1
|
Walter-Manucharyan M, Martin M, Pfützner J, Markert F, Rödel G, Deussen A, Hermann A, Storch A. Mitochondrial DNA replication is essential for neurogenesis but not gliogenesis in fetal neural stem cells. Dev Growth Differ 2024; 66:398-413. [PMID: 39436959 DOI: 10.1111/dgd.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Mitochondria are unique organelles that have their own genome (mtDNA) and perform various pivotal functions within a cell. Recently, evidence has highlighted the role of mitochondria in the process of stem cell differentiation, including differentiation of neural stem cells (NSCs). Here we studied the importance of mtDNA function in the early differentiation process of NSCs in two cell culture models: the CGR8-NS cell line that was derived from embryonic stem cells by a lineage selection technique, and primary NSCs that were isolated from embryonic day 14 mouse fetal forebrain. We detected a dramatic increase in mtDNA content upon NSC differentiation to adapt their mtDNA levels to their differentiated state, which was not accompanied by changes in mitochondrial transcription factor A expression. As chemical mtDNA depletion by ethidium bromide failed to generate living ρ° cell lines from both NSC types, we used inhibition of mtDNA polymerase-γ by 2'-3'-dideoxycytidine to reduce mtDNA replication and subsequently cellular mtDNA content. Inhibition of mtDNA replication upon NSC differentiation reduced neurogenesis but not gliogenesis. The mtDNA depletion did not change energy production/consumption or cellular reactive oxygen species (ROS) content in the NSC model used. In conclusion, mtDNA replication is essential for neurogenesis but not gliogenesis in fetal NSCs through as yet unknown mechanisms, which, however, are largely independent of energy/ROS metabolism.
Collapse
Affiliation(s)
- Meri Walter-Manucharyan
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Melanie Martin
- Department of Physiology, Technische Universität Dresden, Dresden, Germany
| | - Julia Pfützner
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Franz Markert
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Gerhard Rödel
- Institute of Genetics, Technische Universität Dresden, Dresden, Germany
| | - Andreas Deussen
- Department of Physiology, Technische Universität Dresden, Dresden, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden, Germany
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University of Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Alexander Storch
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Department of Neurology, University of Rostock, Rostock, Germany
- Center for Regenerative Therapies Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
2
|
Cai Y, Yin A. The complete mitochondrial genome of Chibiraga houshuaii (Lepidoptera, Limacodidae) and its phylogenetic implications. Sci Rep 2024; 14:7009. [PMID: 38528107 PMCID: PMC10963781 DOI: 10.1038/s41598-024-57709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Chibiraga is a mall East Asian genus in the family Limacodidae (slug-moths). The latter includes many agricultural pests. Mitochondrial genome analysis is an important tool for studying insect molecular identification and phylogenetics. However, there are very few mitogenome sequences available for Limacodidae species, and none for the genus Chibiraga at all. To explore the mitogenome features of Chibiraga and verify its phylogenetic position, the complete mitogenome of Chibiraga houshuaii was sequenced and annotated. The complete 15,487 bp genome encoded 37 mitochondrial genes, including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a control region (CR). Most of the PCGs had typical ATN start codons and terminated with TAA or a single T residue. UUA (Leu2), AUU (Ile), UUU (Phe), AUA (Met) and AAU (Asn) were the five most frequently used codons. All tRNAs were folded into cloverleaf secondary structure, except for trnS1, which lacked the DHU arm. Phylogenetic analyses within the superfamily Zygaenoidea were performed based on multiple datasets from mitochondrial genes. The results showed that the families Phaudidae, Limacodidae and Zygaenidae were respectively recovered as monophyly; C. houshuaii was clustered in a clade with nettle type larvae in Limacodidae.
Collapse
Affiliation(s)
- Yanpeng Cai
- Molecular Diagnostic Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Aihui Yin
- Molecular Diagnostic Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
3
|
Song P, Zhao J, Li F, Zhao X, Feng J, Su Y, Wang B, Zhao J. Vitamin A regulates mitochondrial biogenesis and function through p38 MAPK-PGC-1α signaling pathway and alters the muscle fiber composition of sheep. J Anim Sci Biotechnol 2024; 15:18. [PMID: 38310300 PMCID: PMC10838450 DOI: 10.1186/s40104-023-00968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Vitamin A (VA) and its metabolite, retinoic acid (RA), are of great interest for their wide range of physiological functions. However, the regulatory contribution of VA to mitochondrial and muscle fiber composition in sheep has not been reported. METHOD Lambs were injected with 0 (control) or 7,500 IU VA palmitate into the biceps femoris muscle on d 2 after birth. At the age of 3 and 32 weeks, longissimus dorsi (LD) muscle samples were obtained to explore the effect of VA on myofiber type composition. In vitro, we investigated the effects of RA on myofiber type composition and intrinsic mechanisms. RESULTS The proportion of type I myofiber was greatly increased in VA-treated sheep in LD muscle at harvest. VA greatly promoted mitochondrial biogenesis and function in LD muscle of sheep. Further exploration revealed that VA elevated PGC-1α mRNA and protein contents, and enhanced the level of p38 MAPK phosphorylation in LD muscle of sheep. In addition, the number of type I myofibers with RA treatment was significantly increased, and type IIx myofibers was significantly decreased in primary myoblasts. Consistent with in vivo experiment, RA significantly improved mitochondrial biogenesis and function in primary myoblasts of sheep. We then used si-PGC-1α to inhibit PGC-1α expression and found that si-PGC-1α significantly abrogated RA-induced the formation of type I myofibers, mitochondrial biogenesis, MitoTracker staining intensity, UQCRC1 and ATP5A1 expression, SDH activity, and enhanced the level of type IIx muscle fibers. These data suggested that RA improved mitochondrial biogenesis and function by promoting PGC-1α expression, and increased type I myofibers. In order to prove that the effect of RA on the level of PGC-1α is caused by p38 MAPK signaling, we inhibited the p38 MAPK signaling using a p38 MAPK inhibitor, which significantly reduced RA-induced PGC-1α and MyHC I levels. CONCLUSION VA promoted PGC-1α expression through the p38 MAPK signaling pathway, improved mitochondrial biogenesis, and altered the composition of muscle fiber type.
Collapse
Affiliation(s)
- Pengkang Song
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jiamin Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Fanqinyu Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Xiaoyi Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jinxin Feng
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Yuan Su
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Junxing Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
4
|
Alexeyev M. TFAM in mtDNA Homeostasis: Open Questions. DNA 2023; 3:134-136. [PMID: 37771599 PMCID: PMC10538575 DOI: 10.3390/dna3030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Transcription factor A, mitochondrial (TFAM) is a key player in mitochondrial DNA (mtDNA) transcription and replication [...]
Collapse
Affiliation(s)
- Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
5
|
Delaluna JO, Kang H, Chang YY, Kim M, Choi MH, Kim J, Song HB. De novo assembled mitogenome analysis of Trichuris trichiura from Korean individuals using nanopore-based long-read sequencing technology. PLoS Negl Trop Dis 2023; 17:e0011586. [PMID: 37639474 PMCID: PMC10491297 DOI: 10.1371/journal.pntd.0011586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/08/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Knowledge about mitogenomes has been proven to be essential in human parasite diagnostics and understanding of their diversity. However, the lack of substantial data for comparative analysis is still a challenge in Trichuris trichiura research. To provide high quality mitogenomes, we utilized long-read sequencing technology of Oxford Nanopore Technologies (ONT) to better resolve repetitive regions and to construct de novo mitogenome assembly minimizing reference biases. In this study, we got three de novo assembled mitogenomes of T. trichiura isolated from Korean individuals. These circular complete mitogenomes of T. trichiura are 14,508 bp, 14,441 bp, and 14,440 bp in length. A total of 37 predicted genes were identified consisting of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNAs) genes, two ribosomal RNA (rRNA) genes (rrnS and rrnL), and two non-coding regions. Interestingly, the assembled mitogenome has up to six times longer AT-rich regions than previous reference sequences, thus proving the advantage of long-read sequencing in resolving unreported non-coding regions. Furthermore, variant detection and phylogenetic analysis using concatenated protein coding genes, cox1, rrnL, and nd1 genes confirmed the distinct molecular identity of this newly assembled mitogenome while at the same time showing high genetic relationship with sequences from China or Tanzania. Our study provided a new set of reference mitogenome with better contiguity and resolved repetitive regions that could be used for meaningful phylogenetic analysis to further understand disease transmission and parasite biology.
Collapse
Affiliation(s)
- James Owen Delaluna
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heekyoung Kang
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yuan Yi Chang
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - MinJi Kim
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min-Ho Choi
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Kim
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Beom Song
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Kozhukhar N, Alexeyev MF. 35 Years of TFAM Research: Old Protein, New Puzzles. BIOLOGY 2023; 12:823. [PMID: 37372108 DOI: 10.3390/biology12060823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
Transcription Factor A Mitochondrial (TFAM), through its contributions to mtDNA maintenance and expression, is essential for cellular bioenergetics and, therefore, for the very survival of cells. Thirty-five years of research on TFAM structure and function generated a considerable body of experimental evidence, some of which remains to be fully reconciled. Recent advancements allowed an unprecedented glimpse into the structure of TFAM complexed with promoter DNA and TFAM within the open promoter complexes. These novel insights, however, raise new questions about the function of this remarkable protein. In our review, we compile the available literature on TFAM structure and function and provide some critical analysis of the available data.
Collapse
Affiliation(s)
- Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
7
|
Shekhovtsov SV, Vasiliev GV, Latif R, Poluboyarova TV, Peltek SE, Rapoport IB. The mitochondrial genome of Dendrobaena tellermanica Perel, 1966 (Annelida: Lumbricidae) and its phylogenetic position. Vavilovskii Zhurnal Genet Selektsii 2023; 27:146-152. [PMID: 37063518 PMCID: PMC10090101 DOI: 10.18699/vjgb-23-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 04/18/2023] Open
Abstract
Earthworms are an important ecological group that has a significant impact on soil fauna as well as plant communities. Despite their importance, genetic diversity and phylogeny of earthworms are still insufficiently studied. Most studies on earthworm genetic diversity are currently based on a few mitochondrial and nuclear genes. Mitochondrial genomes are becoming a promising target for phylogeny reconstruction in earthworms. However, most studies on earthworm mitochondrial genomes were made on West European and East Asian species, with much less sampling from other regions. In this study, we performed sequencing, assembly, and analysis of the mitochondrial genome of Dendrobaena tellermanica Perel, 1966 from the Northern Caucasus. This species was earlier included into D. schmidti (Michaelsen, 1907), a polytypic species with many subspecies. The genome was assembled as a single contig 15,298 bp long which contained a typical gene set: 13 protein-coding genes (three subunits of cytochrome c oxidase, seven subunits of NADH dehydrogenase, two subunits of ATP synthetase, and cytochrome b), 12S and 16S ribosomal RNA genes, and 22 tRNA genes. All genes were located on one DNA strand. The assembled part of the control region, located between the tRNA-Arg and tRNA-His genes, was 727 bp long. The control region contained multiple hairpins, as well as tandem repeats of the AACGCTT monomer. Phylogenetic analysis based on the complete mitochondrial genomes indicated that the genus Dendrobaena occupied the basal position within Lumbricidae. D. tellermanica was a rather distant relative of the cosmopolitan D. octaedra, suggesting high genetic diversity in this genus. D. schmidti turned out to be paraphyletic with respect to D. tellermanica. Since D. schmidti is known to contain very high genetic diversity, these results may indicate that it may be split into several species.
Collapse
Affiliation(s)
- S V Shekhovtsov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Biological Problems of the North of the Far Eastern Branch of the Russian Academy of Sciences, Magadan, Russia
| | - G V Vasiliev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - R Latif
- Semnan University, Semnan, Iran
| | - T V Poluboyarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S E Peltek
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I B Rapoport
- Tembotov Institute of Ecology of Mountain Territories of Russian Academy of Sciences, Nalchik, Russia
| |
Collapse
|
8
|
Shi F, Yu T, Xu Y, Zhang S, Niu Y, Ge S, Tao J, Zong S. Comparative mitochondrial genomic analysis provides new insights into the evolution of the subfamily Lamiinae (Coleoptera: Cerambycidae). Int J Biol Macromol 2023; 225:634-647. [PMID: 36403761 DOI: 10.1016/j.ijbiomac.2022.11.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/23/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
The genus Monochamus within the subfamily Lamiinae is the main vector of Bursaphelenchus xylophilus, which causes pine wilt disease and induces substantial economic and ecological losses. Only three complete mitochondrial genomes of the genus Monochamus have been sequenced to date, and no comparative mitochondrial genomic studies of Lamiinae have been conducted. Here, the mitochondrial genomes of two Monochamus species, M. saltuarius and M. urussovi, were newly sequenced and annotated. The composition and order of genes in the mitochondrial genomes of Monochamus species are conserved. All transfer RNAs exhibit the typical clover-leaf secondary structure, with the exception of trnS1. Similar to other longhorn beetles, Lamiinae mitochondrial genomes have an A + T bias. All 13 protein-coding genes have experienced purifying selection, and tandem repeat sequences are abundant in the A + T-rich region. Phylogenetic analyses revealed congruent topologies among trees inferred from the five datasets, with the monophyly of Acanthocinini, Agapanthiini, Batocerini, Dorcaschematini, Pteropliini, and Saperdini receiving high support. The findings of this study enhance our understanding of mitochondrial genome evolution and will provide a basis for future studies of population genetics and phylogenetic investigations in this group.
Collapse
Affiliation(s)
- Fengming Shi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Tao Yu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang 550005, China.
| | - Yabei Xu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Sainan Zhang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Yiming Niu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Sixun Ge
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
9
|
Protein Transduction Domain-Mediated Delivery of Recombinant Proteins and In Vitro Transcribed mRNAs for Protein Replacement Therapy of Human Severe Genetic Mitochondrial Disorders: The Case of Sco2 Deficiency. Pharmaceutics 2023; 15:pharmaceutics15010286. [PMID: 36678915 PMCID: PMC9861957 DOI: 10.3390/pharmaceutics15010286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial disorders represent a heterogeneous group of genetic disorders with variations in severity and clinical outcomes, mostly characterized by respiratory chain dysfunction and abnormal mitochondrial function. More specifically, mutations in the human SCO2 gene, encoding the mitochondrial inner membrane Sco2 cytochrome c oxidase (COX) assembly protein, have been implicated in the mitochondrial disorder fatal infantile cardioencephalomyopathy with COX deficiency. Since an effective treatment is still missing, a protein replacement therapy (PRT) was explored using protein transduction domain (PTD) technology. Therefore, the human recombinant full-length mitochondrial protein Sco2, fused to TAT peptide (a common PTD), was produced (fusion Sco2 protein) and successfully transduced into fibroblasts derived from a SCO2/COX-deficient patient. This PRT contributed to effective COX assembly and partial recovery of COX activity. In mice, radiolabeled fusion Sco2 protein was biodistributed in the peripheral tissues of mice and successfully delivered into their mitochondria. Complementary to that, an mRNA-based therapeutic approach has been more recently considered as an innovative treatment option. In particular, a patented, novel PTD-mediated IVT-mRNA delivery platform was developed and applied in recent research efforts. PTD-IVT-mRNA of full-length SCO2 was successfully transduced into the fibroblasts derived from a SCO2/COX-deficient patient, translated in host ribosomes into a nascent chain of human Sco2, imported into mitochondria, and processed to the mature protein. Consequently, the recovery of reduced COX activity was achieved, thus suggesting the potential of this mRNA-based technology for clinical translation as a PRT for metabolic/genetic disorders. In this review, such research efforts will be comprehensibly presented and discussed to elaborate their potential in clinical application and therapeutic usefulness.
Collapse
|
10
|
Wu Y, Liu X, Zhang Y, Fang H, Lu J, Wang J. Characterization of four mitochondrial genomes of Crambidae (Lepidoptera, Pyraloidea) and phylogenetic implications. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21914. [PMID: 35570199 DOI: 10.1002/arch.21914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Loxostege turbidalis, Loxostege aeruginalis, Pyrausta despicata, and Crambus perlellus belong to Crambidae, Pyraloidea. Their mitochondrial genomes (mitogenomes) were successfully sequenced. The mitogenomes of L. turbidalis, L. aeruginalis, P. despicata, and C. perlellus are 15 240 bp, 15 339 bp, 15 389 bp, and 15 440 bp. The four mitogenomes all have a typical insect mitochondrial gene order, including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and one A + T rich region (control region). The PCGs are initiated by the typical ATN codons, except CGA for the cox1 gene. Most PCGs terminate with common codon TAA or TAG, the incomplete codon T is found as the stop codon for cox2, nad4, and nad5. Most tRNA genes exhibit typical cloverleaf structure, except trnS1 (AGN) lacking the dihydrouridine (DHU) arm. The secondary structure of rRNA of four mitogenomes were predicted. Poly-T structure and micro-satellite regions are conserved in control regions. The phylogenetic analyses based on 13 PCGs showed the relationships of subfamilies in Pyraloidea. Pyralidae, and Crambidae are monophyletic, respectively. Pyralidae comprises four subfamilies, which form the following topology with high support values: (Galleriinae + ((Pyralinae + Epipaschiinae)+ Phycitinae)). Crambidae includes seven subfamilies and is divided into two lineages. Pyraustinae and Spilomelinae are sister groups of each other, and form the "PS clade." Other five subfamilies (Crambinae, Acentropinae, Scopariinae, Schoenobiinae, and Glaphyriinae) form the "non-PS clade" in the Bayesian inference tree. However, Schoenobiinae is not grouped with the other four subfamilies and located at the base of Crambidae in two maximum likelihood trees.
Collapse
Affiliation(s)
- Yupeng Wu
- School of Environmental Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, China
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Xiaoran Liu
- School of Environmental Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, China
| | - Yulei Zhang
- School of Environmental Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, China
| | - Hui Fang
- School of Environmental Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, China
| | - Junjiao Lu
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Juping Wang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
11
|
Ortega M, De Toma I, Fernández-Blanco Á, Calderón A, Barahona L, Trullàs R, Sabidó E, Dierssen M. Proteomic profiling reveals mitochondrial dysfunction in the cerebellum of transgenic mice overexpressing DYRK1A, a Down syndrome candidate gene. Front Mol Neurosci 2022; 15:1015220. [PMID: 36590914 PMCID: PMC9800213 DOI: 10.3389/fnmol.2022.1015220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction DYRK1A is a dual-specificity kinase that is overexpressed in Down syndrome (DS) and plays a key role in neurogenesis, neuronal differentiation and function, cognitive phenotypes, and aging. Dyrk1A has also been implicated in cerebellar abnormalities observed in association with DS, and normalization of Dyrk1A dosage rescues granular and Purkinje cell densities in a trisomic DS mouse model. However, the underlying molecular mechanisms governing these processes are unknown. Methods To shed light on the effects of Dyrk1A overexpression in the cerebellum, here we investigated the cerebellar proteome in transgenic Dyrk1A overexpressing mice in basal conditions and after treatment with green tea extract containing epigallocatechin-3-gallate (EGCG), a DYRK1A inhibitor. Results and Discussion Our results showed that Dyrk1A overexpression alters oxidative phosphorylation and mitochondrial function in the cerebellum of transgenic mice. These alterations are significantly rescued upon EGCG-containing green tea extract treatment, suggesting that its effects in DS could depend in part on targeting mitochondria, as shown by the partially restoration by the treatment of the increased mtDNA copy number in TG non-treated mice.
Collapse
Affiliation(s)
- Mireia Ortega
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ilario De Toma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Calderón
- Instituto de Investigaciones Biomédicas de Barcelona, IIBB/CSIC y Centro de Investigación Biomédica en Red, Barcelona, Spain
| | - Lucía Barahona
- Instituto de Investigaciones Biomédicas de Barcelona, IIBB/CSIC y Centro de Investigación Biomédica en Red, Barcelona, Spain
| | - Ramón Trullàs
- Instituto de Investigaciones Biomédicas de Barcelona, IIBB/CSIC y Centro de Investigación Biomédica en Red, Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain,Department of Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain,Department of Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain,*Correspondence: Mara Dierssen,
| |
Collapse
|
12
|
Xiaokaiti X, Hashiguchi Y, Ota H, Kumazawa Y. Evolution of the Noncoding Features of Sea Snake Mitochondrial Genomes within Elapidae. Genes (Basel) 2022; 13:genes13081470. [PMID: 36011381 PMCID: PMC9407768 DOI: 10.3390/genes13081470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial genomes of four elapid snakes (three marine species [Emydocephalus ijimae, Hydrophis ornatus, and Hydrophis melanocephalus], and one terrestrial species [Sinomicrurus japonicus]) were completely sequenced by a combination of Sanger sequencing, next-generation sequencing and Nanopore sequencing. Nanopore sequencing was especially effective in accurately reading through long tandem repeats in these genomes. This led us to show that major noncoding regions in the mitochondrial genomes of those three sea snakes contain considerably long tandem duplications, unlike the mitochondrial genomes previously reported for same and other sea snake species. We also found a transposition of the light-strand replication origin within a tRNA gene cluster for the three sea snakes. This change can be explained by the Tandem Duplication—Random Loss model, which was further supported by remnant intervening sequences between tRNA genes. Mitochondrial genomes of true snakes (Alethinophidia) have been shown to contain duplicate major noncoding regions, each of which includes the control region necessary for regulating the heavy-strand replication and transcription from both strands. However, the control region completely disappeared from one of the two major noncoding regions for two Hydrophis sea snakes, posing evolutionary questions on the roles of duplicate control regions in snake mitochondrial genomes. The timing and molecular mechanisms for these changes are discussed based on the elapid phylogeny.
Collapse
Affiliation(s)
- Xiakena Xiaokaiti
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Yasuyuki Hashiguchi
- Department of Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-0801, Japan
| | - Hidetoshi Ota
- Institute of Natural and Environmental Sciences, University of Hyogo, and Museum of Nature and Human Activities, Sanda 669-1546, Japan
| | - Yoshinori Kumazawa
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
- Correspondence: ; Tel.: +81-52-872-5844
| |
Collapse
|
13
|
Yang C, Du X, Liu Y, Yuan H, Wang Q, Hou X, Gong H, Wang Y, Huang Y, Li X, Ye H. Comparative mitogenomics of the genus Motacilla (Aves, Passeriformes) and its phylogenetic implications. Zookeys 2022; 1109:49-65. [PMID: 36762344 PMCID: PMC9848870 DOI: 10.3897/zookeys.1109.81125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/21/2022] [Indexed: 11/12/2022] Open
Abstract
The genus Motacilla belongs to Motacillidae (Passeriformes), where mitochondrial features are poorly understood and phylogeny is controversial. Whole mitochondrial genome (mitogenome) data and large taxon sampling are considered to be ideal strategies to obtain this information. We generated four complete mitogenomes of M.flava, M.cinerea, M.alba and Dendronanthusindicus, and made comparative analyses of Motacilla species combined with mitogenome data from GenBank, and then reconstructed phylogenetic trees based on 37 mitochondrial genes. The mitogenomes of four mitogenome sequences exhibited the same gene order observed in most Passeriformes species. Comparative analyses were performed among all six sampled Motacilla mitogenomes. The complete mitogenomes showed A-skew and C-skew. Most protein-coding genes (PCGs) start with an ATG codon and terminate with a TAA codon. The secondary structures of RNAs were similar among Motacilla and Dendronanthus. All tRNAs except for trnS(agy) could be folded into classic clover-leaf structures. Three domains and several conserved boxes were detected. Phylogenetic analysis of 90 mitogenomes of Passeriformes using maximum likelihood (ML) and Bayesian inference (BI) revealed that Motacilla was a monophyletic group. Among Motacilla species, M.flava and M.tschutschensis showed closer relationships, and M.cinerea was located in a basal position within Motacilla. These data provide important information for better understanding the mitogenomic characteristics and phylogeny of Motacilla.
Collapse
Affiliation(s)
- Chao Yang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710062, ChinaShaanxi Institute of ZoologyXi’anChina,Shaanxi Institute of Zoology, Xi’an 710032, ChinaShaanxi Normal UniversityXi’anChina
| | - Xiaojuan Du
- College of Life Sciences, Shaanxi Normal University, Xi’an 710062, ChinaShaanxi Institute of ZoologyXi’anChina
| | - Yuxin Liu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710062, ChinaShaanxi Institute of ZoologyXi’anChina
| | - Hao Yuan
- College of Life Sciences, Shaanxi Normal University, Xi’an 710062, ChinaShaanxi Institute of ZoologyXi’anChina,School of Basic Medical Sciences, Xi’an Medical University, Xi’an, ChinaXi’an Medical UniversityXi’anChina
| | - Qingxiong Wang
- Shaanxi Institute of Zoology, Xi’an 710032, ChinaShaanxi Normal UniversityXi’anChina
| | - Xiang Hou
- Shaanxi Institute of Zoology, Xi’an 710032, ChinaShaanxi Normal UniversityXi’anChina
| | - Huisheng Gong
- Shaanxi Institute of Zoology, Xi’an 710032, ChinaShaanxi Normal UniversityXi’anChina
| | - Yan Wang
- Shaanxi Institute of Zoology, Xi’an 710032, ChinaShaanxi Normal UniversityXi’anChina
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710062, ChinaShaanxi Institute of ZoologyXi’anChina
| | - Xuejuan Li
- College of Life Sciences, Shaanxi Normal University, Xi’an 710062, ChinaShaanxi Institute of ZoologyXi’anChina
| | - Haiyan Ye
- College of Life Sciences, Shaanxi Normal University, Xi’an 710062, ChinaShaanxi Institute of ZoologyXi’anChina
| |
Collapse
|
14
|
Kanakachari M, Rahman H, Chatterjee RN, Bhattacharya TK. Signature of Indian native chicken breeds: a perspective. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2026201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - H. Rahman
- Molecular Genetics and Breeding Unit, South Asia Regional Office, New Delhi, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | | | | |
Collapse
|
15
|
Lau NS, Sam KK, Ahmad AB, Siti KA, Ahmad Zafir AW, Shu-Chien AC. Gene Arrangement and Adaptive Evolution in the Mitochondrial Genomes of Terrestrial Sesarmid Crabs Geosesarma faustum and Geosesarma penangensis. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.778570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Yang M, Huang J, Li X, Chen J, Li Z, Chen S, Li X. The complete mitochondrial genome of two-belt cardinal and striped cardinalfish Apogonichthyoides taeniatus (Cuvier, 1828). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:3271-3273. [PMID: 34712808 PMCID: PMC8547886 DOI: 10.1080/23802359.2021.1993102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The complete mitochondrial DNA sequence of Apogonichthyoides taeniatus (Cuvier, 1828) is determined. The mitochondrial genome is 17,050 in length and has the same composition and gene order like most other vertebrates. The phylogenetic analysis based on 13 concatenated PCGs nucleotide sequences among 20 species showed that this species has high support with the sister branch Jaydia lineata. Our findings provide useful information for phylogenetic and evolutionary research of Kurtiformes species.
Collapse
Affiliation(s)
- Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jianling Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xinshuai Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jinpeng Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zewen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shikai Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xuezhu Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
17
|
Mitochondrial Genomes of Hestina persimilis and Hestinalis nama (Lepidoptera, Nymphalidae): Genome Description and Phylogenetic Implications. INSECTS 2021; 12:insects12080754. [PMID: 34442319 PMCID: PMC8397171 DOI: 10.3390/insects12080754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary In this study, the mitogenomes of Hestina persimilis and Hestinalis nama were obtained via sanger sequencing. Compared with other mitogenomes of Apaturinae butterflies, conclusions can be made that the mitogenomes of Hestina persimilis and Hestinalis nama are highly conservative. The phylogenetic trees build upon mitogenomic data showing that the relationships among Nymphalidae are similar to previous studies. Hestinalisnama is apart from Hestina, and closely related to Apatura, forming a monophyletic clade. Abstract In this study, the complete mitochondrial genomes (mitogenomes) of Hestina persimilis and Hestinalis nama (Nymphalidae: Apaturinae) were acquired. The mitogenomes of H. persimilis and H. nama are 15,252 bp and 15,208 bp in length, respectively. These two mitogenomes have the typical composition, including 37 genes and a control region. The start codons of the protein-coding genes (PCGs) in the two mitogenomes are the typical codon pattern ATN, except CGA in the cox1 gene. Twenty-one tRNA genes show a typical clover leaf structure, however, trnS1(AGN) lacks the dihydrouridine (DHU) stem. The secondary structures of rrnL and rrnS of two species were predicted, and there are several new stem loops near the 5′ of rrnL secondary structure. Based on comparative genomic analysis, four similar conservative structures can be found in the control regions of these two mitogenomes. The phylogenetic analyses were performed on mitogenomes of Nymphalidae. The phylogenetic trees show that the relationships among Nymphalidae are generally identical to previous studies, as follows: Libytheinae\Danainae + ((Calinaginae + Satyrinae) + Danainae\Libytheinae + ((Heliconiinae + Limenitidinae) + (Nymphalinae + (Apaturinae + Biblidinae)))). Hestinalisnama is apart from Hestina, and closely related to Apatura, forming monophyly.
Collapse
|
18
|
Guo E, Yang Y, Kong L, Yu H, Liu S, Liu Z, Li Q. Mitogenomic phylogeny of Trochoidea (Gastropoda: Vetigastropoda): New insights from increased complete genomes. ZOOL SCR 2020. [DOI: 10.1111/zsc.12453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erfei Guo
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
| | - Yi Yang
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
| | - Lingfeng Kong
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
| | - Hong Yu
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
| | - Shikai Liu
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
| | - Zhanjiang Liu
- Department of Biology Syracuse University Syracuse NY USA
| | - Qi Li
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
19
|
Chen J, Guan L, Zou M, He S, Li D, Chi W. Specific cyprinid HIF isoforms contribute to cellular mitochondrial regulation. Sci Rep 2020; 10:17246. [PMID: 33057104 PMCID: PMC7560723 DOI: 10.1038/s41598-020-74210-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) functions as a master regulator of the cellular response to hypoxic stress. Two HIF-1α paralogs, HIF-1αA and HIF-1αB, were generated in euteleosts by the specific, third round of genome duplication, but one paralog was later lost in most families with the exception of cyprinid fish. How these duplicates function in mitochondrial regulation and whether their preservation contributes to the hypoxia tolerance demonstrated by cyprinid fish in freshwater environments is not clear. Here we demonstrated the divergent function of these two zebrafish Hif-1a paralogs through cellular approaches. The results showed that Hif-1aa played a role in tricarboxylic acid cycle by increasing the expression of Citrate synthase and the activity of mitochondrial complex II, and it also enhanced mitochondrial membrane potential and ROS production by reducing free Ca2+ in the cytosol. Hif-1ab promoted intracellular ATP content by up-regulating the activity of mitochondrial complexes I, III and IV and the expression of related genes. Furthermore, both the two zebrafish Hif-1a paralogs promoted mitochondrial mass and the expression level of mtDNA, contributing to mitochondrial biogenesis. Our study reveals the divergent functions of Hif-1aa and Hif-1ab in cellular mitochondrial regulation.
Collapse
Affiliation(s)
- Jing Chen
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Lihong Guan
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Ming Zou
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Shunping He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dapeng Li
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Wei Chi
- College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China.
| |
Collapse
|
20
|
Castellani CA, Longchamps RJ, Sumpter JA, Newcomb CE, Lane JA, Grove ML, Bressler J, Brody JA, Floyd JS, Bartz TM, Taylor KD, Wang P, Tin A, Coresh J, Pankow JS, Fornage M, Guallar E, O'Rourke B, Pankratz N, Liu C, Levy D, Sotoodehnia N, Boerwinkle E, Arking DE. Mitochondrial DNA copy number can influence mortality and cardiovascular disease via methylation of nuclear DNA CpGs. Genome Med 2020; 12:84. [PMID: 32988399 PMCID: PMC7523322 DOI: 10.1186/s13073-020-00778-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mitochondrial DNA copy number (mtDNA-CN) has been associated with a variety of aging-related diseases, including all-cause mortality. However, the mechanism by which mtDNA-CN influences disease is not currently understood. One such mechanism may be through regulation of nuclear gene expression via the modification of nuclear DNA (nDNA) methylation. METHODS To investigate this hypothesis, we assessed the relationship between mtDNA-CN and nDNA methylation in 2507 African American (AA) and European American (EA) participants from the Atherosclerosis Risk in Communities (ARIC) study. To validate our findings, we assayed an additional 2528 participants from the Cardiovascular Health Study (CHS) (N = 533) and Framingham Heart Study (FHS) (N = 1995). We further assessed the effect of experimental modification of mtDNA-CN through knockout of TFAM, a regulator of mtDNA replication, via CRISPR-Cas9. RESULTS Thirty-four independent CpGs were associated with mtDNA-CN at genome-wide significance (P < 5 × 10- 8). Meta-analysis across all cohorts identified six mtDNA-CN-associated CpGs at genome-wide significance (P < 5 × 10- 8). Additionally, over half of these CpGs were associated with phenotypes known to be associated with mtDNA-CN, including coronary heart disease, cardiovascular disease, and mortality. Experimental modification of mtDNA-CN demonstrated that modulation of mtDNA-CN results in changes in nDNA methylation and gene expression of specific CpGs and nearby transcripts. Strikingly, the "neuroactive ligand receptor interaction" KEGG pathway was found to be highly overrepresented in the ARIC cohort (P = 5.24 × 10- 12), as well as the TFAM knockout methylation (P = 4.41 × 10- 4) and expression (P = 4.30 × 10- 4) studies. CONCLUSIONS These results demonstrate that changes in mtDNA-CN influence nDNA methylation at specific loci and result in differential expression of specific genes that may impact human health and disease via altered cell signaling.
Collapse
Affiliation(s)
- Christina A Castellani
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan J Longchamps
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jason A Sumpter
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles E Newcomb
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John A Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Megan L Grove
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Penglong Wang
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adrienne Tin
- Department of Epidemiology and the Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Josef Coresh
- Department of Epidemiology and the Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James S Pankow
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Myriam Fornage
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eliseo Guallar
- Department of Epidemiology and the Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dan E Arking
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Wang C, Chen H, Tian S, Yang C, Chen X. Novel Gene Rearrangement and the Complete Mitochondrial Genome of Cynoglossus monopus: Insights into the Envolution of the Family Cynoglossidae (Pleuronectiformes). Int J Mol Sci 2020; 21:E6895. [PMID: 32962212 PMCID: PMC7555148 DOI: 10.3390/ijms21186895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022] Open
Abstract
Cynoglossus monopus, a small benthic fish, belongs to the Cynoglossidae, Pleuronectiformes. It was rarely studied due to its low abundance and cryptical lifestyle. In order to understand the mitochondrial genome and the phylogeny in Cynoglossidae, the complete mitogenome of C. monopus has been sequenced and analyzed for the first time. The total length is 16,425 bp, typically containing 37 genes with novel gene rearrangements. The tRNA-Gln gene is inverted from the light to the heavy strand and translocated from the downstream of tRNA-Ile gene to its upstream. The control region (CR) translocated downstream to the 3'-end of ND1 gene adjoining to inverted to tRNA-Gln and left a 24 bp trace fragment in the original position. The phylogenetic trees were reconstructed by Bayesian inference (BI) and maximum likelihood (ML) methods based on the mitogenomic data of 32 tonguefish species and two outgroups. The results support the idea that Cynoglossidae is a monophyletic group and indicate that C. monopus has the closest phylogenetic relationship with C. puncticeps. By combining fossil records and mitogenome data, the time-calibrated evolutionary tree of families Cynoglossidae and Soleidae was firstly presented, and it was indicated that Cynoglossidae and Soleidae were differentiated from each other during Paleogene, and the evolutionary process of family Cynoglossidae covered the Quaternary, Neogene and Paleogene periods.
Collapse
Affiliation(s)
- Chen Wang
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China; (C.W.); (S.T.); (C.Y.)
| | - Hao Chen
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Silin Tian
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China; (C.W.); (S.T.); (C.Y.)
| | - Cheng Yang
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China; (C.W.); (S.T.); (C.Y.)
| | - Xiao Chen
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China; (C.W.); (S.T.); (C.Y.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agriculture University, Guangzhou 510642, China
| |
Collapse
|
22
|
Yang G, Liu Z, Zhang R, Tian X, Chen J, Han G, Liu B, Han X, Fu Y, Hu Z, Zhang Z. A Multi‐responsive Fluorescent Probe Reveals Mitochondrial Nucleoprotein Dynamics with Reactive Oxygen Species Regulation through Super‐resolution Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guanqing Yang
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| | - Zhengjie Liu
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei Anhui 230601 China
| | - Xiaohe Tian
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| | - Juan Chen
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| | - Guangmei Han
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
| | - Bianhua Liu
- Institute of Intelligent Machines Chinese Academy of Sciences Hefei Anhui 230031 China
| | - Xinya Han
- School of Chemistry and Chemical Engineering Anhui University of Technology Ma'anshan Anhui 243032 China
| | - Yao Fu
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology Linköping University Linköping 58183 Sweden
| | - Zhongping Zhang
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei Anhui 230601 China
- Institute of Intelligent Machines Chinese Academy of Sciences Hefei Anhui 230031 China
| |
Collapse
|
23
|
Yang G, Liu Z, Zhang R, Tian X, Chen J, Han G, Liu B, Han X, Fu Y, Hu Z, Zhang Z. A Multi-responsive Fluorescent Probe Reveals Mitochondrial Nucleoprotein Dynamics with Reactive Oxygen Species Regulation through Super-resolution Imaging. Angew Chem Int Ed Engl 2020; 59:16154-16160. [PMID: 32573047 DOI: 10.1002/anie.202005959] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/11/2020] [Indexed: 11/06/2022]
Abstract
Understanding the biomolecular interactions in a specific organelle has been a long-standing challenge because it requires super-resolution imaging to resolve the spatial locations and dynamic interactions of multiple biomacromolecules. Two key difficulties are the scarcity of suitable probes for super-resolution nanoscopy and the complications that arise from the use of multiple probes. Herein, we report a quinolinium derivative probe that is selectively enriched in mitochondria and switches on in three different fluorescence modes in response to hydrogen peroxide (H2 O2 ), proteins, and nucleic acids, enabling the visualization of mitochondrial nucleoprotein dynamics. STED nanoscopy reveals that the proteins localize at mitochondrial cristae and largely fuse with nucleic acids to form nucleoproteins, whereas increasing H2 O2 level leads to disassociation of nucleic acid-protein complexes.
Collapse
Affiliation(s)
- Guanqing Yang
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Zhengjie Liu
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, China
| | - Xiaohe Tian
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Juan Chen
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Guangmei Han
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Bianhua Liu
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, China
| | - Yao Fu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, 58183, Sweden
| | - Zhongping Zhang
- School of Chemistry and Chemical Engineering and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, China.,Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| |
Collapse
|
24
|
Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE. Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion 2020; 53:214-223. [PMID: 32544465 DOI: 10.1016/j.mito.2020.06.004] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is a biomarker of mitochondrial function and levels of mtDNA-CN have been reproducibly associated with overall mortality and a number of age-related diseases, including cardiovascular disease, chronic kidney disease, and cancer. Recent advancements in techniques for estimating mtDNA-CN, in particular the use of DNA microarrays and next-generation sequencing data, have led to the comprehensive assessment of mtDNA-CN across these and other diseases and traits. The importance of mtDNA-CN measures to disease and these advancing technologies suggest the potential for mtDNA-CN to be a useful biomarker in the clinic. While the exact mechanism(s) underlying the association of mtDNA-CN with disease remain to be elucidated, we review the existing literature which supports roles for inflammatory dynamics, immune function and alterations to cell signaling as consequences of variation in mtDNA-CN. We propose that future studies should focus on characterizing longitudinal, cell-type and cross-tissue profiles of mtDNA-CN as well as improving methods for measuring mtDNA-CN which will expand the potential for its use as a clinical biomarker.
Collapse
Affiliation(s)
- Christina A Castellani
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ryan J Longchamps
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jing Sun
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dan E Arking
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
25
|
Rolling-Circle Replication in Mitochondrial DNA Inheritance: Scientific Evidence and Significance from Yeast to Human Cells. Genes (Basel) 2020; 11:genes11050514. [PMID: 32384722 PMCID: PMC7288456 DOI: 10.3390/genes11050514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022] Open
Abstract
Studies of mitochondrial (mt)DNA replication, which forms the basis of mitochondrial inheritance, have demonstrated that a rolling-circle replication mode exists in yeasts and human cells. In yeast, rolling-circle mtDNA replication mediated by homologous recombination is the predominant pathway for replication of wild-type mtDNA. In human cells, reactive oxygen species (ROS) induce rolling-circle replication to produce concatemers, linear tandem multimers linked by head-to-tail unit-sized mtDNA that promote restoration of homoplasmy from heteroplasmy. The event occurs ahead of mtDNA replication mechanisms observed in mammalian cells, especially under higher ROS load, as newly synthesized mtDNA is concatemeric in hydrogen peroxide-treated human cells. Rolling-circle replication holds promise for treatment of mtDNA heteroplasmy-attributed diseases, which are regarded as incurable. This review highlights the potential therapeutic value of rolling-circle mtDNA replication.
Collapse
|
26
|
Pronsato L, Milanesi L, Vasconsuelo A. Testosterone induces up-regulation of mitochondrial gene expression in murine C2C12 skeletal muscle cells accompanied by an increase of nuclear respiratory factor-1 and its downstream effectors. Mol Cell Endocrinol 2020; 500:110631. [PMID: 31676390 DOI: 10.1016/j.mce.2019.110631] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023]
Abstract
The reduction in muscle mass and strength with age, sarcopenia, is a prevalent condition among the elderly, linked to skeletal muscle dysfunction and cell apoptosis. We demonstrated that testosterone protects against H2O2-induced apoptosis in C2C12 muscle cells. Here, we analyzed the effect of testosterone on mitochondrial gene expression in C2C12 skeletal muscle cells. We found that testosterone increases mRNA expression of genes encoded by mitochondrial DNA, such as NADPH dehydrogenase subunit 1 (ND1), subunit 4 (ND4), cytochrome b (CytB), cytochrome c oxidase subunit 1 (Cox1) and subunit 2 (Cox2) in C2C12. Additionally, the hormone induced the expression of the nuclear respiratory factors 1 and 2 (Nrf-1 and Nrf-2), the mitochondrial transcription factors A (Tfam) and B2 (TFB2M), and the optic atrophy 1 (OPA1). The simultaneous treatment with testosterone and the androgen receptor antagonist, Flutamide, reduced these effects. H2O2-oxidative stress induced treatment, significantly decreased mitochondrial gene expression. Computational analysis revealed that mitochondrial DNA contains specific sequences, which the androgen receptor could recognize and bind, probably taking place a direct regulation of mitochondrial transcription by the receptor. These findings indicate that androgen plays an important role in the regulation of mitochondrial transcription and biogenesis in skeletal muscle.
Collapse
Affiliation(s)
- Lucía Pronsato
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET), 8000, Bahía Blanca, Argentina.
| | - Lorena Milanesi
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET), 8000, Bahía Blanca, Argentina.
| | - Andrea Vasconsuelo
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET), 8000, Bahía Blanca, Argentina
| |
Collapse
|
27
|
Yang M, Li P, Qin Q, Zhu K. The complete mitochondrial genome of false trevally Lactarius Lactarius (Bloch and Schneider, 1801). MITOCHONDRIAL DNA PART B-RESOURCES 2019; 5:87-89. [PMID: 33366435 PMCID: PMC7720941 DOI: 10.1080/23802359.2019.1698335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, the complete mitochondrial DNA sequence of the milkfish Lactarius lactarius is determined. The full-length of the mitochondrial genome consists of a 16,552 bp fragment, with the base composition of A (28.24%), C (29.82%), G (15.96%), and T (25.98%) with a high A + T content (54.22%). The base compositions present clearly the A-T skew, which is most obvious in the control region and protein-coding genes. It includes 2 ribosomal RNA (rRNA) genes, 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and a major non-coding control region (D-loop region). Furthermore, the composition and order of these genes are identical to most of other vertebrates. All the protein initiation codons are ATG, except that COX1 and ATP6 begin with GTG. All the protein termination codons are TAA, except ND3 and ND6 end with TAG, and COXII, ND4, Cytb finish only with incomplete T. Furthermore, the phylogenetic analysis base on 13 concatenated PCGs amino acid datasets among the 14 species, suggesting that high value support for the following sister clade with Toxotes chatareus. Our findings provide useful information for phylogenetic and evolutionary research of Perciformes species.
Collapse
Affiliation(s)
- Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangxi Key Lab for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Nanning, P. R. China.,Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, P. R. China
| | - Pengfei Li
- Guangxi Key Lab for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Nanning, P. R. China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Kecheng Zhu
- Guangxi Key Lab for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Nanning, P. R. China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
28
|
Mitofusins modulate the increase in mitochondrial length, bioenergetics and secretory phenotype in therapy-induced senescent melanoma cells. Biochem J 2019; 476:2463-2486. [PMID: 31431479 PMCID: PMC6735661 DOI: 10.1042/bcj20190405] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 01/03/2023]
Abstract
Cellular senescence is an endpoint of chemotherapy, and targeted therapies in melanoma and the senescence-associated secretory phenotype (SASP) can affect tumor growth and microenvironment, influencing treatment outcomes. Metabolic interventions can modulate the SASP, and an enhanced mitochondrial energy metabolism supports resistance to therapy in melanoma cells. Herein, we assessed the mitochondrial function of therapy-induced senescent melanoma cells obtained after exposing the cells to temozolomide (TMZ), a methylating chemotherapeutic agent. Senescence induction in melanoma was accompanied by a substantial increase in mitochondrial basal, ATP-linked, and maximum respiration rates and in coupling efficiency, spare respiratory capacity, and respiratory control ratio. Further examinations revealed an increase in mitochondrial mass and length. Alterations in mitochondrial function and morphology were confirmed in isolated senescent cells, obtained by cell-size sorting. An increase in mitofusin 1 and 2 (MFN1 and 2) expression and levels was observed in senescent cells, pointing to alterations in mitochondrial fusion. Silencing mitofusin expression with short hairpin RNA (shRNA) prevented the increase in mitochondrial length, oxygen consumption rate and secretion of interleukin 6 (IL-6), a component of the SASP, in melanoma senescent cells. Our results represent the first in-depth study of mitochondrial function in therapy-induced senescence in melanoma. They indicate that senescence increases mitochondrial mass, length and energy metabolism; and highlight mitochondria as potential pharmacological targets to modulate senescence and the SASP.
Collapse
|
29
|
Liu JH, Xi K, Zhang X, Bao L, Zhang X, Tan ZJ. Structural Flexibility of DNA-RNA Hybrid Duplex: Stretching and Twist-Stretch Coupling. Biophys J 2019; 117:74-86. [PMID: 31164196 PMCID: PMC6626833 DOI: 10.1016/j.bpj.2019.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/25/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
DNA-RNA hybrid (DRH) duplexes play essential roles during the replication of DNA and the reverse transcription of RNA viruses, and their flexibility is important for their biological functions. Recent experiments indicated that A-form RNA and B-form DNA have a strikingly different flexibility in stretching and twist-stretch coupling, and the structural flexibility of DRH duplex is of great interest, especially in stretching and twist-stretch coupling. In this work, we performed microsecond all-atom molecular dynamics simulations with new AMBER force fields to characterize the structural flexibility of DRH duplex in stretching and twist-stretch coupling. We have calculated all the helical parameters, stretch modulus, and twist-stretch coupling parameters for the DRH duplex. First, our analyses on structure suggest that the DRH duplex exhibits an intermediate conformation between A- and B-forms and closer to A-form, which can be attributed to the stronger rigidity of the RNA strand than the DNA strand. Second, our calculations show that the DRH duplex has the stretch modulus of 834 ± 34 pN and a very weak twist-stretch coupling. Our quantitative analyses indicate that, compared with DNA and RNA duplexes, the different flexibility of the DRH duplex in stretching and twist-stretch coupling is mainly attributed to its apparently different basepair inclination in the helical structure.
Collapse
Affiliation(s)
- Ju-Hui Liu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Kun Xi
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xi Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Lei Bao
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xinghua Zhang
- College of Life Science, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China.
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
30
|
Liu X, Yuan Y, He Y, Liu S, Ji X, Qin Y, Ma K. Characterization of the complete mitochondrial genome of Sesarma dehaani with phylogenetic analysis. MITOCHONDRIAL DNA PART B-RESOURCES 2019. [DOI: 10.1080/23802359.2018.1532827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xue Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, People’s Republic of China
- Ministry of Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Shanghai, People’s Republic of China
- Ministry of Agriculture, Key Laboratory of Freshwater Aquatic Genetic Resources (Shanghai Ocean University), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University), Shanghai, People’s Republic of China
| | - YiMing Yuan
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, People’s Republic of China
- Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, People’s Republic of China
| | - YanLong He
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, People’s Republic of China
- Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, People’s Republic of China
| | - ShouHai Liu
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, People’s Republic of China
- Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, People’s Republic of China
| | - Xiao Ji
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, People’s Republic of China
- Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, People’s Republic of China
| | - YuTao Qin
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, People’s Republic of China
- Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, People’s Republic of China
| | - KeYi Ma
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, People’s Republic of China
- Ministry of Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Shanghai, People’s Republic of China
- Ministry of Agriculture, Key Laboratory of Freshwater Aquatic Genetic Resources (Shanghai Ocean University), Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University), Shanghai, People’s Republic of China
| |
Collapse
|
31
|
Niu N, Li Z, Zhu M, Sun H, Yang J, Xu S, Zhao W, Song R. Effects of nuclear respiratory factor‑1 on apoptosis and mitochondrial dysfunction induced by cobalt chloride in H9C2 cells. Mol Med Rep 2019; 19:2153-2163. [PMID: 30628711 PMCID: PMC6390059 DOI: 10.3892/mmr.2019.9839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 09/28/2018] [Indexed: 01/31/2023] Open
Abstract
Hypoxia-induced apoptosis occurs in various diseases. Cobalt chloride (CoCl2) is a hypoxia mimic agent that is frequently used in studies investigating the mechanisms of hypoxia. Nuclear respiratory factor-1 (NRF-1) is a transcription factor with an important role in the expression of mitochondrial respiratory and mitochondria-associated genes. However, few studies have evaluated the effects of NRF-1 on apoptosis, particularly with regard to damage caused by CoCl2. In the present study, the role of NRF-1 in mediating CoCl2-induced apoptosis was investigated using cell viability analysis, flow cytometry, fluorescence imaging, western blotting analysis, energy metabolism analysis and reverse transcription-quantitative polymerase chain reaction. The present results revealed that the apoptosis caused by CoCl2 could be alleviated by NRF-1. Furthermore, overexpression of NRF-1 increased the expression of B-cell lymphoma-2, hypoxia inducible factor-1α and NRF-2. Also, cell damage induced by CoCl2 may be associated with depolarization of mitochondrial membrane potential, and NRF-1 suppressed this effect. Notably, the oxygen consumption rate (OCR) was reduced in CoCl2-treated cells, whereas overexpression of NRF-1 enhanced the OCR, suggesting that NRF-1 had protective effects. In summary, the present study demonstrated that NRF-1 protected against CoCl2-induced apoptosis, potentially by strengthening mitochondrial function to resist CoCl2-induced damage to H9C2 cells. The results of the present study provide a possible way for the investigation of myocardial diseases.
Collapse
Affiliation(s)
- Nan Niu
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Zihua Li
- School of Pharmacy, Tsinghua University, Beijing 100084, P.R. China
| | - Mingxing Zhu
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Hongli Sun
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Jihui Yang
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Shimei Xu
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Wei Zhao
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Rong Song
- Department of Critical Care Medicine, The Fifth Hospital of the Chinese People's Liberation Army, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| |
Collapse
|
32
|
Falabella M, Fernandez RJ, Johnson FB, Kaufman BA. Potential Roles for G-Quadruplexes in Mitochondria. Curr Med Chem 2019; 26:2918-2932. [PMID: 29493440 PMCID: PMC6113130 DOI: 10.2174/0929867325666180228165527] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
Some DNA or RNA sequences rich in guanine (G) nucleotides can adopt noncanonical conformations known as G-quadruplexes (G4). In the nuclear genome, G4 motifs have been associated with genome instability and gene expression defects, but they are increasingly recognized to be regulatory structures. Recent studies have revealed that G4 structures can form in the mitochondrial genome (mtDNA) and potential G4 forming sequences are associated with the origin of mtDNA deletions. However, little is known about the regulatory role of G4 structures in mitochondria. In this short review, we will explore the potential for G4 structures to regulate mitochondrial function, based on evidence from the nucleus.
Collapse
Affiliation(s)
- Micol Falabella
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| | - Rafael J Fernandez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Brett A Kaufman
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| |
Collapse
|
33
|
Phylogenetic Studies on Red Junglefowl ( Gallus gallus) and Native Chicken ( Gallus gallus domesticus) in Samar Island, Philippines using the Mitochondrial DNA D-Loop Region. J Poult Sci 2019; 56:237-244. [PMID: 32055220 PMCID: PMC7005397 DOI: 10.2141/jpsa.0180131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A study was conducted to provide genetic information on the matrilineal phylogeny and genetic diversity of Red junglefowl (RJF) and native chickens in Samar Island, Philippines and to identify the genetic distance between Philippine junglefowls and other RJF species in Southeast Asia using complete mitochondrial DNA D-loop sequences. A total of 5 RJFs and 43 native chickens from Samar Island were included in this study. The results showed that Samar RJFs had a nucleotide diversity of 0.0050±0.0016, which was lower than those of three subspecies of Gallus gallus: G. g. gallus, G. g. spadiceus, and G. g. jabouillei. Meanwhile, Samar native chickens showed lower nucleotide diversity (0.0056±0.0004) than domestic fowls in some neighboring Southeast Asian countries, but higher than those in African and European countries. Phylogenetic analysis showed that 3 haplotypes of Samar RJFs clustered to haplogroup D1, and that 2 haplotypes clustered to haplogroup D2. Chickens native to Samar Island showed 100% resemblance to those in the haplogroup shared by domestic chickens and RJFs. Haplogroups A and B and sub-haplogroups D1 and E1 were the more widely distributed matrilineal lineages in Samar Island. Phylogenetic analysis of Samar RJFs showed that they were closely related to Myanmar RJFs (99.6%), Indonesia RJFs (99.5%), and Thailand RJFs (99.1%). This study is an initial investigation estimating the matrilineal phylogeny and genetic diversity of chicken populations in Samar Island, Philippines for developing strategies aimed at the future conservation and improvement of valuable genetic resources.
Collapse
|
34
|
Yuan Y, He Y, Liu S, Ji X, Qin Y, Wang X. Characterization of the complete mitochondrial genome of Eriocheir leptognathus with phylogenetic analysis. MITOCHONDRIAL DNA PART B-RESOURCES 2018; 4:31-32. [PMID: 33365408 PMCID: PMC7510619 DOI: 10.1080/23802359.2018.1535858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/20/2018] [Indexed: 11/17/2022]
Abstract
Eriocheir leptognathus is a dominant species in the Yangtze River estuary. In this study, we first determined the complete mitochondrial genome (mitogenome) of E. leptognathus. The mitogenome is 16,143 bp in length, consisting of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and one non-coding control region. Initiation codons ATG and ATT were identified in eight and four PCGs, respectively, while stop codons TAA or TAG were found in eleven genes except for two genes which use incomplete stop codon T–. The phylogenetic analysis indicated that three species (E. hepuensis, E.japonica, E. sinensis) and E. leptognathus are very closely related. The complete mitogenome of E. leptognathus can provide population genetics information to further explore the taxonomic status of this species.
Collapse
Affiliation(s)
- YiMing Yuan
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, China.,Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, China
| | - YanLong He
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, China.,Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, China
| | - ShouHai Liu
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, China.,Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, China
| | - Xiao Ji
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, China.,Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, China
| | - YuTao Qin
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, China.,Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, China
| | - XiaoBo Wang
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, China.,Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, China
| |
Collapse
|
35
|
Sibiryakov PA, Tovpinets NN, Dupal TA, Semerikov VL, Yalkovskaya LE, Markova EA. Phylogeography of the Common Vole Microtus arvalis, the Obscurus Form (Rodentia, Arvicolinae): New Data on the Mitochondrial DNA Variability. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418100137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Liu J, Jiang H, Zan J, Bao Y, Dong J, Xiong L, Nie L. Single-molecule long-read transcriptome profiling of Platysternon megacephalum mitochondrial genome with gene rearrangement and control region duplication. RNA Biol 2018; 15:1244-1249. [PMID: 30200821 DOI: 10.1080/15476286.2018.1521212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Platysternon megacephalum is the sole living representative of the poorly studied turtle lineage Platysternidae. Their mitochondrial genome has been subject to gene rearrangement and control region duplication, resulting in a unique mitochondrial gene order in vertebrates. In this study, we sequenced the first full-length turtle (P. megacephalum) liver transcriptome using single-molecule real-time sequencing to study the transcriptional mechanisms of its mitochondrial genome. ND5 and ND6 anti-sense (ND6AS) forms a single transcript with the same expression in the human mitochondrial genome, but here we demonstrated differential expression of the rearranged ND5 and ND6AS genes in P. megacephalum. And some polycistronic transcripts were also reported in this study. Notably, we detected some novel long non-coding RNAs with alternative polyadenylation from the duplicated control region, and a novel ND6AS transcript composed of a long non-coding sequence, ND6AS, and tRNA-GluAS. These results provide the first description of a mtDNA transcriptome with gene rearrangement and control region duplication. These findings further our understanding of the fundamental concepts of mitochondrial gene transcription and RNA processing, and provide a new insight into the mechanism of transcription regulation of the mitochondrial genome.
Collapse
Affiliation(s)
- Jianjun Liu
- a Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui , Life Science College of Anhui Normal University , Wuhu , Anhui , P.R. China
| | - Hui Jiang
- a Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui , Life Science College of Anhui Normal University , Wuhu , Anhui , P.R. China
| | - Jiawei Zan
- a Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui , Life Science College of Anhui Normal University , Wuhu , Anhui , P.R. China
| | - Yuantian Bao
- a Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui , Life Science College of Anhui Normal University , Wuhu , Anhui , P.R. China
| | - Jinxiu Dong
- a Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui , Life Science College of Anhui Normal University , Wuhu , Anhui , P.R. China
| | - Lei Xiong
- a Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui , Life Science College of Anhui Normal University , Wuhu , Anhui , P.R. China
| | - Liuwang Nie
- a Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui , Life Science College of Anhui Normal University , Wuhu , Anhui , P.R. China
| |
Collapse
|
37
|
Zhang DL, Li M, Li T, Yuan JJ, Bu WJ. A mitochondrial genome of Micronectidae and implications for its phylogenetic position. Int J Biol Macromol 2018; 119:747-757. [PMID: 30075212 DOI: 10.1016/j.ijbiomac.2018.07.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/05/2018] [Accepted: 07/31/2018] [Indexed: 11/27/2022]
Abstract
The mitochondrial genome (mitogenome) has been extensively used to better understand the phylogenetic relationships within the heteropteran infraorder Nepomorpha (Hemiptera), but no mitogenome in Micronectidae has been sequenced to date. Here we describe the first complete mitogenome of Micronecta sahlbergii (Jakovlev, 1881). The mitogenome is 15,005 bp in size, containing 13 typical PCGs, 22 tRNAs, two rRNAs and a control region (CR). All genes are arranged in the same gene order as the most other known heteropteran mitogenome. The phylogenetic relationships based on mitogenomes using Bayesian inference and Maximum likelihood methods showed that Micronecta sahlbergii was sister to Sigara septemlineata, suggesting that Micronecta sahlbergii belongs to Corixoidea. Corixoidea was basal within Nepomorpha. The PCG12 and PCG12RT matrices of BI and ML analyses yielded the consistent topology, respectively. Whereas there was no consistent conclusions in PCG123 and PCG123RT matrices. Saturation tests showed that PCG12 and PCG12RT were free of saturation in evaluation of transition and transversion substitution, while PCG123 and PCG123RT exhibited a plateau revealing saturation of transition suggesting that the third codon positions of PCGs were not suitable for addressing relationships at the superfamily level in Nepomorpha. So our results supported the phylogenetic analysis of PCG12 and PCG12RT in Nepomorpha.
Collapse
Affiliation(s)
- Dan-Li Zhang
- Department of Biology, Taiyuan Normal University, Jinzhong 030619, PR China; Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Min Li
- Department of Biology, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Teng Li
- Institute of Zoology and Developmental Biology, College of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Juan-Juan Yuan
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Wen-Jun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
38
|
Shaoli M, Hao Y, Chao L, Yafu Z, Fuming S, Yuchao W. The complete mitochondrial genome of Xizicus (Haploxizicus) maculatus revealed by Next-Generation Sequencing and phylogenetic implication (Orthoptera, Meconematinae). Zookeys 2018:57-67. [PMID: 30026660 PMCID: PMC6048180 DOI: 10.3897/zookeys.773.24156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/31/2018] [Indexed: 11/12/2022] Open
Abstract
Xizicus Gorochov, 1993, the quiet-calling katydid, is a diverse genus with 68 species in world, which includes more than 45 species in China, has undergone numerous taxonomic revisions with contradicting conclusions. In this study the complete mitochondrial genome of Xizicus (Haploxizicus) maculatus collected from Hainan for the first time was sequenced using the Next-Generation Sequencing (NGS) technology. The length of whole mitogenome is 16,358 bp and contains the typical gene arrangement, base composition, and codon usage found in other related species. The overall base composition of the mitochondrial genome is 37.0 % A, 32.2 % T, 20.2 % C, and 10.6 % G. All 13 protein-coding genes (PCGs) began with typical ATN initiation codon. Nine of the 13 PCGs have a complete termination codon, but the remaining four genes (COI, COIII, ND5, and ND4) terminate with an incomplete T. Phylogenetic analyses are carried out based on the concatenated dataset of 13 PCGs and two rRNAs of Tettigoniidae species available in GenBank. Both Bayesian inference and Maximum Likelihood analyses recovered each subfamily as a monophyletic group. Regardless of the position of Lipotactinae, the relationships among the subfamilies of Tettigoniidae were as follows: ((((Tettigoniinae, Bradyporinae) Meconematinae) Conocephalinae) Hexacentrinae). The topological structure of the phylogeny trees showed that the Xizicus (Haploxizicus) maculatus is closer to Xizicus (Xizicus) fascipes than Xizicus (Eoxizicus) howardi.
Collapse
Affiliation(s)
- Mao Shaoli
- Xi'an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi'an 710061, China
| | - Yuan Hao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Lu Chao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhou Yafu
- Xi'an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi'an 710061, China
| | | | - Wang Yuchao
- Xi'an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi'an 710061, China
| |
Collapse
|
39
|
Yuan Y, He Y, Liu S, Ji X, Qin Y, Wang X. The complete mitochondrial genome of Exopalaemon annandalei. Mitochondrial DNA B Resour 2018; 3:1122-1123. [PMID: 33474440 PMCID: PMC7799480 DOI: 10.1080/23802359.2018.1521307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, the complete mitochondrial genome (mitogenome) of Exopalaemon annandalei was amplified and analyzed. The mitogenome is 15,718 bp in length, encoding 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes, and a control region (CR). The nucleotide frequency of the mitogenome is as follows: A, 34.81%; C, 23.24%; G, 12.68%; and T, 29.25%. Seven kinds of the initiation codon and five kinds of termination codon are employed in the 13 PCGs. Phylogenetic analysis show E. annandalei to be in sister-relationship with E. carinicauda. The complete mitogenome sequence information of E. annandalei would play an important part in further studies on molecular systematics and phylogeny.
Collapse
Affiliation(s)
- YiMing Yuan
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, People’s Republic of China
- Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, People’s Republic of China
| | - YanLong He
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, People’s Republic of China
- Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, People’s Republic of China
| | - ShouHai Liu
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, People’s Republic of China
- Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, People’s Republic of China
| | - Xiao Ji
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, People’s Republic of China
- Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, People’s Republic of China
| | - YuTao Qin
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, People’s Republic of China
- Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, People’s Republic of China
| | - XiaoBo Wang
- East China Sea Environmental Monitoring Center of State Oceanic Administration, Shanghai, People’s Republic of China
- Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, SOA, Shanghai, People’s Republic of China
| |
Collapse
|
40
|
Li Q, Wang X, Chen X, Han B. Complete mitochondrial genome of the tea looper caterpillar, Ectropis obliqua (Lepidoptera: Geometridae) with a phylogenetic analysis of Geometridae. Int J Biol Macromol 2018; 114:491-496. [DOI: 10.1016/j.ijbiomac.2018.02.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
|
41
|
Qian L, Wang H, Yan J, Pan T, Jiang S, Rao D, Zhang B. Multiple independent structural dynamic events in the evolution of snake mitochondrial genomes. BMC Genomics 2018; 19:354. [PMID: 29747572 PMCID: PMC5946542 DOI: 10.1186/s12864-018-4717-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial DNA sequences have long been used in phylogenetic studies. However, little attention has been paid to the changes in gene arrangement patterns in the snake's mitogenome. Here, we analyzed the complete mitogenome sequences and structures of 65 snake species from 14 families and examined their structural patterns, organization and evolution. Our purpose was to further investigate the evolutionary implications and possible rearrangement mechanisms of the mitogenome within snakes. RESULTS In total, eleven types of mitochondrial gene arrangement patterns were detected (Type I, II, III, III-A, III-B, III-B1, III-C, III-D, III-E, III-F, III-G), with mitochondrial genome rearrangements being a major trend in snakes, especially in Alethinophidia. In snake mitogenomes, the rearrangements mainly involved three processes, gene loss, translocation and duplication. Within Scolecophidia, the OL was lost several times in Typhlopidae and Leptotyphlopidae, but persisted as a plesiomorphy in the Alethinophidia. Duplication of the control region and translocation of the tRNALeu gene are two visible features in Alethinophidian mitochondrial genomes. Independently and stochastically, the duplication of pseudo-Pro (P*) emerged in seven different lineages of unequal size in three families, indicating that the presence of P* was a polytopic event in the mitogenome. CONCLUSIONS The WANCY tRNA gene cluster and the control regions and their adjacent segments were hotspots for mitogenome rearrangement. Maintenance of duplicate control regions may be the source for snake mitogenome structural diversity.
Collapse
Affiliation(s)
- Lifu Qian
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, China.,Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Hui Wang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Tao Pan
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Shanqun Jiang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Dingqi Rao
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Baowei Zhang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, China.
| |
Collapse
|
42
|
Alignment-based and alignment-free methods converge with experimental data on amino acids coded by stop codons at split between nuclear and mitochondrial genetic codes. Biosystems 2018; 167:33-46. [DOI: 10.1016/j.biosystems.2018.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
|
43
|
Yu F, Liang AP. The Complete Mitochondrial Genome of Ugyops sp. (Hemiptera: Delphacidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5040086. [PMID: 29924333 PMCID: PMC6007673 DOI: 10.1093/jisesa/iey063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Indexed: 05/22/2023]
Abstract
The complete mitochondrial genome (mitogenome) of Ugyops sp. (Hemiptera: Delphacidae) was sequenced, making it the first determined mitogenome from the subfamily Asiracinae, the basal clade of the family Delphacidae. The mitogenome was 15,259 bp in length with A + T content of 77.65% and contained 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and a control region. The gene order was identical with that of the ancestral insect. The nucleotide composition analysis indicated that the whole mitogenome was strongly A-skewed (0.288) and highly C-skewed (-0.270). For PCGs on the J-strand, the AT skew was positive, and the GC skew was negative. All PCGs started with canonical ATN codons, except for cox1 and nad5, which used CTG and GTG as start codon, respectively. All tRNAs could fold into typical cloverleaf secondary structures, with the exception of trnS1 (AGN), in which the dihydrouridine arm was reduced to a simple loop. The control region included a poly-T stretch downstream of the small rRNA gene (rrnS), a subregion of higher A + T content and tandemly repeated sequence near trnI. The mitogenome of Ugyops sp. could be very helpful in exploring the diversity and evolution of mitogenomes in Delphacidae.
Collapse
Affiliation(s)
- Fang Yu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ai-Ping Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Tan Y, Jia B, Chi YM, Han HB, Zhou XR, Pang BP. The Complete Mitochondrial Genome of the Plant Bug Lygus pratensis Linnaeus (Hemiptera: Miridae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:4967729. [PMID: 29718503 PMCID: PMC5893962 DOI: 10.1093/jisesa/iey035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Lygus pratensis is a phytophagous pest responsible for yield losses in Bt alfalfa and other economic crops in Northwestern China. To better characterize Miridae at the genomic level, the complete mitochondrial (mt) genome of L. pratensis was sequenced and analyzed in this study. The mt genome was amplified via the polymerase chain reaction to generate overlapping fragments. These fragments were then sequenced, spliced, and analyzed to include the examination of nucleotide composition, codon usage, compositional biases, protein-coding genes (PCGs), and RNA secondary structures. Phylogenetic relationships between L. pratensis and other species in different Heteroptera families were also examined. The mt genome was found to be a typical circular genome with a length of 16,591 bp and a total AT content of 75.1%, encoded for 13 PCGs, 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (lrRNA and srRNA), and a noncoding control region. The nucleotide composition of the entire mt genome was heavily biased toward A and T. All of the tRNAs were predicted to have classic clover leaf structures, but three of the tRNAs (tRNAAsn, tRNAHis, tRNAHis) were missing the TΨC loop. The control region (2,017 bp), which was found to be located between 12S and tRNAIle, contained three tandem repeat elements. Phylogenetic analyses showed that L. pratensis is closely related to the other three examined Lygus bugs, and that it is a sister group to Apolygus and Adelphocoris. This study confirms the usability of the mt genome in phylogenesis studies pertaining to the Lygus genus, within Miridae.
Collapse
Affiliation(s)
- Yao Tan
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
| | - Bing Jia
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
| | - Yuan-ming Chi
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
| | - Hai-bin Han
- Institute of grassland research, Chinese Academy of Agricultural Science, Hohhot, China
| | - Xiao-rong Zhou
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
| | - Bao-ping Pang
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot, China
| |
Collapse
|
45
|
Mitochondrial genome of Diaphania indica(saunders) (Lepidoptera: Pyraloidea) and implications for its phylogeny. Int J Biol Macromol 2018; 108:981-989. [DOI: 10.1016/j.ijbiomac.2017.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 11/21/2022]
|
46
|
Dai LS, Kausar S, Abbas MN, Wang TT. Complete sequence and characterization of the Ectropis oblique mitochondrial genome and its phylogenetic implications. Int J Biol Macromol 2017; 107:1142-1150. [PMID: 28962847 DOI: 10.1016/j.ijbiomac.2017.09.093] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
Abstract
In the present study, we sequenced the entire mitochondrial genome (mitogenome) of Ectropis oblique using PCR amplification and sequencing methods The entire mitogenome is 15,356bp long, including 13 protein coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and A+T rich element. The base composition and gene arrangement are identical to those of other lepidopterans. Of these 37 genes, twenty three are resided on heavy strand, while fourteen located on light strand. The newly sequenced mitogenome displayed a biased Adenine/thymine 84.94% usage versus guanine/cytosine. The AT skewness is 0.030 and the GC skewness is -0.180. Twelve out of 13 PCGs initiated with canonical start codon (ATN), while cox1 started with CGA. The A+T rich element of E. oblique is 363bp long and contains of many features common to lepidopteran insects, including the 'ATAGA' motif, a 22bp poly (T) stretch and a microsatellite-like (AT)8 element upstream of trnM. Further, this mitogenome comprises 15 intergenic spacer and overlapping regions. Phylogenetic analyses showed that E. oblique belongs to Geometridae, and that the monophyly of Lepidoptera superfamilies is well supported.
Collapse
Affiliation(s)
- Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Saima Kausar
- Department of Zoology and Fisheries, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Nadeem Abbas
- Department of Zoology and Fisheries, University of Agriculture, Faisalabad 38000, Pakistan
| | - Tian-Tian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| |
Collapse
|
47
|
Sun Y, Kurisaki M, Hashiguchi Y, Kumazawa Y. Variation and evolution of polyadenylation profiles in sauropsid mitochondrial mRNAs as deduced from the high-throughput RNA sequencing. BMC Genomics 2017; 18:665. [PMID: 28851277 PMCID: PMC5576253 DOI: 10.1186/s12864-017-4080-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Genes encoded in vertebrate mitochondrial DNAs are transcribed as a polycistronic transcript for both strands, which is later processed into individual mRNAs, rRNAs and tRNAs, followed by modifications, such as polyadenylation at the 3' end of mRNAs. Although mechanisms of the mitochondrial transcription and RNA processing have been extensively studied using some model organisms, structural variability of mitochondrial mRNAs across different groups of vertebrates is poorly understood. We conducted the high-throughput RNA sequencing to identify major polyadenylation sites for mitochondrial mRNAs in the Japanese grass lizard, Takydromus tachydromoides and compared the polyadenylation profiles with those identified similarly for 23 tetrapod species, featuring sauropsid taxa (reptiles and birds). RESULTS As compared to the human, a major polyadenylation site for the NADH dehydrogenase subunit 5 mRNA of the grass lizard was located much closer to its stop codon, resulting in considerable truncation of the 3' untranslated region for the mRNA. Among the other sauropsid taxa, several distinct polyadenylation profiles from the human counterpart were found for different mRNAs. They included various truncations of the 3' untranslated region for NADH dehydrogenase subunit 5 mRNA in four taxa, bird-specific polyadenylation of the light-strand-transcribed NADH dehydrogenase subunit 6 mRNA, and the combination of the ATP synthase subunit 8/6 mRNA with a neighboring mRNA into a tricistronic mRNA in the side-necked turtle Pelusios castaneus. In the last case of P. castaneus, as well as another example for NADH dehydrogenase subunit 1 mRNAs of some birds, the association between the polyadenylation site change and the gene overlap was highlighted. The variations in the polyadenylation profile were suggested to have arisen repeatedly in diverse sauropsid lineages. Some of them likely occurred in response to gene rearrangements in the mitochondrial DNA but the others not. CONCLUSIONS These results demonstrate structural variability of mitochondrial mRNAs in sauropsids. The efficient and comprehensive characterization of the mitochondrial mRNAs will contribute to broaden our understanding of their structural and functional evolution.
Collapse
Affiliation(s)
- Yao Sun
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, 467-8501, Japan
| | - Masaki Kurisaki
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, 467-8501, Japan
| | | | - Yoshinori Kumazawa
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, 467-8501, Japan.
| |
Collapse
|
48
|
Yao J, Yang H, Dai R. Characterization of the complete mitochondrial genome of Acanthoscelides obtectus (Coleoptera: Chrysomelidae: Bruchinae) with phylogenetic analysis. Genetica 2017; 145:397-408. [PMID: 28730527 DOI: 10.1007/s10709-017-9975-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/04/2017] [Indexed: 11/26/2022]
Abstract
Acanthoscelides obtectus is a common species of the subfamily Bruchinae and a worldwide-distributed seed-feeding beetle. The complete mitochondrial genome of A. obtectus is 16,130 bp in length with an A + T content of 76.4%. It contains a positive AT skew and a negative GC skew. The mitogenome of A. obtectus contains 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes and a non-coding region (D-loop). All PCGs start with an ATN codon, and seven (ND3, ATP6, COIII, ND3, ND4L, ND6, and Cytb) of them terminate with TAA, while the remaining five (COI, COII, ND1, ND4, and ND5) terminate with a single T, ATP8 terminates with TGA. Except tRNA Ser , the secondary structures of 21 tRNAs that can be folded into a typical clover-leaf structure were identified. The secondary structures of lrRNA and srRNA were also predicted in this study. There are six domains with 48 helices in lrRNA and three domains with 32 helices in srRNA. The control region of A. obtectus is 1354 bp in size with the highest A + T content (83.5%) in a mitochondrial gene. Thirteen PCGs in 19 species have been used to infer their phylogenetic relationships. Our results show that A. obtectus belongs to the family Chrysomelidae (subfamily-Bruchinae). This is the first study on phylogenetic analyses involving the mitochondrial genes of A. obtectus and could provide basic data for future studies of mitochondrial genome diversities and the evolution of related insect lineages.
Collapse
Affiliation(s)
- Jie Yao
- The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Hong Yang
- The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Renhuai Dai
- The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
49
|
Siibak T, Clemente P, Bratic A, Bruhn H, Kauppila TES, Macao B, Schober FA, Lesko N, Wibom R, Naess K, Nennesmo I, Wedell A, Peter B, Freyer C, Falkenberg M, Wredenberg A. A multi-systemic mitochondrial disorder due to a dominant p.Y955H disease variant in DNA polymerase gamma. Hum Mol Genet 2017; 26:2515-2525. [PMID: 28430993 PMCID: PMC5886115 DOI: 10.1093/hmg/ddx146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 12/28/2022] Open
Abstract
Mutations in the mitochondrial DNA polymerase, POLG, are associated with a variety of clinical presentations, ranging from early onset fatal brain disease in Alpers syndrome to chronic progressive external ophthalmoplegia. The majority of mutations are linked with disturbances of mitochondrial DNA (mtDNA) integrity and maintenance. On a molecular level, depending on their location within the enzyme, mutations either lead to mtDNA depletion or the accumulation of multiple mtDNA deletions, and in some cases these molecular changes can be correlated to the clinical presentation. We identified a patient with a dominant p.Y955H mutation in POLG, presenting with a severe, early-onset multi-systemic mitochondrial disease with bilateral sensorineural hearing loss, cataract, myopathy, and liver failure. Using a combination of disease models of Drosophila melanogaster and in vitro biochemistry analysis, we compare the molecular consequences of the p.Y955H mutation to the well-documented p.Y955C mutation. We demonstrate that both mutations affect mtDNA replication and display a dominant negative effect, with the p.Y955H allele resulting in a more severe polymerase dysfunction.
Collapse
Affiliation(s)
- Triinu Siibak
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg SE-405?30, Sweden
| | - Paula Clemente
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Ana Bratic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne D-50931, Germany
| | - Helene Bruhn
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| | - Timo E S Kauppila
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne D-50931, Germany
| | - Bertil Macao
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg SE-405?30, Sweden
| | - Florian A Schober
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Nicole Lesko
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| | - Rolf Wibom
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| | - Karin Naess
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| | - Inger Nennesmo
- Department of Pathology, Karolinska University Hospital, SE-171?77 Stockholm, Sweden
| | - Anna Wedell
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm SE-171 76, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm SE-171 76, Sweden
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg SE-405?30, Sweden
| | - Christoph Freyer
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg SE-405?30, Sweden
| | - Anna Wredenberg
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| |
Collapse
|
50
|
Blackstone NW. PERSPECTIVE A UNITS‐OF‐EVOLUTION PERSPECTIVE ON THE ENDOSYMBIONT THEORY OF THE ORIGIN OF THE MITOCHONDRION. Evolution 2017; 49:785-796. [DOI: 10.1111/j.1558-5646.1995.tb02315.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1994] [Accepted: 10/20/1994] [Indexed: 11/26/2022]
Affiliation(s)
- Neil W. Blackstone
- Department of Biological Sciences Northern Illinois University DeKalb Illinois 60115
| |
Collapse
|