1
|
Non-Antibody-Based Binders for the Enrichment of Proteins for Analysis by Mass Spectrometry. Biomolecules 2021; 11:biom11121791. [PMID: 34944435 PMCID: PMC8698613 DOI: 10.3390/biom11121791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
Abstract
There is often a need to isolate proteins from body fluids, such as plasma or serum, prior to further analysis with (targeted) mass spectrometry. Although immunoglobulin or antibody-based binders have been successful in this regard, they possess certain disadvantages, which stimulated the development and validation of alternative, non-antibody-based binders. These binders are based on different protein scaffolds and are often selected and optimized using phage or other display technologies. This review focuses on several non-antibody-based binders in the context of enriching proteins for subsequent liquid chromatography-mass spectrometry (LC-MS) analysis and compares them to antibodies. In addition, we give a brief introduction to approaches for the immobilization of binders. The combination of non-antibody-based binders and targeted mass spectrometry is promising in areas, like regulated bioanalysis of therapeutic proteins or the quantification of biomarkers. However, the rather limited commercial availability of these binders presents a bottleneck that needs to be addressed.
Collapse
|
2
|
Use of peptide aptamers, cationic peptides and artificial zinc finger proteins to generate resistance to plant viruses. Curr Opin Virol 2017; 26:120-124. [PMID: 28806695 DOI: 10.1016/j.coviro.2017.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 11/22/2022]
Abstract
Various RNA/DNA viruses have caused severe infectious diseases in plants as well as animals, including humans, and been a threat to the production of agricultural crops. Therefore, prevention of plant virus infections is a major objective in crop protection. One attractive approach is to inhibit functions of viral proteins responsible for virus infections. In this review, I describe the status using such approaches to confer virus resistance to plants by three types of peptides/proteins: peptide aptamers, artificial zinc finger proteins and acidic peptides. These approaches vary in their specificity, broadness to other viruses, extent of protection and mechanisms of action. Additional ways to improve these approaches are also discussed.
Collapse
|
3
|
Mathieu S, Cissé C, Vitale S, Ahmadova A, Degardin M, Pérard J, Colas P, Miras R, Boturyn D, Covès J, Crouzy S, Michaud-Soret I. From Peptide Aptamers to Inhibitors of FUR, Bacterial Transcriptional Regulator of Iron Homeostasis and Virulence. ACS Chem Biol 2016; 11:2519-28. [PMID: 27409249 DOI: 10.1021/acschembio.6b00360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
FUR (Ferric Uptake Regulator) protein is a global transcriptional regulator that senses iron status and controls the expression of genes involved in iron homeostasis, virulence, and oxidative stress. Ubiquitous in Gram-negative bacteria and absent in eukaryotes, FUR is an attractive antivirulence target since the inactivation of the fur gene in various pathogens attenuates their virulence. The characterization of 13-aa-long anti-FUR linear peptides derived from the variable part of the anti-FUR peptide aptamers, that were previously shown to decrease pathogenic E. coli strain virulence in a fly infection model, is described herein. Modeling, docking, and experimental approaches in vitro (activity and interaction assays, mutations) and in cells (yeast two-hybrid assays) were combined to characterize the interactions of the peptides with FUR, and to understand their mechanism of inhibition. As a result, reliable structure models of two peptide-FUR complexes are given. Inhibition sites are mapped in the groove between the two FUR subunits where DNA should also bind. Another peptide behaves differently and interferes with the dimerization itself. These results define these novel small peptide inhibitors as lead compounds for inhibition of the FUR transcription factor.
Collapse
Affiliation(s)
- Sophie Mathieu
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Cheickna Cissé
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Sylvia Vitale
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Aynur Ahmadova
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Mélissa Degardin
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
- Univ. Grenoble
Alpes, DCM UMR 5250, F-38000 Grenoble, France
- CNRS, DCM UMR
5250, F-38000 Grenoble, France
| | - Julien Pérard
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Pierre Colas
- P2I2 Group, Protein Phosphorylation
and Human Disease Unit, CNRS Unité de Service et de Recherche
USR3151, Station Biologique de Roscoff, F-29680 Roscoff, France
| | - Roger Miras
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Didier Boturyn
- Univ. Grenoble
Alpes, DCM UMR 5250, F-38000 Grenoble, France
- CNRS, DCM UMR
5250, F-38000 Grenoble, France
| | - Jacques Covès
- Univ. Grenoble
Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Serge Crouzy
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Isabelle Michaud-Soret
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| |
Collapse
|
4
|
Sahu PP, Prasad M. Application of molecular antiviral compounds: novel approach for durable resistance against geminiviruses. Mol Biol Rep 2015; 42:1157-62. [PMID: 25652324 DOI: 10.1007/s11033-015-3852-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/22/2015] [Indexed: 01/15/2023]
Abstract
Both transgenic as well as traditional breeding approaches have not been completely successful in inducting resistance against geminiviruses in crop plants. This demands the utilization of non-viral, non-plant compounds possessing antiviral characteristics as an alternate and effective strategy for developing durable resistance against geminiviruses. In recent years, several antiviral molecules have been developed for the treatment of plant virus infections. These molecular antiviral compounds target various geminiviral-DNA and -protein via interacting with them or by cleaving viral RNA fragments. Applications of these proteins such as GroEL, g5g and VirE2 have also provided a convincing evidence of resistance against geminiviruses. Taking advantage of this information, we can generate robust resistance against geminiviruses in diverse crop plants. In this context, the present review provides epigrammatic information on these antiviral compounds and their mode of action in modulating virus infection.
Collapse
Affiliation(s)
- Pranav Pankaj Sahu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | |
Collapse
|
5
|
Leśniewska K, Warbrick E, Ohkura H. Peptide aptamers define distinct EB1- and EB3-binding motifs and interfere with microtubule dynamics. Mol Biol Cell 2014; 25:1025-36. [PMID: 24478452 PMCID: PMC3967968 DOI: 10.1091/mbc.e13-08-0504] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 11/16/2022] Open
Abstract
EB1 is a conserved protein that plays a central role in regulating microtubule dynamics and organization. It binds directly to microtubule plus ends and recruits other plus end-localizing proteins. Most EB1-binding proteins contain a Ser-any residue-Ile-Pro (SxIP) motif. Here we describe the isolation of peptide aptamers with optimized versions of this motif by screening for interaction with the Drosophila EB1 protein. The use of small peptide aptamers to competitively inhibit protein interaction and function is becoming increasingly recognized as a powerful technique. We show that SxIP aptamers can bind microtubule plus ends in cells and functionally act to displace interacting proteins by competitive binding. Their expression in developing flies can interfere with microtubules, altering their dynamics. We also identify aptamers binding to human EB1 and EB3, which have sequence requirements similar to but distinct from each other and from Drosophila EB1. This suggests that EB1 paralogues within one species may interact with overlapping but distinct sets of proteins in cells.
Collapse
Affiliation(s)
- Karolina Leśniewska
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Emma Warbrick
- Division of Molecular Medicine, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Hiroyuki Ohkura
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
6
|
Reyes MI, Nash TE, Dallas MM, Ascencio-Ibáñez JT, Hanley-Bowdoin L. Peptide aptamers that bind to geminivirus replication proteins confer a resistance phenotype to tomato yellow leaf curl virus and tomato mottle virus infection in tomato. J Virol 2013; 87:9691-706. [PMID: 23824791 PMCID: PMC3754110 DOI: 10.1128/jvi.01095-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/21/2013] [Indexed: 01/17/2023] Open
Abstract
Geminiviruses constitute a large family of single-stranded DNA viruses that cause serious losses in important crops worldwide. They often exist in disease complexes and have high recombination and mutation rates, allowing them to adapt rapidly to new hosts and environments. Thus, an effective resistance strategy must be general in character and able to target multiple viruses. The geminivirus replication protein (Rep) is a good target for broad-based disease control because it is highly conserved and required for viral replication. In an earlier study, we identified a set of peptide aptamers that bind to Rep and reduce viral replication in cultured plant cells. In this study, we selected 16 of the peptide aptamers for further analysis in yeast two-hybrid assays. The results of these experiments showed that all 16 peptide aptamers interact with all or most of the Rep proteins from nine viruses representing the three major Geminiviridae genera and identified two peptide aptamers (A22 and A64) that interact strongly with different regions in the Rep N terminus. Transgenic tomato lines expressing A22 or A64 and inoculated with Tomato yellow leaf curl virus or Tomato mottle virus exhibited delayed viral DNA accumulation and often contained lower levels of viral DNA. Strikingly, the effect on symptoms was stronger, with many of the plants showing no symptoms or strongly attenuated symptoms. Together, these results established the efficacy of using Rep-binding peptide aptamers to develop crops that are resistant to diverse geminiviruses.
Collapse
Affiliation(s)
- Maria Ines Reyes
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | |
Collapse
|
7
|
Conidi A, van den Berghe V, Huylebroeck D. Aptamers and their potential to selectively target aspects of EGF, Wnt/β-catenin and TGFβ-smad family signaling. Int J Mol Sci 2013; 14:6690-719. [PMID: 23531534 PMCID: PMC3645661 DOI: 10.3390/ijms14046690] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 02/07/2023] Open
Abstract
The smooth identification and low-cost production of highly specific agents that interfere with signaling cascades by targeting an active domain in surface receptors, cytoplasmic and nuclear effector proteins, remain important challenges in biomedical research. We propose that peptide aptamers can provide a very useful and new alternative for interfering with protein–protein interactions in intracellular signal transduction cascades, including those emanating from activated receptors for growth factors. By their targeting of short, linear motif type of interactions, peptide aptamers have joined nucleic acid aptamers for use in signaling studies because of their ease of production, their stability, their high specificity and affinity for individual target proteins, and their use in high-throughput screening protocols. Furthermore, they are entering clinical trials for treatment of several complex, pathological conditions. Here, we present a brief survey of the use of aptamers in signaling pathways, in particular of polypeptide growth factors, starting with the published as well as potential applications of aptamers targeting Epidermal Growth Factor Receptor signaling. We then discuss the opportunities for using aptamers in other complex pathways, including Wnt/β-catenin, and focus on Transforming Growth Factor-β/Smad family signaling.
Collapse
Affiliation(s)
- Andrea Conidi
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Campus Gasthuisberg, Building Ond & Nav4 p.o.box 812, room 05.313, Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
8
|
Zhao Q, Gao J. An affinity capture involved enzymatic assay for thrombin by using peptide aptamers as affinity ligands on magnetic beads. Chem Commun (Camb) 2013; 49:7720-2. [DOI: 10.1039/c3cc44400g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Paul S, Stang A, Lennartz K, Tenbusch M, Überla K. Selection of a T7 promoter mutant with enhanced in vitro activity by a novel multi-copy bead display approach for in vitro evolution. Nucleic Acids Res 2012; 41:e29. [PMID: 23074193 PMCID: PMC3592457 DOI: 10.1093/nar/gks940] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In vitro evolution of nucleic acids and proteins is a powerful strategy to optimize their biological and physical properties. To select proteins with the desired phenotype from large gene libraries, the proteins need to be linked to the gene they are encoded by. To facilitate selection of the desired phenotype and isolation of the encoding DNA, a novel bead display approach was developed, in which each member of a library of beads is first linked to multiple copies of a clonal gene variant by emulsion polymerase chain reaction. Beads are transferred to a second emulsion for an in vitro transcription-translation reaction, in which the protein encoded by each bead's amplicon covalently binds to the bead present in the same picoliter reactor. The beads then contain multiple copies of a clonal gene variant and multiple molecules of the protein encoded by the bead's gene variant and serve as the unit of selection. As a proof of concept, we screened a randomized library of the T7 promoter for high expression levels by flow cytometry and identified a T7 promoter variant with an ~10-fold higher in vitro transcriptional activity, confirming that the multi-copy bead display approach can be efficiently applied to in vitro evolution.
Collapse
Affiliation(s)
- Siddhartha Paul
- Department of Molecular and Medical Virology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
10
|
Barreto K, Aparicio A, Bharathikumar VM, DeCoteau JF, Geyer CR. Yeast two-hybrid screening of cyclic peptide libraries using a combination of random and PI-deconvolution pooling strategies. Protein Eng Des Sel 2012; 25:453-64. [PMID: 22763264 DOI: 10.1093/protein/gzs029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We developed a high throughput yeast two-hybrid (Y2H) assay for screening pools of combinatorial cyclic peptide preys against pools of bait proteins. The assay used the PI (pooling with imaginary tags) deconvolution pooling strategy to generate pools of baits and a random pooling strategy to generate pools of cyclic peptide preys. Haploid yeast, expressing pools of baits or preys, were arrayed and mated to each other to generate diploid arrays, where the yeast express both baits and preys. Diploid arrays were scored for activation of the Y2H reporter genes. We used this Y2H pooling strategy, referred to as 'PI-pool-on-random pool', to screen a cyclic peptide library for interactions against Bcr-Abl domains. Seven Bcr-Abl domain baits and LexA control were pooled using the PI deconvolution pooling strategy. The cyclic peptide library was randomly arrayed into pools of ~1000 members. Cyclic peptides were isolated for six of seven Bcr-Abl domain baits. The PI-pool-on-random pooling Y2H assay using high stringency Y2H reporter genes produced no false positives, while missing 20% of real interactions. The high specificity of the PI-pool-on-random pooling Y2H assay eliminates the need to validate interactions. Pooling of baits and preys allows large prey libraries to be screened against multiple baits and takes advantage of PI-deconvolution to determine protein interactions with high sensitivity and specificity. The scalability of this assay allows the peptide preys to be isolated in a high throughput manner against a large number of baits and provides an avenue for generating affinity agents against entire proteomes in the future.
Collapse
Affiliation(s)
- K Barreto
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | | | | | | | |
Collapse
|
11
|
Mascini M, Palchetti I, Tombelli S. Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed Engl 2011; 51:1316-32. [PMID: 22213382 DOI: 10.1002/anie.201006630] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Indexed: 12/11/2022]
Abstract
In recent years new nucleic acid and protein-based combinatorial molecules have attracted the attention of researchers working in various areas of science, ranging from medicine to analytical chemistry. These molecules, called aptamers, have been proposed as alternatives to antibodies in many different applications. The aim of this Review is to illustrate the peculiarities of these combinatorial molecules which have initially been explored for their importance in molecular medicine, but have enormous potential in other biotechnological fields historically dominated by antibodies, such as bioassays. A description of these molecules is given, and the methods for their selection and production are also summarized. Moreover, critical aspects related to these molecules are discussed.
Collapse
Affiliation(s)
- Marco Mascini
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | | | | |
Collapse
|
12
|
Mascini M, Palchetti I, Tombelli S. Nucleinsäure- und Peptidaptamere: Grundlagen und bioanalytische Aspekte. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Barreto K, Bharathikumar VM, Ricardo A, DeCoteau JF, Luo Y, Geyer CR. A genetic screen for isolating "lariat" Peptide inhibitors of protein function. ACTA ACUST UNITED AC 2010; 16:1148-57. [PMID: 19942138 DOI: 10.1016/j.chembiol.2009.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 09/30/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Functional genomic analyses provide information that allows hypotheses to be formulated on protein function. These hypotheses, however, need to be validated using reverse genetic approaches, which are difficult to perform on a large scale and in diploid organisms. We developed a genetic screen for isolating "lariat" peptides that function as trans dominant inhibitors of protein function. A lariat consists of a lactone-cyclized peptide with a covalently attached transcription activation domain, which allows combinatorial lariat libraries to be screened for protein interactions using the yeast two-hybrid assay. We isolated lariats against the bacterial repressor protein LexA. LexA regulates bacterial SOS response and LexA mutants that cannot undergo autoproteolysis make bacteria more sensitive to, and inhibit resistance against, cytotoxic reagents. We showed that an anti-LexA lariat blocked LexA autoproteolysis and potentiated the antimicrobial activity of mitomycin C.
Collapse
|
14
|
Matsumura N, Tsuji T, Sumida T, Kokubo M, Onimaru M, Doi N, Takashima H, Miyamoto-Sato E, Yanagawa H. mRNA display selection of a high-affinity, Bcl-X(L)-specific binding peptide. FASEB J 2010; 24:2201-10. [PMID: 20181936 DOI: 10.1096/fj.09-143008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bcl-X(L), an antiapoptotic member of the Bcl-2 family, is a mitochondrial protein that inhibits activation of Bax and Bak, which commit the cell to apoptosis, and it therefore represents a potential target for drug discovery. Peptides have potential as therapeutic molecules because they can be designed to engage a larger portion of the target protein with higher specificity. In the present study, we selected 16-mer peptides that interact with Bcl-X(L) from random and degenerate peptide libraries using mRNA display. The selected peptides have sequence similarity with the Bcl-2 family BH3 domains, and one of them has higher affinity (IC(50)=0.9 microM) than Bak BH3 (IC(50)=11.8 microM) for Bcl-X(L) in vitro. We also found that GFP fusions of the selected peptides specifically interact with Bcl-X(L), localize in mitochondria, and induce cell death. Further, a chimeric molecule, in which the BH3 domain of Bak protein was replaced with a selected peptide, retained the ability to bind specifically to Bcl-X(L). These results demonstrate that this selected peptide specifically antagonizes the function of Bcl-X(L) and overcomes the effects of Bcl-X(L) in intact cells. We suggest that mRNA display is a powerful technique to identify peptide inhibitors with high affinity and specificity for disease-related proteins.
Collapse
Affiliation(s)
- Nobutaka Matsumura
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Castel G, Tordo N. [New strategies for the development of antiviral molecules]. REVUE FRANCOPHONE DES LABORATOIRES : RFL 2009; 2009:91-100. [PMID: 32288807 PMCID: PMC7140268 DOI: 10.1016/s1773-035x(09)70313-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/30/2009] [Indexed: 11/29/2022]
Abstract
Antiviral research is a recent discipline and the number of molecules available to fight against viral infections remains still insufficient. However, both diseases caused by emerging endemic viruses and the existence of resistance from some viruses against antiviral make necessary a constant search for new antiviral drugs. Parallel to the development of traditional molecules such as nucleoside analogues, whose effectiveness is well demonstrated, pharmaceutical industry is now turning to new solutions such as antiviral peptides, which constitute a new exploration field in therapy. The recent progress in disciplines such as genomics, proteomics and structural biology have improved our fundamental understanding of the viral world. These advances can be used to efficiently create new drugs more selective and more effective. Identification and development of these molecules require the use of newer techniques such as high-throughput screening of combinatorial compound libraries and the use of new bioinformatics tools. This review aims to present some recent methods for the development of antiviral molecules.
Collapse
Affiliation(s)
- Guillaume Castel
- Unité postulante des stratégies antivirales – CNRS URA-3015, Institut Pasteur, 25, rue du Docteur-Roux, 75724 Paris cedex 15
| | - Noël Tordo
- Unité postulante des stratégies antivirales – CNRS URA-3015, Institut Pasteur, 25, rue du Docteur-Roux, 75724 Paris cedex 15
| |
Collapse
|
16
|
Inhibition of vaccinia virus replication by peptide aptamers. Antiviral Res 2009; 82:134-40. [DOI: 10.1016/j.antiviral.2009.02.191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/22/2009] [Accepted: 02/16/2009] [Indexed: 11/17/2022]
|
17
|
Abstract
Peptide aptamers are combinatorial recognition proteins that were introduced more than ten years ago. They have since found many applications in fundamental and therapeutic research, including their recent use in microarrays to detect individual proteins from complex mixtures.
Collapse
Affiliation(s)
- Pierre Colas
- Station Biologique, CNRS, UPS 2682, Place Georges Teissier, 29280 Roscoff, France.
| |
Collapse
|
18
|
Chen SS, Barankiewicz T, Yang YM, Zanetti M, Hill P. Protection of IgE-mediated allergic sensitization by active immunization with IgE loops constrained in GFP protein scaffold. J Immunol Methods 2007; 333:10-23. [PMID: 18281056 DOI: 10.1016/j.jim.2007.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 10/04/2007] [Indexed: 10/22/2022]
Abstract
Green fluorescent protein (GFP) exhibits a rigid central beta-barrel, formed by eleven beta-strands with floppy loops spanning between the stands. Herein, we evaluate whether the rigid beta-barrel may serve as a scaffold that can constrain the loops of a foreign protein, and thus its antigenicity. The spanning loops, site 6 of GFP, were engineered with RE cloning sites for inserting oligonucleotides corresponding to FcepsilonRI-binding sequence of human IgE. In a high-throughput format, shortened oligonucleotides encoding eight amino acid residues of the receptor-binding regions were inserted into site 6 of GFP by PCR, followed by enabling sequences for in vitro transcription and translation at the 5' end. Antigenized C2-3 linker (C2-3L) was shown by immuno-blots with polyclonal anti-IgE under native gel electrophoresis and transfer. Recombinant antigenized GFP was expressed and purified to homogeneity by metal affinity column, followed by Sephacryl S-200 high resolution gel filtration. Hyperimmune sera from mice immunized with C2-3L antigenized GFP contain anti-IgE reactive with JW8 murine/human chimeric IgE. Further, elevated serum anti-C2-3L and affinity pure antibodies effectively inhibits binding of JW8 IgE to recombinant FcepsilonRIalpha, and desensitizes JW8 to rat RBL-2H3 transfected with human FcepsilonRIalpha. This observation raised the possibility that active IgE vaccine may be employed in raising active protective anti-IgE in allergic patients as an alternative to passive immunization with MAb-E25 anti-IgE. Taken together, GFP appears suitable protein scaffold for spanning/constraining the C2-3L of human IgE as active vaccine; and this technique may be generally employed for eliciting antibodies to specific B-cell epitopes of other proteins.
Collapse
Affiliation(s)
- Swey-Shen Chen
- Department of Allergy and Immunology, The Institute of Genetics, San Diego, CA 92121, USA.
| | | | | | | | | |
Collapse
|
19
|
Bermúdez-Crespo J, López JL. A better understanding of molecular mechanisms underlying human disease. Proteomics Clin Appl 2007; 1:983-1003. [PMID: 21136752 DOI: 10.1002/prca.200700086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Indexed: 01/06/2023]
Abstract
This review summarises and discusses the degree to which proteomics is contributing to medical care, providing examples and signspots for future directions. Why do genomic approaches provide a limited view of gene expression? Because of the multifactorial nature of many diseases, proteomics enables us to understand the molecular basis of disease, not only at the organism, whole-cell or tissue levels, but also in subcellular structures, protein complexes and biological fluids. The application of proteomics in medicine is expected to have a major impact by providing an integrated view of individual disease processes. This review describes several proteomic platforms and examines the role of proteomics as a tool for clinical biomarker discovery, the identification of prognostic and earlier diagnostic markers, their use in monitoring the effects of drug treatments and eventually find more efficient and safer therapeutics for a wide range of pathologies.
Collapse
Affiliation(s)
- José Bermúdez-Crespo
- Department of Genetics, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | |
Collapse
|
20
|
Bickle MBT, Dusserre E, Moncorgé O, Bottin H, Colas P. Selection and characterization of large collections of peptide aptamers through optimized yeast two-hybrid procedures. Nat Protoc 2007; 1:1066-91. [PMID: 17406388 DOI: 10.1038/nprot.2006.32] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptide aptamers are combinatorial proteins that specifically bind intracellular proteins and modulate their function. They are powerful tools to study protein function within complex regulatory networks and to guide small-molecule drug discovery. Here we describe methodological improvements that enhance the yeast two-hybrid selection and characterization of large collections of peptide aptamers. We provide a detailed protocol to perform high-efficiency transformation of peptide aptamer libraries, in-depth validation experiments of the bait proteins, high-efficiency mating to screen large numbers of peptide aptamers and streamlined confirmation of the positive clones. We also describe yeast two-hybrid mating assays, which can be used to determine the specificity of the selected aptamers, map their binding sites on target proteins and provide structural insights on their target-binding surface. Overall, 12 weeks are required to perform the protocols. The improvements on the yeast two-hybrid method can be also usefully applied to the screening of cDNA libraries to identify protein interactions.
Collapse
Affiliation(s)
- Marc B T Bickle
- Aptanomics, 181-203, Avenue Jean Jaurès, 69007 Lyon, France.
| | | | | | | | | |
Collapse
|
21
|
You X, Nguyen AW, Jabaiah A, Sheff MA, Thorn KS, Daugherty PS. Intracellular protein interaction mapping with FRET hybrids. Proc Natl Acad Sci U S A 2006; 103:18458-63. [PMID: 17130455 PMCID: PMC1693684 DOI: 10.1073/pnas.0605422103] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A quantitative methodology was developed to identify protein interactions in a broad range of cell types by using FRET between fluorescent proteins. Genetic fusions of a target receptor to a FRET acceptor and a large library of candidate peptide ligands to a FRET donor enabled high-throughput optical screening for optimal interaction partners in the cytoplasm of Escherichia coli. Flow cytometric screening identified a panel of peptide ligands capable of recognizing the target receptors in the intracellular environment. For both SH3 and PDZ domain-type target receptors, physiologically meaningful consensus sequences were apparent among the isolated ligands. The relative dissociation constants of interacting partners could be measured directly by using a dilution series of cell lysates containing FRET hybrids, providing a previously undescribed high-throughput approach to rank the affinity of many interaction partners. FRET hybrid interaction screening provides a powerful tool to discover protein ligands in the cellular context with potential applications to a wide variety of eukaryotic cell types.
Collapse
Affiliation(s)
- Xia You
- *Department of Chemical Engineering, University of California, Santa Barbara, CA 93106; and
| | - Annalee W. Nguyen
- *Department of Chemical Engineering, University of California, Santa Barbara, CA 93106; and
| | - Abeer Jabaiah
- *Department of Chemical Engineering, University of California, Santa Barbara, CA 93106; and
| | - Mark A. Sheff
- Bauer Center for Genomics Research, Room 208, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
| | - Kurt S. Thorn
- Bauer Center for Genomics Research, Room 208, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
| | - Patrick S. Daugherty
- *Department of Chemical Engineering, University of California, Santa Barbara, CA 93106; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Lopez-Ochoa L, Ramirez-Prado J, Hanley-Bowdoin L. Peptide aptamers that bind to a geminivirus replication protein interfere with viral replication in plant cells. J Virol 2006; 80:5841-53. [PMID: 16731923 PMCID: PMC1472579 DOI: 10.1128/jvi.02698-05] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The AL1 protein of tomato golden mosaic virus (TGMV), a member of the geminivirus family, is essential for viral replication in plants. Its N terminus contains three conserved motifs that mediate origin recognition and DNA cleavage during the initiation of rolling-circle replication. We used the N-terminal domain of TGMV AL1 as bait in a yeast two-hybrid screen of a random peptide aptamer library constrained in the active site of the thioredoxin A (TrxA) gene. The screen selected 88 TrxA peptides that also bind to the full-length TGMV AL1 protein. Plant expression cassettes corresponding to the TrxA peptides and a TGMV A replicon encoding AL1 were cotransfected into tobacco protoplasts, and viral DNA replication was monitored by semiquantitative PCR. In these assays, 31 TrxA peptides negatively impacted TGMV DNA accumulation, reducing viral DNA levels to 13 to 64% of those of the wild type. All of the interfering aptamers also bound to the AL1 protein of cabbage leaf curl virus. A comparison of the 20-mer peptides revealed that their sequences are not random. The alignments detected seven potential binding motifs, five of which are more highly represented among the interfering peptides. One motif was present in 18 peptides, suggesting that these peptides interact with a hot spot in the AL1 N terminus. The peptide aptamers characterized in these studies represent new tools for studying AL1 function and can serve as the basis for the development of crops with broad-based resistance to single-stranded DNA viruses.
Collapse
Affiliation(s)
- Luisa Lopez-Ochoa
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | | | |
Collapse
|
23
|
Tomai E, Butz K, Lohrey C, von Weizsäcker F, Zentgraf H, Hoppe-Seyler F. Peptide Aptamer-mediated Inhibition of Target Proteins by Sequestration into Aggresomes. J Biol Chem 2006; 281:21345-21352. [PMID: 16717089 DOI: 10.1074/jbc.m604258200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptide aptamers (PAs) can be employed to block the intracellular function of target proteins. Little is known about the mechanism of PA-mediated protein inhibition. Here, we generated PAs that specifically bound to the duck hepatitis B virus (HBV) core protein. Among them, PA34 strongly blocked duck HBV replication by inhibiting viral capsid formation. We found that PA34 led to a dramatic intracellular redistribution of its target protein into perinuclear inclusion bodies, which exhibit the typical characteristics of aggresomes. As a result, the core protein is efficiently removed from the viral life cycle. Corresponding findings were obtained for bioactive PAs that bind to the HBV core protein or to the human papillomavirus-16 (HPV16) E6 protein, respectively. The observation that PAs induce the specific sequestration of bound proteins into aggresomes defines a novel mechanism as to how this new class of intracellular inhibitors blocks the function of their target proteins.
Collapse
Affiliation(s)
- Evangelia Tomai
- Molecular Therapy of Virus-Associated Cancers Group (F065), German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Karin Butz
- Molecular Therapy of Virus-Associated Cancers Group (F065), German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Claudia Lohrey
- Molecular Therapy of Virus-Associated Cancers Group (F065), German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | - Hanswalter Zentgraf
- Electron Microcopy Group (F090), German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers Group (F065), German Cancer Research Center, D-69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Martel V, Filhol O, Colas P, Cochet C. p53-dependent inhibition of mammalian cell survival by a genetically selected peptide aptamer that targets the regulatory subunit of protein kinase CK2. Oncogene 2006; 25:7343-53. [PMID: 16751801 DOI: 10.1038/sj.onc.1209722] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Based on the perturbation of its expression in human cancers and on its involvement in transformation and tumorigenesis, protein kinase CK2 has recently attracted attention as a potential therapeutic target. To assess the value of CK2 as a target for antiproliferative strategies, we have initiated a program aiming to develop inhibitors targeting specifically the regulatory CK2beta subunit. Here, we use a two-hybrid approach to isolate from combinatorial libraries, peptide aptamers that specifically interact with CK2beta. One of these (P1), which has significant sequence homology to the cytomegalovirus IE2 protein, binds with high affinity to the N-terminal domain of CK2beta without disrupting the formation of the CK2 holoenzyme. Expression of green fluorescent protein (GFP)-P1 in different mammalian cell lines activates p53 phosphorylation on serine 15, induces an upregulation of p21 and the release of the Cyt-C and apoptosis-inducing factor proapoptotic proteins triggering caspase-dependent and caspase-independent apoptosis. GFP-P1-induced apoptosis is associated with a p53-dependent pathway as cell death was abrogated in p53 knocked out cells. In summary, our data show that genetically selected peptide aptamers that specifically target CK2beta can induce apoptosis in mammalian cells through the recruitment of a p53-dependent apoptosis pathway. They also emphasize the critical role of CK2beta for cell survival and might allow the design of novel proapoptotic agents targeting this protein.
Collapse
Affiliation(s)
- V Martel
- Département Réponse et Dynamique Cellulaire, INSERM EMI0104, CEA, Grenoble Cedex, France
| | | | | | | |
Collapse
|
25
|
Baines IC, Colas P. Peptide aptamers as guides for small-molecule drug discovery. Drug Discov Today 2006; 11:334-41. [PMID: 16580975 DOI: 10.1016/j.drudis.2006.02.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 12/21/2005] [Accepted: 02/17/2006] [Indexed: 11/17/2022]
Abstract
Peptide aptamers are combinatorial protein reagents that bind to target proteins with a high specificity and a strong affinity. By so doing, they can modulate the function of their cognate targets. Because peptide aptamers introduce perturbations that are similar to those caused by therapeutic molecules, their use identifies and/or validates therapeutic targets with a higher confidence level than is typically provided by methods that act upon protein expression levels. The unbiased combinatorial nature of peptide aptamers enables them to 'decorate' numerous polymorphic protein surfaces, whose biological relevance can be inferred through characterization of the peptide aptamers. Bioactive aptamers that bind druggable surfaces can be used in displacement screening assays to identify small-molecule hits to the surfaces. The peptide aptamer technology has a positive impact on drug discovery by addressing major causes of failure and by offering a seamless, cost-effective process from target validation to hit identification.
Collapse
Affiliation(s)
- Ivan C Baines
- Aptanomics, 181-203 avenue Jean Jaurès, 69007 Lyon, France
| | | |
Collapse
|
26
|
Abstract
During the past two decades, our understanding of oncogenesis has advanced considerably and many new signalling pathways have been identified. Differences in signalling events that distinguish normal cells from tumour cells provide new targets for the development of anticancer agents. Peptide aptamers are small peptide sequences that have been selected to recognise a predetermined target protein domain and are potentially able to interfere with its function. They represent useful molecules for manipulating protein function in vivo. The isolation and use of specific peptide aptamers as inhibitors of individual signalling components, essential in cancer development and progression, provides a new challenge for drug development. Although peptides make up only a small fraction of current therapeutics, their potential is being enhanced by new developments affecting their modification, stability, delivery and their successful application in preclinical settings. This review summarises the methods that can be used for the isolation and delivery of peptide aptamers, as well as the important achievements that have been made using such peptide aptamers in different systems. The applicability of peptide aptamers as novel cancer therapeutics will be discussed.
Collapse
Affiliation(s)
- Corina Borghouts
- Georg-Speyer-Haus Institute for Biomedical Research, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt am Main, Germany
| | | | | |
Collapse
|
27
|
Eiden LE. Fusion polypeptides that inhibit exocytosis: fusing aptamer and cell-penetrating peptide technologies and pharmacologies. Mol Pharmacol 2005; 67:980-2. [PMID: 15673600 DOI: 10.1124/mol.105.011429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell-penetrating peptides are amphipathic or cationic oligopeptides able to transport covalently attached cargoes across cell membranes. Peptide aptamers are polypeptide fragments of endogenous proteins that mimic and thus perturb interactions with other cellular proteins. Combining aptamer and CPP technology can generate pharmacological reagents effective in cell culture models and in vivo.
Collapse
Affiliation(s)
- Lee E Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health Intramural Research Program, Building 36, Room 2A-11, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Benson RE, Gottlin EB, Christensen DJ, Hamilton PT. Intracellular expression of Peptide fusions for demonstration of protein essentiality in bacteria. Antimicrob Agents Chemother 2003; 47:2875-81. [PMID: 12936988 PMCID: PMC182649 DOI: 10.1128/aac.47.9.2875-2881.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a "protein knockout" technique that can be used to identify essential proteins in bacteria. This technique uses phage display to select peptides that bind specifically to purified target proteins. The peptides are expressed intracellularly and cause inhibition of growth when the protein is essential. In this study, peptides that each specifically bind to one of seven essential proteins were identified by phage display and then expressed as fusions to glutathione S-transferase in Escherichia coli. Expression of peptide fusions directed against E. coli DnaN, LpxA, RpoD, ProRS, SecA, GyrA, and Era each dramatically inhibited cell growth. Under the same conditions, a fusion with a randomized peptide sequence did not inhibit cell growth. In growth-inhibited cells, inhibition could be relieved by concurrent overexpression of the relevant target protein but not by coexpression of an irrelevant protein, indicating that growth inhibition was due to a specific interaction of the expressed peptide with its target. The protein knockout technique can be used to assess the essentiality of genes of unknown function emerging from the sequencing of microbial genomes. This technique can also be used to validate proteins as drug targets, and their corresponding peptides as screening tools, for discovery of new antimicrobial agents.
Collapse
|
29
|
Poritz MA, Malmstrom S, Schmitt A, Kim MKH, Zharkikh L, Kamb A, Teng DHF. Isolation of a peptide inhibitor of human rhinovirus. Virology 2003; 313:170-83. [PMID: 12951031 DOI: 10.1016/s0042-6822(03)00301-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell culture-based transdominant genetic techniques provide new methods for discovering peptide/RNA modulators of cellular pathways. We applied this technology to isolate a peptide inhibitor of human rhinovirus. A green fluorescent protein (GFP)-scaffolded library of cDNA fragments was expressed in HeLa cells from a retroviral vector and screened for inhibitors of rhinovirus-mediated cell killing. A DNA clone, I421, increased cell survival in an HRV14 challenge assay from less than 0.5% to greater than 60%. It encodes a 53-amino-acid C-terminal extension of the GFP scaffold. Particular subclones of Hela cells expressing I421 (exemplified by I421dp3) show a delay in virus production and a 50-fold decrease in viral RNA levels at 6-8 h postinfection. HRV2, HRV14, and HRV16 show a dramatic decrease in plaque-forming ability on I421dp3 while Coxsackievirus B3 showed a small reduction. Levels of ICAM-1, the receptor for the main rhinovirus serotype, are not altered in I421dp3.
Collapse
Affiliation(s)
- Mark A Poritz
- Deltagen Proteomics, Inc., 615 Arapeen Drive, Suite 300, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Rabbitts TH, Stocks MR. Chromosomal translocation products engender new intracellular therapeutic technologies. Nat Med 2003; 9:383-6. [PMID: 12669051 DOI: 10.1038/nm0403-383] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Schmidt S, Diriong S, Méry J, Fabbrizio E, Debant A. Identification of the first Rho-GEF inhibitor, TRIPalpha, which targets the RhoA-specific GEF domain of Trio. FEBS Lett 2002; 523:35-42. [PMID: 12123800 DOI: 10.1016/s0014-5793(02)02928-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Rho-guanine nucleotide exchange factors (Rho-GEFs) remodel the actin cytoskeleton via their Rho-GTPase targets and affect numerous physiological processes such as transformation and cell motility. They are therefore attractive targets to design specific inhibitors that may have therapeutic applications. Trio contains two Rho-GEF domains, GEFD1 and GEFD2, which activate the Rac and RhoA pathways, respectively. Here we have used a genetic screen in yeast to select in vivo peptides coupled to thioredoxin, called aptamers, that could inhibit GEFD2 activity. One aptamer, TRIAPalpha (TRio Inhibitory APtamer), specifically blocks GEFD2-exchange activity on RhoA in vitro. The corresponding peptide sequence, TRIPalpha, inhibits TrioGEFD2-mediated activation of RhoA in intact cells and specifically reverts the neurite retraction phenotype induced by TrioGEFD2 in PC12 cells. Thus TRIPalpha is the first Rho-GEF inhibitor isolated so far, and represents an important step in the design of inhibitors for the expanding family of Rho-GEFs.
Collapse
Affiliation(s)
- Susanne Schmidt
- CRBM-CNRS, UPR 1086 CNRS, 1919 Route de Mende, 34293 Cedex 5, Montpellier, France
| | | | | | | | | |
Collapse
|
32
|
Mendelsohn AR, Hamer JD, Wang ZB, Brent R. Cyclin D3 activates Caspase 2, connecting cell proliferation with cell death. Proc Natl Acad Sci U S A 2002; 99:6871-6. [PMID: 12011445 PMCID: PMC124496 DOI: 10.1073/pnas.072290599] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2001] [Indexed: 11/18/2022] Open
Abstract
Precancerous cells that enter S phase without appropriate growth and viability factors undergo programmed cell death, suggesting that apoptosis may help guarantee organismic integrity [Evan, G. & Littlewood, T. (1998) Science 281, 1317-1322]. However, the connection between proliferation and cell death has remained unclear. Here, we show that the positive cell cycle regulator cyclin D3 [Matsushime H., Roussel M. F., Ashmun, R. A. & Sherr, C. J. (1991) Cell 65, 701-713] interacts with the death enzyme Caspase 2 [Wang, L., Miura, M., Bergeron, L., Zhu, H. & Yuan, J. (1994) Cell 78, 739-750]. Directed expression of cyclin D3 and Caspase 2 in human cells potentiated apoptosis compared with expression of Caspase 2 alone. Cyclin D3 expression increased the amount of cleaved (active) Caspase 2. We describe a PCR mutagenesis/ligation/two-hybrid/green fluorescent protein approach that facilitates the isolation of missense mutant proteins defective in interaction with particular partners absent other phenotypes or knowledge of the system. We used this approach to isolate Caspase 2 mutants that did not bind cyclin D3 (noninteractors). Noninteractors were sensitive to apoptosis-dependent proteolysis, but did not potentiate apoptosis. Noninteractors did not block apoptosis caused by wild-type Caspase 2. Our results are consistent with the idea that an interaction with cyclin D3 may stabilize Caspase 2, and suggest that a physical interaction between cyclin D3 and Caspase 2 connects the genetic networks that govern cell-cycle progression with those that govern cell death.
Collapse
|
33
|
Rodi DJ, Makowski L, Kay BK. One from column A and two from column B: the benefits of phage display in molecular-recognition studies. Curr Opin Chem Biol 2002; 6:92-6. [PMID: 11827830 DOI: 10.1016/s1367-5931(01)00287-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent uses of phage-displayed combinatorial peptide and cDNA libraries have proven invaluable in mapping protein-protein interactions, protein-drug interactions, and the generation of 'molecular therapeutics'. This article reviews some of the findings of the past year and points out some of the pros and cons of phage display as compared with those of yeast two-hybrid screening.
Collapse
Affiliation(s)
- Diane J Rodi
- Combinatorial Biology Unit, Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | | | | |
Collapse
|
34
|
Sandrock T, Poritz M, Kim M, Feldhaus MJ, Roth B, Caponigro G, Kamb A. Expression levels of transdominant peptides and proteins in Saccharomyces cerevisiae. Yeast 2002; 19:1-7. [PMID: 11754477 DOI: 10.1002/yea.795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
From libraries of peptides and protein fragments, several inhibitors that block pheromone response in Saccharomyces cerevisiae have been isolated previously. In many cases, the inhibitors are displayed as part of a scaffold, such as green fluorescent protein. Each of the inhibitors has a characteristic physiological strength or genetic penetrance. In this report, the roles of expression level and display scaffold on the activities of a subset of pheromone-response pathway inhibitors were examined. Special consideration was given to the relationship between expression levels of specific inhibitors, which may exceed 50 microM in some instances, and penetrance.
Collapse
Affiliation(s)
- Tanya Sandrock
- Deltagen Proteomics, Inc., 615 Arapeen Drive, Suite 300, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Geyer CR. Peptide Aptamers: Dominant “Genetic” Agents for Forward and Reverse Analysis of Cellular Processes. ACTA ACUST UNITED AC 2001; Chapter 24:Unit 24.4. [DOI: 10.1002/0471142727.mb2404s52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|