1
|
Zhang W, He J, Wang Y, Jin H, Wang R. Scientific status analysis of exercise benefits for vascular cognitive impairment: Evidence of neuroinflammation. J Neuroimmunol 2025; 402:578574. [PMID: 40086400 DOI: 10.1016/j.jneuroim.2025.578574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/07/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
Vascular cognitive impairment (VCI) is a syndrome characterized by cognitive decline resulting from insufficient perfusion to the entire brain or specific brain regions. The lack of a clear understanding of the mechanisms linking cerebrovascular disease to cognitive impairment has impeded the development of targeted treatments for VCI. Increasing evidence indicates that exercise may offer significant benefits for patients with VCI. This study explores how neuroinflammatory mechanisms mediate the effects of exercise on VCI, focusing on the broader biological processes involved. Exercise plays a crucial role in mitigating vascular risk factors, reducing oxidative stress, and promoting neurogenesis. Furthermore, exercise influences neuroinflammatory mediators and central immune cells via various signaling pathways. Different types and intensities of exercise, including resistance and endurance training, have been shown to differentially modulate neuroinflammation during the progression of VCI. This paper summarizes the current mechanisms of action and proposes exercise interventions targeting neuroinflammatory pathways, along with biomarker studies, to enhance our understanding of VCI pathogenesis and inform clinical practice. A more in-depth understanding of the inflammatory mechanisms underlying VCI may facilitate the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Wei Zhang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing He
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuxin Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - He Jin
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China; Beijing Institute of Major Brain Diseases, Beijing, China.
| |
Collapse
|
2
|
Krenzlin H, Wesp DMA, Korinek AAE, Ubbens H, Volland J, Masomi-Bornwasser J, Weber KJ, Mole D, Sommer C, Ringel F, Alessandri B, Keric N. Effects of Argon in the Acute Phase of Subarachnoid Hemorrhage in an Endovascular Perforation Model in Rats. Neurocrit Care 2025; 42:532-540. [PMID: 39174846 PMCID: PMC11950149 DOI: 10.1007/s12028-024-02090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a devastating disease with high morbidity and mortality. Neuroprotective effects of the noble gas argon have been shown in animal models of ischemia. The aim of this study was to investigate the effects of argon in the immediate early phase of SAH in a rat model. METHODS A total of 19 male Wistar rats were randomly assigned to three treatment groups. SAH was induced using a endovascular filament perforation model. Cerebral blood flow, mean arterial blood pressure (MAP), and body temperature were measured continuously. Group A received 2 h of ventilation by 50% argon/50% O2 (n = 7) immediately following SAH. Group B underwent a sham operation and was also ventilated by 50% argon/50% O2 (n = 6). Group C underwent SAH and 50% O2/50% N2 ventilation (n = 6). Preoperative and postoperative neurological and behavioral testing were performed. Histology and immunohistochemistry were used to evaluate the extent of brain injury and vasospasm. RESULTS The cerebral blood flow dropped in both treatment groups after SAH induction (SAH, 63.0 ± 11.6% of baseline; SAH + argon, 80.2 ± 8.2% of baseline). During SAH, MAP increased (135.2 ± 10.5%) compared with baseline values (85.8 ± 26.0 mm Hg) and normalized thereafter. MAP in both groups showed no significant differences (p = 0.3123). Immunohistochemical staining for neuronal nuclear antigen demonstrated a decrease of hippocampal immunoreactivity after SAH in the cornu ammonis region (CA) 1-3 compared with baseline hippocampal immunoreactivity (p = 0.0127). Animals in the argon-ventilated group showed less neuronal loss compared with untreated SAH animals (p < 0.0001). Ionized calcium-binding adaptor molecule 1 staining showed a decreased accumulation after SAH + argon (CA1, 2.57 ± 2.35%; CA2, 1.89 ± 1.89%; CA3, 2.19 ± 1.99%; DG, 2.6 ± 2.24%) compared with untreated SAH animals (CA1, 5.48 ± 2.39%; CA2, 4.85 ± 4.06%; CA3, 4.22 ± 3.01%; dentate gyrus (DG), 3.82 ± 3.23%; p = 0.0007). The neuroscore assessment revealed no treatment benefit after SAH compared with baseline (p = 0.385). CONCLUSION In the present study, neuroprotective effects of argon occurred early after SAH. Because neurological deterioration was similar in the preadministration and absence of argon, it remains uncertain if neuroprotective effects translate in improved outcome over time.
Collapse
Affiliation(s)
- Harald Krenzlin
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Dominik M A Wesp
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anika A E Korinek
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Henning Ubbens
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Jakob Volland
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Julia Masomi-Bornwasser
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Katharina J Weber
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dominik Mole
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Clemens Sommer
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Beat Alessandri
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Naureen Keric
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| |
Collapse
|
3
|
Karam M, Ortega-Gascó A, Tornero D. Emerging Insights into Brain Inflammation: Stem-Cell-Based Approaches for Regenerative Medicine. Int J Mol Sci 2025; 26:3275. [PMID: 40244116 PMCID: PMC11989304 DOI: 10.3390/ijms26073275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Neuroinflammation is a complex immune response triggered by brain injury or pathological stimuli, and is highly exacerbated in neurodegenerative diseases. It plays a dual role in the central nervous system, promoting repair in acute stages while aggravating disease progression by contributing to neuronal loss, synaptic dysfunction, and glial dysregulation in chronic phases. Inflammatory responses are mainly orchestrated by microglia and infiltrated monocytes, which, when dysregulated, not only harm existing neurons, but also impair the survival and differentiation of neural stem and progenitor cells in the affected brain regions. Modulating neuroinflammation is crucial for harnessing its protective functions while minimizing its detrimental effects. Current therapeutic strategies focus on fine-tuning inflammatory responses through pharmacological agents, bioactive molecules, and stem cell-based therapies. These approaches aim to restore immune homeostasis, support neuroprotection, and promote regeneration in various neurological disorders. However, animal models sometimes fail to reproduce human-specific inflammatory responses in the brain. In this context, stem-cell-derived models provide a powerful tool to study neuroinflammatory mechanisms in a patient-specific and physiologically relevant context. These models facilitate high-throughput screening, personalized medicine, and the development of targeted therapies while addressing the limitations of traditional animal models, paving the way for more targeted and effective treatments.
Collapse
Affiliation(s)
- Marie Karam
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Alba Ortega-Gascó
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Daniel Tornero
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
4
|
Dai W, Alavi R, Li J, Carreno J, Pahlevan NM, Kloner RA. Empagliflozin demonstrates neuroprotective and cardioprotective effects by reducing ischemia/reperfusion damage in rat models of ischemic stroke and myocardial infarction. Sci Rep 2025; 15:8986. [PMID: 40089564 PMCID: PMC11910632 DOI: 10.1038/s41598-025-93483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors have demonstrated potential neuroprotective and cardioprotective effects in preliminary studies. This study evaluates the efficacy of empagliflozin (EMPA) in reducing ischemia/reperfusion damage in both the brain and heart using rat models. Ischemic stroke and myocardial infarction (MI) were induced in male Sprague-Dawley rats, which were randomized into three groups: (1) Control (no EMPA), (2) Acute treatment (EMPA, 10 mg/kg IV, administered 10 min before ischemia and 1 min before reperfusion), and (3) Chronic treatment (EMPA, 20 mg/kg in food for 7 days before ischemia). Stroke was induced by middle cerebral artery occlusion (MCAO) for one hour, followed by 3 h of reperfusion, and MI was induced by left coronary artery occlusion for 30 min, followed by 3 h of reperfusion. Brain and heart tissues were analyzed for anatomic size of myocardial infarction and stroke. In the brain, cerebral infarction was significantly smaller in both EMPA treatment groups compared to controls (acute: 3.7 ± 1.2%, chronic: 6.9 ± 2.1% vs. control: 14.5 ± 2.5%, p < 0.05). Edema was also reduced in the EMPA groups (acute: 5.5 ± 0.9%, chronic: 5.9 ± 0.8% vs. control: 9.6 ± 1.2%, p < 0.05). In the heart, MI size was significantly reduced in both EMPA groups (acute: 46.9 ± 2.0%, chronic: 48.8 ± 5.8% vs. control: 70.0 ± 2.6%, p < 0.05), and no-reflow size was smaller in the EMPA groups (acute: 36.3 ± 3.3%, chronic: 33.9 ± 4.3% vs. control: 53.4 ± 3.3%, p < 0.05). EMPA treatment, both acute and chronic, significantly reduces cerebral infarct volume and edema, as well as myocardial infarct size and no-reflow in rat models of ischemic stroke and myocardial ischemia/reperfusion, indicating substantial neuroprotective and cardioprotective effects.
Collapse
Affiliation(s)
- Wangde Dai
- Huntington Medical Research Institutes, HMRI Cardiovascular Research Institute, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA.
- Division of Cardiovascular Medicine, Department of Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA.
| | - Rashid Alavi
- Huntington Medical Research Institutes, HMRI Cardiovascular Research Institute, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
- Department of Medical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA
| | - Jiajun Li
- Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Ave. Room 400, Los Angeles, CA, 90089, USA
| | - Juan Carreno
- Huntington Medical Research Institutes, HMRI Cardiovascular Research Institute, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
| | - Niema M Pahlevan
- Huntington Medical Research Institutes, HMRI Cardiovascular Research Institute, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
- Division of Cardiovascular Medicine, Department of Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Ave. Room 400, Los Angeles, CA, 90089, USA
| | - Robert A Kloner
- Huntington Medical Research Institutes, HMRI Cardiovascular Research Institute, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
- Division of Cardiovascular Medicine, Department of Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA
| |
Collapse
|
5
|
Pei D, Huang J, Chen S, Deng Q, Nie C, Zhu L, Zhang Y. The Study of the Protection Mechanism of Calycosin-7- O-β-d-Glucoside Against Oxygen-Glucose Deprivation/Reperfusion in HT22 Cells Based on Non-Targeted Metabolomics and Network Analysis. Molecules 2025; 30:549. [PMID: 39942654 PMCID: PMC11819903 DOI: 10.3390/molecules30030549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
The cell non-targeted metabolomics technique was used to investigate the potential mechanism of Caly-cosin-7-O-β-d-glucoside (CAG) against cell oxygen-glucose deprivation/reperfusion (OGD/R). The OGD/R-injured HT22 cell model was constructed. The cells were divided into control, OGD/R, Edaravone (EDA), CAG-L, CAG-M, and CAG-H groups. The protective effect of CAG on OGD/R-injured nerve cells and its potential mechanism was investigated by detecting ROS levels, apoptosis rate, glutamic acid (Glu), γ-aminobutyric acid (GABA), nitric oxide (NO), and combining with cell non-targeted metabolomics. The results showed that after OGD/R, ROS levels, apoptosis rate, Glu and NO concentrations were significantly increased, while the concentrations of GABA were decreased considerably, which improved in a dose-dependent manner after CAG intervention. Cell non-targeted metabolomics results showed that CAG can dramatically improve the metabolomic characteristics of OGD/R-injured HT22 cells. Through bioinformatics analysis and molecular docking, it was found that purine metabolism may be an important pathway for CAG to treat OGD/R injury, and key proteins screened may be important targets for improving OGD/R injury. Therefore, CAG may protect OGD/R-injured HT22 cells by inhibiting apoptosis and oxidative stress, improving energy supply and the metabolomic characteristics of OGD/R-injured HT22 cells by regulating purine metabolism.
Collapse
Affiliation(s)
- Die Pei
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (D.P.); (J.H.); (S.C.); (Q.D.); (C.N.)
| | - Jieyi Huang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (D.P.); (J.H.); (S.C.); (Q.D.); (C.N.)
| | - Shanru Chen
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (D.P.); (J.H.); (S.C.); (Q.D.); (C.N.)
| | - Qihui Deng
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (D.P.); (J.H.); (S.C.); (Q.D.); (C.N.)
| | - Cong Nie
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (D.P.); (J.H.); (S.C.); (Q.D.); (C.N.)
| | - Lixia Zhu
- Zhujiang Hospital of Southern Medical University, Guangzhou 510000, China
| | - Yingfeng Zhang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; (D.P.); (J.H.); (S.C.); (Q.D.); (C.N.)
| |
Collapse
|
6
|
Belenichev I, Bukhtiyarova N, Ryzhenko V, Makyeyeva L, Morozova O, Oksenych V, Kamyshnyi O. Methodological Approaches to Experimental Evaluation of Neuroprotective Action of Potential Drugs. Int J Mol Sci 2024; 25:10475. [PMID: 39408802 PMCID: PMC11477376 DOI: 10.3390/ijms251910475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The authors propose a novel approach to a comprehensive evaluation of neuroprotective effects using both in vitro and in vivo methods. This approach allows for the initial screening of numerous newly synthesized chemical compounds and substances from plant and animal sources while saving animal life by reducing the number of animals used in research. In vitro techniques, including mitochondrial suspensions and neuronal cell cultures, enable the assessment of neuroprotective activity, which can be challenging in intact organisms. The preliminary methods help outline the neuroprotection mechanism depending on the neurodestruction agent. The authors have validated a model of acute cerebrovascular accident, which simulates key cerebrovascular phenomena such as reduced cerebral blood flow, energy deficit, glutamate-calcium excitotoxicity, oxidative stress, and early gene expression. A significant advantage of this model is its ability to reproduce the clinical picture of cerebral ischemia: impaired motor activity; signs of neurological deficits (paresis, paralysis, etc.); as well as disturbances in attention, learning, and memory. Crucial to this approach is the selection of biochemical, molecular, and cellular markers to evaluate nerve tissue damage and characterize potential neuroprotective agents. Additionally, a comprehensive set of molecular, biochemical, histological, and immunohistochemical methods is proposed for evaluating neuroprotective effects and underlying mechanisms of potential pharmaceutical compounds.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Lyudmyla Makyeyeva
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Oksana Morozova
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
7
|
Zhang X, Pei J, Xue L, Zhao Z, Xu R, Zhang C, Zhang C, Fu L, Zhang X, Cui L. An-Gong-Niu-Huang-Wan (AGNHW) regulates cerebral blood flow by improving hypoperfusion, cerebrovascular reactivity and microcirculation disturbances after stroke. Chin Med 2024; 19:73. [PMID: 38778375 PMCID: PMC11112936 DOI: 10.1186/s13020-024-00945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The restoration of cerebrovascular regulation and improvement of cerebral blood flow in ischaemic regions are crucial for improving the clinical prognosis after stroke. An-Gong-Niu-Huang-Wan (AGNHW) is a famous traditional compound Chinese medicine that has been used for over 220 years to treat acute ischaemic stroke; however, its role in the regulation of cerebral blood flow is still unclear. The aim of the present study was to investigate the regulatory effect of AGNHW on cerebral blood flow and microcirculation after ischaemic stroke and to elucidate the underlying mechanisms involved. METHODS Male C57BL/6 mice were subjected to distal middle cerebral artery occlusion (dMCAO) and randomly assigned to the sham, MCAO, or AGNHW groups. AGNHW was administered intragastrically 1 h after dMCAO. The rotarod test was utilized to evaluate behavioural function; TTC was used to determine the infarct volume; and ischaemic injury was assessed by detecting brain levels of SOD, MDA and NO. Then, cortical perfusion and acetazolamide-induced cerebrovascular reactivity were assessed using laser speckle contrast imaging, and the velocity and flux of red blood cells in cortical capillaries were detected using two-photon laser scanning microscopy. In addition, we employed RNA-Seq to identify variations in gene expression profiles and assessed endothelium-dependent changes in microcirculatory dysfunction by measuring vasoactive mediator levels. RESULTS AGNHW significantly increased cerebral blood flow, reduced the infarct volume, and promoted functional recovery after cerebral ischaemia. AGNHW increased the velocity and flux of red blood cells in capillaries and improved cerebrovascular reactivity in the ischaemic cortex. Furthermore, AGNHW regulated endothelium-dependent microcirculation, as evidenced by decreases in the expression of endothelins (Edn1, Edn3 and Ednrb) and the ratios of brain and serum TXB2/6-keto-PGF1α and ET-1/CGRP. CONCLUSIONS AGNHW improved cerebral hypoperfusion, regulated cerebrovascular reactivity and attenuated microcirculatory dysfunction within the ischaemic cortex after stroke. This outstanding effect was achieved by modulating the expression of genes related to vascular endothelial cell function and regulating endothelium-dependent vasoactive mediators.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Jiamin Pei
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Luping Xue
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Zhe Zhao
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Renhao Xu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Cong Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Cong Zhang
- Department of Medical Service, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Lijie Fu
- Beijing Ruiweisi Pharmaceutical Technology Co., Ltd, Beijing, 100000, China
| | - Xiangjian Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China.
| | - Lili Cui
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China.
| |
Collapse
|
8
|
Arkelius K, Wendt TS, Andersson H, Arnou A, Gottschalk M, Gonzales RJ, Ansar S. LOX-1 and MMP-9 Inhibition Attenuates the Detrimental Effects of Delayed rt-PA Therapy and Improves Outcomes After Acute Ischemic Stroke. Circ Res 2024; 134:954-969. [PMID: 38501247 DOI: 10.1161/circresaha.123.323371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Acute ischemic stroke triggers endothelial activation that disrupts vascular integrity and increases hemorrhagic transformation leading to worsened stroke outcomes. rt-PA (recombinant tissue-type plasminogen activator) is an effective treatment; however, its use is limited due to a restricted time window and hemorrhagic transformation risk, which in part may involve activation of MMPs (matrix metalloproteinases) mediated through LOX-1 (lectin-like oxLDL [oxidized low-density lipoprotein] receptor 1). This study's overall aim was to evaluate the therapeutic potential of novel MMP-9 (matrix metalloproteinase 9) ± LOX-1 inhibitors in combination with rt-PA to improve stroke outcomes. METHODS A rat thromboembolic stroke model was utilized to investigate the impact of rt-PA delivered 4 hours poststroke onset as well as selective MMP-9 (JNJ0966) ±LOX-1 (BI-0115) inhibitors given before rt-PA administration. Infarct size, perfusion, and hemorrhagic transformation were evaluated by 9.4-T magnetic resonance imaging, vascular and parenchymal MMP-9 activity via zymography, and neurological function was assessed using sensorimotor function testing. Human brain microvascular endothelial cells were exposed to hypoxia plus glucose deprivation/reperfusion (hypoxia plus glucose deprivation 3 hours/R 24 hours) and treated with ±tPA and ±MMP-9 ±LOX-1 inhibitors. Barrier function was assessed via transendothelial electrical resistance, MMP-9 activity was determined with zymography, and LOX-1 and barrier gene expression/levels were measured using qRT-PCR (quantitative reverse transcription PCR) and Western blot. RESULTS Stroke and subsequent rt-PA treatment increased edema, hemorrhage, MMP-9 activity, LOX-1 expression, and worsened neurological outcomes. LOX-1 inhibition improved neurological function, reduced edema, and improved endothelial barrier integrity. Elevated MMP-9 activity correlated with increased edema, infarct volume, and decreased neurological function. MMP-9 inhibition reduced MMP-9 activity and LOX-1 expression. In human brain microvascular endothelial cells, LOX-1/MMP-9 inhibition differentially attenuated MMP-9 levels, inflammation, and activation following hypoxia plus glucose deprivation/R. CONCLUSIONS Our findings indicate that LOX-1 inhibition and ± MMP-9 inhibition attenuate negative aspects of ischemic stroke with rt-PA therapy, thus resulting in improved neurological function. While no synergistic effect was observed with simultaneous LOX-1 and MMP-9 inhibition, a distinct interaction is evident.
Collapse
Affiliation(s)
- Kajsa Arkelius
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| | - Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ (T.S.W., R.J.G.)
| | - Henrik Andersson
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| | - Anaële Arnou
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| | | | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ (T.S.W., R.J.G.)
| | - Saema Ansar
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| |
Collapse
|
9
|
Ran L, Wang P, Chen H, Li N, Zhou F, Zhao W, Ma Q, Xing Y. Compromised dynamic cerebral autoregulation is a hemodynamic marker for predicting poor prognosis even with good recanalization after endovascular thrombectomy. Brain Circ 2024; 10:77-84. [PMID: 38655440 PMCID: PMC11034450 DOI: 10.4103/bc.bc_83_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/30/2023] [Accepted: 12/22/2023] [Indexed: 04/26/2024] Open
Abstract
PURPOSE In patients undergoing endovascular thrombectomy (EVT) with acute ischemic stroke (AIS), dynamic cerebral autoregulation (dCA) may minimize neurological injury from blood pressure fluctuations. This study set out to investigate the function of dCA in predicting clinical outcomes following EVT. METHODS 43 AIS of the middle cerebral or internal carotid artery patients underwent with EVT, and 43 healthy individuals (controls) were enrolled in this case control research. The dCA was evaluated using transcranial Doppler 12 h and five days after EVT. The transfer function analysis was used to derive the dCA parameters, such as phase, gain, and coherence. The modified Rankin scale (mRS) at 3 months after EVT was used to assess the clinical outcomes. Thefavorable outcome group was defined with mRS ≤2 and the unfavorable outcome group was defined with mRS score of 3-6. Logistic regression analysis was performed to determine the risk factors of clinical outcomes. RESULTS A significant impairment in dCA was observed on the ipsilateral side after EVT, particularly in patients with unfavorable outcomes. After 5 days, the ipsilateral phase was associated with poor functional outcomes (adjusted odds ratio [OR] = 0.911, 95% confidence interval [CI]: 0.854-0.972; P = 0.005) and the area under the curve (AUC) (AUC, 0.878, [95% CI: 0.756-1.000] P < 0.001) (optimal cutoff, 35.0°). Phase change was an independent predictor of clinical outcomes from 12 h to 5 days after EVT (adjusted OR = 1.061, 95% CI: 1.016-1.109, P = 0.008). CONCLUSIONS dCA is impaired in patients with AIS after EVT. Change in dCA could be an independent factor related to the clinical outcomes.
Collapse
Affiliation(s)
- Liu Ran
- Department of Vascular Ultrasound, Xuanwu Hospital, Capital Medical University, Xicheng, Beijing, China
- Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Xicheng, Beijing, China
| | - Pingping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Xicheng, Beijing, China
| | - Hongxiu Chen
- Department of Vascular Ultrasound, Xuanwu Hospital, Capital Medical University, Xicheng, Beijing, China
- Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Xicheng, Beijing, China
| | - Na Li
- Department of Vascular Ultrasound, Xuanwu Hospital, Capital Medical University, Xicheng, Beijing, China
- Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Xicheng, Beijing, China
| | - Fubo Zhou
- Department of Vascular Ultrasound, Xuanwu Hospital, Capital Medical University, Xicheng, Beijing, China
- Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Xicheng, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Xicheng, Beijing, China
| | - Qingfeng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Xicheng, Beijing, China
| | - Yingqi Xing
- Department of Vascular Ultrasound, Xuanwu Hospital, Capital Medical University, Xicheng, Beijing, China
- Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Xicheng, Beijing, China
| |
Collapse
|
10
|
Wendt TS, Gonzales RJ. Ozanimod differentially preserves human cerebrovascular endothelial barrier proteins and attenuates matrix metalloproteinase-9 activity following in vitro acute ischemic injury. Am J Physiol Cell Physiol 2023; 325:C951-C971. [PMID: 37642239 DOI: 10.1152/ajpcell.00342.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Endothelial integrity is critical in mitigating a vicious cascade of secondary injuries following acute ischemic stroke (AIS). Matrix metalloproteinase-9 (MMP-9), a contributor to endothelial integrity loss, is elevated during stroke and is associated with worsened stroke outcome. We investigated the FDA-approved selective sphingosine-1-phosphate receptor 1 (S1PR1) ligand, ozanimod, on the regulation/activity of MMP-9 as well as endothelial barrier components [platelet endothelial cell adhesion molecule 1 (PECAM-1), claudin-5, and zonula occludens 1 (ZO-1)] in human brain microvascular endothelial cells (HBMECs) following hypoxia plus glucose deprivation (HGD). We previously reported that S1PR1 activation improves HBMEC integrity; however, mechanisms underlying S1PR1 involvement in endothelial cell barrier integrity have not been clearly elucidated. We hypothesized that ozanimod would attenuate an HGD-induced increase in MMP-9 activity that would concomitantly attenuate the loss of integral barrier components. Male HBMECs were treated with ozanimod or vehicle and exposed to 3 h of normoxia (21% O2) or HGD (1% O2). Immunoblotting, zymography, qRT-PCR, and immunocytochemical labeling techniques assessed processes related to MMP-9 and barrier markers. We observed that HGD acutely increased MMP-9 activity and reduced claudin-5 and PECAM-1 levels, and ozanimod attenuated these responses. In situ analysis, via PROSPER, suggested that attenuation of MMP-9 activity may be a primary factor in maintaining these integral barrier proteins. We also observed that HGD increased intracellular mechanisms associated with augmented MMP-9 activation; however, ozanimod had no effect on these select factors. Thus, we conclude that ozanimod has the potential to attenuate HGD-mediated decreases in HBMEC integrity in part by decreasing MMP-9 activity as well as preserving barrier properties.NEW & NOTEWORTHY We have identified a potential novel mechanism by which ozanimod, a selective sphingosine-1-phosphate receptor 1 (S1PR1) agonist, attenuates hypoxia plus glucose deprivation (HGD)-induced matrix metalloproteinase-9 (MMP-9) activity and disruptions in integral human brain endothelial cell barrier proteins. Our results suggest that ischemic-like injury elicits increased MMP-9 activity and alterations of barrier integrity proteins in human brain microvascular endothelial cells (HBMECs) and that ozanimod via S1PR1 attenuates these HGD-induced responses, adding to its therapeutic potential in cerebrovascular protection during the acute phase of ischemic stroke.
Collapse
Affiliation(s)
- Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| |
Collapse
|
11
|
Mi Z, Graham SH. Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury. Ageing Res Rev 2023; 86:101856. [PMID: 36681249 PMCID: PMC9992267 DOI: 10.1016/j.arr.2023.101856] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
UCHL1 is a multifunctional protein expressed at high concentrations in neurons in the brain and spinal cord. UCHL1 plays important roles in regulating the level of cellular free ubiquitin and redox state as well as the degradation of select proteins. This review focuses on the potential role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury and recovery. Subjects addressed in the review include 1) Normal physiological functions of UCHL1. 2) Posttranslational modification sites and splice variants that alter the function of UCHL1 and mouse models with mutations and deletions of UCHL1. 3) The hypothesized role and pathogenic mechanisms of UCHL1 in neurodegenerative diseases and brain injury. 4) Potential therapeutic strategies targeting UCHL1 in these disorders.
Collapse
Affiliation(s)
- Zhiping Mi
- Departments of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, United States.
| | - Steven H Graham
- Departments of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, United States.
| |
Collapse
|
12
|
Sunil S, Jiang J, Shah S, Kura S, Kilic K, Erdener SE, Ayata C, Devor A, Boas DA. Neurovascular coupling is preserved in chronic stroke recovery after targeted photothrombosis. Neuroimage Clin 2023; 38:103377. [PMID: 36948140 PMCID: PMC10034641 DOI: 10.1016/j.nicl.2023.103377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Functional neuroimaging, which measures hemodynamic responses to brain activity, has great potential for monitoring recovery in stroke patients and guiding rehabilitation during recovery. However, hemodynamic responses after stroke are almost always altered relative to responses in healthy subjects and it is still unclear if these alterations reflect the underlying brain physiology or if the alterations are purely due to vascular injury. In other words, we do not know the effect of stroke on neurovascular coupling and are therefore limited in our ability to use functional neuroimaging to accurately interpret stroke pathophysiology. To address this challenge, we simultaneously captured neural activity, through fluorescence calcium imaging, and hemodynamics, through intrinsic optical signal imaging, during longitudinal stroke recovery. Our data suggest that neurovascular coupling was preserved in the chronic phase of recovery (2 weeks and 4 weeks post-stoke) and resembled pre-stroke neurovascular coupling. This indicates that functional neuroimaging faithfully represents the underlying neural activity in chronic stroke. Further, neurovascular coupling in the sub-acute phase of stroke recovery was predictive of long-term behavioral outcomes. Stroke also resulted in increases in global brain oscillations, which showed distinct patterns between neural activity and hemodynamics. Increased neural excitability in the contralesional hemisphere was associated with increased contralesional intrahemispheric connectivity. Additionally, sub-acute increases in hemodynamic oscillations were associated with improved sensorimotor outcomes. Collectively, these results support the use of hemodynamic measures of brain activity post-stroke for predicting functional and behavioral outcomes.
Collapse
Affiliation(s)
- Smrithi Sunil
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - John Jiang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Shashwat Shah
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sreekanth Kura
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kivilcim Kilic
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Cenk Ayata
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Abstract
Despite enormous advances, cardiovascular disorders are still a major threat to global health and are responsible for one-third of deaths worldwide. Research for new therapeutics and the investigation of their effects on vascular parameters is often limited by species-specific pathways and a lack of high-throughput methods. The complex 3-dimensional environment of blood vessels, intricate cellular crosstalks, and organ-specific architectures further complicate the quest for a faithful human in vitro model. The development of novel organoid models of various tissues such as brain, gut, and kidney signified a leap for the field of personalized medicine and disease research. By utilizing either embryonic- or patient-derived stem cells, different developmental and pathological mechanisms can be modeled and investigated in a controlled in vitro environment. We have recently developed self-organizing human capillary blood vessel organoids that recapitulate key processes of vasculogenesis, angiogenesis, and diabetic vasculopathy. Since then, this organoid system has been utilized as a model for other disease processes, refined, and adapted for organ specificity. In this review, we will discuss novel and alternative approaches to blood vessel engineering and explore the cellular identity of engineered blood vessels in comparison to in vivo vasculature. Future perspectives and the therapeutic potential of blood vessel organoids will be discussed.
Collapse
Affiliation(s)
- Kirill Salewskij
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna (K.S., J.M.P.).,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Austria (K.S.)
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna (K.S., J.M.P.).,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada (J.M.P.)
| |
Collapse
|
14
|
The Mitochondrial Enzyme 17βHSD10 Modulates Ischemic and Amyloid-β-Induced Stress in Primary Mouse Astrocytes. eNeuro 2022; 9:ENEURO.0040-22.2022. [PMID: 36096650 PMCID: PMC9536859 DOI: 10.1523/eneuro.0040-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Severe brain metabolic dysfunction and amyloid-β accumulation are key hallmarks of Alzheimer's disease (AD). While astrocytes contribute to both pathologic mechanisms, the role of their mitochondria, which is essential for signaling and maintenance of these processes, has been largely understudied. The current work provides the first direct evidence that the mitochondrial metabolic switch 17β-hydroxysteroid dehydrogenase type 10 (17βHSD10) is expressed and active in murine astrocytes from different brain regions. While it is known that this protein is overexpressed in the brains of AD patients, we found that 17βHSD10 is also upregulated in astrocytes exposed to amyloidogenic and ischemic stress. Importantly, such catalytic overexpression of 17βHSD10 inhibits mitochondrial respiration during increased energy demand. This observation contrasts with what has been found in neuronal and cancer model systems, which suggests astrocyte-specific mechanisms mediated by the protein. Furthermore, the catalytic upregulation of the enzyme exacerbates astrocytic damage, reactive oxygen species (ROS) generation and mitochondrial network alterations during amyloidogenic stress. On the other hand, 17βHSD10 inhibition through AG18051 counters most of these effects. In conclusion, our data represents novel insights into the role of astrocytic mitochondria in metabolic and amyloidogenic stress with implications of 17βHSD10 in multiple neurodegenerative mechanisms.
Collapse
|
15
|
Asgari Taei A, Khodabakhsh P, Nasoohi S, Farahmandfar M, Dargahi L. Paracrine Effects of Mesenchymal Stem Cells in Ischemic Stroke: Opportunities and Challenges. Mol Neurobiol 2022; 59:6281-6306. [PMID: 35922728 DOI: 10.1007/s12035-022-02967-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
It is well acknowledged that neuroprotective effects of transplanted mesenchymal stem cells (MSCs) in ischemic stroke are attributed to their paracrine-mediated actions or bystander effects rather than to cell replacement in infarcted areas. This therapeutic plasticity is due to MSCs' ability to secrete a broad range of bioactive molecules including growth factors, trophic factors, cytokines, chemokines, and extracellular vesicles, overall known as the secretome. The secretome derivatives, such as conditioned medium (CM) or purified extracellular vesicles (EVs), exert remarkable advantages over MSC transplantation in stroke treating. Here, in this review, we used published information to provide an overview on the secretome composition of MSCs, underlying mechanisms of therapeutic effects of MSCs, and preclinical studies on MSC-derived products application in stroke. Furthermore, we discussed current advantages and challenges for successful bench-to-bedside translation.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Integrated Prediction Framework for Clinical Scores of Cognitive Functions in ESRD Patients. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8124053. [PMID: 35983157 PMCID: PMC9381242 DOI: 10.1155/2022/8124053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022]
Abstract
The clinical scores are applied to determine the stage of cognitive function in patients with end-stage renal disease (ESRD). However, accurate clinical scores are hard to come by. This paper proposed an integrated prediction framework with GPLWLSV to predict clinical scores of cognitive functions in ESRD patients. GPLWLSV incorporated three parts, graph theoretic algorithm (GTA) and principal component analysis (PCA), whale optimization algorithm with Levy flight (LWOA), and least squares support vector regression machine (LSSVRM). GTA was adopted to extract features from the brain functional networks in ESRD patients, while PCA was used to select features. LSSVRM was built to explore the relationship between the selected features and the clinical scores of ESRD patients. Whale optimization algorithm (WOA) was introduced to select better parameters of the kernel function in LSSVRM; it aims to improve the exploration competence of LSSVRM. Levy flight was used to optimize the ability to jump out of local optima in WOA and improve the convergence of coefficient vectors in WOA, which lead to an increase in the generalization ability and convergence speed of WOA. The results validated that the prediction accuracy of GPLWLSV was higher than that of several comparable frameworks, such as GPSV, GPLSV, and GPWLSV. In particular, the average of root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) between the predicted scores and the actual scores of ESRD patients was 2.40, 2.06, and 9.83%, respectively. The proposed framework not only can predict the clinical scores more accurately but also can capture imaging markers associated with decline of cognitive function. It helps to understand the potential relationship between structural changes in the brain and cognitive function of ESRD patients.
Collapse
|
17
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
18
|
Zhou W, Li S, Sun G, Song L, Feng W, Li R, Liu H, Dong Y, Chen S, Yang S, Li J, Li Y. Early Warning of Ischemic Stroke Based on Atherosclerosis Index Combined With Serum Markers. J Clin Endocrinol Metab 2022; 107:1956-1964. [PMID: 35349673 PMCID: PMC9202721 DOI: 10.1210/clinem/dgac176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Ischemic stroke (IS) is a serious public health problem worldwide, threatening human life and health. Atherosclerosis is the cause of stroke. At present, there are few selective indexes that can be used to evaluate atherosclerosis in the clinic; providers rely mainly on the atherosclerotic index (AI). Disturbance of lipid metabolism is considered to be a key event leading to IS. OBJECTIVE The purpose of this study was to discover potential biomarkers in the serum of atherosclerosis-induced IS, combined with the AI to provide early warning for the diagnosis of IS. METHODS In this study, we used nontargeted metabolomics based on ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) to measure the changes in serum metabolites in a group of patients with IS. To verify the reproducibility of candidate biomarkers in the population, we expanded the sample size. RESULTS Five metabolites were identified, including sphingomyelin (18:0/14:0), 1-Methylpyrrolinium, PC (18:0/18:0), LysoPC (18:0/0:0), and PC (18: 2/18:2). The combination of these 5 metabolic markers has good diagnostic and predictive ability, and the change level of these metabolites is significantly related to IS. Our results also indicate that changes in glycerophospholipid metabolism may indicate an early risk of IS development. CONCLUSION These findings may contribute to the development of new diagnostic methods of potential biomarkers in serum combined with the AI, thereby providing early warning for the diagnosis of atherosclerosis-induced IS, and may provide a new insights for pathogenesis in IS.
Collapse
Affiliation(s)
- Wenjie Zhou
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Shanze Li
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Guijiang Sun
- Department of Kidney Disease and Blood Purification, Tianjin Institute of Urology, Tianjin Medical University Second Hospital, Hexi District, Tianjin 300211, China
| | - Lili Song
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Wenjun Feng
- Department of Neurology, Tianjin Medical University Second Hospital, Hexi District, Tianjin 300211, China
| | - Rui Li
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Hui Liu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yaqian Dong
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Siyu Chen
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Shenshen Yang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Jing Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Xiqing District, Tianjin, Tianjin 300381, China
| | - Yubo Li
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tuanbo New City, Jinghai District, Tianjin 301617, China
| |
Collapse
|
19
|
Lee RHC, Wu CYC, Citadin CT, Couto E Silva A, Possoit HE, Clemons GA, Acosta CH, de la Llama VA, Neumann JT, Lin HW. Activation of Neuropeptide Y2 Receptor Can Inhibit Global Cerebral Ischemia-Induced Brain Injury. Neuromolecular Med 2022; 24:97-112. [PMID: 34019239 PMCID: PMC8606017 DOI: 10.1007/s12017-021-08665-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022]
Abstract
Cardiopulmonary arrest (CA) can greatly impact a patient's life, causing long-term disability and death. Although multi-faceted treatment strategies against CA have improved survival rates, the prognosis of CA remains poor. We previously reported asphyxial cardiac arrest (ACA) can cause excessive activation of the sympathetic nervous system (SNS) in the brain, which contributes to cerebral blood flow (CBF) derangements such as hypoperfusion and, consequently, neurological deficits. Here, we report excessive activation of the SNS can cause enhanced neuropeptide Y levels. In fact, mRNA and protein levels of neuropeptide Y (NPY, a 36-amino acid neuropeptide) in the hippocampus were elevated after ACA-induced SNS activation, resulting in a reduced blood supply to the brain. Post-treatment with peptide YY3-36 (PYY3-36), a pre-synaptic NPY2 receptor agonist, after ACA inhibited NPY release and restored brain circulation. Moreover, PYY3-36 decreased neuroinflammatory cytokines, alleviated mitochondrial dysfunction, and improved neuronal survival and neurological outcomes. Overall, NPY is detrimental during/after ACA, but attenuation of NPY release via PYY3-36 affords neuroprotection. The consequences of PYY3-36 inhibit ACA-induced 1) hypoperfusion, 2) neuroinflammation, 3) mitochondrial dysfunction, 4) neuronal cell death, and 5) neurological deficits. The present study provides novel insights to further our understanding of NPY's role in ischemic brain injury.
Collapse
Affiliation(s)
- Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA
| | - Cristiane T Citadin
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alexandre Couto E Silva
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Harlee E Possoit
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA
| | - Garrett A Clemons
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Christina H Acosta
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Victoria A de la Llama
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA
| | - Jake T Neumann
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA.
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA.
| |
Collapse
|
20
|
Walenski M, Chen Y, Litcofsky KA, Caplan D, Kiran S, Rapp B, Parrish TB, Thompson CK. Perilesional Perfusion in Chronic Stroke-Induced Aphasia and Its Response to Behavioral Treatment Interventions. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:345-363. [PMID: 35685084 PMCID: PMC9169892 DOI: 10.1162/nol_a_00068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/02/2022] [Indexed: 05/28/2023]
Abstract
Stroke-induced alterations in cerebral blood flow (perfusion) may contribute to functional language impairments in chronic aphasia, particularly in perilesional tissue. Abnormal perfusion in this region may also serve as a biomarker for predicting functional improvements with behavioral treatment interventions. Using pseudo-continuous arterial spin labeling in magnetic resonance imaging (MRI), we examined perfusion in chronic aphasia, in perilesional rings in the left hemisphere and their right hemisphere homologues. In the left hemisphere we found a gradient pattern of decreasing perfusion closer to the lesion. The opposite pattern was found in the right hemisphere, with significantly increased perfusion close to the lesion homologue. Perfusion was also increased in the right hemisphere lesion homologue region relative to the surrounding tissue. We next examined changes in perfusion in two groups: one group who underwent MRI scanning before and after three months of a behavioral treatment intervention that led to significant language gains, and a second group who was scanned twice at a three-month interval without a treatment intervention. For both groups, there was no difference in perfusion over time in either the left or the right hemisphere. Moreover, within the treatment group pre-treatment perfusion scores did not predict treatment response; neither did pre-treatment perfusion predict post-treatment language performance. These results indicate that perfusion is chronically abnormal in both hemispheres, but chronically abnormal perfusion did not change in response to our behavioral treatment interventions, and did not predict responsiveness to language treatment.
Collapse
Affiliation(s)
- Matthew Walenski
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL
| | - Yufen Chen
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, IL
| | - Kaitlyn A. Litcofsky
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL
| | - David Caplan
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA
| | - Swathi Kiran
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL
- Department of Speech, Language, and Hearing, College of Health & Rehabilitation, Boston University, Boston, MA
| | - Brenda Rapp
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL
- Department of Cognitive Science, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD
| | - Todd B. Parrish
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, IL
| | - Cynthia K. Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL
| |
Collapse
|
21
|
Nogueira RC, Aries M, Minhas JS, H Petersen N, Xiong L, Kainerstorfer JM, Castro P. Review of studies on dynamic cerebral autoregulation in the acute phase of stroke and the relationship with clinical outcome. J Cereb Blood Flow Metab 2022; 42:430-453. [PMID: 34515547 PMCID: PMC8985432 DOI: 10.1177/0271678x211045222] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acute stroke is associated with high morbidity and mortality. In the last decades, new therapies have been investigated with the aim of improving clinical outcomes in the acute phase post stroke onset. However, despite such advances, a large number of patients do not demonstrate improvement, furthermore, some unfortunately deteriorate. Thus, there is a need for additional treatments targeted to the individual patient. A potential therapeutic target is interventions to optimize cerebral perfusion guided by cerebral hemodynamic parameters such as dynamic cerebral autoregulation (dCA). This narrative led to the development of the INFOMATAS (Identifying New targets FOr Management And Therapy in Acute Stroke) project, designed to foster interventions directed towards understanding and improving hemodynamic aspects of the cerebral circulation in acute cerebrovascular disease states. This comprehensive review aims to summarize relevant studies on assessing dCA in patients suffering acute ischemic stroke, intracerebral haemorrhage, and subarachnoid haemorrhage. The review will provide to the reader the most consistent findings, the inconsistent findings which still need to be explored further and discuss the main limitations of these studies. This will allow for the creation of a research agenda for the use of bedside dCA information for prognostication and targeted perfusion interventions.
Collapse
Affiliation(s)
- Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Department of Neurology, Hospital Nove de Julho, São Paulo, Brazil
| | - Marcel Aries
- Department of Intensive Care, University of Maastricht, Maastricht University Medical Center+, School for Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nils H Petersen
- Department of Neurology, Yale University School of Medicine, New Haven, USA
| | - Li Xiong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jana M Kainerstorfer
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
| | - Pedro Castro
- Department of Neurology, Faculty of Medicine of University of Porto, Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
22
|
Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 2021; 101:1487-1559. [PMID: 33769101 PMCID: PMC8576366 DOI: 10.1152/physrev.00022.2020] [Citation(s) in RCA: 443] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brain function critically depends on a close matching between metabolic demands, appropriate delivery of oxygen and nutrients, and removal of cellular waste. This matching requires continuous regulation of cerebral blood flow (CBF), which can be categorized into four broad topics: 1) autoregulation, which describes the response of the cerebrovasculature to changes in perfusion pressure; 2) vascular reactivity to vasoactive stimuli [including carbon dioxide (CO2)]; 3) neurovascular coupling (NVC), i.e., the CBF response to local changes in neural activity (often standardized cognitive stimuli in humans); and 4) endothelium-dependent responses. This review focuses primarily on autoregulation and its clinical implications. To place autoregulation in a more precise context, and to better understand integrated approaches in the cerebral circulation, we also briefly address reactivity to CO2 and NVC. In addition to our focus on effects of perfusion pressure (or blood pressure), we describe the impact of select stimuli on regulation of CBF (i.e., arterial blood gases, cerebral metabolism, neural mechanisms, and specific vascular cells), the interrelationships between these stimuli, and implications for regulation of CBF at the level of large arteries and the microcirculation. We review clinical implications of autoregulation in aging, hypertension, stroke, mild cognitive impairment, anesthesia, and dementias. Finally, we discuss autoregulation in the context of common daily physiological challenges, including changes in posture (e.g., orthostatic hypotension, syncope) and physical activity.
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- >National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Frank M Faraci
- Departments of Internal Medicine, Neuroscience, and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
23
|
Rizzo SA, Bartley O, Rosser AE, Newland B. Oxygen-glucose deprivation in neurons: implications for cell transplantation therapies. Prog Neurobiol 2021; 205:102126. [PMID: 34339808 DOI: 10.1016/j.pneurobio.2021.102126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022]
Abstract
Cell replacement therapies hold the potential to restore neuronal networks compromised by neurodegenerative diseases (such as Parkinson's disease or Huntington's disease), or focal tissue damage (via a stroke or spinal cord injury). Despite some promising results achieved to date, transplanted cells typically exhibit poor survival in the central nervous system, thus limiting therapeutic efficacy of the graft. Although cell death post-transplantation is likely to be multifactorial in causality, growing evidence suggests that the lack of vascularisation at the graft site, and the resulting ischemic host environment, may play a fundamental role in the fate of grafted cells. Herein, we summarise data showing how the deprivation of either oxygen, glucose, or both in combination, impacts the survival of neurons and review strategies which may improve graft survival in the central nervous system.
Collapse
Affiliation(s)
| | - Oliver Bartley
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK; Neuroscience and Mental Health Institute and B.R.A.I.N Unit, Cardiff University, School of Medicine, Hadyn Ellis Building, Maindy Road, CF24 4HQ, Cardiff, UK
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF10 3NB, Wales, UK; Leibniz Institute for Polymer Research Dresden (IPF), Hohe Straße 6, 01069, Dresden, Germany.
| |
Collapse
|
24
|
Ikram A, Javaid MA, Ortega-Gutierrez S, Selim M, Kelangi S, Anwar SMH, Torbey MT, Divani AA. Delayed Cerebral Ischemia after Subarachnoid Hemorrhage. J Stroke Cerebrovasc Dis 2021; 30:106064. [PMID: 34464924 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106064] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
Delayed cerebral ischemia (DCI) is the most feared complication of aneurysmal subarachnoid hemorrhage (aSAH). It increases the mortality and morbidity associated with aSAH. Previously, large cerebral artery vasospasm was thought to be the sole major contributing factor associated with increased risk of DCI. Recent literature has challenged this concept. We conducted a literature search using PUBMED as the prime source of articles discussing various other factors which may contribute to the development of DCI both in the presence or absence of large cerebral artery vasospasm. These factors include microvascular spasm, micro-thrombosis, cerebrovascular dysregulation, and cortical spreading depolarization. These factors collectively result in inflammation of brain parenchyma, which is thought to precipitate early brain injury and DCI. We conclude that diagnostic modalities need to be refined in order to diagnose DCI more efficiently in its early phase, and newer interventions need to be developed to prevent and treat this condition. These newer interventions are currently being studied in experimental models. However, their effectiveness on patients with aSAH is yet to be determined.
Collapse
Affiliation(s)
- Asad Ikram
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | - Muhammad Ali Javaid
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | | | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Kelangi
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | | | - Michel T Torbey
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA.
| |
Collapse
|
25
|
Lashch NU, Kamchatnov PR, Fedorova TN, Muzychuk OA, Khacheva KK, Pizova NV, Malygin AU, Shavlovskaya OA, Fateeva VV, Nikulina KV, Abrosimov АV, Gerasimova YA, Glushkov KS, Lebedeva AV. Efficacy and Safety of Divaza for the Correction of Oxidative Disturbances in Patients with Cerebral Atherosclerosis: A Randomized Controlled Trial. Cerebrovasc Dis 2021; 50:472-482. [PMID: 34044407 DOI: 10.1159/000515233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The objective of this study was to determine if Divaza, a drug with nootropic and antioxidant effects, was safe and effective for the correction of oxidative disturbances and to stabilize cognitive impairment in patients with cerebral atherosclerosis. STUDY DESIGN The study design consisted of a 12-week multicenter, randomized, double-blind, placebo-controlled, prospective trial in parallel groups. SETTING The setting in which the study was conducted comprised 10 clinical centers across the Russian Federation. INTERVENTIONS Patients were randomized into 2 groups and instructed to take either 2 tablets of the study drug or a placebo 3 times per day in conjunction with basic therapy. OUTCOMES The primary outcome was a change in the average endogenous antioxidant potential after the completion of the study. The blood indicators of the oxidative stress (OS) were analyzed at the baseline and then after 12 weeks of therapy using iron-induced chemiluminescence analysis. The Montreal cognitive assessment test was used as a secondary outcome measure to evaluate cognitive impairment at the end of the study. RESULTS 124 outpatients with a mean age of 60.7 ± 7.6 years were enrolled and randomly assigned to receive Divaza (n = 65) or a placebo (n = 59). An improvement of cognitive function was observed in all patients of the Divaza group at the end of the treatment; this was significantly better than the placebo group (100 [100] vs. 89.5 [89.1]%, respectively, p = 0.0272 [p = 0.0128]). The administration of Divaza restored the activity of the endogenous antioxidant system. The change in the average level of lipoprotein resistance to oxidation after 12 weeks of therapy, compared to the baseline, was significantly higher in the Divaza group (14.8 ± 14.7 [14.8 ± 14.7] seconds latent period vs. 6.4 ± 16.9 [6.9 ± 16.7] seconds in the placebo group (p = 0.007 [p = 0.0107]). CONCLUSIONS Divaza is a safe and effective therapeutic option for attenuating OS and recovery of cognitive impairment in patients with cerebral atherosclerosis.
Collapse
Affiliation(s)
- Nataliia U Lashch
- Pirogov Russian National Research Medical University, Moscow, Russian Federation.,Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
| | - Pavel R Kamchatnov
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | | | | | | | | | | | - Olga A Shavlovskaya
- Autonomous Nonprofit Organization of Higher Education «International University of Restorative Medicine», Moscow, Russian Federation
| | - Victoria V Fateeva
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation
| | - Kseniya V Nikulina
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation
| | | | | | | | - Anna V Lebedeva
- Scientific Research Institute of Healthcare Organization and Medical Management of Moscow Department of Healthcare, State-Financed Institution of Moscow City, Moscow, Russian Federation
| |
Collapse
|
26
|
Wendt TS, Li YJ, Gonzales RJ. Ozanimod, an S1PR 1 ligand, attenuates hypoxia plus glucose deprivation-induced autophagic flux and phenotypic switching in human brain VSM cells. Am J Physiol Cell Physiol 2021; 320:C1055-C1073. [PMID: 33788630 DOI: 10.1152/ajpcell.00044.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vascular smooth muscle (VSM) cell phenotypic expression and autophagic state are dynamic responses to stress. Vascular pathologies, such as hypoxemia and ischemic injury, induce a synthetic VSM phenotype and autophagic flux resulting in a loss of vascular integrity and VSM cell death respectfully. Both clinical pilot and experimental stroke studies demonstrate that sphingosine-1-phosphate receptor (S1PR) modulation improves stroke outcome; however, specific mechanisms associated with a beneficial outcome at the level of the cerebrovasculature have not been clearly elucidated. We hypothesized that ozanimod, a selective S1PR type 1 ligand, will attenuate VSM synthetic phenotypic expression and autophagic flux in primary human brain VSM cells following acute hypoxia plus glucose deprivation (HGD; in vitro ischemic-like injury) exposure. Cells were treated with ozanimod and exposed to normoxia or HGD. Crystal violet staining, standard immunoblotting, and immunocytochemical labeling techniques assessed cellular morphology, vacuolization, phenotype, and autophagic state. We observed that HGD temporally decreased VSM cell viability and concomitantly increased vacuolization, both of which ozanimod reversed. HGD induced a simultaneous elevation and reduction in levels of pro- and antiautophagic proteins respectfully, and ozanimod attenuated this response. Protein levels of VSM phenotypic biomarkers, smoothelin and SM22, were decreased following HGD. Furthermore, we observed an HGD-induced epithelioid and synthetic morphological appearance accompanied by disorganized cytoskeletal filaments, which was rescued by ozanimod. Thus, we conclude that ozanimod, a selective S1PR1 ligand, protects against acute HGD-induced phenotypic switching and promotes cell survival, in part, by attenuating HGD-induced autophagic flux thus improving vascular patency in response to acute ischemia-like injury.
Collapse
Affiliation(s)
- Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Yu Jing Li
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| |
Collapse
|
27
|
Kwapong WR, Yan Y, Hao Z, Wu B. Reduced Superficial Capillary Density in Cerebral Infarction Is Inversely Correlated With the NIHSS Score. Front Aging Neurosci 2021; 13:626334. [PMID: 33716714 PMCID: PMC7947804 DOI: 10.3389/fnagi.2021.626334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/02/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose: The retina and the brain share similar neuronal and microvascular features, therein we aimed to assess the structural and microvascular changes in the macula and choriocapillaris (CC) in patients with cerebral infarction when compared with healthy controls using optical coherence tomography angiography (OCTA). Methods: OCTA was used to image and measure the capillary density in the radial peripapillary capillaries (RPC), superficial capillary plexus (SCP), deep capillary plexus (DCP), choriocapillaris (CC), and mean area of the foveal avascular zone (FAZ) in all participants. Twenty-two cerebral infarction patients based on their magnetic resonance imaging (MRI) and 25 healthy controls were included in our study. Results: Density of the RPC (P < 0.001), SCP (P = 0.001), DCP (P < 0.001) and CC (P < 0.001) were significantly reduced in cerebral infarction patients when compared with healthy controls, respectively. Retinal thickness measurements (P < 0.05) were significantly reduced in cerebral infarction patients when compared with healthy controls. The mean FAZ area was significantly larger (P = 0.012) in cerebral infarction patients when compared with healthy controls. National Institute of HealthStroke Scale (NIHSS) inversely correlated with SCP density in cerebral infarction patients (Rho = −0.409, P = 0.001). Receiver operating characteristics curve analysis showed that the blood flow of the choriocapillaris had the highest index [area under the receiver operatingcharacteristic (AUROC) = 0.964] to discriminate cerebral infarction patients from the healthy controls. Conclusions: Our study suggests that cerebral microcirculation dysfunction which occurs in cerebral infarction is mirrored in the macula and choroidal microcirculation. OCTA has the potential to non-invasively characterize the macula and choroidal changes in cerebral infarction in vivo.
Collapse
Affiliation(s)
| | - Yuying Yan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Zilong Hao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Hughes TF, Liu A, Jacobsen E, Rosano C, Berman SB, Chang CCH, Ganguli M. Exercise and the Risk of Mild Cognitive Impairment: Does the Effect Depend on Vascular Factors? Alzheimer Dis Assoc Disord 2021; 35:30-35. [PMID: 32960854 PMCID: PMC9350907 DOI: 10.1097/wad.0000000000000410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Although exercise is associated with a lower risk for mild cognitive impairment (MCI), it is unclear whether its protective effect depends on the presence or absence of vascular factors. METHODS In an exploratory study of data from a population-based cohort, 1254 participants aged 65+ years were followed for 10 years for incident MCI. The main effect of baseline total minutes of exercise per week (0 vs. 1 to 149 vs. 150+), and its interaction with several vascular factors, on risk for incident MCI was examined using Cox proportional hazards regression models, adjusting for demographics. RESULTS Compared with no exercise, 1 to 149 minutes [hazard ratio (HR)=0.90; 95% confidence interval (95% CI), 0.69-1.16] and 150 or more minutes per week (HR=0.84; 95% CI, 0.66-1.07) of exercise lowered risk for incident MCI in a dose-dependent manner. The majority of interactions were not statistically significant, but risk reduction effect sizes of <0.75 suggested that exercise may have stronger effects among those without high cholesterol, never smoking, and not currently consuming alcohol; also, those with arrhythmia, coronary artery disease, and heart failure. Overall, there was a pattern of exercise being associated with lower MCI risk among those without vascular factors. CONCLUSIONS Spending more time engaging in exercise each week may offer protection against MCI in late life, with some variation among those with different vascular conditions and risk factors. Our findings may help target subgroups for exercise recommendations and interventions, and also generate hypotheses to test regarding underlying mechanisms.
Collapse
Affiliation(s)
- Tiffany F. Hughes
- Youngstown State University, Youngstown, OH, United States of America
| | - Anran Liu
- University of Pittsburgh, Graduate School of Public Health, Department of Biostatistics, Pittsburgh, PA, United States of America
| | - Erin Jacobsen
- University of Pittsburgh, School of Medicine, Department of Psychiatry, Pittsburgh, PA, United States of America
| | - Caterina Rosano
- University of Pittsburgh, Graduate School of Public Health, Department of Epidemiology, Pittsburgh, PA, United State of America
| | - Sarah B. Berman
- University of Pittsburgh, School of Medicine, Department of Neurology, Pittsburgh, PA, United States of America
| | - Chung-Chou H. Chang
- University of Pittsburgh, Graduate School of Public Health, Department of Biostatistics, Pittsburgh, PA, United States of America
- University of Pittsburgh, School of Medicine, Department of Medicine, Pittsburgh, PA, United States of America
| | - Mary Ganguli
- University of Pittsburgh, School of Medicine, Department of Psychiatry, Pittsburgh, PA, United States of America
- University of Pittsburgh, Graduate School of Public Health, Department of Epidemiology, Pittsburgh, PA, United State of America
- University of Pittsburgh, School of Medicine, Department of Neurology, Pittsburgh, PA, United States of America
| |
Collapse
|
29
|
Liu Y, Guo Y. Activation of nucleotide-binding oligomerization domain-containing protein 1 by diaminopimelic acid contributes to cerebral ischemia-induced cognitive impairment. Neurosci Lett 2020; 743:135547. [PMID: 33352290 DOI: 10.1016/j.neulet.2020.135547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 01/18/2023]
Abstract
Cerebral ischemia-reperfusion (I/R)-induced brain tissue injury is a major obstacle for acute stroke management. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is reported to play a critical role in the regulation of myocardial or hepatic I/R injury. However, its role in cerebral I/R remains elusive. The mouse model of middle cerebral artery occlusion (MCAO) was applied in the study. The cerebral I/R mice were received either PBS or diaminopimelic acid (DAP)-pretreatment. All sham, MCAO, and MCAO + DAP mice were subject to the neurological behavior tests. The proinflammatory cytokines and autophagy-related proteins were determined by ELISA, RT-qPCR, and Western blot analysis, respectively. We found that NOD1 was substantially upregulated in the hippocampus of MCAO mice. DAP treatment significantly enhanced proinflammatory cytokine production and autophagy-related protein expression, leading to enlarged cerebral infarction size and poor neurological performance in MCAO + DAP mice compared to MCAO mice. We concluded that activation of NOD1 promotes cerebral I/R injury suggesting that NOD1 may serve as a promising target for alleviating the adverse effects of cerebral I/R.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, Dongzhimen Hospital Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100000, China
| | - Ying Guo
- Department of Anesthesiology, Dongzhimen Hospital Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100000, China.
| |
Collapse
|
30
|
Balion Z, Ramanauskienė K, Jekabsone A, Majienė D. The Role of Mitochondria in Brain Cell Protection from Ischaemia by Differently Prepared Propolis Extracts. Antioxidants (Basel) 2020; 9:antiox9121262. [PMID: 33322707 PMCID: PMC7763930 DOI: 10.3390/antiox9121262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are both the primary targets and mediators of ischaemic damage in brain cells. Insufficient oxygen causes reactive oxygen species that damage the mitochondria, leading to the loss of functionality and viability of highly energy-demanding neurons. We have recently found that aqueous (AqEP), polyethylene glycol-aqueous (Pg-AqEP) and ethanolic propolis extracts (EEP) can modulate mitochondria and ROS production in C6 cells of astrocytic origin. The aim of this study was to investigate the effect of the extracts on viability, mitochondrial efficiency and superoxide generation, and inflammatory cytokine release in primary rat cerebellar neuronal-glial cell cultures affected by ischaemia (mimicked by hypoxia +/- deoxyglucose). AqEP and Pg-AqEP (15-60 µg/mL of phenolic compounds, or PC) significantly increased neuronal viability in ischaemia-treated cultures, and this was accompanied by a reduction in mitochondrial superoxide levels. Less extended protection against ischaemia-induced superoxide production and death was exhibited by 2 to 4 µg/mL of PC EEP. Both Pg-AqEP and Ag-EP (but not EEP) significantly protected the cultures from hypoxia-induced elevation of TNF-α, IL-1β and IL-6. Only Pg-AqEP (but not AqEP or EEP) prevented hypoxia-induced loss of the mitochondrial basal and ATP-coupled respiration rate, and significantly increased the mitochondrial respiratory capacity. Summarising, the study revealed that hydrophilic propolis extracts might protect brain cells against ischaemic injury by decreasing the level of mitochondrial superoxide and preventing inflammatory cytokines, and, in the case of Pg-AqEP, by protecting mitochondrial function.
Collapse
Affiliation(s)
- Zbigniev Balion
- Laboratory of Pharmaceutical Sciences, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių ave. 13, LT 50162 Kaunas, Lithuania; (Z.B.); (A.J.)
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania
| | - Kristina Ramanauskienė
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, Sukilėlių ave. 13, LT 50162 Kaunas, Lithuania;
| | - Aistė Jekabsone
- Laboratory of Pharmaceutical Sciences, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių ave. 13, LT 50162 Kaunas, Lithuania; (Z.B.); (A.J.)
- Laboratory of Preclinical Drug Investigation, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių ave. 13, LT-50162 Kaunas, Lithuania
| | - Daiva Majienė
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, Sukilėlių ave. 13, LT 50162 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-615-23993
| |
Collapse
|
31
|
Acute administration of metformin prior to cardiac ischemia/reperfusion injury protects brain injury. Eur J Pharmacol 2020; 885:173418. [DOI: 10.1016/j.ejphar.2020.173418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 11/19/2022]
|
32
|
Hydrogen Protons Modulate Perivascular Axo–axonal Interactions in the Middle Cerebral Artery of Rats. J Cardiovasc Pharmacol 2020; 76:112-121. [DOI: 10.1097/fjc.0000000000000838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Nogueira RC, Lam MY, Llwyd O, Salinet ASM, Bor-Seng-Shu E, Panerai RB, Robinson TG. Cerebral autoregulation and response to intravenous thrombolysis for acute ischemic stroke. Sci Rep 2020; 10:10554. [PMID: 32601359 PMCID: PMC7324382 DOI: 10.1038/s41598-020-67404-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 06/02/2020] [Indexed: 11/20/2022] Open
Abstract
We hypothesized that knowledge of cerebral autoregulation (CA) status during recanalization therapies could guide further studies aimed at neuroprotection targeting penumbral tissue, especially in patients that do not respond to therapy. Thus, we assessed CA status of patients with acute ischemic stroke (AIS) during intravenous r-tPA therapy and associated CA with response to therapy. AIS patients eligible for intravenous r-tPA therapy were recruited. Cerebral blood flow velocities (transcranial Doppler) from middle cerebral artery and blood pressure (Finometer) were recorded to calculate the autoregulation index (ARI, as surrogate for CA). National Institute of Health Stroke Score was assessed and used to define responders to therapy (improvement of ≥ 4 points on NIHSS measured 24–48 h after therapy). CA was considered impaired if ARI < 4. In 38 patients studied, compared to responders, non-responders had significantly lower ARI values (affected hemisphere: 5.0 vs. 3.6; unaffected hemisphere: 5.4 vs. 4.4, p = 0.03) and more likely to have impaired CA (32% vs. 62%, p = 0.02) during thrombolysis. In conclusion, CA during thrombolysis was impaired in patients who did not respond to therapy. This variable should be investigated as a predictor of the response to therapy and to subsequent neurological outcome.
Collapse
Affiliation(s)
- Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, 01246-904, Brazil. .,Department of Neurology, Hospital Nove de Julho, São Paulo, Brazil.
| | - Man Y Lam
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Leicester, LE2 7LX, UK
| | - Osian Llwyd
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Leicester, LE2 7LX, UK
| | - Angela S M Salinet
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, 01246-904, Brazil
| | - Edson Bor-Seng-Shu
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, 01246-904, Brazil
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, LE3 9QP, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine Research Group, University of Leicester, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, LE3 9QP, UK
| |
Collapse
|
34
|
Inhibition of JNK Alleviates Chronic Hypoperfusion-Related Ischemia Induces Oxidative Stress and Brain Degeneration via Nrf2/HO-1 and NF- κB Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5291852. [PMID: 32617137 PMCID: PMC7315317 DOI: 10.1155/2020/5291852] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
Cerebral ischemia is one of the leading causes of neurological disorders. The exact molecular mechanism related to chronic unilateral cerebral ischemia-induced neurodegeneration and memory deficit has not been precisely elucidated. In this study, we examined the effect of chronic ischemia on the induction of oxidative stress and c-Jun N-terminal kinase-associated detrimental effects and unveiled the inhibitory effect of specific JNK inhibitor (SP600125) on JNK-mediated brain degeneration in adult mice. Our behavioral, biochemical, and immunofluorescence studies revealed that chronic ischemic injuries sustained increased levels of oxidative stress-induced active JNK for a long time, whereas SP600125 significantly reduced the elevated level of active JNK and further regulated Nrf2/HO-1 and NF-κB signaling, which have been confirmed in vivo. Neuroinflammatory mediators and loss of neuronal cells was significantly reduced with the administration of SP600125. Ischemic brain injury caused synaptic dysfunction and memory impairment in mice. However, these were significantly improved with SP600125. On the whole, these findings suggest that elevated ROS-mediated JNK is a key mediator in chronic ischemic conditions and has a crucial role in neuroinflammation, neurodegeneration, and memory dysfunction. Our findings suggest that chronic oxidative stress associated JNK would be a potential target in time-dependent studies of chronic ischemic conditions induced brain degeneration.
Collapse
|
35
|
Treadmill Exercise Improves Motor Function and Short-term Memory by Enhancing Synaptic Plasticity and Neurogenesis in Photothrombotic Stroke Mice. Int Neurourol J 2020; 24:S28-38. [PMID: 32482055 PMCID: PMC7285698 DOI: 10.5213/inj.2040158.079] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/28/2020] [Indexed: 02/02/2023] Open
Abstract
Purpose Thrombotic stroke is a type of ischemic stroke characterized by motor dysfunction and memory impairments. In the present study, the effect of treadmill exercise on motor function and short-term memory was evaluated in relation with synaptic plasticity in the mice with photothrombotic stroke. Methods Photothrombotic stroke was induced by cortical photothrombotic vascular occlusion. The mice in the treadmill exercise groups performed running on a motorized treadmill for 28 days. Motor function was determined using rota-rod test and foot fault test. Step-through avoidance task was conducted to evaluate short-term memory. Immunohistochemistry for 5-bromo-2′-deoxyuridine and doublecortin was conducted to detect new cell generation. Postsynaptic density protein 95, synaptophysin, brain-derived neurotrophic factor (BDNF), and tyrosine kinase B receptor (TrkB) were determined using western blot. The number of dendritic spines was determined using Golgi stain. Results Treadmill exercise improved motor function and short-term memory in mice with the photothrombotic stroke. The infarct size was reduced and the number of dendritic spines and expression of postsynaptic density protein 95 and synaptophysin in the peri-infarct cortex and hippocampus were increased by treadmill exercise in photothrombotic stroke mice. Treadmill exercise enhanced neurogenesis through increasing the expression of the hippocampal BDNF and TrkB in photothrombotic stroke mice. Conclusions Treadmill exercise improved motor function and short-term memory through increasing synaptic plasticity and neurogenesis in photothrombotic stroke mice. Treadmill exercise can be used as an effective treatment strategy to improve brain function related to stroke.
Collapse
|
36
|
Sabetghadam M, Mazdeh M, Abolfathi P, Mohammadi Y, Mehrpooya M. Evidence for a Beneficial Effect of Oral N-acetylcysteine on Functional Outcomes and Inflammatory Biomarkers in Patients with Acute Ischemic Stroke. Neuropsychiatr Dis Treat 2020; 16:1265-1278. [PMID: 32547030 PMCID: PMC7244239 DOI: 10.2147/ndt.s241497] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/01/2020] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Numerous preclinical studies have demonstrated the potential neuroprotective effects of N-acetylcysteine (NAC) in the treatment of brain ischemia. Accordingly, the present study aimed to assess the potential therapeutic effects of oral NAC in patients with acute ischemic stroke. PATIENTS AND METHODS In a randomized, double-blind, placebo-controlled trial study, 68 patients with acute ischemic stroke with the onset of symptoms less than 24 hours were randomly assigned to either the NAC-treated group or placebo-treated group. NAC and matched placebo were administrated by a 72-hour oral protocol (initially 4 grams loading dose and after on, 4 g in 4 equal divided doses for more 2 days). The primary outcomes were quantification of any neurologic deficit by the use of the National Institute of Health Stroke Scale (NIHSS) score and functional disability by the use of the modified Rankin scale (mRS) at 90 days after stroke. Additionally, serum levels of markers of oxidative stress and inflammation as a main mechanism of its action were assessed at baseline and the end of 3-day treatment protocol. RESULTS NAC-treated patients in comparison with placebo-treated patients showed a significantly lower mean NIHSS scores at day 90 after stroke. A favorable functional outcome which was defined as an mRS score of 0 or 1, also in favor of NAC compared to placebo was noted on day 90 after stroke (57.6% in the NAC-treated group compared with 28.6% in the placebo-treated group). Further, compared to the placebo, NAC treatment significantly decreased serum levels of proinflammatory biomarkers such as interleukin 6 (IL-6), soluble intercellular cell adhesion molecule-1 (sICAM-1), nitric oxide (NO), malondialdehyde (MDA), and neuron-specific enolase (NSE) and significantly increased serum levels of anti-oxidant biomarkers such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and total thiol groups (TTG). CONCLUSION The pattern of results suggests that oral NAC administration early after an acute ischemic stroke is associated with a better outcome profile in terms of acute neurological deficit and disability grade compared to placebo. NAC may improve neurological outcomes of patients with stroke at least in part by its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Maryam Sabetghadam
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdokht Mazdeh
- Department of Neurology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parnaz Abolfathi
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Younes Mohammadi
- Modeling of Noncommunicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
37
|
Rodriguez C, Agulla J, Delgado-Esteban M. Refocusing the Brain: New Approaches in Neuroprotection Against Ischemic Injury. Neurochem Res 2020; 46:51-63. [PMID: 32189131 DOI: 10.1007/s11064-020-03016-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/28/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
A new era for neuroprotective strategies is emerging in ischemia/reperfusion. This has forced to review the studies existing to date based in neuroprotection against oxidative stress, which have undoubtedly contributed to clarify the brain endogenous mechanisms, as well as to identify possible therapeutic targets or biomarkers in stroke and other neurological diseases. The efficacy of exogenous administration of neuroprotective compounds has been shown in different studies so far. However, something must be missing to get these treatments successfully applied in the clinical environment. Here, the mechanisms involved in neuronal protection against physiological level of ROS and the main neuroprotective signaling pathways induced by excitotoxic and ischemic stimuli are reviewed. Also, the endogenous ischemic tolerance in terms of brain self-protection mechanisms against subsequent cerebral ischemia is revisited to highlight how the preconditioning has emerged as a powerful tool to understand these phenomena. A better understanding of endogenous defense against exacerbated ROS and metabolism in nervous cells will therefore aid to design pharmacological antioxidants targeted specifically against oxidative damage induced by ischemic injury, but also might be very valuable for translational medicine.
Collapse
Affiliation(s)
- Cristina Rodriguez
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain.,Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
| | - Jesús Agulla
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain.,Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
| | - María Delgado-Esteban
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain. .,Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain. .,Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
38
|
Wen Y, Gu Y, Tang X, Hu Z. PINK1 overexpression protects against cerebral ischemia through Parkin regulation. ENVIRONMENTAL TOXICOLOGY 2020; 35:188-193. [PMID: 31654556 DOI: 10.1002/tox.22855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Mitochondrial dynamics and function are important for cell survival regulation under stress. In this study, we report that cerebral ischemia/reperfusion (I/R) injury significantly reduced mitochondrial function through reduced PTEN-induced kinase 1 (PINK1) expression, ATP (Adenosine triphosphate) levels, and increased oxidative stress compared to sham rats. PINK1 overexpression mice significantly improved mitochondrial function by increased mitochondrial complex I, II, and III activities and ATP levels with concomitant decline in reactive oxygen species levels. PINK1 overexpression mice after I/R injury significantly reduced apoptosis through downregulation of cytochrome c, p53 expressions compared to cerebral I/R injury rats. Furthermore, we showed from parkin siRNA studies that PINK1 regulated phosphorylation parkin is critical to the protection against cerebral I/R injury. Altogether, we show that PINK1 mediated parkin regulation is key to the protection against cerebral I/R injury through regulation of mitochondrial function and apoptosis.
Collapse
Affiliation(s)
- Youliang Wen
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Rehabilitation Therapy, Third Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yueming Gu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaodong Tang
- Department of Rehabilitation Therapy, Third Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ziwei Hu
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
39
|
Beta-blocker therapy and risk of vascular dementia: A population-based prospective study. Vascul Pharmacol 2020; 125-126:106649. [PMID: 31958512 DOI: 10.1016/j.vph.2020.106649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/29/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
There are a few studies that report cognitive impairment as a complication of treatment with beta- blockers. We aimed to evaluate the longitudinal association between use of beta-blockers, as a class, and incident risk of all-cause dementia, vascular dementia, Alzheimer's and mixed dementia in the prospective population-based Malmö Preventive Project. We included 18,063 individuals (mean age 68.2, males 63.4%) followed up for 84,506 person-years. Dementia cases were retrieved from the Swedish National Patient Register and validated by review of medical records and neuroimaging data. We performed propensity score matching analysis, resulting in 3720 matched pairs of beta-blocker users and non-users at baseline, and multivariable Cox proportional-hazards regression. Overall, 122 study participants (1.6%) were diagnosed with dementia during the follow-up. Beta-blocker therapy was independently associated with increased risk of developing vascular dementia, regardless of confounding factors (HR: 1.72, 95%CI 1.01-3.78; p = .048). Conversely, treatment with beta-blockers was not associated with increased risk of all-cause, Alzheimer's and mixed dementia (HR:1.15; 95%CI 0.80-1.66; p = .44; HR:0.85; 95%CI 0.48-1.54; P = .59 and HR:1.35; 95%CI 0.56-3.27; p = .50, respectively). We observed that use of beta-blockers, as a class, is associated with increased longitudinal risk of vascular dementia in the general elderly population, regardless of cardiovascular risk factors, prevalent or incident history of atrial fibrillation, stroke, coronary events and heart failure. Further studies are needed to confirm our findings in the general population and to explore the mechanisms underlying the relationship between use of beta- blockers and increased risk of vascular dementia.
Collapse
|
40
|
Sheng N, Zheng H, Li M, Li M, Wang Z, Peng Y, Yu H, Zhang J. 4,5 caffeoylquinic acid and scutellarin, identified by integrated metabolomics and proteomics approach as the active ingredients of Dengzhan Shengmai, act against chronic cerebral hypoperfusion by regulating glutamatergic and GABAergic synapses. Pharmacol Res 2020; 152:104636. [PMID: 31926275 DOI: 10.1016/j.phrs.2020.104636] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/06/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Dengzhan Shengmai (DZSM) is a proprietary Chinese medicine for remarkable curative effect as a treatment of cerebrovascular diseases, such as chronic cerebral hypoperfusion (CCH) and dementia based on evidence-based medicine, which have been widely used in the recovery period of ischemic cerebrovascular diseases. The purpose of this study was to investigate the active substances and mechanism of DZSM against CCH. Integrative metabolomic and proteomic studies were performed to investigate the neuroprotective effect of DZSM based on CCH model rats. The exposed components of DZSM in target brain tissue were analysed by a high-sensitivity HPLC-MS/MS method, and the exposed components were tested on a glutamate-induced neuronal excitatory damage cell model for the verification of active ingredients and mechanism of DZSM. Upon proteomic and metabolomic analysis, we observed a significant response in DZSM therapy from the interconnected neurotransmitter transport pathways including glutamatergic and GABAergic synapses. Additionally, DZSM had a significant regulatory effect on glutamate and GABA-related proteins including vGluT1 and vIAAT, suggested that DZSM could be involved in the vesicle transport of excitatory and inhibitory neurotransmitters in the pre-synaptic membrane. DZSM could also regulated the metabolism of arachidonic acid (AA), phospholipids, lysophospholipids and the expression of phospholipase A2 in post-synaptic membrane. The results of glutamate-induced neuronal excitatory injury cell model experiment for verification of active ingredients and mechanism of DZSM showed that there are five active ingredients, and among them, 4,5 caffeoylquinic acid (4,5-CQA) and scutellarin (SG) could simultaneously affect the GABAergic and glutamatergic synaptic metabolism as well as the related receptors, the NR2b subunit of NMDA and the α1 subunit of GABAA. The active ingredients of DZSM could regulate the over-expression of the NMDA receptor, enhance the expression of the GABAA receptor, resist glutamate-induced neuronal excitatory damage, and finally maintain the balance of excitatory and inhibitory synaptic metabolism dominated by glutamate and GABA. Furtherly, we compared the efficacy of DZSM, 4,5-CQA, SG and the synergistic effect of 4,5-CQA and SG, and the results showed that all the groups significantly improved cell viability compared with the model group (p < 0.001). The western blot results showed that DZSM, 4,5-CQA, SG and 4,5-CQA/SG co-administration groups could significantly regulate the expression of receptors (GABAA α1 and NR2b subunit of NMDA) and synaptic-related proteins, such as Sv2a, Syp, Slc17a7, bin1 and Prkca, respectively. These results proved DZSM and its active ingredients (4,5-CQA and SG) had the effect of regulating glutamatergic and GABAergic synapses. Finally, membrane potential FLIPR assay of 4,5-CQA and SG was used for GABRA1 activity test, and it was found that the two compounds could increase GABA-induced activation of GABRA1 receptor (GABA 10 μM) in a dose-dependent manner with EC50 value of 48.74 μM and 29.77 μM, respectively. Manual patch clamp method was used to record NMDA NR1/NR2B subtype currents, and scutellarin could cause around 10 % blockade at 10 μM (p<0.05 compared with the control group). These studies provided definitive clues of the mechanism for the neuroprotective effect of DZSM for CCH treatment and the active compounds regulating glutamatergic and GABAergic synapses. Additionally, 4,5-CQA and SG might be potential drugs for the treatment of neurodegenerative disease related to CCH.
Collapse
Affiliation(s)
- Ning Sheng
- Institute: State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Hao Zheng
- Institute: State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Min Li
- Institute: State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Menglin Li
- Institute: State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Zhe Wang
- Institute: State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Ying Peng
- Institute: State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Haibo Yu
- Institute: State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Jinlan Zhang
- Institute: State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
41
|
Chen JA, Scheltens P, Groot C, Ossenkoppele R. Associations Between Caffeine Consumption, Cognitive Decline, and Dementia: A Systematic Review. J Alzheimers Dis 2020; 78:1519-1546. [PMID: 33185612 PMCID: PMC7836063 DOI: 10.3233/jad-201069] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epidemiologic studies have provided inconclusive evidence for a protective effect of caffeine consumption on risk of dementia and cognitive decline. OBJECTIVE To summarize literature on the association between caffeine and 1) the risk of dementia and/or cognitive decline, and 2) cognitive performance in individuals with mild cognitive impairment (MCI) or dementia, and 3) to examine the effect of study characteristics by categorizing studies based on caffeine source, quantity and other possible confounders. METHODS We performed a systematic review of caffeine effects by assessing overall study outcomes; positive, negative or no effect. Our literature search identified 61 eligible studies performed between 1990 and 2020. RESULTS For studies analyzing the association between caffeine and the risk of dementia and/or cognitive decline, 16/57 (28%) studies including a total of 40,707/153,070 (27%) subjects reported positive study outcomes, and 30/57 (53%) studies including 71,219/153,070 (47%) subjects showed positive results that were dependent on study characteristics. Caffeine effects were more often positive when consumed in moderate quantities (100-400 mg/d), consumed in coffee or green tea, and in women. Furthermore, four studies evaluated the relationship between caffeine consumption and cognitive function in cognitively impaired individuals and the majority (3/4 [75% ]) of studies including 272/289 subjects (94%) reported positive outcomes. CONCLUSION This review suggests that caffeine consumption, especially moderate quantities consumed through coffee or green tea and in women, may reduce the risk of dementia and cognitive decline, and may ameliorate cognitive decline in cognitively impaired individuals.
Collapse
Affiliation(s)
- J.Q. Alida Chen
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Colin Groot
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| |
Collapse
|
42
|
Pan T, Zhu QJ, Xu LX, Ding X, Li JQ, Sun B, Hua J, Feng X. Knocking down TRPM2 expression reduces cell injury and NLRP3 inflammasome activation in PC12 cells subjected to oxygen-glucose deprivation. Neural Regen Res 2020; 15:2154-2161. [PMID: 32394974 PMCID: PMC7716023 DOI: 10.4103/1673-5374.282271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2) is an important ion channel that represents a potential target for treating injury caused by cerebral ischemia. However, it is unclear whether reducing TRPM2 expression can help repair cerebral injury, and if so what the mechanism underlying this process involves. This study investigated the protective effect of reducing TRPM2 expression on pheochromocytoma (PC12) cells injured by oxygen-glucose deprivation (OGD). PC12 cells were transfected with plasmid encoding TRPM2 shRNAS, then subjected to OGD by incubation in glucose-free medium under hypoxic conditions for 8 hours, after which the cells were allowed to reoxygenate for 24 hours. Apoptotic cells, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels were detected using flow cytometry. The relative expression of C-X-C motif chemokine ligand 2 (CXCL2), NACHT, LRR, and PYD domain-containing protein 3 (NALP3), and caspase-1 were detected using fluorescence-based quantitative reverse transcription-polymerase chain reaction and western blotting. The rates of apoptosis, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels in the TRPM2-shRNA + OGD group were lower than those observed in the OGD group. Taken together, these results suggest that TRPM2 knockdown reduces OGD-induced neuronal injury, potentially by inhibiting apoptosis and reducing oxidative stress levels, mitochondrial membrane potentials, intracellular calcium concentrations, and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Tao Pan
- Department of Neonatology, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Qiu-Jiao Zhu
- Department of Critical Care Medicine, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Li-Xiao Xu
- Institute of Pediatrics, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Xin Ding
- Department of Neonatology, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Jian-Qin Li
- Blood Section, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Bin Sun
- Department of Neonatology, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Jun Hua
- Department of Critical Care Medicine, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| |
Collapse
|
43
|
Wang Y, Guo W, Liu Y, Wang J, Fan M, Zhao H, Xie S, Xu Y. Investigating the Protective Effect of Gross Saponins of Tribulus terrestris Fruit against Ischemic Stroke in Rat Using Metabolomics and Network Pharmacology. Metabolites 2019; 9:metabo9100240. [PMID: 31640179 PMCID: PMC6835270 DOI: 10.3390/metabo9100240] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/11/2019] [Accepted: 10/19/2019] [Indexed: 12/16/2022] Open
Abstract
Stroke is one of the leading causes of death and long-term disability worldwide. Gross saponins of Tribulus terrestris fruit (GSTTF) has been used for neuroprotective therapy on convalescents of ischemic stroke. But the related therapeutic mechanisms have not yet been well investigated. This study aimed to investigate the protective effects of GSTTF on ischemic stroke using metabolomics coupled with network pharmacology analysis. The rat urine sample was collected and profiled by an LC-MS-based metabolomics approach. The pathway analysis was performed based on the highlighted biomarkers, then the network pharmacology approach was applied to screen the potential therapeutic targets of GSTTF. Metabolomics analysis showed that a series of metabolic perturbations occurred in the middle cerebral artery occlusion (MCAO) group compared with the sham group. Gross saponins of Tribulus terrestris fruit can change the MCAO-induced urine metabolic deviations in a reverse manner via regulating multiple metabolic pathways. Two proteins, inducible nitric oxide synthase (NOS2) and glycogen synthase kinase-3 beta (GSK3B), were highlighted by the network pharmacology analysis, which may be the potential therapeutic targets for the GSTTF against ischemic stroke. This study provides an overview of the mechanism of MCAO-induced ischemic stroke and investigates the efficacy of GSTTF in the treatment of ischemic stroke. Further study is needed to reveal its underlying mechanisms more clearly.
Collapse
Affiliation(s)
- Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Wenjun Guo
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China.
| | - Yue Liu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China.
| | - Jifeng Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Meiling Fan
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China.
| | - Hongyu Zhao
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China.
| | - Shengxu Xie
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China.
| | - Yajuan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China.
| |
Collapse
|
44
|
Ghosh MK, Chakraborty D, Sarkar S, Bhowmik A, Basu M. The interrelationship between cerebral ischemic stroke and glioma: a comprehensive study of recent reports. Signal Transduct Target Ther 2019; 4:42. [PMID: 31637020 PMCID: PMC6799849 DOI: 10.1038/s41392-019-0075-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Glioma and cerebral ischemic stroke are two major events that lead to patient death worldwide. Although these conditions have different physiological incidences, ~10% of ischemic stroke patients develop cerebral cancer, especially glioma, in the postischemic stages. Additionally, the high proliferation, venous thrombosis and hypercoagulability of the glioma mass increase the significant risk of thromboembolism, including ischemic stroke. Surprisingly, these events share several common pathways, viz. hypoxia, cerebral inflammation, angiogenesis, etc., but the proper mechanism behind this co-occurrence has yet to be discovered. The hypercoagulability and presence of the D-dimer level in stroke are different in cancer patients than in the noncancerous population. Other factors such as atherosclerosis and coagulopathy involved in the pathogenesis of stroke are partially responsible for cancer, and the reverse is also partially true. Based on clinical and neurosurgical experience, the neuronal structures and functions in the brain and spine are observed to change after a progressive attack of ischemia that leads to hypoxia and atrophy. The major population of cancer cells cannot survive in an adverse ischemic environment that excludes cancer stem cells (CSCs). Cancer cells in stroke patients have already metastasized, but early-stage cancer patients also suffer stroke for multiple reasons. Therefore, stroke is an early manifestation of cancer. Stroke and cancer share many factors that result in an increased risk of stroke in cancer patients, and vice-versa. The intricate mechanisms for stroke with and without cancer are different. This review summarizes the current clinical reports, pathophysiology, probable causes of co-occurrence, prognoses, and treatment possibilities.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Dipankar Chakraborty
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Sibani Sarkar
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata, 700 026 India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24, Paraganas, 743372 India
| |
Collapse
|
45
|
GC-MS-Based Metabolomics to Reveal the Protective Effect of Gross Saponins of Tribulus terrestris Fruit against Ischemic Stroke in Rat. Molecules 2019; 24:molecules24040793. [PMID: 30813246 PMCID: PMC6412276 DOI: 10.3390/molecules24040793] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022] Open
Abstract
Stroke is one of the most common neurological disorders and seriously threatens human life. Gross saponins of Tribulus terrestris fruit (GSTTF) are used for neuroprotective treatment on convalescents of ischemic stroke. However, the therapeutic effects and mechanisms have not yet well understood, especially from the metabolic perspective. In this study, the protective effect of GSTTF on ischemic stroke in a middle cerebral artery occlusion (MCAO) rat model was investigated by the GC-MS-based metabolomics approach. 2,3,5-triphenyltetrazolium chloride (TTC) staining of brain tissues showed that GSTTF significantly reduced the infarct area after MCAO surgery. Metabolomic profiling showed a series of metabolic perturbation occurs in ischemic stroke compared with sham group. GSTTF can reverse the MCAO-induced serum metabolic deviations by regulating multiple metabolic pathways including fatty acids metabolism, amino acids metabolism, and carbohydrates metabolism. The current study provided a useful approach for understanding the mechanism of MCAO-induced ischemic stroke and a reliable basis for evaluating the efficacy of GSTTF in the treatment of ischemic stroke.
Collapse
|
46
|
How reliable is cerebral blood flow to map changes in neuronal activity? Auton Neurosci 2019; 217:71-79. [PMID: 30744905 DOI: 10.1016/j.autneu.2019.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/17/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023]
Abstract
Neuroimaging techniques, such as functional MRI, map brain activity through hemodynamic-based signals, and are invaluable diagnostic tools in several neurological disorders such as stroke and dementia. Hemodynamic signals are normally precisely related to the underlying neuronal activity through neurovascular coupling mechanisms that ensure the supply of blood, glucose and oxygen to neurons at work. The knowledge of neurovascular coupling has greatly advanced over the last 30 years, it involves multifaceted interactions between excitatory and inhibitory neurons, astrocytes, and the microvessels. While the tight relationship between blood flow and neuronal activity forms a fundamental brain function, whether neurovascular coupling mechanisms are reliable across physiological and pathological conditions has been questioned. In this review, we interrogate the relationship between blood flow and neuronal activity during activation of different brain pathways: a sensory stimulation driven by glutamate, and stimulation of neuromodulatory pathways driven by acetylcholine or noradrenaline, and we compare the underlying neurovascular coupling mechanisms. We further question if neurovascular coupling mechanisms are affected by changing brain states, as seen in behavioral conditions of sleep, wakefulness, attention and in pathological conditions. Finally, we provide a short overview of how alterations of the brain vasculature could compromise the reliability of neurovascular coupling. Overall, while neurovascular coupling requires activation of common signalling pathways, alternate unique cascades exist depending on the activated pathways. Further studies are needed to fully elucidate the alterations in neurovascular coupling across brain states and pathological conditions.
Collapse
|
47
|
Sure VN, Sakamuri SSVP, Sperling JA, Evans WR, Merdzo I, Mostany R, Murfee WL, Busija DW, Katakam PVG. A novel high-throughput assay for respiration in isolated brain microvessels reveals impaired mitochondrial function in the aged mice. GeroScience 2018; 40:365-375. [PMID: 30074132 PMCID: PMC6136296 DOI: 10.1007/s11357-018-0037-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Cerebral blood flow (CBF) is uniquely regulated by the anatomical design of the cerebral vasculature as well as through neurovascular coupling. The process of directing the CBF to meet the energy demands of neuronal activity is referred to as neurovascular coupling. Microvasculature in the brain constitutes the critical component of the neurovascular coupling. Mitochondria provide the majority of ATP to meet the high-energy demand of the brain. Impairment of mitochondrial function plays a central role in several age-related diseases such as hypertension, ischemic brain injury, Alzheimer's disease, and Parkinson disease. Interestingly, microvessels and small arteries of the brain have been the focus of the studies implicating the vascular mechanisms in several age-related neurological diseases. However, the role of microvascular mitochondrial dysfunction in age-related diseases remains unexplored. To date, high-throughput assay for measuring mitochondrial respiration in microvessels is lacking. The current study presents a novel method to measure mitochondrial respiratory parameters in freshly isolated microvessels from mouse brain ex vivo using Seahorse XFe24 Analyzer. We validated the method by demonstrating impairments of mitochondrial respiration in cerebral microvessels isolated from old mice compared to the young mice. Thus, application of mitochondrial respiration studies in microvessels will help identify novel vascular mechanisms underlying a variety of age-related neurological diseases.
Collapse
Affiliation(s)
- Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jared A Sperling
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Wesley R Evans
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA
| | - Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Pharmacology, University of Mostar School of Medicine, Mostar, Bosnia and Herzegovina
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA.
| |
Collapse
|
48
|
Elmer J, Flickinger KL, Anderson MW, Koller AC, Sundermann ML, Dezfulian C, Okonkwo DO, Shutter LA, Salcido DD, Callaway CW, Menegazzi JJ. Effect of neuromonitor-guided titrated care on brain tissue hypoxia after opioid overdose cardiac arrest. Resuscitation 2018; 129:121-126. [PMID: 29679696 PMCID: PMC6054552 DOI: 10.1016/j.resuscitation.2018.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/23/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Brain tissue hypoxia may contribute to preventable secondary brain injury after cardiac arrest. We developed a porcine model of opioid overdose cardiac arrest and post-arrest care including invasive, multimodal neurological monitoring of regional brain physiology. We hypothesized brain tissue hypoxia is common with usual post-arrest care and can be prevented by modifying mean arterial pressure (MAP) and arterial oxygen concentration (PaO2). METHODS We induced opioid overdose and cardiac arrest in sixteen swine, attempted resuscitation after 9 min of apnea, and randomized resuscitated animals to three alternating 6-h blocks of standard or titrated care. We invasively monitored physiological parameters including brain tissue oxygen (PbtO2). During standard care blocks, we maintained MAP > 65 mmHg and oxygen saturation 94-98%. During titrated care, we targeted PbtO2 > 20 mmHg. RESULTS Overall, 10 animals (63%) achieved ROSC after a median of 12.4 min (range 10.8-21.5 min). PbtO2 was higher during titrated care than standard care blocks (unadjusted β = 0.60, 95% confidence interval (CI) 0.42-0.78, P < 0.001). In an adjusted model controlling for MAP, vasopressors, sedation, and block sequence, PbtO2 remained higher during titrated care (adjusted β = 0.75, 95%CI 0.43-1.06, P < 0.001). At three predetermined thresholds, brain tissue hypoxia was significantly less common during titrated care blocks (44 vs 2% of the block duration spent below 20 mmHg, P < 0.001; 21 vs 0% below 15 mmHg, P < 0.001; and, 7 vs 0% below 10 mmHg, P = .01). CONCLUSIONS In this model of opioid overdose cardiac arrest, brain tissue hypoxia is common and treatable. Further work will elucidate best strategies and impact of titrated care on functional outcomes.
Collapse
Affiliation(s)
- Jonathan Elmer
- Department of Emergency Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.
| | - Katharyn L Flickinger
- Department of Emergency Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Maighdlin W Anderson
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Allison C Koller
- Department of Emergency Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Matthew L Sundermann
- Department of Emergency Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Cameron Dezfulian
- Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Lori A Shutter
- Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - David D Salcido
- Department of Emergency Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Clifton W Callaway
- Department of Emergency Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - James J Menegazzi
- Department of Emergency Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
49
|
Cerebrovascular heterogeneity and neuronal excitability. Neurosci Lett 2018; 667:75-83. [DOI: 10.1016/j.neulet.2017.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/01/2023]
|
50
|
Shearer JA, Coker SJ, Carswell HVO. Detrimental effects of 2-arachidonoylglycerol on whole blood platelet aggregation and on cerebral blood flow after a focal ischemic insult in rats. Am J Physiol Heart Circ Physiol 2018; 314:H967-H977. [PMID: 29351454 DOI: 10.1152/ajpheart.00299.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
2-Arachidonoylglycerol (2-AG) is a major modulator of blood flow and platelet aggregation and a potential neuroprotectant. The present study investigated, for the first time, the effects of 2-AG on cerebral blood flow (CBF) in the first critical hours during middle cerebral artery occlusion (MCAO) and on platelet aggregation in rats. Adult male Sprague-Dawley rats ( n = 30) underwent permanent MCAO under isoflurane anesthesia and were randomly assigned to receive either 2-AG (6 mg/kg iv), monoacylglycerol lipase inhibitor JZL-184 (10 mg/kg iv), or vehicle ( n = 6 rats/group) treatment. CBF and cardiovascular responses were measured, by a blinded investigator, for up to 4 h. In separate experiments, platelet aggregation by 2-AG (19-300 µM) was assessed by whole blood aggregometry ( n = 40). 2-AG and JZL-184 significantly increased the severity of the CBF deficit versus vehicle (20.2 ± 8.8% and 22.7 ± 6.4% vs. 56.4 ± 12.1% of pre-MCAO baseline, respectively, P < 0.05) but had no effect on blood pressure or heart rate. While JZL-184 significantly increased the number of thrombi after MCAO, this did not reach significance by 2-AG. 2-AG induced platelet aggregation in rat whole blood in a similar manner to arachidonic acid and was significantly reduced by the cyclooxygenase inhibitors indomethacin and flurbiprofen and the thromboxane receptor antagonist ICI 192,605 ( P < 0.05). This is the first study showing that 2-AG increases the severity of the CBF deficit during MCAO, and further interrogation confirmed 2-AG-induced platelet aggregation in rats. These findings are important because 2-AG had previously been shown to exert neuroprotective actions and therefore force us to reevaluate the circumstances under which 2-AG is beneficial. NEW & NOTEWORTHY 2-Arachidonoylglycerol (2-AG) has neuroprotective properties; however, the present study revealed that 2-AG increases the severity of the cerebral blood flow deficit during middle cerebral artery occlusion in rats. Further interrogation showed that 2-AG induces platelet aggregation in rats. These findings force us to reevaluate the circumstances under which 2-AG is beneficial.
Collapse
Affiliation(s)
- Jennifer A Shearer
- Physiology Department, School of Medicine, National University of Ireland , Galway , Ireland
| | - Susan J Coker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingom
| | - Hilary V O Carswell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingom
| |
Collapse
|