1
|
Jeon SJ, Chung KC. The SCF-FBW7β E3 ligase mediates ubiquitination and degradation of the serine/threonine protein kinase PINK1. J Biol Chem 2024; 300:107198. [PMID: 38508312 PMCID: PMC11026729 DOI: 10.1016/j.jbc.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Understanding the mechanisms that govern the stability of functionally crucial proteins is essential for various cellular processes, development, and overall cell viability. Disturbances in protein homeostasis are linked to the pathogenesis of neurodegenerative diseases. PTEN-induced kinase 1 (PINK1), a protein kinase, plays a significant role in mitochondrial quality control and cellular stress response, and its mutated forms lead to early-onset Parkinson's disease. Despite its importance, the specific mechanisms regulating PINK1 protein stability have remained unclear. This study reveals a cytoplasmic interaction between PINK1 and F-box and WD repeat domain-containing 7β (FBW7β) in mammalian cells. FBW7β, a component of the Skp1-Cullin-1-F-box protein complex-type ubiquitin ligase, is instrumental in recognizing substrates. Our findings demonstrate that FBW7β regulates PINK1 stability through the Skp1-Cullin-1-F-box protein complex and the proteasome pathway. It facilitates the K48-linked polyubiquitination of PINK1, marking it for degradation. When FBW7 is absent, PINK1 accumulates, leading to heightened mitophagy triggered by carbonyl cyanide 3-chlorophenylhydrazone treatment. Moreover, exposure to the toxic compound staurosporine accelerates PINK1 degradation via FBW7β, correlating with increased cell death. This study unravels the intricate mechanisms controlling PINK1 protein stability and sheds light on the novel role of FBW7β. These findings deepen our understanding of PINK1-related pathologies and potentially pave the way for therapeutic interventions.
Collapse
Affiliation(s)
- Seo Jeong Jeon
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
2
|
Scalia P, Williams SJ. A Post-translational Modification-enhanced Pull-down Method to Study Degron Domains and the Associated Protein Degradation Complexes. Bio Protoc 2023; 13:e4816. [PMID: 37753472 PMCID: PMC10518775 DOI: 10.21769/bioprotoc.4816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/05/2023] [Accepted: 07/21/2023] [Indexed: 09/28/2023] Open
Abstract
The identification and characterization of the ubiquitin E-ligase complexes involved in specific proteins' degradation via the ubiquitin-proteasome system (UPS) can be challenging and require biochemical purification processes and in vitro reconstitution assays. Likewise, evaluating the effect of parallel phosphorylation and ubiquitination events occurring in vivo at dual phospho/ubiquitin-regulated motifs (called Phospho-Degrons or pDegrons) driving UPS degradation of the targeted protein has remained elusive. Indeed, the functional study of such E1-E2-E3 complexes acting on a protein-specific level requires previously or otherwise acquired knowledge of the nature of such degradation complex components. Furthermore, the molecular basis of the interaction between an E3 ligase and its pDegron binding motif on a target protein would require individually optimized in vitro kinase and ubiquitination assays. Here, we describe a novel enzymatically enhanced pull-down method to functionally streamline the discovery and functional validation of the ubiquitin E-ligase components interacting with a phospho-degron containing protein domain and/or sub-domain. The protocol combines key features of a protein kinase and ubiquitination in vitro assay by including them in a pull-down step exerted by a known or putative pDegron-tagged peptide using the cell extracts as a source of enzymatically active post-translational modification (PTM) modifying/binding native proteins. The same method allows studying specific stimuli or treatments towards the recruitment of the molecular degradation complex at the target protein's phospho-degron site, reflecting in vivo-initiated events further enhanced through the assay design. In order to take full advantage of the method over traditional protein-protein interaction methods, we propose to use this PTM-enhanced (PTMe) pull down both towards the degradation complex discovery/ID phase as well as for the functional pDegron recruitment validation phase, which is the one described in the present protocol both graphically and in a stepwise fashion for reproduceable results. Key features • Suitable to study UPS-regulated (a) cytosolic and/or nuclear proteins, (b) intracellular region of transmembrane proteins, and (c) protein sub-domains bearing a known/putative pDegron motif. • Requires a biotin-tagged recombinant version of the target protein and/or sub-domain. • Allows the qualitative and quantitative analysis of endogenous ubiquitin (Ub) E-ligases recruitment to a known or putative pDegron bearing protein/sub-domain. • Allows simultaneous testing of various treatments and/or conditions affecting the phosphorylative and/or ubiquitylation status of the studied pDegron bearing protein/sub-domain and the recruited factors. Graphical overview.
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA and Caltanissetta, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Division of Biology, CST, Temple University, Philadelphia, USA
| | - Stephen J. Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA and Caltanissetta, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Division of Biology, CST, Temple University, Philadelphia, USA
| |
Collapse
|
3
|
Hussain M, Lu Y, Tariq M, Jiang H, Shu Y, Luo S, Zhu Q, Zhang J, Liu J. A small-molecule Skp1 inhibitor elicits cell death by p53-dependent mechanism. iScience 2022; 25:104591. [PMID: 35789855 PMCID: PMC9249674 DOI: 10.1016/j.isci.2022.104591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
Skp1 overexpression promotes tumor growth, whereas reduced Skp1 activity is also linked with genomic instability and neoplastic transformation. This highlights the need to gain better understanding of Skp1 biology in cancer settings. To this context, potent and cellularly active small-molecule Skp1 inhibitors may be of great value. Using a hypothesis-driven, structure-guided approach, we herein identify Z0933M as a potent Skp1 inhibitor with KD ∼0.054 μM. Z0933M occupies a hydrophobic hotspot (P1) – encompassing an aromatic cage of two phenylalanines (F101 and F139) – alongside C-terminal extension of Skp1 and, thus, hampers its ability to interact with F-box proteins, a prerequisite step to constitute intact and active SCF E3 ligase(s) complexes. In cellulo, Z0933M disrupted SCF E3 ligase(s) functioning, recapitulated previously reported effects of Skp1-reduced activity, and elicited cell death by a p53-dependent mechanism. We propose Z0933M as valuable tool for future efforts toward probing Skp1 cancer biology, with implications for cancer therapy. Z0933M manifests strong binding with Skp1 and inhibits Skp1-F-box PPIs Z0933M interacts with a P1 hotspot alongside C-terminal extension of Skp1 Z0933M alters SCF E3 ligase functioning, leading to substrate accumulation/modulation Z0933M causes cell-cycle arrest, and elicits cell death by p53-dependent mechanism
Collapse
Affiliation(s)
- Muzammal Hussain
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongzhi Lu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Muqddas Tariq
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Hao Jiang
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
| | - Yahai Shu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Corresponding author
| |
Collapse
|
4
|
Systematic Discovery of FBXW7-Binding Phosphodegrons Highlights Mitogen-Activated Protein Kinases as Important Regulators of Intracellular Protein Levels. Int J Mol Sci 2022; 23:ijms23063320. [PMID: 35328741 PMCID: PMC8955265 DOI: 10.3390/ijms23063320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
A FBXW7 is an F-box E3 ubiquitin-ligase affecting cell growth by controlling protein degradation. Mechanistically, its effect on its substrates depends on the phosphorylation of degron motifs, but the abundance of these phosphodegrons has not been systematically explored. We used a ratiometric protein degradation assay geared towards the identification of FBXW7-binding degron motifs phosphorylated by mitogen-activated protein kinases (MAPKs). Most of the known FBXW7 targets are localized in the nucleus and function as transcription factors. Here, in addition to more transcription affecting factors (ETV5, KLF4, SP5, JAZF1, and ZMIZ1 CAMTA2), we identified phosphodegrons located in proteins involved in chromatin regulation (ARID4B, KMT2E, KMT2D, and KAT6B) or cytoskeletal regulation (MAP2, Myozenin-2, SMTL2, and AKAP11), and some other proteins with miscellaneous functions (EIF4G3, CDT1, and CCAR2). We show that the protein level of full-length ARID4B, ETV5, JAZF1, and ZMIZ1 are affected by different MAPKs since their FBXW7-mediated degradation was diminished in the presence of MAPK-specific inhibitors. Our results suggest that MAPK and FBXW7 partnership plays an important cellular role by directly affecting the level of key regulatory proteins. The data also suggest that the p38α-controlled phosphodegron in JAZF1 may be responsible for the pathological regulation of the cancer-related JAZF1-SUZ12 fusion construct implicated in endometrial stromal sarcoma.
Collapse
|
5
|
Alme EB, Toczyski DP. Redundant targeting of Isr1 by two CDKs in mitotic cells. Curr Genet 2020; 67:79-83. [PMID: 33063175 DOI: 10.1007/s00294-020-01110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 11/28/2022]
Abstract
Protein phosphorylation is an essential regulatory mechanism that controls most cellular processes, integrating a variety of environmental signals to drive cellular growth. Isr1 is a negative regulator of the hexosamine biosynthesis pathway (HBP), which produces UDP-GlcNAc, an essential carbohydrate that is the building block of N-glycosylation, GPI anchors and chitin. Isr1 was recently shown to be regulated by phosphorylation by the nutrient-responsive CDK kinase Pho85, allowing it to be targeted for degradation by the SCFCDC4. Here, we show that while deletion of PHO85 stabilizes Isr1 in asynchronous cells, Isr1 is still unstable in mitotically arrested cells in a pho85∆ strain. We provide evidence to suggest that this is through phosphorylation by CDK1. Redundant targeting of Isr1 by two distinct kinases may allow for tight regulation of the HBP in response to different cellular signals.
Collapse
Affiliation(s)
- Emma B Alme
- Department of Biochemistry, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - David P Toczyski
- Department of Biochemistry, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Merkel Cell Polyomavirus Large T Antigen Unique Domain Regulates Its Own Protein Stability and Cell Growth. Viruses 2020; 12:v12091043. [PMID: 32962090 PMCID: PMC7551350 DOI: 10.3390/v12091043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Merkel cell polyomavirus (MCV) is the only known human oncogenic virus in the polyomaviridae family and the etiological agent of most Merkel cell carcinomas (MCC). MCC is an aggressive and highly metastatic skin cancer with a propensity for recurrence and poor prognosis. Large tumor antigen (LT), is an essential oncoprotein for MCV transcription, viral replication, and cancer cell proliferation. MCV LT is a short-lived protein that encodes a unique domain: MCV LT unique regions (MURs). These domains consist of phosphorylation sites that interact with multiple E3 ligases, thus limiting LT expression and consequently, viral replication. In this study, we show that MURs are necessary for regulating LT stability via multiple E3 ligase interactions, resulting in cell growth arrest. While expression of wild-type MCV LT induced a decrease in cellular proliferation, deletion of the MUR domains resulted in increased LT stability and cell proliferation. Conversely, addition of MURs to SV40 LT propagated E3 ligase interactions, which in turn, reduced SV40 LT stability and decreased cell growth activity. Our results demonstrate that compared to other human polyomaviruses (HPyVs), MCV LT has evolved to acquire the MUR domains that are essential for MCV LT autoregulation, potentially leading to viral latency and MCC.
Collapse
|
7
|
Sertic S, Quadri R, Lazzaro F, Muzi-Falconi M. EXO1: A tightly regulated nuclease. DNA Repair (Amst) 2020; 93:102929. [DOI: 10.1016/j.dnarep.2020.102929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Alme EB, Stevenson E, Krogan NJ, Swaney DL, Toczyski DP. The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae. PLoS Genet 2020; 16:e1008840. [PMID: 32579556 PMCID: PMC7340321 DOI: 10.1371/journal.pgen.1008840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/07/2020] [Accepted: 05/08/2020] [Indexed: 11/18/2022] Open
Abstract
The S. cerevisiae ISR1 gene encodes a putative kinase with no ascribed function. Here, we show that Isr1 acts as a negative regulator of the highly-conserved hexosamine biosynthesis pathway (HBP), which converts glucose into uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the carbohydrate precursor to protein glycosylation, GPI-anchor formation, and chitin biosynthesis. Overexpression of ISR1 is lethal and, at lower levels, causes sensitivity to tunicamycin and resistance to calcofluor white, implying impaired protein glycosylation and reduced chitin deposition. Gfa1 is the first enzyme in the HBP and is conserved from bacteria and yeast to humans. The lethality caused by ISR1 overexpression is rescued by co-overexpression of GFA1 or exogenous glucosamine, which bypasses GFA1's essential function. Gfa1 is phosphorylated in an Isr1-dependent fashion and mutation of Isr1-dependent sites ameliorates the lethality associated with ISR1 overexpression. Isr1 contains a phosphodegron that is phosphorylated by Pho85 and subsequently ubiquitinated by the SCF-Cdc4 complex, largely confining Isr1 protein levels to the time of bud emergence. Mutation of this phosphodegron stabilizes Isr1 and recapitulates the overexpression phenotypes. As Pho85 is a cell cycle and nutrient responsive kinase, this tight regulation of Isr1 may serve to dynamically regulate flux through the HBP and modulate how the cell's energy resources are converted into structural carbohydrates in response to changing cellular needs.
Collapse
Affiliation(s)
- Emma B. Alme
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Erica Stevenson
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Danielle L. Swaney
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - David P. Toczyski
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
9
|
Galindo-Moreno M, Giráldez S, Limón-Mortés MC, Belmonte-Fernández A, Reed SI, Sáez C, Japón MÁ, Tortolero M, Romero F. SCF(FBXW7)-mediated degradation of p53 promotes cell recovery after UV-induced DNA damage. FASEB J 2019; 33:11420-11430. [PMID: 31337255 PMCID: PMC6766643 DOI: 10.1096/fj.201900885r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/25/2019] [Indexed: 12/27/2022]
Abstract
Eukaryotic cells have developed sophisticated mechanisms to ensure the integrity of the genome and prevent the transmission of altered genetic information to daughter cells. If this control system fails, accumulation of mutations would increase risk of diseases such as cancer. Ubiquitylation, an essential process for protein degradation and signal transduction, is critical for ensuring genome integrity as well as almost all cellular functions. Here, we investigated the role of the SKP1-Cullin-1-F-box protein (SCF)-[F-box and tryptophan-aspartic acid (WD) repeat domain containing 7 (FBXW7)] ubiquitin ligase in cell proliferation by searching for targets implicated in this process. We identified a hitherto-unknown FBXW7-interacting protein, p53, which is phosphorylated by glycogen synthase kinase 3 at serine 33 and then ubiquitylated by SCF(FBXW7) and degraded. This ubiquitylation is carried out in normally growing cells but primarily after DNA damage. Specifically, we found that SCF(FBXW7)-specific targeting of p53 is crucial for the recovery of cell proliferation after UV-induced DNA damage. Furthermore, we observed that amplification of FBXW7 in wild-type p53 tumors reduced the survival of patients with breast cancer. These results provide a rationale for using SCF(FBXW7) inhibitors in the treatment of this subset of tumors.-Galindo-Moreno, M., Giráldez, S., Limón-Mortés, M. C., Belmonte-Fernández, A., Reed, S. I., Sáez, C., Japón, M. Á., Tortolero, M., Romero, F. SCF(FBXW7)-mediated degradation of p53 promotes cell recovery after UV-induced DNA damage.
Collapse
Affiliation(s)
- María Galindo-Moreno
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Servando Giráldez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, California, USA
| | | | | | - Steven I. Reed
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, California, USA
| | - Carmen Sáez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Seville, Spain
- Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Miguel Á. Japón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Seville, Spain
- Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Maria Tortolero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Francisco Romero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
10
|
Tomimatsu N, Mukherjee B, Harris JL, Boffo FL, Hardebeck MC, Potts PR, Khanna KK, Burma S. DNA-damage-induced degradation of EXO1 exonuclease limits DNA end resection to ensure accurate DNA repair. J Biol Chem 2017; 292:10779-10790. [PMID: 28515316 PMCID: PMC5491765 DOI: 10.1074/jbc.m116.772475] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/11/2017] [Indexed: 12/22/2022] Open
Abstract
End resection of DNA double-strand breaks (DSBs) to generate 3'-single-stranded DNA facilitates DSB repair via error-free homologous recombination (HR) while stymieing repair by the error-prone non-homologous end joining (NHEJ) pathway. Activation of DNA end resection involves phosphorylation of the 5' to 3' exonuclease EXO1 by the phosphoinositide 3-kinase-like kinases ATM (ataxia telangiectasia-mutated) and ATR (ATM and Rad3-related) and by the cyclin-dependent kinases 1 and 2. After activation, EXO1 must also be restrained to prevent over-resection that is known to hamper optimal HR and trigger global genomic instability. However, mechanisms by which EXO1 is restrained are still unclear. Here, we report that EXO1 is rapidly degraded by the ubiquitin-proteasome system soon after DSB induction in human cells. ATR inhibition attenuated DNA-damage-induced EXO1 degradation, indicating that ATR-mediated phosphorylation of EXO1 targets it for degradation. In accord with these results, EXO1 became resistant to degradation when its SQ motifs required for ATR-mediated phosphorylation were mutated. We show that upon the induction of DNA damage, EXO1 is ubiquitinated by a member of the Skp1-Cullin1-F-box (SCF) family of ubiquitin ligases in a phosphorylation-dependent manner. Importantly, expression of degradation-resistant EXO1 resulted in hyper-resection, which attenuated both NHEJ and HR and severely compromised DSB repair resulting in chromosomal instability. These findings indicate that the coupling of EXO1 activation with its eventual degradation is a timing mechanism that limits the extent of DNA end resection for accurate DNA repair.
Collapse
Affiliation(s)
- Nozomi Tomimatsu
- From the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Bipasha Mukherjee
- From the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Janelle Louise Harris
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Francesca Ludovica Boffo
- Department of Molecular Medicine and Medical Biotechnology, Università Federico II, Napoli 80131, Italy, and
| | - Molly Catherine Hardebeck
- From the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Sandeep Burma
- From the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390,
| |
Collapse
|
11
|
Hst3 is turned over by a replication stress-responsive SCF(Cdc4) phospho-degron. Proc Natl Acad Sci U S A 2014; 111:5962-7. [PMID: 24715726 DOI: 10.1073/pnas.1315325111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hst3 is the histone deacetylase that removes histone H3K56 acetylation. H3K56 acetylation is a cell-cycle- and damage-regulated chromatin marker, and proper regulation of H3K56 acetylation is important for replication, genomic stability, chromatin assembly, and the response to and recovery from DNA damage. Understanding the regulation of enzymes that regulate H3K56 acetylation is of great interest, because the loss of H3K56 acetylation leads to genomic instability. HST3 is controlled at both the transcriptional and posttranscriptional level. Here, we show that Hst3 is targeted for turnover by the ubiquitin ligase SCF(Cdc4) after phosphorylation of a multisite degron. In addition, we find that Hst3 turnover increases in response to replication stress in a Rad53-dependent way. Turnover of Hst3 is promoted by Mck1 activity in both conditions. The Hst3 degron contains two canonical Cdc4 phospho-degrons, and the phosphorylation of each of these is required for efficient turnover both in an unperturbed cell cycle and in response to replication stress.
Collapse
|
12
|
Delgoshaie N, Tang X, Kanshin ED, Williams EC, Rudner AD, Thibault P, Tyers M, Verreault A. Regulation of the histone deacetylase Hst3 by cyclin-dependent kinases and the ubiquitin ligase SCFCdc4. J Biol Chem 2014; 289:13186-96. [PMID: 24648511 DOI: 10.1074/jbc.m113.523530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) is a modification of new H3 molecules deposited throughout the genome during S-phase. H3K56ac is removed by the sirtuins Hst3 and Hst4 at later stages of the cell cycle. Previous studies indicated that regulated degradation of Hst3 plays an important role in the genome-wide waves of H3K56 acetylation and deacetylation that occur during each cell cycle. However, little is known regarding the mechanism of cell cycle-regulated Hst3 degradation. Here, we demonstrate that Hst3 instability in vivo is dependent upon the ubiquitin ligase SCF(Cdc4) and that Hst3 is phosphorylated at two Cdk1 sites, threonine 380 and threonine 384. This creates a diphosphorylated degron that is necessary for Hst3 polyubiquitylation by SCF(Cdc4). Mutation of the Hst3 diphospho-degron does not completely stabilize Hst3 in vivo, but it nonetheless results in a significant fitness defect that is particularly severe in mutant cells treated with the alkylating agent methyl methanesulfonate. Unexpectedly, we show that Hst3 can be degraded between G2 and anaphase, a window of the cell cycle where Hst3 normally mediates genome-wide deacetylation of H3K56. Our results suggest an intricate coordination between Hst3 synthesis, genome-wide H3K56 deacetylation by Hst3, and cell cycle-regulated degradation of Hst3 by cyclin-dependent kinases and SCF(Cdc4).
Collapse
Affiliation(s)
- Neda Delgoshaie
- From the Institute for Research in Immunology and Cancer, Université de Montréal, Succursale Centre-Ville, Montreal, Quebec H3C 3J7
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Landry BD, Doyle JP, Toczyski DP, Benanti JA. F-box protein specificity for g1 cyclins is dictated by subcellular localization. PLoS Genet 2012; 8:e1002851. [PMID: 22844257 PMCID: PMC3405998 DOI: 10.1371/journal.pgen.1002851] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/06/2012] [Indexed: 01/16/2023] Open
Abstract
Levels of G1 cyclins fluctuate in response to environmental cues and couple mitotic signaling to cell cycle entry. The G1 cyclin Cln3 is a key regulator of cell size and cell cycle entry in budding yeast. Cln3 degradation is essential for proper cell cycle control; however, the mechanisms that control Cln3 degradation are largely unknown. Here we show that two SCF ubiquitin ligases, SCF(Cdc4) and SCF(Grr1), redundantly target Cln3 for degradation. While the F-box proteins (FBPs) Cdc4 and Grr1 were previously thought to target non-overlapping sets of substrates, we find that Cdc4 and Grr1 each bind to all 3 G1 cyclins in cell extracts, yet only Cln3 is redundantly targeted in vivo, due in part to its nuclear localization. The related cyclin Cln2 is cytoplasmic and exclusively targeted by Grr1. However, Cdc4 can interact with Cdk-phosphorylated Cln2 and target it for degradation when cytoplasmic Cdc4 localization is forced in vivo. These findings suggest that Cdc4 and Grr1 may share additional redundant targets and, consistent with this possibility, grr1Δ cdc4-1 cells demonstrate a CLN3-independent synergistic growth defect. Our findings demonstrate that structurally distinct FBPs are capable of interacting with some of the same substrates; however, in vivo specificity is achieved in part by subcellular localization. Additionally, the FBPs Cdc4 and Grr1 are partially redundant for proliferation and viability, likely sharing additional redundant substrates whose degradation is important for cell cycle progression.
Collapse
Affiliation(s)
- Benjamin D. Landry
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - John P. Doyle
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - David P. Toczyski
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Jennifer A. Benanti
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Torres MP, Clement ST, Cappell SD, Dohlman HG. Cell cycle-dependent phosphorylation and ubiquitination of a G protein alpha subunit. J Biol Chem 2011; 286:20208-16. [PMID: 21521692 DOI: 10.1074/jbc.m111.239343] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A diverse array of external stimuli, including most hormones and neurotransmitters, bind to cell surface receptors that activate G proteins. Mating pheromones in yeast Saccharomyces cerevisiae activate G protein-coupled receptors and initiate events leading to cell cycle arrest in G(1) phase. Here, we show that the Gα subunit (Gpa1) is phosphorylated and ubiquitinated in response to changes in the cell cycle. We systematically screened 109 gene deletion strains representing the non-essential yeast kinome and identified a single kinase gene, ELM1, as necessary and sufficient for Gpa1 phosphorylation. Elm1 is expressed in a cell cycle-dependent manner, primarily at S and G(2)/M. Accordingly, phosphorylation of Gpa1 in G(2)/M phase leads to polyubiquitination in G(1) phase. These findings demonstrate that Gpa1 is dynamically regulated. More broadly, they reveal how G proteins can simultaneously regulate, and become regulated by, progression through the cell cycle.
Collapse
Affiliation(s)
- Matthew P Torres
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| | | | | | | |
Collapse
|
15
|
Liu Q, Larsen B, Ricicova M, Orlicky S, Tekotte H, Tang X, Craig K, Quiring A, Le Bihan T, Hansen C, Sicheri F, Tyers M. SCFCdc4 enables mating type switching in yeast by cyclin-dependent kinase-mediated elimination of the Ash1 transcriptional repressor. Mol Cell Biol 2011; 31:584-98. [PMID: 21098119 PMCID: PMC3028614 DOI: 10.1128/mcb.00845-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/12/2010] [Accepted: 11/05/2010] [Indexed: 11/20/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, mother cells switch mating types between a and α forms, whereas daughter cells do not. This developmental asymmetry arises because the expression of the HO endonuclease, which initiates the interconversion of a and α mating type cassettes, is extinguished by the daughter-specific Ash1 transcriptional repressor. When daughters become mothers in the subsequent cell cycle, Ash1 must be eliminated to enable a new developmental state. Here, we report that the ubiquitin ligase SCF(Cdc4) mediates the phosphorylation-dependent elimination of Ash1. The inactivation of SCF(Cdc4) stabilizes Ash1 in vivo, and consistently, Ash1 binds to and is ubiquitinated by SCF(Cdc4) in a phosphorylation-dependent manner in vitro. The mutation of a critical in vivo cyclin-dependent kinase (CDK) phosphorylation site (Thr290) on Ash1 reduces its ubiquitination and rate of degradation in vivo and decreases the frequency of mating type switching. Ash1 associates with active Cdc28 kinase in vivo and is targeted to SCF(Cdc4) in a Cdc28-dependent fashion in vivo and in vitro. Ash1 recognition by Cdc4 appears to be mediated by at least three phosphorylation sites that form two redundant diphosphorylated degrons. The phosphorylation-dependent elimination of Ash1 by the ubiquitin-proteasome system thus underpins developmental asymmetry in budding yeast.
Collapse
Affiliation(s)
- Qingquan Liu
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada, Centre for High-Throughput Biology, Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Centre for Systems Biology at Edinburgh, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto M5S 1A8, Canada
| | - Brett Larsen
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada, Centre for High-Throughput Biology, Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Centre for Systems Biology at Edinburgh, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto M5S 1A8, Canada
| | - Marketa Ricicova
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada, Centre for High-Throughput Biology, Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Centre for Systems Biology at Edinburgh, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto M5S 1A8, Canada
| | - Stephen Orlicky
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada, Centre for High-Throughput Biology, Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Centre for Systems Biology at Edinburgh, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto M5S 1A8, Canada
| | - Hille Tekotte
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada, Centre for High-Throughput Biology, Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Centre for Systems Biology at Edinburgh, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto M5S 1A8, Canada
| | - Xiaojing Tang
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada, Centre for High-Throughput Biology, Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Centre for Systems Biology at Edinburgh, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto M5S 1A8, Canada
| | - Karen Craig
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada, Centre for High-Throughput Biology, Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Centre for Systems Biology at Edinburgh, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto M5S 1A8, Canada
| | - Adam Quiring
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada, Centre for High-Throughput Biology, Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Centre for Systems Biology at Edinburgh, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto M5S 1A8, Canada
| | - Thierry Le Bihan
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada, Centre for High-Throughput Biology, Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Centre for Systems Biology at Edinburgh, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto M5S 1A8, Canada
| | - Carl Hansen
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada, Centre for High-Throughput Biology, Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Centre for Systems Biology at Edinburgh, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto M5S 1A8, Canada
| | - Frank Sicheri
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada, Centre for High-Throughput Biology, Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Centre for Systems Biology at Edinburgh, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto M5S 1A8, Canada
| | - Mike Tyers
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada, Centre for High-Throughput Biology, Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Centre for Systems Biology at Edinburgh, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom, Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto M5S 1A8, Canada
| |
Collapse
|
16
|
Abstract
The posttranslational addition of ubiquitin (Ub) helps control the half-life, localization, and action of many intracellular plant proteins. A primary function is the degradation of ubiquitylated proteins by the 26S proteasome, which in turn plays important housekeeping and regulatory roles by removing aberrant polypeptides and various normal short-lived regulators. Strikingly, both genetic and genomic studies reveal that Ub conjugation is extraordinarily complex in plants, with more than 1500 Ub-protein ligases (or E3s) possible that could direct the final transfer of the Ub moiety to an equally large number of targets. The cullin-RING ligases (CRLs) are a highly polymorphic E3 collection composed of a cullin backbone onto which binds carriers of activated Ub and a diverse assortment of adaptors that recruit appropriate substrates for ubiquitylation. Here, we review our current understanding of the organization and structure of CRLs in plants and their dynamics, substrates, potential functions, and evolution. The importance of CRLs is exemplified by their ability to serve as sensors of hormones and light; their essential participation in various signaling pathways; their control of the cell cycle, transcription, the stress response, self-incompatibility, and pathogen defense; and their dramatically divergent evolutionary histories in many plant lineages. Given both their organizational complexities and their critical influences, CRLs likely impact most, if not all, aspects of plant biology.
Collapse
Affiliation(s)
- Zhihua Hua
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706-1574, USA.
| | | |
Collapse
|
17
|
Abstract
Advances in the generation and interpretation of proteomics data have spurred a transition from focusing on protein identification to functional analysis. Here we review recent proteomics results that have elucidated new aspects of the roles and regulation of signal transduction pathways in cancer using the epidermal growth factor receptor (EGFR), ERK and breakpoint cluster region (BCR)-ABL1 networks as examples. The emerging theme is to understand cancer signalling as networks of multiprotein machines which process information in a highly dynamic environment that is shaped by changing protein interactions and post-translational modifications (PTMs). Cancerous genetic mutations derange these protein networks in complex ways that are tractable by proteomics.
Collapse
Affiliation(s)
- Walter Kolch
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
18
|
Cappell SD, Baker R, Skowyra D, Dohlman HG. Systematic analysis of essential genes reveals important regulators of G protein signaling. Mol Cell 2010; 38:746-57. [PMID: 20542006 PMCID: PMC2919228 DOI: 10.1016/j.molcel.2010.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/30/2010] [Accepted: 04/02/2010] [Indexed: 10/19/2022]
Abstract
The yeast pheromone pathway consists of a canonical heterotrimeric G protein and MAP kinase cascade. To identify additional signaling components, we systematically evaluated 870 essential genes using a library of repressible-promoter strains. Quantitative transcription-reporter and MAPK activity assays were used to identify strains that exhibit altered pheromone sensitivity. Of the 92 newly identified essential genes required for proper G protein signaling, those involved with protein degradation were most highly represented. Included in this group are members of the Skp, Cullin, F box (SCF) ubiquitin ligase complex. Further genetic and biochemical analysis reveals that SCF(Cdc4) acts together with the Cdc34 ubiquitin-conjugating enzyme at the level of the G protein; promotes degradation of the G protein alpha subunit, Gpa1, in vivo; and catalyzes Gpa1 ubiquitination in vitro. These insights to the G protein signaling network reveal the essential genome as an untapped resource for identifying new components and regulators of signal transduction pathways.
Collapse
Affiliation(s)
- Steven D. Cappell
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7365
| | - Rachael Baker
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| | - Dorota Skowyra
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Henrik G. Dohlman
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7365
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| |
Collapse
|
19
|
Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 2008; 134:995-1006. [PMID: 18805092 PMCID: PMC2628631 DOI: 10.1016/j.cell.2008.07.022] [Citation(s) in RCA: 636] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 06/23/2008] [Accepted: 07/15/2008] [Indexed: 01/07/2023]
Abstract
Cullin-RING ligases (CRLs) comprise the largest ubiquitin E3 subclass, in which a central cullin subunit links a substrate-binding adaptor with an E2-binding RING. Covalent attachment of the ubiquitin-like protein NEDD8 to a conserved C-terminal domain (ctd) lysine stimulates CRL ubiquitination activity and prevents binding of the inhibitor CAND1. Here we report striking conformational rearrangements in the crystal structure of NEDD8~Cul5(ctd)-Rbx1 and SAXS analysis of NEDD8~Cul1(ctd)-Rbx1 relative to their unmodified counterparts. In NEDD8ylated CRL structures, the cullin WHB and Rbx1 RING subdomains are dramatically reoriented, eliminating a CAND1-binding site and imparting multiple potential catalytic geometries to an associated E2. Biochemical analyses indicate that the structural malleability is important for both CRL NEDD8ylation and subsequent ubiquitination activities. Thus, our results point to a conformational control of CRL activity, with ligation of NEDD8 shifting equilibria to disfavor inactive CAND1-bound closed architectures, and favor dynamic, open forms that promote polyubiquitination.
Collapse
Affiliation(s)
- David M. Duda
- Howard Hughes Medical Institute, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Departments of Structural Biology and Genetics/Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Laura A. Borg
- Departments of Structural Biology and Genetics/Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Daniel C. Scott
- Howard Hughes Medical Institute, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Departments of Structural Biology and Genetics/Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Harold W. Hunt
- Departments of Structural Biology and Genetics/Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Michal Hammel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Brenda A. Schulman
- Howard Hughes Medical Institute, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Departments of Structural Biology and Genetics/Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| |
Collapse
|
20
|
Park HJ, Ding L, Dai M, Lin R, Wang H. Multisite Phosphorylation of Arabidopsis HFR1 by Casein Kinase II and a Plausible Role in Regulating Its Degradation Rate. J Biol Chem 2008; 283:23264-73. [DOI: 10.1074/jbc.m801720200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
21
|
Bharucha N, Ma J, Dobry CJ, Lawson SK, Yang Z, Kumar A. Analysis of the yeast kinome reveals a network of regulated protein localization during filamentous growth. Mol Biol Cell 2008; 19:2708-17. [PMID: 18417610 PMCID: PMC2441683 DOI: 10.1091/mbc.e07-11-1199] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 03/10/2008] [Accepted: 04/09/2008] [Indexed: 11/11/2022] Open
Abstract
The subcellular distribution of kinases and other signaling proteins is regulated in response to cellular cues; however, the extent of this regulation has not been investigated for any gene set in any organism. Here, we present a systematic analysis of protein kinases in the budding yeast, screening for differential localization during filamentous growth. Filamentous growth is an important stress response involving mitogen-activated protein kinase and cAMP-dependent protein kinase signaling modules, wherein yeast cells form interconnected and elongated chains. Because standard strains of yeast are nonfilamentous, we constructed a unique set of 125 kinase-yellow fluorescent protein chimeras in the filamentous Sigma1278b strain for this study. In total, we identified six cytoplasmic kinases (Bcy1p, Fus3p, Ksp1p, Kss1p, Sks1p, and Tpk2p) that localize predominantly to the nucleus during filamentous growth. These kinases form part of an interdependent, localization-based regulatory network: deletion of each individual kinase, or loss of kinase activity, disrupts the nuclear translocation of at least two other kinases. In particular, this study highlights a previously unknown function for the kinase Ksp1p, indicating the essentiality of its nuclear translocation during yeast filamentous growth. Thus, the localization of Ksp1p and the other kinases identified here is tightly controlled during filamentous growth, representing an overlooked regulatory component of this stress response.
Collapse
Affiliation(s)
- Nikë Bharucha
- Department of Molecular, Cellular, and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| | - Jun Ma
- Department of Molecular, Cellular, and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| | - Craig J. Dobry
- Department of Molecular, Cellular, and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| | - Sarah K. Lawson
- Department of Molecular, Cellular, and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| | - Zhifen Yang
- Department of Molecular, Cellular, and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| |
Collapse
|
22
|
Joo S, Liu Y, Lueth A, Zhang S. MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:129-40. [PMID: 18182027 DOI: 10.1111/j.1365-313x.2008.03404.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ethylene is an important hormone in plant growth, development and responses to environmental stimuli. The ethylene-signaling pathway is initiated by the induction of ethylene biosynthesis, which is under tight regulation at both transcriptional and post-transcriptional levels by exogenous and endogenous cues. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is the rate-limiting enzyme that catalyzes the committing step of ethylene biosynthesis. Recently, we found that ACS2 and ACS6, two isoforms of the Arabidopsis ACS family, are substrates of a stress-responsive mitogen-activated protein kinase (MAPK) cascade. Phosphorylation of ACS2/ACS6 by MPK6 leads to the accumulation of ACS proteins and the induction of ethylene. In this report, we demonstrate that unphosphorylated ACS6 protein is rapidly degraded by the 26S proteasome pathway. The degradation machinery targets the C-terminal non-catalytic domain of ACS6, which is sufficient to confer instability to green fluorescent protein and luciferase reporters. Phosphorylation of ACS6 introduces negative charges to the C-terminus of ACS6, which reduces the turnover of ACS6 by the degradation machinery. Consistent with this, other nearby conserved negatively charged amino acid residues are essential for ACS6 stability regulation. Protein degradation and phosphorylation are two important post-translational modifications of proteins. This research reveals an intricate interplay between these two important processes in controlling the levels of cellular ACS activity, and thus ethylene biosynthesis. The post-translational nature of both processes ensures a rapid response of ethylene induction, which is detectable within minutes after plants are exposed to stress.
Collapse
Affiliation(s)
- Sunjoo Joo
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
23
|
Benanti JA, Cheung SK, Brady MC, Toczyski DP. A proteomic screen reveals SCFGrr1 targets that regulate the glycolytic-gluconeogenic switch. Nat Cell Biol 2007; 9:1184-91. [PMID: 17828247 DOI: 10.1038/ncb1639] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 08/08/2007] [Indexed: 12/23/2022]
Abstract
Entry into the cell cycle is regulated by nutrient availability such that cells do not divide when resources are limited. The Skp1-Cul1-F-box (SCF) ubiquitin ligase with the F-box protein Grr1 (SCF(Grr1)) controls the proteolytic turnover of regulators of cell-cycle entry and a glucose sensor, suggesting that it links the cell cycle with nutrient availability. Here, we show that SCF(Grr1) broadly regulates cellular metabolism. We have developed a proteomic screening method that uses high-throughput quantitative microscopy to comprehensively screen for ubiquitin-ligase substrates. Seven new metabolic targets of SCF(Grr1) were identified, including two regulators of glycolysis--the transcription factor Tye7 and Pfk27. The latter produces the second messenger fructose-2,6-bisphosphate that activates glycolysis and inhibits gluconeogenesis. We show that SCF(Grr1) targets Pfk27 and Tye7 in response to glucose removal. Moreover, Pfk27 is phosphorylated by the kinase Snf1, and unphosphorylatable Pfk27 is stable and inhibits growth in the absence of glucose. These results demonstrate a role for SCF(Grr1) in regulating the glycolytic-gluconeogenic switch.
Collapse
Affiliation(s)
- Jennifer A Benanti
- Department of Biochemistry and Biophysics, Cancer Research Institute, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94115, USA
| | | | | | | |
Collapse
|
24
|
Tang X, Orlicky S, Lin Z, Willems A, Neculai D, Ceccarelli D, Mercurio F, Shilton BH, Sicheri F, Tyers M. Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell 2007; 129:1165-76. [PMID: 17574027 DOI: 10.1016/j.cell.2007.04.042] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 02/16/2007] [Accepted: 04/26/2007] [Indexed: 11/17/2022]
Abstract
SCF ubiquitin ligases recruit substrates for degradation via F box protein adaptor subunits. WD40 repeat F box proteins, such as Cdc4 and beta-TrCP, contain a conserved dimerization motif called the D domain. Here, we report that the D domain protomers of yeast Cdc4 and human beta-TrCP form a superhelical homotypic dimer. Disruption of the D domain compromises the activity of yeast SCF(Cdc4) toward the CDK inhibitor Sic1 and other substrates. SCF(Cdc4) dimerization has little effect on the affinity for Sic1 but markedly stimulates ubiquitin conjugation. A model of the dimeric holo-SCF(Cdc4) complex based on small-angle X-ray scatter measurements reveals a suprafacial configuration, in which substrate-binding sites and E2 catalytic sites lie in the same plane with a separation of 64 A within and 102 A between each SCF monomer. This spatial variability may accommodate diverse acceptor lysine geometries in both substrates and the elongating ubiquitin chain and thereby increase catalytic efficiency.
Collapse
Affiliation(s)
- Xiaojing Tang
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada M5G 1X5
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wu C, Ma MH, Brown KR, Geisler M, Li L, Tzeng E, Jia CYH, Jurisica I, Li SSC. Systematic identification of SH3 domain-mediated human protein–protein interactions by peptide array target screening. Proteomics 2007; 7:1775-85. [PMID: 17474147 DOI: 10.1002/pmic.200601006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Systematic identification of direct protein-protein interactions is often hampered by difficulties in expressing and purifying the corresponding full-length proteins. By taking advantage of the modular nature of many regulatory proteins, we attempted to simplify protein-protein interactions to the corresponding domain-ligand recognition and employed peptide arrays to identify such binding events. A group of 12 Src homology (SH) 3 domains from eight human proteins (Swiss-Prot ID: SRC, PLCG1, P85A, NCK1, GRB2, FYN, CRK) were used to screen a peptide target array composed of 1536 potential ligands, which led to the identification of 921 binary interactions between these proteins and 284 targets. To assess the efficiency of the peptide array target screening (PATS) method in identifying authentic protein-protein interactions, we examined a set of interactions mediated by the PLCgamma1 SH3 domain by coimmunoprecipitation and/or affinity pull-downs using full-length proteins and achieved a 75% success rate. Furthermore, we characterized a novel interaction between PLCgamma1 and hematopoietic progenitor kinase 1 (HPK1) identified by PATS and demonstrated that the PLCgamma1 SH3 domain negatively regulated HPK1 kinase activity. Compared to protein interactions listed in the online predicted human interaction protein database (OPHID), the majority of interactions identified by PATS are novel, suggesting that, when extended to the large number of peptide interaction domains encoded by the human genome, PATS should aid in the mapping of the human interactome.
Collapse
Affiliation(s)
- Chenggang Wu
- Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen C, Seth AK, Aplin AE. Genetic and expression aberrations of E3 ubiquitin ligases in human breast cancer. Mol Cancer Res 2007; 4:695-707. [PMID: 17050664 DOI: 10.1158/1541-7786.mcr-06-0182] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies revealed that E3 ubiquitin ligases play important roles in breast carcinogenesis. Clinical research studies have found that (epi)-genetic (deletion, amplification, mutation, and promoter methylation) and expression aberration of E3s are frequent in human breast cancer. Furthermore, many studies have suggested that many E3s are either oncogenes or tumor suppressor genes in breast cancer. In this review, we provide a comprehensive summary of E3s, which have genetic and/or expression aberration in breast cancer. Most cancer-related E3s regulate the cell cycle, p53, transcription, DNA repair, cell signaling, or apoptosis. An understanding of the oncogenic potential of the E3s may facilitate identifying and developing individual E3s as diagnosis markers and drug targets in breast cancer.
Collapse
Affiliation(s)
- Ceshi Chen
- The Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| | | | | |
Collapse
|
27
|
Maas NL, Miller KM, DeFazio LG, Toczyski DP. Cell Cycle and Checkpoint Regulation of Histone H3 K56 Acetylation by Hst3 and Hst4. Mol Cell 2006; 23:109-19. [PMID: 16818235 DOI: 10.1016/j.molcel.2006.06.006] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/12/2006] [Accepted: 06/14/2006] [Indexed: 01/01/2023]
Abstract
Histone modifications, including H3 K56 acetylation, have been implicated in DNA damage tolerance. Here, we present evidence that Hst3 and Hst4, two paralogues of the histone deacetylase Sir2, target the cell cycle-regulated acetylation of H3 on K56 and are downregulated during DNA damage in a checkpoint-dependent manner. We show that Hst3 and Hst4 are themselves cell cycle regulated and that their misexpression affects H3 K56-Ac. Moreover, a histone H3 K56R mutation is epistatic to all phenotypes caused by HST3/4 deletion or HST3 overexpression, suggesting that H3K56-Ac is the major target of these histone deacetylases. On examining 18 members of the "Clb2 cluster" of cell cycle-regulated proteins to which Hst3 belongs, we find that two others, Ynl058c and Alk1, are significantly downregulated on DNA damage. Taken together, our data show that Hst3/Hst4 are negative regulators of H3 K56-Ac and that HST3 downregulation by a checkpoint-mediated transcriptional repression system is essential for surviving DNA damage.
Collapse
Affiliation(s)
- Nancy L Maas
- Department of Biochemistry and Biophysics, Cancer Research Institute, University of California, San Francisco, 94115, USA
| | | | | | | |
Collapse
|