1
|
Abstract
Heat stress is described as the cumulative detrimental effect caused by an imbalance between heat production within the body and heat dissipation. When cattle are exposed to heat stress with skin surface temperatures exceeding 35 °C, gene networks within and across cells respond to environmental heat loads with both intra and extracellular signals that coordinate cellular and whole-animal metabolism changes to store heat and rapidly increase evaporative heat loss. In this study, we examined evidence from genes known to be associated with heat tolerance (Hsp70, HSF1, HspB8, SOD1, PRLH, ATP1A1, MTOR, and EIF2AK4). This information could serve as valuable resource material for breeding programs aimed at increasing the thermotolerance of cattle.
Collapse
Affiliation(s)
- LuLan Zeng
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Kaixing Qu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Yilmaz A, Kalsbeek A, Buijs RM. Early changes of immunoreactivity to orexin in hypothalamus and to RFamide peptides in brainstem during the development of hypertension. Neurosci Lett 2021; 762:136144. [PMID: 34332031 DOI: 10.1016/j.neulet.2021.136144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022]
Abstract
Baroreflex sensitivity (BRS) is an important function of the nervous system and essential for maintaining blood pressure levels in the physiological range. In hypertension, BRS is decreased both in man and animals. Although increased sympathetic activity is thought to be the main cause of decreased BRS, hence the development of hypertension, the BRS is regulated by both sympathetic (SNS) and parasympathetic (PNS) nervous system. Here, we analyzed neuropeptide changes in the lateral hypothalamus (LH), which favours the SNS activity, as well as in PNS nuclei in the brainstem of spontaneously hypertensive rats (SHR) and their normotensive controls (Wistar Kyoto rats- WKY). The analyses revealed that in the WKY rats the hypothalamic orexin system, known for its role in sympathetic activation, showed a substantial decrease when animals age. At the same time, however, such a decrease was not observed when hypertension developed in the SHR. In contrast, Neuropeptide FF (NPFF) and Prolactin Releasing Peptide (PrRP) expression in the PNS associated Nucleus Tractus Solitarius (NTS) and Dorsal Motor Nucleus of the Vagus (DMV) diminished substantially, not only after the establishment of hypertension but also before its onset. Therefore, the current results indicate early changes in areas of the central nervous system involved in SNS and PNS control of blood pressure and associated with the development of hypertension.
Collapse
Affiliation(s)
- Ajda Yilmaz
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, the Netherlands
| | - Andries Kalsbeek
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, the Netherlands; Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Ruud M Buijs
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, the Netherlands; Department of Cell Biology and Physiology, Institute for Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.
| |
Collapse
|
3
|
Takei Y, Hiroi J, Takahashi H, Sakamoto T. Diverse mechanisms for body fluid regulation in teleost fishes. Am J Physiol Regul Integr Comp Physiol 2014; 307:R778-92. [PMID: 24965789 DOI: 10.1152/ajpregu.00104.2014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Teleost fishes are the major group of ray-finned fishes and represent more than one-half of the total number of vertebrate species. They have experienced in their evolution an additional third-round whole genome duplication just after the divergence of their lineage, which endowed them with an extra adaptability to invade various aquatic habitats. Thus their physiology is also extremely diverse compared with other vertebrate groups as exemplified by the many patterns of body fluid regulation or osmoregulation. The key osmoregulatory organ for teleosts, whose body fluid composition is similar to mammals, is the gill, where ions are absorbed from or excreted into surrounding waters of various salinities against concentration gradients. It has been shown that the underlying molecular physiology of gill ionocytes responsible for ion regulation is highly variable among species. This variability is also seen in the endocrine control of osmoregulation where some hormones have distinct effects on body fluid regulation in different teleost species. A typical example is atrial natriuretic peptide (ANP); ANP is secreted in response to increased blood volume and acts on various osmoregulatory organs to restore volume in rainbow trout as it does in mammals, but it is secreted in response to increased plasma osmolality, and specifically decreases NaCl, and not water, in the body of eels. The distinct actions of other osmoregulatory hormones such as growth hormone, prolactin, angiotensin II, and vasotocin among teleost species are also evident. We hypothesized that such diversity of ionocytes and hormone actions among species stems from their intrinsic differences in body fluid regulation that originated from their native habitats, either fresh water or seawater. In this review, we summarized remarkable differences in body fluid regulation and its endocrine control among teleost species, although the number of species is still limited to substantiate the hypothesis.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan;
| | - Junya Hiroi
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan; and
| | - Hideya Takahashi
- Ushimado Marine Institute (UMI), Faculty of Science, Okayama University, Setouchi, Okayama, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Faculty of Science, Okayama University, Setouchi, Okayama, Japan
| |
Collapse
|
4
|
Tachibana T, Sakamoto T. Functions of two distinct "prolactin-releasing peptides" evolved from a common ancestral gene. Front Endocrinol (Lausanne) 2014; 5:170. [PMID: 25426099 PMCID: PMC4226156 DOI: 10.3389/fendo.2014.00170] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022] Open
Abstract
Prolactin-releasing peptide (PrRP) is one of the RF-amide peptides and was originally identified in the bovine hypothalamus as a stimulator of prolactin (PRL) release. Independently, another RF-amide peptide was found in Japanese crucian carp and named Carassius-RFa (C-RFa), which shows high homology to PrRP and stimulates PRL secretion in teleost fish. Therefore, C-RFa has been recognized as fish PrRP. However, recent work has revealed that PrRP and C-RFa in non-mammalian vertebrates are encoded by separate genes originated through duplication of an ancestral gene. Indeed, both PrRP and C-RFa are suggested to exist in teleost, amphibian, reptile, and avian species. Therefore, we propose that non-mammalian PrRP (C-RFa) be renamed PrRP2. Despite a common evolutionary origin, PrRP2 appears to be a physiological regulator of PRL, whereas this is not a consistent role for PrRP itself. Further work revealed that the biological functions of PrRP and PrRP2 are not limited solely to PRL release, because they are also neuromodulators of several hypothalamus-pituitary axes and are involved in some brain circuits related to the regulation of food intake, stress, and cardiovascular functions. However, these actions appear to be different among vertebrates. For example, central injection of PrRP inhibits feeding behavior in rodents and teleosts, while it stimulates it in chicks. Therefore, both PrRP and PrRP2 have acquired diverse actions through evolution. In this review, we integrate the burgeoning information of structures, expression profiles, and multiple biological actions of PrRP in higher vertebrates, as well as those of PrRP2 in non-mammals.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Japan
- *Correspondence: Tetsuya Tachibana, Laboratory of Animal Production, Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan e-mail:
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Japan
| |
Collapse
|
5
|
Tachibana T, Moriyama S, Khan MSI, Sakamoto T. Central administration of prolactin-releasing peptide shifts the utilities of metabolic fuels from carbohydrate to lipids in chicks. Physiol Behav 2013; 120:40-5. [PMID: 23816984 DOI: 10.1016/j.physbeh.2013.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 05/21/2013] [Accepted: 06/20/2013] [Indexed: 11/26/2022]
Abstract
We have recently identified prolactin (PRL)-releasing peptides (PrRPs) and their stimulating effects on feeding behavior in chicks. To investigate further metabolic functions of PrRP, the present study was performed to clarify whether intracerebroventricular (ICV) injection of PrRP31, an active form of PrRP in chicks, affects heat production (HP), respiratory quotient (RQ) and plasma concentrations of metabolic fuels in chicks. The ICV injection of PrRP31 (94 and 375 pmol) did not affect HP but significantly lowered RQ. The change in RQ implies that PrRP31 shifted the utility of metabolic fuels in the body. This idea was confirmed by subsequent results in which ICV injection of PrRP31 significantly reduced glucose but increased non-esterified fatty acid concentrations in plasma. These shifts in blood metabolic fuels would not be through the increased plasma insulin, because the ICV injection of PrRP31 significantly decreased plasma insulin concentration. On the other hand, ICV injection of another orexigenic peptide, neuropeptide Y (NPY) also induced the insulin release and the metabolic effects were similar to those of PrRP31. Because ICV injection of PrRP31 increased NPY mRNA in the diencephalon, the NPY may mediate the metabolic functions of PrRP31. In summary, the present study suggests that central PrRP31 shifts the utilities of peripheral energy sources, which is not via hyperinsulinemia but via the diencephalon.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan.
| | | | | | | |
Collapse
|
6
|
Qaiser F, Wahab F, Wiqar MA, Hashim R, Leprince J, Vaudry H, Tena-Sempere M, Shahab M. Study of the role of novel RF-amide neuropeptides in affecting growth hormone secretion in a representative non-human primate (Macaca mulatta). Endocrine 2012; 42:658-63. [PMID: 22527890 DOI: 10.1007/s12020-012-9672-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
RF amide peptide family with distinctive terminal -Arg-Phe-NH(2) signature is evolutionarily conserved from invertebrates to mammals. These neuropeptides have been shown to affect diverse functions in invertebrates and vertebrates including influencing pituitary hormone secretion. More recently, two members of this family 26-amino acid and 43-amino acid RF amide peptide (26RFa and 43RFa, respectively) originally isolated from frog have been cloned in rats and humans. Actions of these peptides on hormone secretion have not been studied in primates. In the present study, effect of iv administration of three different doses of human 26RFa and 43RFa on GH secretion was studied in a representative higher primate, the rhesus monkey. As control against these two peptides, normal saline and a scrambled sequence of 26RFa was administered. A set of four intact adult male monkeys received the administration in a random order. Peripheral blood samples were obtained from the chairrestrained but fully conscious animals for a period of 30 min before and 240 min after the administration at 15-min intervals. For quantitative measurement of GH concentration, a human GH chemiluminescent immunometric assay was used. Peripheral administration of 38 and 76 nmol doses of 26RFa significantly (P < 0.05) stimulated GH AUC during a 0-120 min period after injection of 26RFa. In contrast to 26RFa, administration of 43RFa appeared to suppress GH levels during the later stages of the sampling i.e. from 120 to 240 min period. Mean AUC during the period was significantly (P < 0.05) reduced by 76 nmol dose of 43RFa, while 38 nmol dose of 43RFa also had similar effect but lacked full statistical significance (P = 0.058). To our knowledge present study reports for the first time-specific stimulatory effect of 26RFa on the GH secretion and a novel inhibitory and delayed effect of 43RFa on the GH secretion in higher primates. In conclusion, present findings extend evidence for endocrine actions of RF amides in primates and suggest differential effect of these peptides on GH secretion in primates.
Collapse
Affiliation(s)
- Fatima Qaiser
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Mechanism of osmoregulatory adaptation in tilapia. Mol Biol Rep 2012; 40:925-31. [PMID: 23054028 DOI: 10.1007/s11033-012-2133-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
The shortage of freshwater resource in many countries leads to a shift to develop aquaculture in brackish water and sea water. Tilapias are euryhaline that can thrive from freshwater to full sea water. They and their hybrids are the best candidate species for cultivation in brackish habitats. Thus, understanding their osmoregulatory mechanisms will help to breed or genetically engineer salt tolerant species. In this paper, we review recent progress in understanding the mechanisms of osmoregulatory adaptations in tilapia.
Collapse
|
8
|
Hashimoto H, Uezono Y, Ueta Y. Pathophysiological function of oxytocin secreted by neuropeptides: A mini review. PATHOPHYSIOLOGY 2012; 19:283-98. [DOI: 10.1016/j.pathophys.2012.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022] Open
|
9
|
Molecular characterization and haplotype combination of PrRP gene polymorphism and its association with production traits in Chinese native goats. Small Rumin Res 2012. [DOI: 10.1016/j.smallrumres.2012.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Khalil NA, Hashem AM, Ibrahim AAE, Mousa MA. Effect of stress during handling, seawater acclimation, confinement, and induced spawning on plasma ion levels and somatolactin-expressing cells in mature female Liza ramada. ACTA ACUST UNITED AC 2012; 317:410-24. [PMID: 22628286 DOI: 10.1002/jez.1734] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/16/2012] [Accepted: 04/03/2012] [Indexed: 01/01/2023]
Abstract
The present experiments were designed to determine the effect of different stress factors; handling, seawater acclimation, confinement, and induced spawning on plasma cortisol, hydro mineral balance as well as changes in size, number and integrated intensity of somatolactin (SL)-expressing cells in Liza ramada mature females confined to fresh water ponds. The plasma levels of cortisol, PO(4)(3-), Na(+), and K(+) were higher, while Ca(2+) and Mg(2+) were lower than controls during transportation without anesthesia. By using clove oil (5 mg L(-1)) as an anesthetic during transportation, the plasma cortisol, PO(4) (3-), Na(+), and K(+) were similar to controls, while Ca(2+) and Mg(2+) were higher. During seawater acclimation, the plasma cortisol and minerals were significantly higher except Na(+) which was lower than controls. In addition, during induction of spawning, the plasma levels of cortisol, PO(4)(3-), Na(+), K(+), and Mg(2+) were significantly higher than controls. The SL-producing cells are located in the pars intermedia (PI) bordering the neurohypophysis. The stress affected the number, size, and immunostaining of SL-expressing cells. During seawater acclimation, the size and the integrated intensity of SL immunoreactivity were lower, but the number of these cells was higher than controls. Furthermore, the number, size, and the integrated intensity of SL immunoreactivity were significantly lower than controls during handling and after spawning, which was opposite to confinement. The response of SL-expressing cells in PI in parallel with changes in cortisol and hydro mineral balance induced by stress support the possible role of SL in the adaptive response of fish to stress.
Collapse
Affiliation(s)
- Noha A Khalil
- Fish Reproduction Laboratory, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | | | | | | |
Collapse
|
11
|
Tachibana T, Moriyama S, Takahashi A, Tsukada A, Oda A, Takeuchi S, Sakamoto T. Isolation and characterisation of prolactin-releasing peptide in chicks and its effect on prolactin release and feeding behaviour. J Neuroendocrinol 2011; 23:74-81. [PMID: 21083629 DOI: 10.1111/j.1365-2826.2010.02078.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prolactin (PRL)-releasing peptides (PrRP) have been identified in mammals, amphibians and fishes, and these animals have several PrRPs that consist of different numbers of amino acids such as 20, 31 and 37. In the present study, we identified the cDNA encoding chicken prepro-PrRP, which can generate putative PrRPs, and cloned and sequenced it. Sequences for the coding region suggested the occurrence of putative PrRPs of 20, 31 and 32 amino acid residues. The amino acid sequence of chicken PrRP20 showed 100%, 95% and 70% identity with those of PrRP20s from teleosts, Xenopus laevis and mammals, respectively. On the other hand, chicken PrRP31 showed approximately 90% and 52-55% homology to PrRP31s of X. laevis and mammals, respectively. Native chicken PrRPs were purified from an acid extract of chick brain by a Sep-Pak C18 cartridge (Waters Corp., Milford, MA, USA), affinity chromatography using anti-salmon PrRP serum, and reverse phase high-performance liquid chromatography (HPLC) on an ODS-120T column (TOSOH, Tokyo, Japan). The existence of chicken PrRP20 and PrRP31 in the brain was demonstrated by comparing them with the synthetic peptides using HPLC and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Chicken PrRP31 increased plasma PRL concentration when administered peripherally, whereas central administration decreased the concentration, suggesting that chicken PrRP31 has a distinct effect on PRL secretion between tissues in chicks. On the other hand, plasma growth hormone concentration decreased with both peripheral and central administrations of chicken PrRP31. Furthermore, central administration of chicken PrRP31 increased food intake in chicks compared to those observed in mammals and fishes. Taken together with the results indicating that chicken PrRP20 did not show endocrine and behavioural effects, we showed that chicken PrRP has a similar amino acid sequence to teleosts, Xenopus laevis and mammals, although the actions were variable among vertebrates.
Collapse
Affiliation(s)
- T Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan.
School of Marine Biosciences, Kitasato University, Ofunato, Iwate, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Evans TG. Co-ordination of osmotic stress responses through osmosensing and signal transduction events in fishes. JOURNAL OF FISH BIOLOGY 2010; 76:1903-1925. [PMID: 20557646 DOI: 10.1111/j.1095-8649.2010.02590.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This review centres upon the molecular regulation of osmotic stress responses in fishes, focusing on how osmosensing and signal transduction events co-ordinate changes in the activity and abundance of effector proteins during osmotic stress and how these events integrate into osmotic stress responses of varying magnitude. The concluding sections discuss the relevance of osmosensory signal transduction to the evolution of euryhalinity and present experimental approaches that may best stimulate future research. Iterating the importance of osmosensing and signal transduction during fish osmoregulation may be pertinent amidst the increased use of genomic technologies that typically focus solely on changes in the abundances of gene products, and may limit insight into critical upstream events that occur mainly through post-translational mechanisms.
Collapse
Affiliation(s)
- T G Evans
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.
| |
Collapse
|
13
|
A new key neurohormone controlling reproduction, gonadotropin-inhibitory hormone (GnIH): Biosynthesis, mode of action and functional significance. Prog Neurobiol 2009; 88:76-88. [PMID: 19428963 DOI: 10.1016/j.pneurobio.2009.02.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/22/2008] [Accepted: 02/12/2009] [Indexed: 11/23/2022]
Abstract
Identification of novel neurohormones that play important roles in the regulation of pituitary function is essential for the progress of neurobiology. The decapeptide gonadotropin-releasing hormone (GnRH) is the primary factor responsible for the hypothalamic control of gonadotropin secretion. Gonadal sex steroids and inhibin inhibit gonadotropin secretion via feedback from the gonads, but a neuropeptide inhibitor of gonadotropin secretion was, until recently, unknown in vertebrates. In 2000, a novel hypothalamic dodecapeptide that inhibits gonadotropin release was identified in quail and termed gonadotropin-inhibitory hormone (GnIH). This was the first demonstration of a hypothalamic neuropeptide inhibiting gonadotropin release in any vertebrate. GnIH acts on the pituitary and GnRH neurons in the hypothalamus via a novel G protein-coupled receptor for GnIH to inhibit gonadal development and maintenance by decreasing gonadotropin release and synthesis. GnIH neurons express the melatonin receptor and melatonin stimulates the expression of GnIH. Because GnIH exists and functions in several avian species, GnIH is considered to be a new key neurohormone controlling avian reproduction. From a broader perspective, subsequently the presence of GnIH homologous peptides has been demonstrated in other vertebrates. Mammalian GnIH homologous peptides also act to inhibit reproduction by decreasing gonadotropin release in several mammalian species. Thus, the discovery of GnIH has opened the door to a new research field in reproductive neurobiology. This review summarizes the advances made in our understanding of the biosynthesis, mode of action and functional significance of GnIH, a newly discovered key neurohormone, and its homologous peptides.
Collapse
|
14
|
|
15
|
Takei Y, Balment RJ. Chapter 8 The Neuroendocrine Regulation of Fluid Intake and Fluid Balance. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28008-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
16
|
Kawauchi H, Sower SA, Moriyama S. Chapter 5 The Neuroendocrine Regulation of Prolactin and Somatolactin Secretion in Fish. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28005-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Kwong AKY, Woo NYS. Prolactin-releasing peptide, a possible modulator of prolactin in the euryhaline silver sea bream (Sparus sarba): A molecular study. Gen Comp Endocrinol 2008; 158:154-60. [PMID: 18640118 DOI: 10.1016/j.ygcen.2008.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 11/20/2022]
Abstract
PRL and PrRP cDNAs have been isolated from euryhaline silver sea bream (Sparus sarba). The PRL cDNA consists of 1360bp encoding 212 amino acids whereas the PrRP cDNA contains 631bp encoding preproPrRP with 122 amino acids. The mature PrRP sequence within the preprohormone is identical to the PrRPs isolated from other fish species. PRL mRNA was uniquely expressed in sea bream pituitary but PrRP mRNA was expressed in a variety of organs and tissues including the intestines, olfactory rosette and various brain regions such as hypothalamus and pituitary. Expression levels of PRL and PrRP mRNA have been examined in sea bream adapted to different salinities (0, 6, 12, 33 and 50ppt). In the pituitary, both PRL and PrRP mRNA were significantly higher in fish adapted to low salinities (0 and 6ppt) and the expression profiles of both hormones closely paralleled each other. However, expression of hypothalamic PrRP was significantly higher in fish adapted to iso-osmotic salinity (12ppt) when pituitary PRL expression was low. The present study demonstrates, for the first time, a synchronized mRNA expression pattern between PRL and PrRP in fish pituitary but a disparity of mRNA expression levels between hypothalamic PrRP and pituitary PRL during salinity adaptation. These data suggest that PrRP may possibly act as a local modulator in pituitary rather than a hypothalamic factor for regulation of pituitary PRL expression in silver sea bream.
Collapse
Affiliation(s)
- Anna K Y Kwong
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, Hong Kong, China
| | | |
Collapse
|
18
|
Goncharuk V, Jhamandas JH. Neuropeptide FF2 receptor distribution in the human brain. An immunohistochemical study. Peptides 2008; 29:1544-53. [PMID: 18565622 DOI: 10.1016/j.peptides.2008.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/05/2008] [Accepted: 05/07/2008] [Indexed: 11/18/2022]
Abstract
Human neuropeptide FF2 (hFF2) receptor has been postulated to mediate central autonomic regulation by virtue of its ability to bind with high affinity to many amidated neuropeptides. In the present immunohistochemical study, we identified hFF2 positive neurons in the forebrain and medulla oblongata of individuals, who died suddenly of mechanical trauma or hypothermia. Morphologically, these neurons demonstrated features identified with both projection neurons and interneurons. In the forebrain, the highest density of hFF2 expressing neurons was observed in the anterior amygdaloid area and dorsomedial hypothalamic nucleus, especially in its caudal part. A lesser density of hFF2 neurons was identified in the ventromedial hypothalamic nucleus, lateral and posterior hypothalamic areas whereas few cells were visualized in the paraventricular hypothalamic nucleus, perifornical nucleus, horizontal limb of the diagonal band, ventral division of the bed nucleus of the stria terminalis, nucleus basalis of Meynert and ventral tegmental area. In the medulla, significant numbers of hFF2 neurons were observed in the dorsal motor nucleus of vagus and to a lesser extent in the area of catecholaminergic cell groups, A1/C1. These data provide first immunohistochemical evidence of hFF2 localization in the human brain, which is consistent with that reported for tissue distribution of FF2 mRNA and FF2 binding sites within the brain of a variety of mammalian species. The distribution of hFF2 may help in identifying the role of amidated neuropeptides in the human brain within the context of central autonomic and neuroendocrine regulation.
Collapse
|
19
|
Takahashi H, Suzuki N, Takagi C, Ikegame M, Yamamoto T, Takahashi A, Moriyama S, Hattori A, Sakamoto T. Prolactin Inhibits Osteoclastic Activity in the Goldfish Scale: A Novel Direct Action of Prolactin in Teleosts. Zoolog Sci 2008; 25:739-45. [DOI: 10.2108/zsj.25.739] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 04/27/2008] [Indexed: 11/17/2022]
|
20
|
Moriyama S, Kasahara M, Amiya N, Takahashi A, Amano M, Sower SA, Yamamori K, Kawauchi H. RFamide peptides inhibit the expression of melanotropin and growth hormone genes in the pituitary of an Agnathan, the sea lamprey, Petromyzon marinus. Endocrinology 2007; 148:3740-9. [PMID: 17494999 DOI: 10.1210/en.2007-0356] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropeptides with the Arg-Phe-amide motif at their C termini (RFamide peptides) were identified in the brains of several vertebrates, and shown to have important physiological roles in neuroendocrine, behavioral, sensory, and autonomic functions. The present study identified RFamide peptides, which are teleost prolactin-releasing peptide (PrRP) homologs, in the sea lamprey, Petromyzon marinus and characterized their effect on the release of pituitary hormones in vitro. Two RFamide peptides (RFa-A and RFa-B) were isolated from an acid extract of sea lamprey brain, including hypothalamus by Sep-Pak C18 cartridge, affinity chromatography using anti-salmon PrRP serum, and reverse-phase HPLC on an ODS-120T column. Amino acid (aa) sequences and mass spectrometric analyses revealed that RFa-A and RFa-B consist of 25 and 20 aa, respectively, and have 75% sequence identity within the C-terminal 20 aa. The RFa-B cDNA encoding a preprohormone of 142 aa was cloned from the lamprey brain, and the deduced aa sequence from positions 48-67 was identical to the sequence of RFa-B. However, the preprohormone does not include an aa sequence similar to the RFa-A sequence. Cell bodies, which were immunoreactive to anti-salmon PrRP serum, were located in the periventricular arcuate nucleus, ventral part of the hypothalamus, and immunoreactive fibers were abundant from the hypothalamus to the brain. A small number of immunoreactive fibers were detected in the dorsal half of the rostral pars distalis of the pituitary, close to the GH-producing cells. In addition, anti-salmon PrRP immunoreactivities were observed in the pars intermedia, corresponding to melanotropin cells. Likewise, signal of RFa-B mRNA was detected not only in the brain but also in the pars intermedia. The synthetic RFa-A and -B inhibited GH mRNA expression in a dose-dependent fashion in vitro, which is comparable to the inhibitory effect of teleost PrRP on GH release. Both RFa-A and -B also inhibited the expression of proopiomelanotropin mRNA, but no effects were observed in the expression of proopiocortin and gonadotropin beta mRNAs. The results indicate that RFamide peptides, which are teleost PrRP homologs, are present in the hypothalamus and pituitary of sea lamprey, and may be physiologically involved in the inhibition of GH and melanotropin release in the sea lamprey pituitary.
Collapse
Affiliation(s)
- Shunsuke Moriyama
- School of Fisheries Sciences, Kitasato University, Sanriku, Iwate 022-0101, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mera T, Fujihara H, Saito J, Kawasaki M, Hashimoto H, Saito T, Shibata M, Onaka T, Tanaka Y, Oka T, Tsuji S, Ueta Y. Downregulation of prolactin-releasing peptide gene expression in the hypothalamus and brainstem of diabetic rats. Peptides 2007; 28:1596-604. [PMID: 17681402 DOI: 10.1016/j.peptides.2007.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 06/24/2007] [Accepted: 06/28/2007] [Indexed: 11/20/2022]
Abstract
We investigated the prolactin-releasing peptide (PrRP) mRNA levels in the hypothalamus and brainstem of streptozotocin (STZ)-induced diabetic rats and fa/fa Zucker diabetic rats, using in situ hybridization histochemistry. PrRP mRNA levels in the hypothalamus and brainstem of STZ-induced diabetic rats were significantly reduced in comparison with those of control rats. PrRP mRNA levels in the diabetic rats were reversed by both insulin and leptin. PrRP mRNA levels in the fa/fa diabetic rats were significantly reduced in comparison with those of Fa/? rats. PrRP mRNA levels in the fa/fa diabetic rats were significantly increased by insulin-treatment, but did not reach control levels in the Fa/? rats. We also investigated the effect of restraint stress on PrRP mRNA levels in STZ-induced diabetic rats. The PrRP mRNA levels in the control and the STZ-induced diabetic rats increased significantly after restraint stress. The diabetic condition and insulin-treatment may affect the regulation of PrRP gene expression via leptin and other factors, such as plasma glucose level. The diabetic condition may not impair the role of PrRP as a stress mediator.
Collapse
Affiliation(s)
- Takashi Mera
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chan YH, Cheng CHK, Chan KM. Study of goldfish (Carassius auratus) growth hormone structure–function relationship by domain swapping. Comp Biochem Physiol B Biochem Mol Biol 2007; 146:384-94. [PMID: 17215157 DOI: 10.1016/j.cbpb.2006.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/20/2006] [Accepted: 11/24/2006] [Indexed: 10/23/2022]
Abstract
Using goldfish as a model, the structure-function relationship of goldfish growth hormone was studied using the strategy of homologous domain swapping. Chimeric mutants were constructed by exchanging homologous regions between goldfish growth hormone (gfGH II) and goldfish prolactin (gfPRL) with their cloned complementary DNAs. Six mutants, with their domain-swapped, were generated to have different combinations of three target regions, including the helix a, helix d and the large section in between these helices (possess the helices b, c and other random coiled regions). After expression in E. coli and refolding, these mutants were characterized by using competitive receptor binding assay (RRA) and growth hormone responding promoter activation assay. The different activity profiles of mutants in Spi 2.1 gene promoter assays from that in RRA shows that, for gfGH, receptor binding dose not confer receptor signal activations. When either helices a or d of gfGH was maintained with other helices replaced by their gfPRL counterparts, both receptor binding and hence gene activation activities are reduced. In mutants with helices b and c in gfGH maintained, containing the gfGH middle section, and helices a and d swapped with gfPRL, the had reduced RRA activities but the promoter activation activities retained. In conclusion, as in the case of human GH, the gfGH molecule possesses two functional sites: one of them is composed of discontinuous epitopes located on the target regions of this study and is for receptor binding; another site is located on the middle section of the molecule that helices a and d are not involved, and it is for activation of GH receptor and intracellular signals.
Collapse
Affiliation(s)
- Y H Chan
- Department of Biochemistry, Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong SAR, China
| | | | | |
Collapse
|
23
|
Amano M, Oka Y, Amiya N, Yamamori K. Immunohistochemical localization and ontogenic development of prolactin-releasing peptide in the brain of the ovoviviparous fish species Poecilia reticulata (guppy). Neurosci Lett 2007; 413:206-9. [PMID: 17267118 DOI: 10.1016/j.neulet.2006.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 09/20/2006] [Accepted: 10/03/2006] [Indexed: 10/23/2022]
Abstract
Immunohistochemical localization and ontogenic development of prolactin-releasing peptide (PrRP) in the brain of the ovoviviparous fish species Poecilia reticulata (guppy) were examined to gain a better understanding of this hormone in teleost fish. In adult guppies, PrRP-immunoreactive (ir) cell bodies were detected in the posterior part of the hypothalamus. In the pituitary, a small number of PrRP-ir fibers were observed adjacent to the prolactin cells, whereas numerous PrRP-ir fibers were detected not only in the hypothalamus but also widely throughout the brain. PrRP-ir cell bodies and prolactin cells were already detected on the birth day in the hypothalamus and pituitary, respectively. The number of PrRP-ir fibers in the brain increased as the fish developed. These results suggest that PrRP is involved in neuromodulation in the brain and that PrRP plays some physiological roles in the early development of the guppy.
Collapse
Affiliation(s)
- Masafumi Amano
- School of Fisheries Sciences, Kitasato University, Ofunato, Iwate 022-0101, Japan.
| | | | | | | |
Collapse
|
24
|
Sakamoto T, Oda A, Yamamoto K, Kaneko M, Kikuyama S, Nishikawa A, Takahashi A, Kawauchi H, Tsutsui K, Fujimoto M. Molecular cloning and functional characterization of a prolactin-releasing peptide homolog from Xenopus laevis. Peptides 2006; 27:3347-51. [PMID: 16979799 DOI: 10.1016/j.peptides.2006.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 08/02/2006] [Accepted: 08/03/2006] [Indexed: 11/28/2022]
Abstract
Amino acid sequences for identified prolactin (PRL)-releasing peptides (PrRPs) were conserved in mammals (>90%) or teleost fishes (100%), but there were considerable differences between these classes in the sequence (<65%) as well as in the role of PrRP. In species other than fishes and mammals, we have identified frog PrRP. The cDNA encoding Xenopus laevis prepro-PrRP, which can generate putative PrRPs, was cloned and sequenced. Sequences for the coding region showed higher identity with teleost PrRPs than mammalian homologues, but suggested the occurrence of putative PrRPs of 20 and 31 residues as in mammals. The amino acid sequence of PrRP20 was only one residue different from teleost PrRP20, but shared 70% identity with mammalian PrRP20s. In primary cultures of bullfrog (Rana catesbeiana) pituitary cells, Xenopus PrRPs increased prolactin concentrations in culture medium to 130-160% of the control, but PrRPs was much less potent than thyrotropin-releasing hormone (TRH) causing a three- to four-fold increase in prolactin concentrations. PrRP mRNA levels in the developing Xenopus brain peak in early prometamorphosis, different from prolactin levels. PrRP may not be a major prolactin-releasing factor (PRF), at least in adult frogs, as in mammals.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Laboratory, Faculty of Science, Okayama University, 130-17 Kashino, Ushimado, Setouchi 701-4303, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Takahashi H, Takahashi A, Sakamoto T. In vivo effects of thyroid hormone, corticosteroids and prolactin on cell proliferation and apoptosis in the anterior intestine of the euryhaline mudskipper (Periophthalmus modestus). Life Sci 2006; 79:1873-80. [PMID: 16857212 DOI: 10.1016/j.lfs.2006.06.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/26/2006] [Accepted: 06/13/2006] [Indexed: 11/30/2022]
Abstract
We have previously shown that anterior intestinal epithelium of the euryhaline mudskipper (Periophthalmus modestus) undergoes apoptosis during seawater (SW) acclimation, whereas elevated cell proliferation was observed in freshwater (FW)-acclimated fish. To understand the possible endocrine regulation of the gastrointestinal cell turnover during salinity acclimation, we examined the ratios of apoptotic and proliferating cells in the anterior intestine of one-third SW-acclimated mudskipper treated with triiodothyronine (T3), cortisol, 11-deoxycorticosterone (DOC, the putative teleostean mineralocorticoid), or prolactin (PRL). In situ nick end labeling of genomic DNA (TUNEL) and immunohistochemistry of proliferating cells nuclear antigen (PCNA) were used as indicators of apoptosis and cell proliferations, respectively. Cortisol significantly elevated apoptosis (P<0.05) in the epithelia and connective tissues and also stimulated the epithelial cell proliferation (P<0.05). PRL induced epithelial cell proliferation (P<0.05), but did not affect apoptotic status of the intestinal epithelium. Neither T3 nor DOC had any impact on cell proliferation or apoptosis. Together, our results suggest a role for cortisol and PRL in the regulation of anterior intestinal epithelial turnover during salinity acclimation in this species.
Collapse
Affiliation(s)
- Hideya Takahashi
- Ushimado Marine Laboratory, Graduate School of Natural Science and Technology, Okayama University, Ushimado, 130-17, Kashino, Ushimado, Setouchi, Japan.
| | | | | |
Collapse
|
26
|
Sakamoto T, McCormick SD. Prolactin and growth hormone in fish osmoregulation. Gen Comp Endocrinol 2006; 147:24-30. [PMID: 16406056 DOI: 10.1016/j.ygcen.2005.10.008] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 10/22/2005] [Indexed: 11/29/2022]
Abstract
Prolactin is an important regulator of multiple biological functions in vertebrates, and has been viewed as essential to ion uptake as well as reduction in ion and water permeability of osmoregulatory surfaces in freshwater and euryhaline fish. Prolactin-releasing peptide seems to stimulate prolactin expression in the pituitary and peripheral organs during freshwater adaptation. Growth hormone, a member of the same family of hormones as prolactin, promotes acclimation to seawater in several teleost fish, at least in part through the action of insulin-like growth factor I. In branchial epithelia, development and differentiation of the seawater-type chloride cell (and their underlying biochemistry) is regulated by GH, IGF-I, and cortisol, whereas the freshwater-type chloride cell is regulated by prolactin and cortisol. In the epithelia of gastrointestinal tract, prolactin induces cell proliferation during freshwater adaptation, whereas cortisol stimulates both cell proliferation and apoptosis. We propose that control of salinity acclimation in teleosts by prolactin and growth hormone primarily involves regulation of cell proliferation, apoptosis, and differentiation (the latter including upregulation of specific ion transporters), and that there is an important interaction of these hormones with corticosteroids.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Laboratory, Faculty of Science, Okayama University, Ushimado, Okayama, Japan.
| | | |
Collapse
|
27
|
Montefusco-Siegmund RA, Romero A, Kausel G, Muller M, Fujimoto M, Figueroa J. Cloning of the prepro C-RFa gene and brain localization of the active peptide in Salmo salar. Cell Tissue Res 2006; 325:277-85. [PMID: 16557384 DOI: 10.1007/s00441-006-0168-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
In all vertebrates, the synthesis and release of prolactin (Prl) from pituitary lactotroph cells is tightly controlled by hypothalamic factors. We have cloned and characterized a hypothalamic cDNA from Atlantic salmon (Salmo salar) encoding C-RFa, a peptide structurally related to mammalian Prl-releasing peptide (PrRP). The deduced preprohormone precursor is composed of 155 amino acid residues presenting a 87.1% similarity to chum salmon C-RFa and a 100% similarity to all fish C-RFa in the bioactive precursor motifs. C-RFa-immunoreactive perikarya and fibres were located in the brain of S. salar, especially in the hypothalamus, olfactory tract, optic tectum and cerebellum. In contrast, immunolabelled fibres were not observed in the pituitary stalk or in the hypophysis. However, interestingly, we detected immunolabelled cells in the rostral pars distalis of the pituitary in the basolateral region in which Prl is synthesized. These results were confirmed by obtaining a strong signal by using reverse transcription/polymerase chain reaction (RT-PCR) on mRNA from both hypothalamus and pituitary. These data show, for the first time, by immunohistochemistry and RT-PCR, that C-RFa is produced in pituitary cells. Finally, based on these results, a possible function for C-RFa as a locally produced PrRP in this teleost is discussed.
Collapse
Affiliation(s)
- R A Montefusco-Siegmund
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | | | | | | | | | | |
Collapse
|
28
|
Sakamoto T, Oda A, Narita K, Takahashi H, Oda T, Fujiwara J, Godo W. Prolactin: Fishy Tales of Its Primary Regulator and Function. Ann N Y Acad Sci 2006; 1040:184-8. [PMID: 15891023 DOI: 10.1196/annals.1327.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Prolactin (PRL) is an important regulator of multiple biological functions, and the control of PRL expression integrates a wide spectrum of molecules throughout vertebrates. PRL-releasing peptide (PrRP) seems to be an essential stimulator of PRL transcription and secretion in teleost pituitary and peripheral organs. In the amphibious euryhaline mudskipper, the localization of mRNA levels of PrRP and PRL as well as their regulation during acclimation to different environments are closely related. The presence of PrRP-PRL axes in the peripheral organs might suggest an ancient history of this axis prior to the evolution of the hypothalamus-pituitary, and it is possible that the PrRP is an original and primary regulator of PRL. In the euryhaline fishes, the permeability of gut of seawater-acclimated fish is generally greater than that of the freshwater (FW)-acclimated fish. The modification in the epithelial cell renewal system may play an important role in regulation of the permeability. PRL induces the cell proliferation during FW acclimation, whereas cortisol stimulates both cell proliferation and apoptosis. Indeed, a large proportion of the various actions of PRL seem to be associated directly or indirectly with cell proliferation and/or apoptosis, which might be a primary function of PRL.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Laboratory, Faculty of Science, Okayama University, Setouchi, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Mera T, Fujihara H, Kawasaki M, Hashimoto H, Saito T, Shibata M, Saito J, Oka T, Tsuji S, Onaka T, Ueta Y. Prolactin-releasing peptide is a potent mediator of stress responses in the brain through the hypothalamic paraventricular nucleus. Neuroscience 2006; 141:1069-1086. [PMID: 16730416 DOI: 10.1016/j.neuroscience.2006.04.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/04/2006] [Accepted: 04/05/2006] [Indexed: 12/13/2022]
Abstract
The effects of i.c.v. administration of prolactin-releasing peptide on neurons in the paraventricular nucleus of rats and plasma corticosterone levels were examined by measuring changes in Fos-like immunoreactivity, c-fos mRNA using in situ hybridization histochemistry, and plasma corticosterone using a specific radioimmunoassay. Approximately 80% of corticotropin-releasing hormone immunoreactive cells exhibited Fos-like immunoreactivity in the parvocellular division of the paraventricular nucleus 90 min after i.c.v. administration of prolactin-releasing peptide. The greatest induction of the c-fos mRNA expression in the paraventricular nucleus was observed 30 min after administration of prolactin-releasing peptide, and occurred in a dose-related manner. Plasma corticosterone levels were also significantly increased 30 min after administration of prolactin-releasing peptide. Next, the effects of restraint stress, nociceptive stimulus and acute inflammatory stress on the expression of the prolactin-releasing peptide mRNA in the dorsomedial hypothalamic nucleus, nucleus of the solitary tract and ventrolateral medulla were examined using in situ hybridization histochemistry for prolactin-releasing peptide mRNA. Restraint stress and acute inflammatory stress upregulated the prolactin-releasing peptide mRNA expression in the nucleus of the solitary tract and ventrolateral medulla. Nociceptive stimulus upregulated the prolactin-releasing peptide mRNA expression in the ventrolateral medulla. Finally, we observed that pretreatment (i.c.v. administration) with an anti-prolactin-releasing peptide antibody significantly attenuated nociceptive stimulus-induced c-fos mRNA expression in the paraventricular nucleus. These results suggest that prolactin-releasing peptide is a potent and important mediator of the stress response in the brain through the hypothalamic paraventricular nucleus.
Collapse
Affiliation(s)
- T Mera
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - H Fujihara
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - M Kawasaki
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - H Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - T Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - M Shibata
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - J Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - T Oka
- Department of Neurology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - S Tsuji
- Department of Neurology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - T Onaka
- Department of Physiology, Jichi Medical School, Tochigi 329-0498, Japan
| | - Y Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| |
Collapse
|
30
|
Ukena K, Tsutsui K. A new member of the hypothalamic RF-amide peptide family, LPXRF-amide peptides: structure, localization, and function. MASS SPECTROMETRY REVIEWS 2005; 24:469-486. [PMID: 15389843 DOI: 10.1002/mas.20031] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recently, we identified a novel hypothalamic neuropeptide with a C-terminal LPLRF-amide sequence in the quail brain. This avian neuropeptide was shown to inhibit gonadotropin release from the cultured anterior pituitary. This peptide is the first hypothalamic peptide that inhibited gonadotropin release reported in vertebrates. We, therefore, termed it gonadotropin-inhibitory hormone (GnIH). After this finding, we found that GnIH-related peptides were present in the brains of other vertebrates, such as mammals, amphibians, and fish. These GnIH-related peptides possessed a LPXRF-amide (X=L or Q) motif at their C-termini in all investigated animals. Mass spectrometric analyses combined with immunoaffinity chromatography were powerful techniques for the identification of mature endogenous LPXRF-amide peptides. The identified LPXRF-amide peptides were found to be localized in the hypothalamus and brainstem areas, and to regulate pituitary hormone release. Subsequently, cDNAs that encode LPXRF-amide peptides were characterized in vertebrate brains. In this review, we summarize the identification, localization, and function of a new member of the hypothalamic RF-amide peptide family, LPXRF-amide peptides in vertebrates. Recent studies on the receptors for LPXRF-amide peptides will also be reviewed.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Laboratory of Brain Science, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| | | |
Collapse
|
31
|
Abstract
Prolactin-releasing peptide (PrRP) was first isolated from bovine hypothalamus as an orphan G-protein-coupled receptor using the strategy of reverse pharmacology. The initial studies showed that PrRP was a potent and specific prolactin-releasing factor. Morphological and physiological studies, however, indicated that PrRP may play a wide range of roles in neuroendocrinology other than prolactin release, i.e., metabolic homeostasis, stress responses, cardiovascular regulation, gonadotropin secretion, GH secretion and sleep regulation. This review will provide the current knowledge of PrRP, especially its roles in energy metabolism and stress responses.
Collapse
Affiliation(s)
- Binggui Sun
- Department of Regulation Biology, Faculty of Science, Saitama University, 255 Shimo-ohkubo, Saitama 338-0825, Japan
| | | | | | | |
Collapse
|
32
|
Saito Y, Civelli O. G-protein-coupled receptor deorphanizations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 65:179-209. [PMID: 16140057 DOI: 10.1016/s0074-7742(04)65007-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yumiko Saito
- Department of Pharmacology, Saitama Medical School, Saitama 350-0492, Japan
| | | |
Collapse
|
33
|
Akiyoshi H, Inoue A, Fujimoto M. Comparative Immunohistochemical Study of Carassius RFamide Localization in Teleost Guts in Different Salinity Habitats. Zoolog Sci 2005; 22:57-63. [PMID: 15684584 DOI: 10.2108/zsj.22.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carassius RFamide (C-RFa) is a peptide, isolated originally from the brain of Japanese crucian carp and sharing homologies with mammalian prolactin-releasing peptides. From the physiological aspect, it is known that C-RFa has contraction-promoting action on fish intestines, but its localization in peripheral tissues is unknown. We observed the localization of C-RFa in teleost guts using an immunohistochemical technique. C-RFa-like immunoreactive (irC-RFa) sites were observed in not only the smooth muscle cells in the longitudinal muscle layer, but also in both Auerbach's and Meissner's nerve plexus in the stomach, pyloric ceca and intestine. In epithelial mucous cells, irC-RFa sites were observed in the surface mucous cells in the stomach in freshwater fish (FW), and in the goblet cells of the apical sites in the villi of the pyloric ceca and intestine in all fish. In the stomach, irC-RFa sites were found in the fundic glands of the body regions in seawater (SW) and brackish water (BW) fish, but not in FW fish. This study confirmed that one of the functions of C-RFa is the smooth muscle contraction of the longitudinal muscle layer in digestive organs. We suggest that C-RFa may have functional roles in both central and peripheral neurotransmission. In addition, it appears that the difference in C-RFa localization of SW, BW, and FW fish reflects the adaptation of the stomach function to different salinity habitats.
Collapse
Affiliation(s)
- Hideo Akiyoshi
- Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan.
| | | | | |
Collapse
|