase 1 (ASK1) rescued the phenotype. CONCLUSIONS This study represents the first to demonstrate the importance of DUOXA1 in skeletal muscle myoblasts and that DUOXA1 overexpression in muscle stem cells induces apoptosis and inhibits differentiation through DUOX1 and ASK1.
Collapse
Affiliation(s)
- Shelley DE Sandiford
- Siebens-Drake Research Institute, 1400 Western Road, London, Ontario N6G 2 V4, Canada
| | - Karen AM Kennedy
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Xiaojun Xie
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - J Geoffrey Pickering
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Shawn SC Li
- Siebens-Drake Research Institute, 1400 Western Road, London, Ontario N6G 2 V4, Canada
| |
Collapse
|
33
|
Abstract
Since the seminal discovery of the cell-fate regulator Myod, studies in skeletal myogenesis have inspired the search for cell-fate regulators of similar potential in other tissues and organs. It was perplexing that a similar transcription factor for other tissues was not found; however, it was later discovered that combinations of molecular regulators can divert somatic cell fates to other cell types. With the new era of reprogramming to induce pluripotent cells, the myogenesis paradigm can now be viewed under a different light. Here, we provide a short historical perspective and focus on how the regulation of skeletal myogenesis occurs distinctly in different scenarios and anatomical locations. In addition, some interesting features of this tissue underscore the importance of reconsidering the simple-minded view that a single stem cell population emerges after gastrulation to assure tissuegenesis. Notably, a self-renewing long-term Pax7+ myogenic stem cell population emerges during development only after a first wave of terminal differentiation occurs to establish a tissue anlagen in the mouse. How the future stem cell population is selected in this unusual scenario will be discussed. Recently, a wealth of information has emerged from epigenetic and genome-wide studies in myogenic cells. Although key transcription factors such as Pax3, Pax7, and Myod regulate only a small subset of genes, in some cases their genomic distribution and binding are considerably more promiscuous. This apparent nonspecificity can be reconciled in part by the permissivity of the cell for myogenic commitment, and also by new roles for some of these regulators as pioneer transcription factors acting on chromatin state.
Collapse
Affiliation(s)
- Glenda Comai
- Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France.
| |
Collapse
|
34
|
Borchin B, Chen J, Barberi T. Derivation and FACS-mediated purification of PAX3+/PAX7+ skeletal muscle precursors from human pluripotent stem cells. Stem Cell Reports 2013; 1:620-31. [PMID: 24371814 PMCID: PMC3871395 DOI: 10.1016/j.stemcr.2013.10.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/14/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) constitute a promising resource for use in cell-based therapies and a valuable in vitro model for studying early human development and disease. Despite significant advancements in the derivation of specific fates from hPSCs, the generation of skeletal muscle remains challenging and is mostly dependent on transgene expression. Here, we describe a method based on the use of a small-molecule GSK3β inhibitor to derive skeletal muscle from several hPSC lines. We show that early GSK3β inhibition is sufficient to create the conditions necessary for highly effective derivation of muscle cells. Moreover, we developed a strategy for stringent fluorescence-activated cell sorting-based purification of emerging PAX3+/PAX7+ muscle precursors that are able to differentiate in postsort cultures into mature myocytes. This transgene-free, efficient protocol provides an essential tool for producing myogenic cells for in vivo preclinical studies, in vitro screenings, and disease modeling.
Collapse
Affiliation(s)
- Bianca Borchin
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Joseph Chen
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Tiziano Barberi
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
35
|
Embryonic founders of adult muscle stem cells are primed by the determination gene Mrf4. Dev Biol 2013; 381:241-55. [PMID: 23623977 DOI: 10.1016/j.ydbio.2013.04.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/27/2013] [Accepted: 04/17/2013] [Indexed: 01/15/2023]
Abstract
Skeletal muscle satellite cells play a critical role during muscle growth, homoeostasis and regeneration. Selective induction of the muscle determination genes Myf5, Myod and Mrf4 during prenatal development can potentially impact on the reported functional heterogeneity of adult satellite cells. Accordingly, expression of Myf5 was reported to diminish the self-renewal potential of the majority of satellite cells. In contrast, virtually all adult satellite cells showed antecedence of Myod activity. Here we examine the priming of myogenic cells by Mrf4 throughout development. Using a Cre-lox based genetic strategy and novel highly sensitive Pax7 reporter alleles compared to the ubiquitous Rosa26-based reporters, we show that all adult satellite cells, independently of their anatomical location or embryonic origin, have been primed for Mrf4 expression. Given that Mrf4Cre and Mrf4nlacZ are active exclusively in progenitors during embryogenesis, whereas later expression is restricted to differentiated myogenic cells, our findings suggest that adult satellite cells emerge from embryonic founder cells in which the Mrf4 locus was activated. Therefore, this level of myogenic priming by induction of Mrf4, does not compromise the potential of the founder cells to assume an upstream muscle stem cell state. We propose that embryonic myogenic cells and the majority of adult muscle stem cells form a lineage continuum.
Collapse
|
36
|
Shi W, Bain AL, Schwer B, Al-Ejeh F, Smith C, Wong L, Chai H, Miranda MS, Ho U, Kawaguchi M, Miura Y, Finnie JW, Wall M, Heierhorst J, Wicking C, Spring KJ, Alt FW, Khanna KK. Essential developmental, genomic stability, and tumour suppressor functions of the mouse orthologue of hSSB1/NABP2. PLoS Genet 2013; 9:e1003298. [PMID: 23408915 PMCID: PMC3567186 DOI: 10.1371/journal.pgen.1003298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/16/2012] [Indexed: 12/15/2022] Open
Abstract
Single-stranded DNA binding proteins (SSBs) regulate multiple DNA transactions, including replication, transcription, and repair. We recently identified SSB1 as a novel protein critical for the initiation of ATM signaling and DNA double-strand break repair by homologous recombination. Here we report that germline Ssb1(-/-) embryos die at birth from respiratory failure due to severe rib cage malformation and impaired alveolar development, coupled with additional skeletal defects. Unexpectedly, Ssb1(-/-) fibroblasts did not exhibit defects in Atm signaling or γ-H2ax focus kinetics in response to ionizing radiation (IR), and B-cell specific deletion of Ssb1 did not affect class-switch recombination in vitro. However, conditional deletion of Ssb1 in adult mice led to increased cancer susceptibility with broad tumour spectrum, impaired male fertility with testicular degeneration, and increased radiosensitivity and IR-induced chromosome breaks in vivo. Collectively, these results demonstrate essential roles of Ssb1 in embryogenesis, spermatogenesis, and genome stability in vivo.
Collapse
Affiliation(s)
- Wei Shi
- Queensland Institute of Medical Research, Herston, Australia
| | - Amanda L. Bain
- Queensland Institute of Medical Research, Herston, Australia
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Australia
| | - Bjoern Schwer
- Howard Hughes Medical Institute, Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Genetics and Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fares Al-Ejeh
- Queensland Institute of Medical Research, Herston, Australia
| | - Corey Smith
- Queensland Institute of Medical Research, Herston, Australia
| | - Lee Wong
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Hua Chai
- Howard Hughes Medical Institute, Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Genetics and Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mariska S. Miranda
- Queensland Institute of Medical Research, Herston, Australia
- School of Medicine, University of Queensland, Herston, Australia
| | - Uda Ho
- Queensland Institute of Medical Research, Herston, Australia
| | - Makoto Kawaguchi
- Department of Bioregulation and Molecular Neurobiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Miura
- Department of Bioregulation and Molecular Neurobiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - John W. Finnie
- SA Pathology, Institute of Medical and Veterinary Science, Adelaide, Australia
| | - Meaghan Wall
- Victorian Cancer Cytogenetics Service, St. Vincent's Hospital, Fitzroy, Melbourne, Australia
- Department of Medicine, St. Vincent's Hospital, Fitzroy, Australia
| | - Jörg Heierhorst
- Department of Medicine, St. Vincent's Hospital, Fitzroy, Australia
- St. Vincent's Institute, Fitzroy, Australia
| | - Carol Wicking
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Kevin J. Spring
- Queensland Institute of Medical Research, Herston, Australia
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Australia
- School of Medicine, University of Queensland, Herston, Australia
| | - Frederick W. Alt
- Howard Hughes Medical Institute, Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, United States of America
- Department of Genetics and Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kum Kum Khanna
- Queensland Institute of Medical Research, Herston, Australia
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Australia
- School of Medicine, University of Queensland, Herston, Australia
- * E-mail:
| |
Collapse
|
37
|
Wu Q, Yao HD, Zhang ZW, Zhang B, Meng FY, Xu SW, Wang XL. Possible correlation between selenoprotein W and myogenic regulatory factors in chicken embryonic myoblasts. Biol Trace Elem Res 2012; 150:166-72. [PMID: 23054870 DOI: 10.1007/s12011-012-9520-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/01/2012] [Indexed: 01/09/2023]
Abstract
The biological function of selenium (Se) is mainly elicited through Se-containing proteins. Selenoprotein W (SelW), one member of the selenoprotein family, is essential for the normal function of the skeletal muscle system. To investigate the possible relationship of Se in the process of differentiation in chicken myoblasts and the expression of SelW, the cultured chicken embryonic myoblasts were incubated with sodium selenite at different concentrations for 72 h, and then the mRNA levels of SelW and myogenic regulatory factors (MRFs) in myoblasts were determined at 12, 24, 48, and 72 h, respectively. Furthermore, the correlation between SelW mRNA expression and MRF mRNA expression was assessed. The results showed that the sodium selenite medium enhanced the mRNA expression of SelW, Myf-5, MRF4, and myogenin in chicken myoblasts. The mRNA expression levels of MRFs were significantly correlated with those of SelW at 24, 48, and 72 h. These data demonstrate that Se is involved in the differentiation of chicken embryonic myoblasts, and SelW showed correlation with MRFs.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Hu JKH, McGlinn E, Harfe BD, Kardon G, Tabin CJ. Autonomous and nonautonomous roles of Hedgehog signaling in regulating limb muscle formation. Genes Dev 2012; 26:2088-102. [PMID: 22987639 DOI: 10.1101/gad.187385.112] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Muscle progenitor cells migrate from the lateral somites into the developing vertebrate limb, where they undergo patterning and differentiation in response to local signals. Sonic hedgehog (Shh) is a secreted molecule made in the posterior limb bud that affects patterning and development of multiple tissues, including skeletal muscles. However, the cell-autonomous and non-cell-autonomous functions of Shh during limb muscle formation have remained unclear. We found that Shh affects the pattern of limb musculature non-cell-autonomously, acting through adjacent nonmuscle mesenchyme. However, Shh plays a cell-autonomous role in maintaining cell survival in the dermomyotome and initiating early activation of the myogenic program in the ventral limb. At later stages, Shh promotes slow muscle differentiation cell-autonomously. In addition, Shh signaling is required cell-autonomously to regulate directional muscle cell migration in the distal limb. We identify neuroepithelial cell transforming gene 1 (Net1) as a downstream target and effector of Shh signaling in that context.
Collapse
Affiliation(s)
- Jimmy Kuang-Hsien Hu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
39
|
Mourikis P, Gopalakrishnan S, Sambasivan R, Tajbakhsh S. Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells. Development 2012; 139:4536-48. [PMID: 23136394 DOI: 10.1242/dev.084756] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During organogenesis, a continuum of founder stem cells produces temporally distinct progeny until development is complete. Similarly, in skeletal myogenesis, phenotypically and functionally distinct myoblasts and differentiated cells are generated during development. How this occurs in muscle and other tissues in vertebrates remains largely unclear. We showed previously that committed cells are required for maintaining muscle stem cells. Here we show that active Notch signalling specifies a subpopulation of myogenic cells with high Pax7 expression. By genetically modulating Notch activity, we demonstrate that activated Notch (NICD) blocks terminal differentiation in an Rbpj-dependent manner that is sufficient to sustain stem/progenitor cells throughout embryogenesis, despite the absence of committed progeny. Although arrested in lineage progression, NICD-expressing cells of embryonic origin progressively mature and adopt characteristics of foetal myogenic cells, including expression of the foetal myogenesis regulator Nfix. siRNA-mediated silencing of NICD promotes the temporally appropriate foetal myogenic fate in spite of expression of markers for multiple cell types. We uncover a differential effect of Notch, whereby high Notch activity is associated with stem/progenitor cell expansion in the mouse embryo, yet it promotes reversible cell cycle exit in the foetus and the appearance of an adult muscle stem cell state. We propose that active Notch signalling is sufficient to sustain an upstream population of muscle founder stem cells while suppressing differentiation. Significantly, Notch does not override other signals that promote temporal myogenic cell fates during ontology where spatiotemporal developmental cues produce distinct phenotypic classes of myoblasts.
Collapse
Affiliation(s)
- Philippos Mourikis
- Stem Cells and Development, Department of Developmental Biology, CNRS URA 2578, Institut Pasteur, 25 rue du Dr Roux, 75105 Paris, France
| | | | | | | |
Collapse
|
40
|
Wilschut KJ, Ling VB, Bernstein HS. Concise review: stem cell therapy for muscular dystrophies. Stem Cells Transl Med 2012. [PMID: 23197695 DOI: 10.5966/sctm.2012-0071] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Muscular dystrophy comprises a group of genetic diseases that cause progressive weakness and degeneration of skeletal muscle resulting from defective proteins critical to muscle structure and function. This leads to premature exhaustion of the muscle stem cell pool that maintains muscle integrity during normal use and exercise. Stem cell therapy holds promise as a treatment for muscular dystrophy by providing cells that can both deliver functional muscle proteins and replenish the stem cell pool. Here, we review the current state of research on myogenic stem cells and identify the important challenges that must be addressed as stem cell therapy is brought to the clinic.
Collapse
|
41
|
Expression and function of the SDF-1 chemokine receptors CXCR4 and CXCR7 during mouse limb muscle development and regeneration. Exp Cell Res 2012; 318:2178-90. [DOI: 10.1016/j.yexcr.2012.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/22/2012] [Accepted: 06/23/2012] [Indexed: 12/17/2022]
|
42
|
Parada C, Han D, Chai Y. Molecular and cellular regulatory mechanisms of tongue myogenesis. J Dent Res 2012; 91:528-35. [PMID: 22219210 DOI: 10.1177/0022034511434055] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The tongue exerts crucial functions in our daily life. However, we know very little about the regulatory mechanisms of mammalian tongue development. In this review, we summarize recent findings of the molecular and cellular mechanisms that control tissue-tissue interactions during tongue morphogenesis. Specifically, cranial neural crest cells (CNCC) lead the initiation of tongue bud formation and contribute to the interstitial connective tissue, which ultimately compartmentalizes tongue muscles and serves as their attachments. Occipital somite-derived cells migrate into the tongue primordium and give rise to muscle cells in the tongue. The intimate relationship between CNCC- and mesoderm-derived cells, as well as growth and transcription factors that have been shown to be crucial for tongue myogenesis, clearly indicate that tissue-tissue interactions play an important role in regulating tongue morphogenesis.
Collapse
Affiliation(s)
- C Parada
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
43
|
Efficient in vitro myogenic reprogramming of human primary mesenchymal stem cells and endothelial cells by Myf5. Biol Cell 2012; 103:531-42. [DOI: 10.1042/bc20100112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Makarenkova HP, Meech R. Barx homeobox family in muscle development and regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:117-73. [PMID: 22608559 DOI: 10.1016/b978-0-12-394308-8.00004-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Homeobox transcription factors are key intrinsic regulators of myogenesis. In studies spanning several years, we have characterized the homeobox factor Barx2 as a novel marker for muscle progenitor cells and an important regulator of muscle growth and repair. In this review, we place the expression and function of Barx2 and its paralogue Barx1 in context with other muscle-expressed homeobox factors in both embryonic and adult myogenesis. We also describe the structure and regulation of Barx genes and possible gene/disease associations. The functional domains of Barx proteins, their molecular interactions, and cellular functions are presented with particular emphasis on control of genes and processes involved in myogenic differentiation. Finally, we describe the patterns of Barx gene expression in vivo and the phenotypes of various Barx gene perturbation models including null mice. We focus on the Barx2 null mouse model, which has demonstrated the critical roles of Barx2 in postnatal myogenesis including muscle maintenance during aging, and regeneration of acute and chronic muscle injury.
Collapse
Affiliation(s)
- Helen P Makarenkova
- The Neurobiology Department, Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
45
|
Mancini A, Sirabella D, Zhang W, Yamazaki H, Shirao T, Krauss RS. Regulation of myotube formation by the actin-binding factor drebrin. Skelet Muscle 2011; 1:36. [PMID: 22152295 PMCID: PMC3251523 DOI: 10.1186/2044-5040-1-36] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/08/2011] [Indexed: 11/15/2022] Open
Abstract
Background Myogenic differentiation involves cell-cycle arrest, activation of the muscle-specific transcriptome, and elongation, alignment and fusion of myoblasts into multinucleated myotubes. This process is controlled by promyogenic transcription factors and regulated by signaling pathways in response to extracellular cues. The p38 mitogen-activated protein kinase (p38 MAPK) pathway promotes the activity of several such transcription factors, including MyoD and MEF2, thereby controlling the muscle-specific transcription program. However, few p38-regulated genes that play a role in the regulation of myogenesis have been identified. Methods RNA interference (RNAi), chemical inhibition and immunofluorescence approaches were used to assess the role of drebrin in differentiation of primary mouse myoblasts and C2C12 cells. Results In a search for p38-regulated genes that promote myogenic differentiation, we identified Dbn1, which encodes the actin-binding protein drebrin. Drebrin is an F-actin side-binding protein that remodels actin to facilitate the change of filopodia into dendritic spines during synaptogenesis in developing neurons. Dbn1 mRNA and protein are induced during differentiation of primary mouse and C2C12 myoblasts, and induction is substantially reduced by the p38 MAPK inhibitor SB203580. Primary myoblasts and C2C12 cells depleted of drebrin by RNAi display reduced levels of myogenin and myosin heavy chain and form multinucleated myotubes very inefficiently. Treatment of myoblasts with BTP2, a small-molecule inhibitor of drebrin, produces a phenotype similar to that produced by knockdown of drebrin, and the inhibitory effects of BTP2 are rescued by expression of a mutant form of drebrin that is unable to bind BTP2. Drebrin in myoblasts is enriched in cellular projections and cell cortices and at regions of cell-cell contact, all sites where F-actin, too, was concentrated. Conclusions Our findings reveal that Dbn1 expression is a target of p38 MAPK signaling during myogenesis and that drebrin promotes myoblast differentiation.
Collapse
Affiliation(s)
- Annalisa Mancini
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L, Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Deries M, Gonçalves AB, Vaz R, Martins GG, Rodrigues G, Thorsteinsdóttir S. Extracellular matrix remodeling accompanies axial muscle development and morphogenesis in the mouse. Dev Dyn 2011; 241:350-64. [PMID: 22127770 DOI: 10.1002/dvdy.23703] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2011] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Skeletal myogenesis is extensively influenced by the surrounding environment. However, how the extracellular matrix (ECM) affects morphogenesis of muscles is not well understood. RESULTS We mapped the three-dimensional (3D) organization of fibronectin, tenascin, and laminin by immunofluorescence during early epaxial myogenesis in mouse embryos. We define four stages of dermomyotome/myotome development and reveal the 3D organization of myogenic cells within their ECM during those stages. Fibronectin is abundant in all interstitial tissues, while tenascin is restricted to intersegmental borders. Bundles of fibronectin and tenascin also penetrate into the myotome, possibly promoting myocyte alignment. A laminin matrix delineates the dermomyotome and myotome and undergoes dynamic changes, correlating with key developmental events. CONCLUSION Our observations cast new light on how myotomal cells interact with their environment and suggest that, as the segmented myotomes transform into the epaxial muscle masses, the laminin matrix disassembles and myocytes use the abundant fibronectin matrix to reach their final organization.
Collapse
Affiliation(s)
- Marianne Deries
- Centro de Biologia Ambiental/Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
47
|
Wu W, Xu D, Ren Z, Lei M, Zuo B, Li F, Xiong Y. Isolation, sequence characterization, expression pattern analysis of porcine Pitx2c gene. Livest Sci 2011. [DOI: 10.1016/j.livsci.2011.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Van Ho AT, Hayashi S, Bröhl D, Auradé F, Rattenbach R, Relaix F. Neural crest cell lineage restricts skeletal muscle progenitor cell differentiation through Neuregulin1-ErbB3 signaling. Dev Cell 2011; 21:273-87. [PMID: 21782525 DOI: 10.1016/j.devcel.2011.06.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/21/2011] [Accepted: 06/15/2011] [Indexed: 11/25/2022]
Abstract
Coordinating the balance between progenitor self-renewal and myogenic differentiation is required for a regulated expansion of the developing muscles. Previous observation that neural crest cells (NCCs) migrate throughout the somite regions, where trunk skeletal muscles first emerge, suggests a potential role for these cells in influencing early muscle formation. However, specific signaling interactions between NCCs and skeletal muscle cells remain unknown. Here we show that mice with specific NCC and peripheral nervous system defects display impaired survival of skeletal muscle and show skeletal muscle progenitor cell (MPC) depletion due to precocious commitment to differentiation. We show that reduced NCC-derived Neuregulin1 (Nrg1) in the somite region perturbs ErbB3 signaling in uncommitted MPCs. Using a combination of explant culture experiments and genetic ablation in the mouse, we demonstrate that Nrg1 signals provided by the NCC lineage play a critical role in sustainable myogenesis, by restraining MPCs from precocious differentiation.
Collapse
|
49
|
Sambasivan R, Kuratani S, Tajbakhsh S. An eye on the head: the development and evolution of craniofacial muscles. Development 2011; 138:2401-15. [DOI: 10.1242/dev.040972] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Skeletal muscles exert diverse functions, enabling both crushing with great force and movement with exquisite precision. A remarkably distinct repertoire of genes and ontological features characterise this tissue, and recent evidence has shown that skeletal muscles of the head, the craniofacial muscles, are evolutionarily, morphologically and molecularly distinct from those of the trunk. Here, we review the molecular basis of craniofacial muscle development and discuss how this process is different to trunk and limb muscle development. Through evolutionary comparisons of primitive chordates (such as amphioxus) and jawless vertebrates (such as lampreys) with jawed vertebrates, we also provide some clues as to how this dichotomy arose.
Collapse
Affiliation(s)
- Ramkumar Sambasivan
- Institut Pasteur, Stem Cells and Development, Paris, F-75015, France
- CNRS URA 2578, 25 rue du Dr Roux, Paris, F-75015, France
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells and Development, Paris, F-75015, France
- CNRS URA 2578, 25 rue du Dr Roux, Paris, F-75015, France
| |
Collapse
|
50
|
Dedeic Z, Cetera M, Cohen TV, Holaska JM. Emerin inhibits Lmo7 binding to the Pax3 and MyoD promoters and expression of myoblast proliferation genes. J Cell Sci 2011; 124:1691-702. [DOI: 10.1242/jcs.080259] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
X-linked Emery–Dreifuss muscular dystrophy (X-EDMD) is caused by mutations in the inner nuclear membrane protein emerin. Previous studies have shown that emerin binds to and inhibits the activity of LIM domain only 7 (Lmo7), a transcription factor that regulates the expression of genes implicated in X-EDMD. Here, we analyzed Lmo7 function in C2C12 myoblast differentiation and its regulation by emerin. We found that Lmo7 was required for proper myoblast differentiation. Lmo7-downregulated myoblasts exhibited reduced expression of Pax3, Pax7, Myf5 and MyoD, whereas overexpression of GFP–Lmo7 increased the expression of MyoD and Myf5. Upon myotube formation, Lmo7 shuttled from the nucleus to the cytoplasm, concomitant with reduced expression of MyoD, Pax3 and Myf5. Importantly, we show that Lmo7 bound the Pax3, MyoD and Myf5 promoters both in C2C12 myoblasts and in vitro. Because emerin inhibited Lmo7 activity, we tested whether emerin competed with the MyoD promoter for binding to Lmo7 or whether emerin sequestered promoter-bound Lmo7 to the nuclear periphery. Supporting the competition model, emerin binding to Lmo7 inhibited Lmo7 binding to and activation of the MyoD and Pax3 promoters. These findings support the hypothesis that the functional interaction between emerin and Lmo7 is crucial for temporally regulating the expression of key myogenic differentiation genes.
Collapse
Affiliation(s)
- Zinaida Dedeic
- University of Chicago Committee on Developmental Biology, 920 East 58th Street, Chicago IL 60637, USA
| | - Maureen Cetera
- University of Chicago Committee on Developmental Biology, 920 East 58th Street, Chicago IL 60637, USA
| | - Tatiana V. Cohen
- Children's National Medical Center, Center for Genetic Medicine, 111 Michigan Avenue, Washington DC 20010-2970, USA
| | - James M. Holaska
- University of Chicago Committee on Developmental Biology, 920 East 58th Street, Chicago IL 60637, USA
- Department of Medicine, Section of Cardiology, The University of Chicago, 947 East 58th Street, Chicago, IL 60637, USA
- Committee on Genetics, Genomics and Systems Biology, 5812 S. Ellis Street, Chicago IL 60637, USA
| |
Collapse
|