1
|
Walliser C, Hermkes E, Schade A, Wiese S, Deinzer J, Zapatka M, Désiré L, Mertens D, Stilgenbauer S, Gierschik P. The Phospholipase Cγ2 Mutants R665W and L845F Identified in Ibrutinib-resistant Chronic Lymphocytic Leukemia Patients Are Hypersensitive to the Rho GTPase Rac2 Protein. J Biol Chem 2016; 291:22136-22148. [PMID: 27542411 PMCID: PMC5063995 DOI: 10.1074/jbc.m116.746842] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/18/2016] [Indexed: 12/29/2022] Open
Abstract
Mutations in the gene encoding phospholipase C-γ2 (PLCγ2) have been shown to be associated with resistance to targeted therapy of chronic lymphocytic leukemia (CLL) with the Bruton's tyrosine kinase inhibitor ibrutinib. The fact that two of these mutations, R665W and L845F, imparted upon PLCγ2 an ∼2-3-fold ibrutinib-insensitive increase in the concentration of cytosolic Ca2+ following ligation of the B cell antigen receptor (BCR) led to the assumption that the two mutants exhibit constitutively enhanced intrinsic activity. Here, we show that the two PLCγ2 mutants are strikingly hypersensitive to activation by Rac2 such that even wild-type Rac2 suffices to activate the mutant enzymes upon its introduction into intact cells. Enhanced "basal" activity of PLCγ2 in intact cells is shown using the pharmacologic Rac inhibitor EHT 1864 and the PLCγ2F897Q mutation mediating Rac resistance to be caused by Rac-stimulated rather than by constitutively enhanced PLCγ2 activity. We suggest that R665W and L845F be referred to as allomorphic rather than hypermorphic mutations of PLCG2 Rerouting of the transmembrane signals emanating from BCR and converging on PLCγ2 through Rac in ibrutinib-resistant CLL cells may provide novel drug treatment strategies to overcome ibrutinib resistance mediated by PLCG2 mutations or to prevent its development in ibrutinib-treated CLL patients.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Amino Acid Substitution
- Animals
- COS Cells
- Chlorocebus aethiops
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Mutation, Missense
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Phospholipase C gamma/antagonists & inhibitors
- Phospholipase C gamma/genetics
- Phospholipase C gamma/metabolism
- Piperidines
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Pyrones/pharmacology
- Quinolines/pharmacology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- rac GTP-Binding Proteins/genetics
- rac GTP-Binding Proteins/metabolism
- RAC2 GTP-Binding Protein
Collapse
Affiliation(s)
| | | | - Anja Schade
- From the Institute of Pharmacology and Toxicology and
| | - Sebastian Wiese
- the Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Julia Deinzer
- From the Institute of Pharmacology and Toxicology and
| | - Marc Zapatka
- the Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany, and
| | - Laurent Désiré
- the Diaxonhit, 63-65 Boulevard Masséna, 75013 Paris, France
| | - Daniel Mertens
- Department of Internal Medicine III, Ulm University Medical Center, 89070 Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University Medical Center, 89070 Ulm, Germany
| | | |
Collapse
|
2
|
Yerramilli VS, Scarlata S. The Breast Cancer Susceptibility Gene Product (γ-Synuclein) Alters Cell Behavior through its [corrected] Interaction with Phospholipase Cβ. Cell Signal 2015; 28:91-9. [PMID: 26521046 DOI: 10.1016/j.cellsig.2015.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/19/2015] [Accepted: 10/27/2015] [Indexed: 12/23/2022]
Abstract
The breast cancer susceptibility gene protein, also known as γ-synuclein, is highly expressed in human breast cancer in a stage-specific manner, with highest expression in late stage cancer. In model systems, γ-synuclein binds phospholipase Cβ2 which is regulated by Gαq to generate intracellular Ca(2+) signals. PLCβ2, which is also absent in normal tissue but highly expressed in breast cancer, is additionally regulated by Rac to promote migration pathways. We have found that γ-synuclein binds to the same region of PLCβ2 as Gαq. Using cells that mimic stage 4 breast cancer (MDA MB 231), we show that down-regulation of γ-synuclein reduces the protein level of PLCβ but increases the transcript level over 40 fold. γ-Synuclein down-regulation also promotes the interaction between Gαq and PLCβ resulting in a stronger Ca(2+) response to Gαq agonists. The ability of γ-synuclein to interfere with Gαq-PLCβ interactions allows more PLCβ to colocalize with Rac impacting Rac-mediated pathways that may give rise to cancerous phenotypes.
Collapse
Affiliation(s)
- V Siddartha Yerramilli
- Dept of Physiology & Biophysics, Stony Brook University, Stony Brook, NY, 11794-8661, United States
| | - Suzanne Scarlata
- Dept of Physiology & Biophysics, Stony Brook University, Stony Brook, NY, 11794-8661, United States; Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, United States.
| |
Collapse
|
3
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
4
|
Weinstein H, Scarlata S. The correlation between multidomain enzymes and multiple activation mechanisms--the case of phospholipase Cβ and its membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2940-7. [PMID: 21906583 DOI: 10.1016/j.bbamem.2011.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
Phospholipase Cβ2 (PLCβ2) is a large, multidomain enzyme that catalyzes the hydrolysis of the signaling lipid phosphoinositol 4,5 bisphosphate (PIP2) to promote mitogenic and proliferative changes in the cell. PLCβ2 is activated by Gα and Gβγ subunits of heterotrimeric G proteins, as well as small G proteins and specific peptides. Activation depends on the nature of the membrane surface. Recent crystal structures suggest one model of activation involving the movement of a small autoinhibitory loop upon membrane binding of the enzyme. Additionally, solution studies indicate multiple levels of activation that involve changes in the membrane orientation as well as interdomain movement. Here, we review the wealth of biochemical studies of PLCβ2-G protein activation and propose a comprehensive model that accounts for both the crystallographic and solution results.
Collapse
Affiliation(s)
- Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
5
|
Bunney TD, Katan M. PLC regulation: emerging pictures for molecular mechanisms. Trends Biochem Sci 2010; 36:88-96. [PMID: 20870410 DOI: 10.1016/j.tibs.2010.08.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/20/2010] [Accepted: 08/23/2010] [Indexed: 11/28/2022]
Abstract
Phosphoinositide-specific phospholipase C (PLC) enzymes are common signalling components linked to the activation of most cellular receptors. All PLC families are complex, modular, multi-domain proteins and together cover a broad spectrum of regulatory interactions, including direct binding to G protein subunits, small GTPases from Rho and Ras families, receptor and non-receptor tyrosine kinases and lipid components of cellular membranes. Recent structural determinations of PLC components and their complexes with regulatory proteins and direct mechanistic studies, together with earlier work, have provided the foundation to propose molecular mechanisms that stringently regulate PLC activity.
Collapse
Affiliation(s)
- Tom D Bunney
- The Institute of Cancer Research, Section for Cell and Molecular Biology, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | | |
Collapse
|
6
|
Gutman O, Walliser C, Piechulek T, Gierschik P, Henis YI. Differential regulation of phospholipase C-beta2 activity and membrane interaction by Galphaq, Gbeta1gamma2, and Rac2. J Biol Chem 2010; 285:3905-3915. [PMID: 20007712 PMCID: PMC2823533 DOI: 10.1074/jbc.m109.085100] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Indexed: 01/15/2023] Open
Abstract
We combined fluorescence recovery after photobleaching (FRAP) beam-size analysis with biochemical assays to investigate the mechanisms of membrane recruitment and activation of phospholipase C-beta(2) (PLCbeta(2)) by G protein alpha(q) and betagamma dimers. We show that activation by alpha(q) and betagamma differ from activation by Rac2 and from each other. Stimulation by alpha(q) enhanced the plasma membrane association of PLCbeta(2), but not of PLCbeta(2)Delta, which lacks the alpha(q)-interacting region. Although alpha(q) resembled Rac2 in increasing the contribution of exchange to the FRAP of PLCbeta(2) and in enhancing its membrane association, the latter effect was weaker than with Rac2. Moreover, the membrane recruitment of PLCbeta(2) by alpha(q) occurred by enhancing PLCbeta(2) association with fast-diffusing (lipid-like) membrane components, whereas stimulation by Rac2 led to interactions with slow diffusing membrane sites. On the other hand, activation by betagamma shifted the FRAP of PLCbeta(2) and PLCbeta(2)Delta to pure lateral diffusion 3- to 5-fold faster than lipids, suggesting surfing-like diffusion along the membrane. We propose that these different modes of PLCbeta(2) membrane recruitment may accommodate contrasting functional needs to hydrolyze phosphatidylinositol 4,5-bisphosphate (PtdInsP(2)) in localized versus dispersed populations. PLCbeta(2) activation by Rac2, which leads to slow lateral diffusion and much faster exchange, recruits PLCbeta(2) to act locally on PtdInsP(2) at specific domains. Activation by alpha(q) leads to lipid-like diffusion of PLCbeta(2) accompanied by exchange, enabling the sampling of larger, yet limited, areas prior to dissociation. Finally, activation by betagamma recruits PLCbeta(2) to the membrane by transient interactions, leading to fast "surfing" diffusion along the membrane, sampling large regions for dispersed PtdInsP(2) populations.
Collapse
Affiliation(s)
- Orit Gutman
- From the Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and
| | - Claudia Walliser
- the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thomas Piechulek
- the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Peter Gierschik
- the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Yoav I Henis
- From the Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and.
| |
Collapse
|
7
|
Gandarillas NL, Bunney TD, Josephs MB, Gierschik P, Katan M. In vitro reconstitution of activation of PLCepsilon by Ras and Rho GTPases. Methods Mol Biol 2009; 462:379-89. [PMID: 19160682 DOI: 10.1007/978-1-60327-115-8_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Phosphatidylinositol-specific phospholipase C (PLC) enzymes catalyze the hydrolysis of phophatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] to diacylglycerol (DAG) and inositol 1,4,5-triphosphate [Ins(1,4,5)P3]. PLCepsilon is a recently discovered isoform that has been shown to be activated by members of the Ras and Rho families of guanosine trisphosphatases (GTPases) as well as subunits of heterotrimeric G-proteins. We describe a method for expressing a truncated PLCepsilon variant as an MBP fusion protein in E. coli. Subsequently, we describe the methodology necessary to reconstitute this protein with K-Ras-4B and RhoA GTPases and measure its activation.
Collapse
Affiliation(s)
- Natalia Lamuño Gandarillas
- Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | | | | | | | | |
Collapse
|
8
|
Walliser C, Retlich M, Harris R, Everett KL, Josephs MB, Vatter P, Esposito D, Driscoll PC, Katan M, Gierschik P, Bunney TD. rac regulates its effector phospholipase Cgamma2 through interaction with a split pleckstrin homology domain. J Biol Chem 2008; 283:30351-62. [PMID: 18728011 PMCID: PMC2573054 DOI: 10.1074/jbc.m803316200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/31/2008] [Indexed: 11/16/2022] Open
Abstract
Several isoforms of phospholipase C (PLC) are regulated through interactions with Ras superfamily GTPases, including Rac proteins. Interestingly, of two closely related PLCgamma isoforms, only PLCgamma(2) has previously been shown to be activated by Rac. Here, we explore the molecular basis of this interaction as well as the structural properties of PLCgamma(2) required for activation. Based on reconstitution experiments with isolated PLCgamma variants and Rac2, we show that an unusual pleckstrin homology (PH) domain, designated as the split PH domain (spPH), is both necessary and sufficient to effect activation of PLCgamma(2) by Rac2. We also demonstrate that Rac2 directly binds to PLCgamma(2) as well as to the isolated spPH of this isoform. Furthermore, through the use of NMR spectroscopy and mutational analysis, we determine the structure of spPH, define the structural features of spPH required for Rac interaction, and identify critical amino acid residues at the interaction interface. We further discuss parallels and differences between PLCgamma(1) and PLCgamma(2) and the implications of our findings for their respective signaling roles.
Collapse
Affiliation(s)
- Claudia Walliser
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bunney TD, Harris R, Gandarillas NL, Josephs MB, Roe SM, Sorli SC, Paterson HF, Rodrigues-Lima F, Esposito D, Ponting CP, Gierschik P, Pearl LH, Driscoll PC, Katan M. Structural and mechanistic insights into ras association domains of phospholipase C epsilon. Mol Cell 2006; 21:495-507. [PMID: 16483931 DOI: 10.1016/j.molcel.2006.01.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 11/24/2005] [Accepted: 01/03/2006] [Indexed: 11/30/2022]
Abstract
Ras proteins signal to a number of distinct pathways by interacting with diverse effectors. Studies of ras/effector interactions have focused on three classes, Raf kinases, ral guanylnucleotide-exchange factors, and phosphatidylinositol-3-kinases. Here we describe ras interactions with another effector, the recently identified phospholipase C epsilon (PLCepsilon). We solved structures of PLCepsilon RA domains (RA1 and RA2) by NMR and the structure of the RA2/ras complex by X-ray crystallography. Although the similarity between ubiquitin-like folds of RA1 and RA2 proves that they are homologs, only RA2 can bind ras. Some of the features of the RA2/ras interface are unique to PLCepsilon, while the ability to make contacts with both switch I and II regions of ras is shared only with phosphatidylinositol-3-kinase. Studies of PLCepsilon regulation suggest that, in a cellular context, the RA2 domain, in a mode specific to PLCepsilon, has a role in membrane targeting with further regulatory impact on PLC activity.
Collapse
Affiliation(s)
- Tom D Bunney
- Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, Fulham Road, London SW3 6JB, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Seifert JP, Snyder JT, Sondek J, Harden TK. Direct activation of purified phospholipase C epsilon by RhoA studied in reconstituted phospholipid vesicles. Methods Enzymol 2006; 406:260-71. [PMID: 16472663 DOI: 10.1016/s0076-6879(06)06019-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phospholipase C-epsilon (PLC-epsilon) was shown recently to be a downstream effector of Rho GTPases, and we have used an in vitro phospholipid vesicle reconstitution system with purified proteins to show this regulation to be direct. This chapter describes high-level expression of a hexahistidine-tagged fragment of PLC-epsilon encompassing the catalytic core of the enzyme through the tandem RA domains by use of a recombinant baculovirus and High Five insect cells. The recombinant protein is purified to homogeneity using metal chelate affinity and size exclusion chromatography. The small GTPase RhoA also is expressed to high levels in a lipidated form after baculovirus expression in High Five cells and is purified to near homogeneity after detergent extraction and metal chelate affinity chromatography. The capacity of GTPgammaS-bound RhoA to stimulate the phospholipase activity of PLC-epsilon is assessed by reconstitution of the RhoA in mixed-detergent phospholipid micelles containing PtdIns(4,5)P2 substrate.
Collapse
Affiliation(s)
- Jason P Seifert
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, USA
| | | | | | | |
Collapse
|
11
|
Piechulek T, Rehlen T, Walliser C, Vatter P, Moepps B, Gierschik P. Isozyme-specific stimulation of phospholipase C-gamma2 by Rac GTPases. J Biol Chem 2005; 280:38923-31. [PMID: 16172125 DOI: 10.1074/jbc.m509396200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The regulation of the two isoforms of phospholipase C-gamma, PLCgamma(1) and PLCgamma(2), by cell surface receptors involves protein tyrosine phosphorylation as well as interaction with adapter proteins and phosphatidylinositol 3,4,5-trisphosphate (PtdInsP(3)) generated by inositol phospholipid 3-kinases (PI3Ks). All three processes may lead to recruitment of the PLCgamma isozymes to the plasma membrane and/or stimulation of their catalytic activity. Recent evidence suggests that PLCgamma may also be regulated by Rho GTPases. In this study, PLCgamma(1) and PLCgamma(2) were reconstituted in intact cells and in a cell-free system with Rho GTPases to examine their influence on PLCgamma activity. PLCgamma(2), but not PLCgamma(1), was markedly activated in intact cells by constitutively active Rac1(G12V), Rac2(G12V), and Rac3(G12V) but not by Cdc42(G12V) and RhoA(G14V). The mechanism of PLCgamma(2) activation was apparently independent of phosphorylation of tyrosine residues known to be modified by PLCgamma(2)-activating protein-tyrosine kinases. Activation of PLCgamma(2) by Rac2(G12V) in intact cells coincided with a translocation of PLCgamma(2) from the soluble to the particulate fraction. PLCgamma isozyme-specific activation of PLCgamma(2) by Rac GTPases (Rac1 approximately Rac2 > Rac3), but not by Cdc42 or RhoA, was also observed in a cell-free system. Herein, activation of wild-type Rac GTPases with guanosine 5'-(3-O-thio)triphosphate caused a marked stimulation of PLCgamma(2) but had no effect on the activity of PLCgamma(1). PLCgamma(1) and PLCgamma(2) have previously been shown to be indiscriminately activated by PtdInsP(3) in vitro. Thus, the results suggest a novel mechanism of PLCgamma(2) activation by Rac GTPases involving neither protein tyrosine phosphorylation nor PI3K-mediated generation of PtdInsP(3).
Collapse
Affiliation(s)
- Thomas Piechulek
- Department of Pharmacology and Toxicology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Aepfelbacher M, Trasak C, Wilharm G, Wiedemann A, Trulzsch K, Krauss K, Gierschik P, Heesemann J. Characterization of YopT effects on Rho GTPases in Yersinia enterocolitica-infected cells. J Biol Chem 2003; 278:33217-23. [PMID: 12791693 DOI: 10.1074/jbc.m303349200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pathogenic yersiniae employ a type III secretion system for translocating up to six effector proteins (Yersinia outer proteins (Yops)) into eukaryotic target cells. YopT is a cysteine protease that was shown to remove the C-terminal isoprenoid group of RhoA, Rac, and CDC42Hs. Here we characterized the cell biological and biochemical activities of YopT in cells infected with pathogenic Yersinia enterocolitica. Bacterially injected YopT located to cell membranes from which it released RhoA but not Rac or CDC42Hs. In the infected cells RhoA was dissociated from guanine nucleotide dissociation inhibitor-1 (GDI-1) and accumulated as a monomeric protein in the cytosol, whereas Rac and CDC42Hs remained GDI-bound. Direct transfer of isoprenylated RhoA to YopT and RhoA modification could be reconstituted in vitro by guanosine 5'-3-O-(thio)triphosphate loading of a recombinant RhoA.GDI-1 complex. Finally, in macrophages infected with a Yersinia strain selectively translocating YopT podosomal adhesion structures required for chemotaxis as well as phagocytic cups mediating uptake of yersiniae were disrupted. These findings indicate that bacterially translocated YopT acts on membrane-bound and GDI-complexed RhoA but not Rac or CDC42, and this is sufficient for disruption of macrophage immune functions.
Collapse
Affiliation(s)
- Martin Aepfelbacher
- Max von Pettenkofer-Institut für Medizinische Mikrobiologie, Ludwig Maximilians-Universität, Pettenkoferstrasse 9a, 80336 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Li Q, Ho CS, Marinescu V, Bhatti H, Bokoch GM, Ernst SA, Holz RW, Stuenkel EL. Facilitation of Ca(2+)-dependent exocytosis by Rac1-GTPase in bovine chromaffin cells. J Physiol 2003; 550:431-45. [PMID: 12754309 PMCID: PMC2343055 DOI: 10.1113/jphysiol.2003.039073] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rho family GTPases are primary mediators of cytoskeletal reorganization, although they have also been reported to regulate cell secretion. Yet, the extent to which Rho family GTPases are activated by secretory stimuli in neural and neuroendocrine cells remains unknown. In bovine adrenal chromaffin cells, we found Rac1, but not Cdc42, to be rapidly and selectively activated by secretory stimuli using an assay selective for the activated GTPases. To examine effects of activated Rac1 on secretion, constitutively active mutants of Rac1 (Rac1-V12, Rac1-L61) were transiently expressed in adrenal chromaffin cells. These mutants facilitated secretory responses elicited from populations of intact and digitonin-permeabilized cells as well as from cells under whole cell patch clamp. A dominant negative Rac1 mutant (Rac1-N17) produced no effect on secretion. Expression of RhoGDI, a negative regulator of Rac1, inhibited secretory responses while overexpression of effectors of Rac1, notably, p21-activated kinase (Pak1) and actin depolymerization factor (ADF) promoted evoked secretion. In addition, expression of effector domain mutants of Rac1-V12 that exhibit reduced activation of the cytoskeletal regulators Pak1 and Partner of Rac1 (POR1) resulted in a loss of Rac1-V12-mediated enhancement of evoked secretion. These findings suggest that Rac1, in part, functions to modulate secretion through actions on the cytoskeleton. Consistent with this hypothesis, the actin modifying drugs phalloidin and jasplakinolide enhanced secretion, while latrunculin-A inhibited secretion and eliminated the secretory effects of Rac1-V12. In summary, Rac1 was activated by secretory stimuli and modulated the secretory pathway downstream of Ca2+ influx, partly through regulation of cytoskeletal organization.
Collapse
Affiliation(s)
- Quanwen Li
- Department of Physiology, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Illenberger D, Walliser C, Strobel J, Gutman O, Niv H, Gaidzik V, Kloog Y, Gierschik P, Henis YI. Rac2 regulation of phospholipase C-beta 2 activity and mode of membrane interactions in intact cells. J Biol Chem 2003; 278:8645-52. [PMID: 12509427 DOI: 10.1074/jbc.m211971200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phospholipase C-beta (PLCbeta) isozymes play important roles in transmembrane signaling. Their activity is regulated by heterotrimeric G proteins. The PLCbeta(2) isozyme is unique in being stimulated also by Rho GTPases (Rac and Cdc42). However, the mechanism(s) of this stimulation are still unclear. Here, we employed fluorescence recovery after photobleaching to investigate the interaction of green fluorescent protein (GFP)-PLCbeta(2) with the plasma membrane. For either GFP-PLCbeta(2) or GFP-PLCbeta(2)Delta, a C-terminal deletion mutant lacking the region required for stimulation by Galpha(q), these interactions were characterized by a mixture of exchange with a cytoplasmic pool and lateral diffusion. Constitutively active Rac2(12V) stimulated the activity of both GFP-PLCbeta(2) and GFP-PLCbeta(2)Delta in live cells, and enhanced their membrane association as evidenced by the marked reduction in their fluorescence recovery rates. Both effects required the putative N-terminal pleckstrin homology (PH) domain of PLCbeta(2). Importantly, Rac2(12V) dramatically increased the contribution of exchange to the fluorescence recovery of GFP-PLCbeta(2), but had the opposite effect on GFP-PLCbeta(2)Delta, where lateral diffusion became dominant. Our results demonstrate for the first time the regulation of membrane association of a PLCbeta isozyme by a GTP-binding protein and assign a novel function to the PLCbeta(2) C-terminal region, regulating its exchange between membrane-bound and cytosolic states.
Collapse
Affiliation(s)
- Daria Illenberger
- Department of Pharmacology and Toxicology, University of Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Illenberger D, Walliser C, Nurnberg B, Diaz Lorente M, Gierschik P. Specificity and structural requirements of phospholipase C-beta stimulation by Rho GTPases versus G protein beta gamma dimers. J Biol Chem 2003; 278:3006-14. [PMID: 12441352 DOI: 10.1074/jbc.m208282200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase C-beta(2) (PLC beta(2)) is activated both by heterotrimeric G protein alpha- and beta gamma- subunits and by Rho GTPases. In this study, activated Rho GTPases are shown to stimulate PLC beta isozymes with the rank order of PLC beta(2) > PLC beta(3) > or = PLC beta(1). The sensitivity of PLC beta isozymes to Rho GTPases was clearly different from that observed for G protein beta gamma dimers, which decreased in the following order: PLC beta(3) > PLC beta(2) > PLC beta(1) for beta(1)gamma(1/2) and PLC beta(2) > PLC beta(1) >>> PLC beta(3) for beta(5)gamma(2). Rac1 and Rac2 were found to be more potent and efficacious activators of PLC beta(2) than was Cdc42Hs. The stimulation of PLC beta(2) by Rho GTPases and G protein beta gamma dimers was additive, suggesting that PLC beta(2) activation can be augmented by independent regulation of the enzyme by the two stimuli. Using chimeric PLC beta(1)-PLC beta(2) enzymes, beta gamma dimers, and Rho GTPases are shown to require different regions of PLC beta(2) to mediate efficient stimulation of the enzyme. Although the catalytic subdomains X and Y of PLC beta(2) were sufficient for efficient stimulation by beta gamma, the presence of the putative pleckstrin homology domain of PLC beta(2) was absolutely required for the stimulation of the enzyme by Rho GTPases. Taken together, these results identify Rho GTPases as novel PLC beta regulators, which mediate PLC beta isozyme-specific stimulation and are potentially involved in coordinating the activation of PLC beta(2) by extracellular mediators in intact cells.
Collapse
Affiliation(s)
- Daria Illenberger
- Department of Pharmacology and Toxicology, University of Ulm, Albert-Einstein-Allee 11, Ulm D-89081, Germany.
| | | | | | | | | |
Collapse
|