1
|
Chen W, Jiang L, Hu Y, Fang G, Yang B, Li J, Liang N, Wu L, Hussain Z. Nanomedicines, an emerging therapeutic regimen for treatment of ischemic cerebral stroke: A review. J Control Release 2021; 340:342-360. [PMID: 34695522 DOI: 10.1016/j.jconrel.2021.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
Owing to its intricate pathophysiology, cerebral stroke is a serious medical condition caused by interruption or obstruction of blood supply (blockage of vasculature) to the brain tissues which results in diminished supply of essential nutrients and oxygen (hypoxia) and ultimate necrosis of neuronal tissues. A prompt risks assessment and immediate rational therapeutic plan with proficient neuroprotection play critically important role in the effective management of this neuronal emergency. Various conventional medications are being used for treatment of acute ischemic cerebral stroke but fibrinolytic agents, alone or in combination with other agents are considered the mainstay. These clot-busting agents effectively restore blood supply (reperfusion) to ischemic regions of the brain; however, their clinical significance is hampered due to various factors such as short plasma half-life, limited distribution to brain tissues due to the presence of highly efficient physiological barrier, blood brain barrier (BBB), and lacking of target-specific delivery to the ischemic brain regions. To alleviate these issues, various types of nanomedicines such as polymeric nanoparticles (NPs), liposomes, nanoemulsion, micelles and dendrimers have been designed and evaluated. The implication of these newer therapies (nanomedicines) have revolutionized the therapeutic outcomes by improving the plasma half-life, permeation across BBB, efficient distribution to ischemic cerebral tissues and neuroprotection. Furthermore, the adaptation of some diverse techniques including PEGylation, tethering of targeting ligands on the surfaces of nanomedicines, and pH responsive features have also been pondered. The implication of these emerging adaptations have shown remarkable potential in maximizing the targeting efficiency of drugs to ischemic brain tissues, simultaneous delivery of drugs and imaging agents (for early prognosis as well as monitoring of therapy), and therapeutic outcomes such as long-term neuroprotection.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Lingfei Jiang
- Graduate College, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Yueqiang Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China.
| | - Gang Fang
- Guangxi Zhuang and Yao Medicine Engineering Technology Research Center, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Bilin Yang
- Graduate College, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Junhong Li
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Ni Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Lin Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China.
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
2
|
N-acetylcysteine prevents verapamil-induced cardiotoxicity with no effect on the noradrenergic arch-associated neurons in zebrafish. Food Chem Toxicol 2020; 144:111559. [PMID: 32640352 DOI: 10.1016/j.fct.2020.111559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
There is a strong association between calcium channel blockers (CCBs) and heart failure. CCB toxicity is very common due to overdose and underlying medical conditions. CCBs also have been shown to affect the nervous system. Recently, we demonstrated that the antioxidant N-acetylcysteine (NAC) prevented ketamine-induced cardiotoxicity, developmental toxicity and neurotoxicity. Functionally, we attributed NAC's beneficial effect to its ability to increase cellular calcium. Here, we hypothesized that if there was an involvement of calcium in NAC's preventative effects on ketamine toxicity, NAC might also ameliorate toxicities induced by verapamil, an L-type CCB used to treat hypertension. Using zebrafish embryos, we show that in the absence of NAC, verapamil (up to 100 μM) dose-dependently reduced heart rate and those effects were prevented by NAC co-treatment. Furthermore, a 2-h treatment with NAC rescued reduction of heart rate induced by pre-treatment of 50 and 100 μM of verapamil for 18 h. Verapamil up to 100 μM and NAC up to 1.5 mM did not have any adverse effects on the expression of tyrosine hydroxylase in the noradrenergic neurons of the arch-associated cluster (AAC) located near the heart. NAC did not change cysteine levels in the embryos suggesting that the beneficial effect of NAC on verapamil toxicity may not involve its antioxidant property. In our search for compounds that can prevent CCB toxicity, this study, for the first time, demonstrates protective effects of NAC against verapamil's adverse effects on the heart.
Collapse
|
3
|
Nimmrich V, Eckert A. Calcium channel blockers and dementia. Br J Pharmacol 2014; 169:1203-10. [PMID: 23638877 DOI: 10.1111/bph.12240] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/15/2013] [Accepted: 04/22/2013] [Indexed: 12/25/2022] Open
Abstract
Degenerative dementia is mainly caused by Alzheimer's disease and/or cerebrovascular abnormalities. Disturbance of the intracellular calcium homeostasis is central to the pathophysiology of neurodegeneration. In Alzheimer's disease, enhanced calcium load may be brought about by extracellular accumulation of amyloid-β. Recent studies suggest that soluble forms facilitate influx through calcium-conducting ion channels in the plasma membrane, leading to excitotoxic neurodegeneration. Calcium channel blockade attenuates amyloid-β-induced neuronal decline in vitro and is neuroprotective in animal models. Vascular dementia, on the other hand, is caused by cerebral hypoperfusion and may benefit from calcium channel blockade due to relaxation of the cerebral vasculature. Several calcium channel blockers have been tested in clinical trials of dementia and the outcome is heterogeneous. Nimodipine as well as nilvadipine prevent cognitive decline in some trials, whereas other calcium channel blockers failed. In trials with a positive outcome, BP reduction did not seem to play a role in preventing dementia, indicating a direct protecting effect on neurons. An optimization of calcium channel blockers for the treatment of dementia may involve an increase of selectivity for presynaptic calcium channels and an improvement of the affinity to the inactivated state. Novel low molecular weight compounds suitable for proof-of-concept studies are now available.
Collapse
Affiliation(s)
- V Nimmrich
- Neuroscience Research, GPRD, AbbVie GmbH, Ludwigshafen, Germany.
| | | |
Collapse
|
4
|
The β-adrenergic system as a possible new target for pharmacologic treatment of neovascular retinal diseases. Prog Retin Eye Res 2014; 42:103-29. [DOI: 10.1016/j.preteyeres.2014.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 12/31/2022]
|
5
|
Barhwal K, Hota SK, Baitharu I, Prasad D, Singh SB, Ilavazhagan G. Isradipine antagonizes hypobaric hypoxia induced CA1 damage and memory impairment: Complementary roles of L-type calcium channel and NMDA receptors. Neurobiol Dis 2009; 34:230-44. [PMID: 19385055 DOI: 10.1016/j.nbd.2009.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Hypobaric hypoxia leads to cognitive dysfunctions due to increase in intracellular calcium through ion channels. The purpose of this study was to examine the temporal contribution of L-type calcium channels and N-methyl-D-aspartate receptors (NMDARs) in mediating neuronal death in male Sprague Dawley rats exposed to hypobaric hypoxia simulating an altitude of 25,000 ft for different durations. Decreasing exogenous calcium loads by blocking voltage-gated calcium influx with isradipine (2.5 mg kg(-1)), and its efficacy in providing neuroprotection and preventing memory impairment following hypoxic exposure was also investigated. Effect of isradipine on calcium-dependent enzymes mediating oxidative stress and apoptotic cell death was also studied. Blocking of L-type calcium channels with isradipine reduced hypoxia-induced activation of calcium dependent xanthine oxidases, monoamine oxidases, cytosolic phospholipase A(2) and cycloxygenases (COX-2) along with concomitant decrease in free radical generation and cytochrome c release. Increased expression of calpain and caspase 3 was also observed following exposure to hypobaric hypoxia along with augmented neurodegeneration and memory impairment which was adequately prevented by isradipine administration. Administration of isradipine during hypoxic exposure protected the hippocampal neurons following 3 and 7 days of exposure to hypobaric hypoxia along with improvement in spatial memory.
Collapse
Affiliation(s)
- Kalpana Barhwal
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Timarpur, Delhi, India
| | | | | | | | | | | |
Collapse
|
6
|
Cheon EW, Park CH, Kim YS, Cho CH, Chung YC, Kwon JG, Yoo JM, Choi WS, Cho GJ. Protective effects of betaxolol in eyes with kainic acid-induced neuronal death. Brain Res 2006; 1069:75-85. [PMID: 16387283 DOI: 10.1016/j.brainres.2005.10.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 10/26/2005] [Accepted: 10/31/2005] [Indexed: 12/31/2022]
Abstract
In the present study, we investigated whether betaxolol, a selective beta1-adrenoceptor antagonist, has neuroprotective effect on kainic acid (KA)-induced retinal damage. Neurotoxicities were induced in adult male rats by intravitreal injection of KA (total amount, 6 nmol). To examine the neuroprotective effects of betaxolol, rats were pretreated with betaxolol topically 60 min before KA injection to the rat eyes and twice daily for 1, 3, and 7 days after KA injection. The neuroprotective effects of betaxolol were estimated by measuring the thickness of the various retinal layers, and by counting the number of choline acetyltransferase (ChAT)- and tyrosine hydroxylase (TH)-positive cells in each retinal layer. The retina is highly vulnerable to KA-induced neuronal damage. Morphometric analysis of retinal damage in KA injected eyes, the thickness of the retinal layers decreased markedly after KA injection period of both 3 and 7 days. Furthermore, the numbers of ChAT- and TH-positive cells were significantly reduced by intravitreal injection of KA. However, when two drops of betaxolol, once before KA injection and twice daily for 7 days after KA injection, were continuously administered, the reductions in the retinal thickness and the retinal ChAT- and TH-positive cells were significantly attenuated. The present study suggests that topically applied betaxolol has neuroprotective effect on the retinal cell damage due to KA-induced neurotoxicity.
Collapse
Affiliation(s)
- Eun Woo Cheon
- Division of Food Science, Jinju International University, 270 San Sangmun-ri Munsan-eup, Jinju, Kyungnam 660-759, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Carpentier P, Foquin A, Lallement G, Dorandeu F. Flunarizine: a possible adjuvant medication against soman poisoning? Drug Chem Toxicol 2005; 27:213-31. [PMID: 15478944 DOI: 10.1081/dct-120037503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Organophosphate (OP) nerve agents are amongst the most toxic chemicals. One of them, soman, can induce severe epileptic seizures and brain damage for which therapy is incomplete. The present study shows that pretreatment with flunarizine (Flu), a voltage-dependent calcium channel blocker, when used alone, does not produce any beneficial effect against the convulsions, neuropathology and lethality induced by soman. Flu was also tested in combination with atropine sulfate and diazepam. In this case, although only some results reach statistical significance, an encouraging general trend toward an improvement of the anticonvulsant, neuroprotective and antilethal capacities of this classical anti-OP two-drug regimen is constantly observed. In the light of these findings, it seems premature to definitely reject (or recommend) Flu as a possible adjuvant medication against soman poisoning. Further studies are required to determine its real potential interest.
Collapse
Affiliation(s)
- Pierre Carpentier
- Centre de Recherches du Service de Santé des Armées, Unité de Neuropharmacologie, La Tronche Cedex, France.
| | | | | | | |
Collapse
|
8
|
Pringle AK. In, out, shake it all about: elevation of [Ca2+]i during acute cerebral ischaemia. Cell Calcium 2004; 36:235-45. [PMID: 15261479 DOI: 10.1016/j.ceca.2004.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Accepted: 02/18/2004] [Indexed: 11/19/2022]
Abstract
Because of the extensive second messenger role played by calcium, free intracellular calcium levels are strictly regulated. Under normal physiological conditions, this is achieved through a combination of restricted calcium entry, efficient efflux and restricted intracellular mobility. Overall, the process of regulating free calcium is dependent on ATP derived from oxidative metabolism. Under conditions of cerebral ischaemia, ATP levels fall rapidly and calcium homeostasis becomes significantly disturbed resulting in the initiation of calcium-dependent neurodegenerative processes. In this review, the mechanisms underlying physiological calcium homeostasis and the links between calcium disregulation and neurodegeneration will be discussed.
Collapse
Affiliation(s)
- Ashley K Pringle
- Division of Clinical Neurosciences, University of Southampton, Room 6207, Biomedical Sciences Building, Bassett Crescent East, Southampton SO16 7PX, UK.
| |
Collapse
|
9
|
Michalk F, Michelson G, Harazny J, Werner U, Daniel WG, Werner D. Single-Dose Nimodipine Normalizes Impaired Retinal Circulation in Normal Tension Glaucoma. J Glaucoma 2004; 13:158-62. [PMID: 15097263 DOI: 10.1097/00061198-200404000-00013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Several studies indicate that calcium channel blockers improve the clinical course of normal tension glaucoma (NTG), whereas the underlying mechanism is not fully investigated. Hemodynamic improvement and neuroprotective effects are discussed. In this study, we measured the hemodynamic effects of nimodipine on retinal circulation. PATIENTS AND METHODS Sixteen patients with NTG and clinical signs of vasospastic hyperreactivity, such as suffering from extremely cold hands and feet, were consecutively selected out of the local glaucoma registry. Ten healthy age-matched volunteers were included as controls. Retinal capillary blood flow was measured by Scanning Laser Doppler Flowmetry in both eyes before and 90 +/- 10 minutes after a single oral dose of 30 mg nimodipine. RESULTS Before administration of nimodipine, retinal capillary blood flow was significantly reduced in NTG patients compared with controls (262 +/- 80 vs. 487 +/- 164 AU, P < 0.001). Nimodipine increased retinal capillary blood flow in NTG patients by 91 +/- 73% (P < 0.001) to values of healthy controls (440 +/- 113 vs. 439 +/- 123 AU, P = 0.635). In controls, nimodipine did not show significant effects. CONCLUSIONS In NTG patients with additional vasospastic symptoms, retinal capillary blood is significantly reduced in comparison with healthy controls. Single-dose nimodipine yields to a normalization of retinal circulation in NTG patients up to values of healthy controls 90 minutes after drug administration.
Collapse
Affiliation(s)
- Fabian Michalk
- Medical Clinic (Cardiology, Angiology), Friedrich-Alexander-University Erlangen-Nuremberg
| | | | | | | | | | | |
Collapse
|
10
|
Arai K, Wood JPM, Osborne NN. Beta-adrenergic receptor agonists and antagonists counteract LPS-induced neuronal death in retinal cultures by different mechanisms. Brain Res 2003; 985:176-86. [PMID: 12967722 DOI: 10.1016/s0006-8993(03)03156-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Treatment with lipopolysaccharide (LPS) for 72 h was shown to dose-dependently increase nitric oxide production from 6-day-old retinal cultures. Cell death, as determined by lactate dehydrogenase (LDH) release and an increase in neuronal labelling for TUNEL, was elevated concurrently. During treatment there was an increase of both inducible nitric oxide synthase and glial fibrillary acidic protein labelling in glial cells and a reduction in the number of gamma-aminobutyric acid-positive neurones. The NOS inhibitors, N-nitro-L-arginine methyl ester, dexamethasone and indomethacin potently inhibited both nitric oxide stimulation and cell death caused by LPS. In this study, the beta(2)- (ICI-18551), beta(1)- (betaxolol) and mixed beta(1)/beta(2)- (timolol, metipranolol) adrenergic receptor antagonists were all shown to attenuate LPS-induced LDH release from these cultures, but to have no effect on LPS-stimulated nitric oxide production. This effect was mimicked by the calcium channel blocker, nifedipine. Interestingly, the beta-adrenergic receptor agonists, salbutamol, arterenol and isoproterenol were also able to attenuate cell death caused by LPS. Moreover, these compounds also inhibited LPS-stimulated nitric oxide release. These studies suggest that LPS stimulates nitric oxide release from cultured retinal glial cells and that this process leads to neurone death. beta-adrenergic receptor agonists prevent the effects of LPS by inhibiting the stimulation of nitric oxide production. The data also suggest that beta-adrenergic receptor antagonists can attenuate LPS-induced death of neurones, but that these compounds act in a manner that is neurone-dependent, is mimicked by blockade of calcium channels and is independent of the stimulation of nitric oxide release.
Collapse
Affiliation(s)
- Kunizo Arai
- Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, Oxford OX2 6AW, UK
| | | | | |
Collapse
|
11
|
Alzheimer C. Na+ channels and Ca2+ channels of the cell membrane as targets of neuroprotective substances. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:161-81. [PMID: 12575820 DOI: 10.1007/978-1-4615-0123-7_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Christian Alzheimer
- Department of Physiology, University of Munich, Pettenkoferstr. 12, D-80336 Munich, Germany
| |
Collapse
|
12
|
Wood JPM, Schmidt KG, Melena J, Chidlow G, Allmeier H, Osborne NN. The beta-adrenoceptor antagonists metipranolol and timolol are retinal neuroprotectants: comparison with betaxolol. Exp Eye Res 2003; 76:505-16. [PMID: 12634114 DOI: 10.1016/s0014-4835(02)00335-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
beta-adrenoceptor antagonists are used clinically to reduce elevated intraocular pressure in glaucoma which is characterised by a loss of retinal ganglion cells. Previous studies have shown that the beta(1)-selective adrenoceptor antagonist, betaxolol, is additionally able to protect retinal neurones in vitro and ganglion cells in vivo from the detrimental effects of either ischemia-reperfusion or from excitotoxicity, after topical application. The neuroprotective effect of betaxolol is thought not to be elicited through an interaction with beta-adrenoceptors, but by its ability to reduce influx of sodium and calcium through voltage-sensitive calcium and sodium channels. In the present study it is shown that the non-selective beta-adrenoceptor antagonists, metipranolol and timolol behave like betaxolol. When topically applied they all attenuate the detrimental effect of ischemia-reperfusion. Protection of the retina was determined by evaluating changes in the electroretinogram and by assessing the loss of mRNA for Thy-1, which is expressed in retinal ganglion cells. In addition, studies conducted on neurones in mixed retinal cultures demonstrated that metipranolol, betaxolol and timolol were all able to partially counteract anoxia-induced cell loss and viability reduction. The influence of timolol was, however, not significant. Within the confines of these investigations, an order of neuroprotective efficacy was delineated for the three beta-adrenoceptor antagonists: betaxolol>metipranolol>timolol. The ability of the beta-adrenoceptor antagonists to attenuate ligand-induced stimulation of calcium and sodium entry into neuronal preparations showed a similar order of effectiveness. In conclusion, the ability to confer neuroprotection to retinal neurones is a common feature of three ophthalmic beta-adrenoceptor antagonists (betaxolol, metipranolol and timolol). A comparison of the effectiveness of the individual compounds in protecting retinal cells in vivo was not possible in these studies. However, in vitro studies show that the capacity of the individual beta-adrenoceptor antagonists to act as neuroprotectants appears to relate to their capacity to attenuate neuronal calcium and sodium influx.
Collapse
Affiliation(s)
- J P M Wood
- Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, Oxford OX2 6AW, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Green AR, Hainsworth AH, Misra A, Debens TA, Jackson DM, Murray TK, Nelson RM, Cross AJ. The interaction of AR-A008055 and its enantiomers with the GABA(A) receptor complex and their sedative, muscle relaxant and anticonvulsant activity. Neuropharmacology 2001; 41:167-74. [PMID: 11489453 DOI: 10.1016/s0028-3908(01)00053-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AR-A008055 [(+/-)-1-(4-methyl-5-thiazolyl)-1-phenylmethylamine] is structurally related to clomethiazole and has been used to probe the mechanism of the neuroprotective effect of clomethiazole. Clomethiazole, (+/-)-AR-A008055 and (S)-(-)-AR-A008055 all displaced [35S]-t-butyl-bicyclophosphorothionate ([35S]TBPS) from rat cerebral cortex tissue (IC50 values: GABA, 8.1+/-0.04 microM; clomethiazole, 130+/-30 microM; (+/-)-AR-A008055, 494+/-7 microM; (S)-(-)-AR-A008055, 221+/-14 microM. (R)-(+)-AR-A008055 was without significant effect (IC50>1000 microM). None of the compounds interacted with NMDA or AMPA receptors or with sodium or calcium (N, P/Q) channels. Brain penetration of both enantiomers following their i.p. administration was excellent, with brain and plasma concentrations being similar. Clomethiazole dose-dependently inhibited spontaneous locomotor activity in rats and was approximately 10 times more sedative than either enantiomer of AR-A008055. Clomethiazole was more potent than (S)-(-)-AR-A008055 in the "pull-up" test (muscle relaxation) and in producing loss of righting reflex, while (R)-(+)-AR-A008055 had little effect. The time animals remained on a Rota-rod was of the order: clomethiazole<(S)-(-)-AR-A008055<(R)-(+)-AR-A008055. (S)-(-)-AR-A008055 (210 micromol/kg) raised seizure threshold to pentylenetetrazole (i.v.) by 119+/-21%. The (R)-(+)- enantiomer was not anticonvulsant. Overall, (S)-(-)-AR-A008055 exhibited a similar pharmacology to clomethiazole. However, its sedative and muscle relaxant effects were substantially less than clomethiazole, emphasising that these properties are not directly related to neuroprotective efficacy. The current data suggest that the proposed GABA uptake inhibitory property of (R)-(+)-AR-A008055 fails to produce significant sedative, myorelaxant or anticonvulsant activity.
Collapse
Affiliation(s)
- A R Green
- AstraZeneca R&D Charnwood, Loughborough LE11 5RH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chao HM, Chidlow G, Melena J, Wood JP, Osborne NN. An investigation into the potential mechanisms underlying the neuroprotective effect of clonidine in the retina. Brain Res 2000; 877:47-57. [PMID: 10980242 DOI: 10.1016/s0006-8993(00)02592-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
alpha(2)-adrenoceptor agonists, such as clonidine, attenuate hypoxia-induced damage to brain and retinal neurones by a mechanism of action which likely involves stimulation of alpha(2)-adrenoceptors. In addition, the neuroprotective effect of alpha(2)-adrenoceptor agonists in the retina may involve stimulation of bFGF production. The purpose of this study was to examine more thoroughly the neuroprotective properties of clonidine. In particular, studies were designed to ascertain whether clonidine acts as a free radical scavenger. It is thought that betaxolol, a beta(1)-adrenoceptor antagonist, acts as a neuroprotective agent by interacting with sodium and L-type calcium channels to reduce the influx of these ions into stressed neurones. Studies were therefore undertaken to determine whether clonidine has similar properties. In addition, studies were undertaken to determine whether i.p. injections of clonidine or betaxolol affect retinal bFGF mRNA levels. In vitro data were generally in agreement that clonidine and bFGF counteracted the effect of NMDA as would occur in hypoxia. No evidence could be found that clonidine interacts with sodium or L-type calcium channels, reduces calcium influx into neurones or acts as a free radical scavenger at concentrations below 100 microM. Moreover, i.p. injection of clonidine, but not betaxolol, elevated bFGF mRNA levels in the retina. The conclusion from this study is that the neuroprotective properties of alpha(2)-adrenoceptor agonists, like clonidine, are very different from betaxolol. The fact that both betaxolol and clonidine blunt hypoxia-induced death to retinal ganglion cells suggests that combining the two drugs may be a way forward to producing more effective neuroprotection.
Collapse
Affiliation(s)
- H M Chao
- Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, OX2 6AW, Oxford, UK
| | | | | | | | | |
Collapse
|
15
|
Connor JA, Razani-Boroujerdi S, Greenwood AC, Cormier RJ, Petrozzino JJ, Lin RC. Reduced voltage-dependent Ca2+ signaling in CA1 neurons after brief ischemia in gerbils. J Neurophysiol 1999; 81:299-306. [PMID: 9914290 DOI: 10.1152/jn.1999.81.1.299] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An initial overload of intracellular Ca2+ plays a critical role in the delayed death of hippocampal CA1 neurons that die a few days after transient ischemia. Without direct evidence, the prevailing hypothesis has been that Ca2+ overload may recur until cell death. Here, we report the first measurements of intracellular Ca2+ in living CA1 neurons within brain slices prepared 1, 2, and 3 days after transient (5 min) ischemia. With no sign of ongoing Ca2+ overload, voltage-dependent Ca2+ transients were actually reduced after 2-3 days of reperfusion. Resting Ca2+ levels and recovery rate after loading were similar to neurons receiving no ischemic insult. The tetrodotoxin-insensitive Ca spike, normally generated by these neurons, was absent at 2 days postischemia, as was a large fraction of Ca2+-dependent spike train adaptation. These surprising findings may lead to a new perspective on delayed neuronal death and intervention.
Collapse
Affiliation(s)
- J A Connor
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico 87131-5223, USA
| | | | | | | | | | | |
Collapse
|
16
|
Green AR, Misra A, Hewitt KE, Snape MF, Cross AJ. An investigation of the possible interaction of clomethiazole with glutamate and ion channel sites as an explanation of its neuroprotective activity. PHARMACOLOGY & TOXICOLOGY 1998; 83:90-4. [PMID: 9783326 DOI: 10.1111/j.1600-0773.1998.tb01449.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The activity of the neuroprotective agent clomethiazole at glutamate and ion channel sites has been investigated. Dizocilpine (3.25 mg/kg intraperitoneally) provided almost total protection against the damage produced by infusion of N-methyl-DL-aspartate (NMDLA; 75 micrograms) into the right hippocampus. In contrast, clomethiazole (96 mg/kg intraperitoneally) was without effect. Using ligand binding techniques, no evidence was found for clomethiazole interacting with NMDA, AMPA or sigma binding sites. Clomethiazole did inhibit the stimulatory effect of the metabotropic glutamate receptor agonist 1S3R-aminocyclopentone-1,3-dicarboxylic acid (ACPD) on phosphoinositol hydrolysis, but only at a concentration of 10(-3) M, which is unlikely to have functional relevance. Clomethiazole was also without effect on ligand binding to Ca2+ channels (N- or L- type), Na+ channels or ATP-sensitive K+ channels. Potentiation of GABA function therefore remains the most plausible explanation for the neuroprotective activity of clomethiazole.
Collapse
|
17
|
Ferrer-Montiel AV, Merino JM, Blondelle SE, Perez-Payà E, Houghten RA, Montal M. Selected peptides targeted to the NMDA receptor channel protect neurons from excitotoxic death. Nat Biotechnol 1998; 16:286-91. [PMID: 9528011 DOI: 10.1038/nbt0398-286] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excitotoxic neuronal death, associated with neurodegeneration and stroke, is triggered primarily by massive Ca2+ influx arising from overactivation of glutamate receptor channels of the N-methyl-D-aspartate (NMDA) subtype. To search for channel blockers, synthetic combinatorial libraries were assayed for block of agonist-evoked currents by the human NR1-NR2A NMDA receptor subunits expressed in amphibian oocytes. A set of arginine-rich hexapeptides selectively blocked the NMDA receptor channel with IC50 approximately 100 nM, a potency similar to clinically tolerated blockers such as memantine, and only marginally blocked on non-NMDA glutamate receptors. These peptides prevent neuronal cell death elicited by an excitotoxic insult on hippocampal cultures.
Collapse
Affiliation(s)
- A V Ferrer-Montiel
- Department of Biology, University of California, San Diego, La Jolla 92093-0366, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Preventing the loss of ion homeostasis or promoting its recovery are two primary targets of neuroprotective strategies. The contribution of excitatory neurotransmitter receptor linked ion channels is now well established. Sodium and calcium may also enter neurons and glia through voltage sensitive channels and exchangers, contributing directly and indirectly to injury.
Collapse
Affiliation(s)
- J J Vornov
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD 21287-6953, USA
| |
Collapse
|