1
|
Smith EJ, Sathasivam K, Landles C, Osborne GF, Mason MA, Gomez-Paredes C, Taxy BA, Milton RE, Ast A, Schindler F, Zhang C, Duan W, Wanker EE, Bates GP. Early detection of exon 1 huntingtin aggregation in zQ175 brains by molecular and histological approaches. Brain Commun 2023; 5:fcad010. [PMID: 36756307 PMCID: PMC9901570 DOI: 10.1093/braincomms/fcad010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/08/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Huntingtin-lowering approaches that target huntingtin expression are a major focus for therapeutic intervention for Huntington's disease. When the cytosine, adenine and guanine repeat is expanded, the huntingtin pre-mRNA is alternatively processed to generate the full-length huntingtin and HTT1a transcripts. HTT1a encodes the aggregation-prone and highly pathogenic exon 1 huntingtin protein. In evaluating huntingtin-lowering approaches, understanding how the targeting strategy modulates levels of both transcripts and the huntingtin protein isoforms that they encode will be essential. Given the aggregation-propensity of exon 1 huntingtin, the impact of a given strategy on the levels and subcellular location of aggregated huntingtin will need to be determined. We have developed and applied sensitive molecular approaches to monitor the levels of aggregated and soluble huntingtin isoforms in tissue lysates. We have used these, in combination with immunohistochemistry, to map the appearance and accumulation of aggregated huntingtin throughout the CNS of zQ175 mice, a model of Huntington's disease frequently chosen for preclinical studies. Aggregation analyses were performed on tissues from zQ175 and wild-type mice at monthly intervals from 1 to 6 months of age. We developed three homogeneous time-resolved fluorescence assays to track the accumulation of aggregated huntingtin and showed that two of these were specific for the exon 1 huntingtin protein. Collectively, the homogeneous time-resolved fluorescence assays detected huntingtin aggregation in the 10 zQ175 CNS regions by 1-2 months of age. Immunohistochemistry with the polyclonal S830 anti-huntingtin antibody showed that nuclear huntingtin aggregation, in the form of a diffuse nuclear immunostain, could be visualized in the striatum, hippocampal CA1 region and layer IV of the somatosensory cortex by 2 months. That this diffuse nuclear immunostain represented aggregated huntingtin was confirmed by immunohistochemistry with a polyglutamine-specific antibody, which required formic acid antigen retrieval to expose its epitope. By 6 months of age, nuclear and cytoplasmic inclusions were widely distributed throughout the brain. Homogeneous time-resolved fluorescence analysis showed that the comparative levels of soluble exon 1 huntingtin between CNS regions correlated with those for huntingtin aggregation. We found that soluble exon 1 huntingtin levels decreased over the 6-month period, whilst those of soluble full-length mutant huntingtin remained unchanged, data that were confirmed for the cortex by immunoprecipitation and western blotting. These data support the hypothesis that exon 1 huntingtin initiates the aggregation process in knock-in mouse models and pave the way for a detailed analysis of huntingtin aggregation in response to huntingtin-lowering treatments.
Collapse
Affiliation(s)
- Edward J Smith
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Kirupa Sathasivam
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Christian Landles
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Georgina F Osborne
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Michael A Mason
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Casandra Gomez-Paredes
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Bridget A Taxy
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Rebecca E Milton
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Anne Ast
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Franziska Schindler
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Chuangchuang Zhang
- Division of Neurobiology, Department Psychiatry and Behavioral Sciences; Department Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department Psychiatry and Behavioral Sciences; Department Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Gillian P Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
2
|
Zhou Y, Peskett TR, Landles C, Warner JB, Sathasivam K, Smith EJ, Chen S, Wetzel R, Lashuel HA, Bates GP, Saibil HR. Correlative light and electron microscopy suggests that mutant huntingtin dysregulates the endolysosomal pathway in presymptomatic Huntington's disease. Acta Neuropathol Commun 2021; 9:70. [PMID: 33853668 PMCID: PMC8048291 DOI: 10.1186/s40478-021-01172-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/28/2021] [Indexed: 12/18/2022] Open
Abstract
Huntington's disease (HD) is a late onset, inherited neurodegenerative disorder for which early pathogenic events remain poorly understood. Here we show that mutant exon 1 HTT proteins are recruited to a subset of cytoplasmic aggregates in the cell bodies of neurons in brain sections from presymptomatic HD, but not wild-type, mice. This occurred in a disease stage and polyglutamine-length dependent manner. We successfully adapted a high-resolution correlative light and electron microscopy methodology, originally developed for mammalian and yeast cells, to allow us to correlate light microscopy and electron microscopy images on the same brain section within an accuracy of 100 nm. Using this approach, we identified these recruitment sites as single membrane bound, vesicle-rich endolysosomal organelles, specifically as (1) multivesicular bodies (MVBs), or amphisomes and (2) autolysosomes or residual bodies. The organelles were often found in close-proximity to phagophore-like structures. Immunogold labeling localized mutant HTT to non-fibrillar, electron lucent structures within the lumen of these organelles. In presymptomatic HD, the recruitment organelles were predominantly MVBs/amphisomes, whereas in late-stage HD, there were more autolysosomes or residual bodies. Electron tomograms indicated the fusion of small vesicles with the vacuole within the lumen, suggesting that MVBs develop into residual bodies. We found that markers of MVB-related exocytosis were depleted in presymptomatic mice and throughout the disease course. This suggests that endolysosomal homeostasis has moved away from exocytosis toward lysosome fusion and degradation, in response to the need to clear the chronically aggregating mutant HTT protein, and that this occurs at an early stage in HD pathogenesis.
Collapse
Affiliation(s)
- Ya Zhou
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, UK
| | - Thomas R. Peskett
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX UK
- Present Address: Department of Biology, Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Christian Landles
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, UK
| | - John B. Warner
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kirupa Sathasivam
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, UK
| | - Edward J. Smith
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, UK
| | - Shu Chen
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX UK
| | - Ronald Wetzel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gillian P. Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, UK
| | - Helen R. Saibil
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX UK
| |
Collapse
|
3
|
Vodicka P, Chase K, Iuliano M, Valentine DT, Sapp E, Lu B, Kegel-Gleason KB, Sena-Esteves M, Aronin N, DiFiglia M. Effects of Exogenous NUB1 Expression in the Striatum of HDQ175/Q7 Mice. J Huntingtons Dis 2017; 5:163-74. [PMID: 27314618 DOI: 10.3233/jhd-160195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Reducing mutant huntingtin (mHTT) in neurons may be a therapy for Huntington's disease (HD). Elevating NUB1 protein reduced mHTT levels in cell and fly models of HD through a proteasome dependent mechanism. OBJECTIVE To examine the effects of augmenting NUB1 in HD mouse striatum on mHTT levels. METHODS Striata of HDQ175/Q7 mice were injected at 3 months of age with recombinant AAV2/9 coding for NUB1 or GFP under the control of the neuron specific human synapsin 1 promoter and examined 6 months post-injection for levels of huntingtin, the striatal markers DARPP32 and PDE10A, the astrocyte marker GFAP, and the autophagy and mHTT aggregate marker P62 using immunolabeling of brain sections and Western blot assay of striatal subcellular fractions. RESULTS By Western blot human HD brain had only one of the two variants of NUB1 present in human control brain. In striatum of WT and HD mice NUB1 was localized in medium size neurons and enriched in the nucleus of large neurons. In the striatum of NUB1 injected HD mice, there was widespread neuronal distribution of exogenous NUB1 labeling and protein levels were ∼2.5-fold endogenous levels. DARPP32 and GFAP distribution and levels were unchanged but PDE10A levels were lower in crude homogenates and P62 was increased in nuclear enriched P1 fractions. Elevating NUB1 did not change levels of full-length mHTT or the number and size of mHTT (S830) positive nuclear inclusions. CONCLUSION Findings suggest that increasing NUB1 protein in striatal neurons of HDQ175/Q7 mice in vivo may be relatively safe but is ineffective in reducing mHTT. Increased NUB1 expression in HD striatum alters PDE10A and P62 which are known to be influenced by mHTT.
Collapse
Affiliation(s)
- Petr Vodicka
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kathryn Chase
- Department of Medicine and The RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maria Iuliano
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Dana T Valentine
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Boxun Lu
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, China
| | - Kimberly B Kegel-Gleason
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Miguel Sena-Esteves
- Department of Neurology, Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Neil Aronin
- Department of Medicine and The RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
4
|
Grønhøj MH, Clausen BH, Fenger CD, Lambertsen KL, Finsen B. Beneficial potential of intravenously administered IL-6 in improving outcome after murine experimental stroke. Brain Behav Immun 2017; 65:296-311. [PMID: 28587928 DOI: 10.1016/j.bbi.2017.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/18/2017] [Accepted: 05/30/2017] [Indexed: 01/18/2023] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine with neuroprotective properties. Still, the therapeutic potential of IL-6 after experimental stroke has not yet been investigated in a clinically relevant way. Here, we investigated the therapeutic use of intravenously administered IL-6 and the soluble IL-6 receptor (sIL-6R) alone or in combination, early after permanent middle cerebral artery occlusion (pMCAo) in mice. IL-6 did not affect the infarct volume in C57BL/6 mice, at neither 24 nor 72h after pMCAo but reduced the infarct volume in IL-6 knockout mice at 24h after pMCAo. Assessment of post-stroke behavior showed an improved grip strength after a single IL-6 injection and also improved rotarod endurance after two injections, in C57BL/6 mice at 24h. An improved grip strength and a better preservation of sensory functions was also observed in IL-6 treated IL-6 knockout mice 24h after pMCAo. Co-administration of IL-6 and sIL-6R increased the infarct volume, the number of infiltrating polymorphonuclear leukocytes and impaired the rotarod endurance of C57BL/6 mice 24h after pMCAo. IL-6 administration to naïve C57BL/6 mice lead after 45min to increased plasma-levels of CXCL1 and IL-10, whereas IL-6 administration to C57BL/6 mice lead to a reduction in the ischemia-induced increase in IL-6 and CXCL1 at both mRNA and protein level in brain, and of IL-6 and CXCL1 in serum. We also investigated the expression of IL-6 and IL-6R after pMCAo and found that cortical neurons upregulated IL-6 mRNA and protein, and upregulated IL-6R after pMCAo. In conclusion, the results show a complex but potentially beneficial effect of intravenously administered IL-6 in experimental stroke.
Collapse
Affiliation(s)
- Mads Hjortdal Grønhøj
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark; Department of Neurosurgery, Odense University Hospital, Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark
| | - Christina Dühring Fenger
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark; Department of Neurology, Odense University Hospital, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bente Finsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
5
|
Lamirault C, Yu-Taeger L, Doyère V, Riess O, Nguyen HP, El Massioui N. Altered reactivity of central amygdala to GABA A R antagonist in the BACHD rat model of Huntington disease. Neuropharmacology 2017; 123:136-147. [DOI: 10.1016/j.neuropharm.2017.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 11/16/2022]
|
6
|
Yu-Taeger L, Bonin M, Stricker-Shaver J, Riess O, Nguyen HHP. Dysregulation of gene expression in the striatum of BACHD rats expressing full-length mutant huntingtin and associated abnormalities on molecular and protein levels. Neuropharmacology 2017; 117:260-272. [DOI: 10.1016/j.neuropharm.2017.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/17/2017] [Accepted: 01/27/2017] [Indexed: 11/26/2022]
|
7
|
Kratter IH, Zahed H, Lau A, Tsvetkov AS, Daub AC, Weiberth KF, Gu X, Saudou F, Humbert S, Yang XW, Osmand A, Steffan JS, Masliah E, Finkbeiner S. Serine 421 regulates mutant huntingtin toxicity and clearance in mice. J Clin Invest 2016; 126:3585-97. [PMID: 27525439 PMCID: PMC5004962 DOI: 10.1172/jci80339] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 06/30/2016] [Indexed: 01/17/2023] Open
Abstract
Huntington's disease (HD) is a progressive, adult-onset neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the N-terminal region of the protein huntingtin (HTT). There are no cures or disease-modifying therapies for HD. HTT has a highly conserved Akt phosphorylation site at serine 421, and prior work in HD models found that phosphorylation at S421 (S421-P) diminishes the toxicity of mutant HTT (mHTT) fragments in neuronal cultures. However, whether S421-P affects the toxicity of mHTT in vivo remains unknown. In this work, we used murine models to investigate the role of S421-P in HTT-induced neurodegeneration. Specifically, we mutated the human mHTT gene within a BAC to express either an aspartic acid or an alanine at position 421, mimicking tonic phosphorylation (mHTT-S421D mice) or preventing phosphorylation (mHTT-S421A mice), respectively. Mimicking HTT phosphorylation strongly ameliorated mHTT-induced behavioral dysfunction and striatal neurodegeneration, whereas neuronal dysfunction persisted when S421 phosphorylation was blocked. We found that S421 phosphorylation mitigates neurodegeneration by increasing proteasome-dependent turnover of mHTT and reducing the presence of a toxic mHTT conformer. These data indicate that S421 is a potent modifier of mHTT toxicity and offer in vivo validation for S421 as a therapeutic target in HD.
Collapse
Affiliation(s)
- Ian H. Kratter
- Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, USA
- Biomedical Sciences Graduate Program and
- Medical Scientist Training Program, UCSF, San Francisco, California, USA
| | - Hengameh Zahed
- Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, USA
- Biomedical Sciences Graduate Program and
- Medical Scientist Training Program, UCSF, San Francisco, California, USA
| | - Alice Lau
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, USA
| | - Andrey S. Tsvetkov
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aaron C. Daub
- Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, USA
- Medical Scientist Training Program, UCSF, San Francisco, California, USA
- Graduate Program in Bioengineering, UCSF, San Francisco, California, USA
| | - Kurt F. Weiberth
- Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, USA
- Biomedical Sciences Graduate Program and
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Frédéric Saudou
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
- Inserm, U1216, Grenoble, France
- Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - Sandrine Humbert
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
- Inserm, U1216, Grenoble, France
- Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - X. William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Alex Osmand
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Joan S. Steffan
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, USA
| | - Eliezer Masliah
- Departments of Neurosciences and Pathology, UCSD, La Jolla, California, USA
| | - Steven Finkbeiner
- Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California, USA
- Biomedical Sciences Graduate Program and
- Departments of Neurology and Physiology, UCSF, San Francisco, California, USA
| |
Collapse
|
8
|
Kempf SJ, Metaxas A, Ibáñez-Vea M, Darvesh S, Finsen B, Larsen MR. An integrated proteomics approach shows synaptic plasticity changes in an APP/PS1 Alzheimer's mouse model. Oncotarget 2016; 7:33627-48. [PMID: 27144524 PMCID: PMC5085108 DOI: 10.18632/oncotarget.9092] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to elucidate the molecular signature of Alzheimer's disease-associated amyloid pathology.We used the double APPswe/PS1ΔE9 mouse, a widely used model of cerebral amyloidosis, to compare changes in proteome, including global phosphorylation and sialylated N-linked glycosylation patterns, pathway-focused transcriptome and neurological disease-associated miRNAome with age-matched controls in neocortex, hippocampus, olfactory bulb and brainstem. We report that signalling pathways related to synaptic functions associated with dendritic spine morphology, neurite outgrowth, long-term potentiation, CREB signalling and cytoskeletal dynamics were altered in 12 month old APPswe/PS1ΔE9 mice, particularly in the neocortex and olfactory bulb. This was associated with cerebral amyloidosis as well as formation of argyrophilic tangle-like structures and microglial clustering in all brain regions, except for brainstem. These responses may be epigenetically modulated by the interaction with a number of miRNAs regulating spine restructuring, Aβ expression and neuroinflammation.We suggest that these changes could be associated with development of cognitive dysfunction in early disease states in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Stefan J. Kempf
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Athanasios Metaxas
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - María Ibáñez-Vea
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
- Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, NS, Canada
| | - Bente Finsen
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
9
|
Oliveira AO, Osmand A, Outeiro TF, Muchowski PJ, Finkbeiner S. αB-Crystallin overexpression in astrocytes modulates the phenotype of the BACHD mouse model of Huntington's disease. Hum Mol Genet 2016; 25:1677-89. [PMID: 26920069 PMCID: PMC4986324 DOI: 10.1093/hmg/ddw028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/01/2016] [Indexed: 11/14/2022] Open
Abstract
Huntington's disease (HD) is caused by an expanded polyglutamine (polyQ) tract in the huntingtin (htt) protein. The polyQ expansion increases the propensity of htt to aggregate and accumulate, and manipulations that mitigate protein misfolding or facilitate the clearance of misfolded proteins are predicted to slow disease progression in HD models. αB-crystallin (αBc) or HspB5 is a well-characterized member of the small heat shock protein (sHsp) family that reduces mutant htt (mhtt) aggregation and toxicity in vitro and in Drosophila models of HD. Here, we determined if overexpressing αBc in vivo modulates aggregation and delays the onset and progression of disease in a full-length model of HD, BACHD mice. Expression of sHsps in neurodegenerative disease predominantly occurs in non-neuronal cells, and in the brain, αBc is mainly found in astrocytes and oligodendrocytes. Here, we show that directed αBc overexpression in astrocytes improves motor performance in rotarod and balance beam tests and improves cognitive function in the BACHD mice. Improvement in behavioral deficits correlated with mitigation of neuropathological features commonly observed in HD. Interestingly, astrocytic αBc overexpression was neuroprotective against neuronal cell loss in BACHD brains, suggesting αBc might be acting in a non-cell-autonomous manner. At the protein level, αBc decreased the level of soluble mhtt and decreased the size of mhtt inclusions in BACHD brain. Our results support a model in which elevating astrocytic αBc confers neuroprotection through a potential non-cell-autonomous pathway that modulates mhtt aggregation and protein levels.
Collapse
Affiliation(s)
- Ana Osório Oliveira
- Lisbon Academic Medical Center PhD Program, Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal, Gladstone Institute for Neurological Disease, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Alexander Osmand
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Tiago Fleming Outeiro
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal, CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal, Department of Neurodegeneration and Restorative Research, University Medical Center Goettingen, Goettingen, Germany
| | | | - Steven Finkbeiner
- Gladstone Institute for Neurological Disease, J. David Gladstone Institutes, San Francisco, CA, USA, Department of Neurology, Department of Physiology, University of California at San Francisco, San Francisco, CA, USA and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
| |
Collapse
|
10
|
Clemens LE, Weber JJ, Wlodkowski TT, Yu-Taeger L, Michaud M, Calaminus C, Eckert SH, Gaca J, Weiss A, Magg JCD, Jansson EKH, Eckert GP, Pichler BJ, Bordet T, Pruss RM, Riess O, Nguyen HP. Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the BACHD rat. Brain 2015; 138:3632-53. [PMID: 26490331 DOI: 10.1093/brain/awv290] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
Huntington's disease is a fatal human neurodegenerative disorder caused by a CAG repeat expansion in the HTT gene, which translates into a mutant huntingtin protein. A key event in the molecular pathogenesis of Huntington's disease is the proteolytic cleavage of mutant huntingtin, leading to the accumulation of toxic protein fragments. Mutant huntingtin cleavage has been linked to the overactivation of proteases due to mitochondrial dysfunction and calcium derangements. Here, we investigated the therapeutic potential of olesoxime, a mitochondria-targeting, neuroprotective compound, in the BACHD rat model of Huntington's disease. BACHD rats were treated with olesoxime via the food for 12 months. In vivo analysis covered motor impairments, cognitive deficits, mood disturbances and brain atrophy. Ex vivo analyses addressed olesoxime's effect on mutant huntingtin aggregation and cleavage, as well as brain mitochondria function. Olesoxime improved cognitive and psychiatric phenotypes, and ameliorated cortical thinning in the BACHD rat. The treatment reduced cerebral mutant huntingtin aggregates and nuclear accumulation. Further analysis revealed a cortex-specific overactivation of calpain in untreated BACHD rats. Treated BACHD rats instead showed significantly reduced levels of mutant huntingtin fragments due to the suppression of calpain-mediated cleavage. In addition, olesoxime reduced the amount of mutant huntingtin fragments associated with mitochondria, restored a respiration deficit, and enhanced the expression of fusion and outer-membrane transport proteins. In conclusion, we discovered the calpain proteolytic system, a key player in Huntington's disease and other neurodegenerative disorders, as a target of olesoxime. Our findings suggest that olesoxime exerts its beneficial effects by improving mitochondrial function, which results in reduced calpain activation. The observed alleviation of behavioural and neuropathological phenotypes encourages further investigations on the use of olesoxime as a therapeutic for Huntington's disease.
Collapse
Affiliation(s)
- Laura E Clemens
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Jonasz J Weber
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Tanja T Wlodkowski
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Libo Yu-Taeger
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Magali Michaud
- 3 Trophos SA., Parc Scientifique de Luminy Case 931, 13288 Marseille Cedex 9, France
| | - Carsten Calaminus
- 4 Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tuebingen, Roentgenweg 13, 72076 Tuebingen, Germany
| | - Schamim H Eckert
- 5 Department of Pharmacology, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Janett Gaca
- 5 Department of Pharmacology, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Andreas Weiss
- 6 Novartis Institutes for BioMedical Research, Klybeckstrasse 141, 4057 Basel, Switzerland
| | - Janine C D Magg
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Erik K H Jansson
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Gunter P Eckert
- 5 Department of Pharmacology, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Bernd J Pichler
- 4 Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tuebingen, Roentgenweg 13, 72076 Tuebingen, Germany
| | - Thierry Bordet
- 3 Trophos SA., Parc Scientifique de Luminy Case 931, 13288 Marseille Cedex 9, France
| | - Rebecca M Pruss
- 3 Trophos SA., Parc Scientifique de Luminy Case 931, 13288 Marseille Cedex 9, France
| | - Olaf Riess
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Huu P Nguyen
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| |
Collapse
|
11
|
Distinct transduction profiles in the CNS via three injection routes of AAV9 and the application to generation of a neurodegenerative mouse model. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14032. [PMID: 26015973 PMCID: PMC4362361 DOI: 10.1038/mtm.2014.32] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/11/2014] [Accepted: 06/11/2014] [Indexed: 11/08/2022]
Abstract
Using single-stranded adeno-associated virus serotype 9 (ssAAV9) vectors containing the neuron-specific synapsin-I promoter, we examined whether different administration routes (direct cerebellar cortical (DC), intrathecal (IT) and intravenous (IV) injections) could elicit specific transduction profiles in the CNS. The DC injection route robustly and exclusively transduced the whole cerebellum, whereas the IT injection route primarily transduced the cerebellar lobules 9 and 10 close to the injection site and the spinal cord. An IV injection in neonatal mice weakly and homogenously transduced broad CNS areas. In the cerebellar cortex, the DC and IT injection routes transduced all neuron types, whereas the IV injection route primarily transduced Purkinje cells. To verify the usefulness of this method, we generated a mouse model of spinocerebellar ataxia type 1 (SCA1). Mice that received a DC injection of the ssAAV9 vector expressing mutant ATXN1, a protein responsible for SCA1, showed the intranuclear aggregation of mutant ATXN1 in Purkinje cells, significant atrophy of the Purkinje cell dendrites and progressive motor deficits, which are characteristics of SCA1. Thus, ssAAV9-mediated transduction areas, levels, and cell types change depending on the route of injection. Moreover, this approach can be used for the generation of different mouse models of CNS/neurodegenerative diseases.
Collapse
|
12
|
Menon RP, Soong D, de Chiara C, Holt M, McCormick JE, Anilkumar N, Pastore A. Mapping the self-association domains of ataxin-1: identification of novel non overlapping motifs. PeerJ 2014; 2:e323. [PMID: 24711972 PMCID: PMC3970802 DOI: 10.7717/peerj.323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/07/2014] [Indexed: 12/13/2022] Open
Abstract
The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1) is caused by aggregation and misfolding of the ataxin-1 protein. While the pathology correlates with mutations that lead to expansion of a polyglutamine tract in the protein, other regions contribute to the aggregation process as also non-expanded ataxin-1 is intrinsically aggregation-prone and forms nuclear foci in cell. Here, we have used a combined approach based on FRET analysis, confocal microscopy and in vitro techniques to map aggregation-prone regions other than polyglutamine and to establish the importance of dimerization in self-association/foci formation. Identification of aggregation-prone regions other than polyglutamine could greatly help the development of SCA1 treatment more specific than that based on targeting the low complexity polyglutamine region.
Collapse
Affiliation(s)
- Rajesh P Menon
- MRC National Institute for Medical Research, The Ridgeway , London , UK
| | - Daniel Soong
- Randall Division for Cell and Molecular Biophysics, New Hunt's House, King's College London , Guy's Campus, London , UK ; British Heart Foundation Centre of Research Excellence, King's College London , Denmark Hill Campus, London , UK
| | - Cesira de Chiara
- MRC National Institute for Medical Research, The Ridgeway , London , UK
| | - Mark Holt
- Randall Division for Cell and Molecular Biophysics, New Hunt's House, King's College London , Guy's Campus, London , UK
| | - John E McCormick
- MRC National Institute for Medical Research, The Ridgeway , London , UK
| | - Narayana Anilkumar
- British Heart Foundation Centre of Research Excellence, King's College London , Denmark Hill Campus, London , UK
| | - Annalisa Pastore
- MRC National Institute for Medical Research, The Ridgeway , London , UK ; Department of Molecular Neuroscience, Institute of Psychiatry, King's College London , Denmark Hill Campus, London , UK
| |
Collapse
|
13
|
Modeling the polyglutamine aggregation pathway in Huntington's disease: from basic studies to clinical applications. Subcell Biochem 2014; 65:353-88. [PMID: 23225011 DOI: 10.1007/978-94-007-5416-4_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Huntington's disease (HD) is among the polyglutamine (polyQ) disorders, which are caused by expansion of CAG-trinucleotide repeats. These disorders share common characteristics, and have thus long been thought to have a unifying pathogenic mechanism resulting from polyQ expansion. However, this scenario has recently become more complex, as studies have found multiple pathways for the assembly of disease-related polyQ protein aggregates that differ in both structure and toxicity. There are fascinating disease-specific aspects of the polyQ disorders, including the repeat-length dependence of both clinical features and the propensity of the expanded polyQ protein to aggregate. Such aggregation kinetics have proven useful in explaining the disease process. This chapter describes two risk-based stochastic kinetic models, the cumulative-damage and one-hit models, that describe genotype-phenotype correlations in patients with polyQ diseases and reflect alternative pathways of polyQ aggregation. Using repeat-length as an index, several models explore the quantitative connection between aggregation kinetics and clinical data from HD patients. The correlations between CAG repeat-length and age-of-onset are re-evaluated, and the rate of disease progression (as assessed by clinical measures and longitudinal imaging studies of brain structure) are surveyed. Finally, I present a mathematical model by which the time course of neurodegeneration in HD can be precisely predicted, and discuss the association of the models with the major controversies about HD pathogenesis.
Collapse
|
14
|
Bhela S, Mulik S, Reddy PBJ, Richardson RL, Gimenez F, Rajasagi NK, Veiga-Parga T, Osmand AP, Rouse BT. Critical role of microRNA-155 in herpes simplex encephalitis. THE JOURNAL OF IMMUNOLOGY 2014; 192:2734-43. [PMID: 24516198 DOI: 10.4049/jimmunol.1302326] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HSV infection of adult humans occasionally results in life-threatening herpes simplex encephalitis (HSE) for reasons that remain to be defined. An animal system that could prove useful to model HSE could be microRNA-155 knockout (miR-155KO) mice. Thus, we observe that mice with a deficiency of miR-155 are highly susceptible to HSE with a majority of animals (75-80%) experiencing development of HSE after ocular infection with HSV-1. The lesions appeared to primarily represent the destructive consequences of viral replication, and animals could be protected from HSE by acyclovir treatment provided 4 d after ocular infection. The miR-155KO animals were also more susceptible to development of zosteriform lesions, a reflection of viral replication and dissemination within the nervous system. One explanation for the heightened susceptibility to HSE and zosteriform lesions could be because miR-155KO animals develop diminished CD8 T cell responses when the numbers, functionality, and homing capacity of effector CD8 T cell responses were compared. Indeed, adoptive transfer of HSV-immune CD8 T cells to infected miR-155KO mice at 24 h postinfection provided protection from HSE. Deficiencies in CD8 T cell numbers and function also explained the observation that miR-155KO animals were less able than control animals to maintain HSV latency. To our knowledge, our observations may be the first to link miR-155 expression with increased susceptibility of the nervous system to virus infection.
Collapse
Affiliation(s)
- Siddheshvar Bhela
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996-0845
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Strnad P, Nuraldeen R, Guldiken N, Hartmann D, Mahajan V, Denk H, Haybaeck J. Broad Spectrum of Hepatocyte Inclusions in Humans, Animals, and Experimental Models. Compr Physiol 2013; 3:1393-436. [DOI: 10.1002/cphy.c120032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
A novel BACHD transgenic rat exhibits characteristic neuropathological features of Huntington disease. J Neurosci 2013; 32:15426-38. [PMID: 23115180 DOI: 10.1523/jneurosci.1148-12.2012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Huntington disease (HD) is an inherited progressive neurodegenerative disorder, characterized by motor, cognitive, and psychiatric deficits as well as neurodegeneration and brain atrophy beginning in the striatum and the cortex and extending to other subcortical brain regions. The genetic cause is an expansion of the CAG repeat stretch in the HTT gene encoding huntingtin protein (htt). Here, we generated an HD transgenic rat model using a human bacterial artificial chromosome (BAC), which contains the full-length HTT genomic sequence with 97 CAG/CAA repeats and all regulatory elements. BACHD transgenic rats display a robust, early onset and progressive HD-like phenotype including motor deficits and anxiety-related symptoms. In contrast to BAC and yeast artificial chromosome HD mouse models that express full-length mutant huntingtin, BACHD rats do not exhibit an increased body weight. Neuropathologically, the distribution of neuropil aggregates and nuclear accumulation of N-terminal mutant huntingtin in BACHD rats is similar to the observations in human HD brains. Aggregates occur more frequently in the cortex than in the striatum and neuropil aggregates appear earlier than mutant htt accumulation in the nucleus. Furthermore, we found an imbalance in the striatal striosome and matrix compartments in early stages of the disease. In addition, reduced dopamine receptor binding was detectable by in vivo imaging. Our data demonstrate that this transgenic BACHD rat line may be a valuable model for further understanding the disease mechanisms and for preclinical pharmacological studies.
Collapse
|
17
|
Tada M, Coon EA, Osmand AP, Kirby PA, Martin W, Wieler M, Shiga A, Shirasaki H, Tada M, Makifuchi T, Yamada M, Kakita A, Nishizawa M, Takahashi H, Paulson HL. Coexistence of Huntington's disease and amyotrophic lateral sclerosis: a clinicopathologic study. Acta Neuropathol 2012; 124:749-60. [PMID: 22735976 DOI: 10.1007/s00401-012-1005-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 12/25/2022]
Abstract
We report a retrospective case series of four patients with genetically confirmed Huntington's disease (HD) and sporadic amyotrophic lateral sclerosis (ALS), examining the brain and spinal cord in two cases. Neuropathological assessment included a polyglutamine recruitment method to detect sites of active polyglutamine aggregation, and biochemical and immunohistochemical assessment of TDP-43 pathology. The clinical sequence of HD and ALS varied, with the onset of ALS occurring after the mid-50's in all cases. Neuropathologic features of HD and ALS coexisted in both cases examined pathologically: neuronal loss and gliosis in the neostriatum and upper and lower motor neurons, with Bunina bodies and ubiquitin-immunoreactive skein-like inclusions in remaining lower motor neurons. One case showed relatively early HD pathology while the other was advanced. Expanded polyglutamine-immunoreactive inclusions and TDP-43-immunoreactive inclusions were widespread in many regions of the CNS, including the motor cortex and spinal anterior horn. Although these two different proteinaceous inclusions coexisted in a small number of neurons, the two proteins did not co-localize within inclusions. The regional distribution of TDP-43-immunoreactive inclusions in the cerebral cortex partly overlapped with that of expanded polyglutamine-immunoreactive inclusions. In the one case examined by TDP-43 immunoblotting, similar TDP-43 isoforms were observed as in ALS. Our findings suggest the possibility that a rare subset of older HD patients is prone to develop features of ALS with an atypical TDP-43 distribution that resembles that of aggregated mutant huntingtin. Age-dependent neuronal dysfunction induced by mutant polyglutamine protein expression may contribute to later-life development of TDP-43 associated motor neuron disease in a small subset of patients with HD.
Collapse
|
18
|
Rhys NH, Soper AK, Dougan L. The Hydrogen-Bonding Ability of the Amino Acid Glutamine Revealed by Neutron Diffraction Experiments. J Phys Chem B 2012; 116:13308-19. [DOI: 10.1021/jp307442f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- N. H. Rhys
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, U.K
| | - A. K. Soper
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon,
OX11 OQX, U.K
| | - L. Dougan
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, U.K
| |
Collapse
|
19
|
Zheng S, Ghitani N, Blackburn JS, Liu JP, Zeitlin SO. A series of N-terminal epitope tagged Hdh knock-in alleles expressing normal and mutant huntingtin: their application to understanding the effect of increasing the length of normal Huntingtin's polyglutamine stretch on CAG140 mouse model pathogenesis. Mol Brain 2012; 5:28. [PMID: 22892315 PMCID: PMC3499431 DOI: 10.1186/1756-6606-5-28] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022] Open
Abstract
Background Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease that is caused by the expansion of a polyglutamine (polyQ) stretch within Huntingtin (htt), the protein product of the HD gene. Although studies in vitro have suggested that the mutant htt can act in a potentially dominant negative fashion by sequestering wild-type htt into insoluble protein aggregates, the role of the length of the normal htt polyQ stretch, and the adjacent proline-rich region (PRR) in modulating HD mouse model pathogenesis is currently unknown. Results We describe the generation and characterization of a series of knock-in HD mouse models that express versions of the mouse HD gene (Hdh) encoding N-terminal hemaglutinin (HA) or 3xFlag epitope tagged full-length htt with different polyQ lengths (HA7Q-, 3xFlag7Q-, 3xFlag20Q-, and 3xFlag140Q-htt) and substitution of the adjacent mouse PRR with the human PRR (3xFlag20Q- and 3xFlag140Q-htt). Using co-immunoprecipitation and immunohistochemistry analyses, we detect no significant interaction between soluble full-length normal 7Q- htt and mutant (140Q) htt, but we do observe N-terminal fragments of epitope-tagged normal htt in mutant htt aggregates. When the sequences encoding normal mouse htt’s polyQ stretch and PRR are replaced with non-pathogenic human sequence in mice also expressing 140Q-htt, aggregation foci within the striatum, and the mean size of htt inclusions are increased, along with an increase in striatal lipofuscin and gliosis. Conclusion In mice, soluble full-length normal and mutant htt are predominantly monomeric. In heterozygous knock-in HD mouse models, substituting the normal mouse polyQ and PRR with normal human sequence can exacerbate some neuropathological phenotypes.
Collapse
Affiliation(s)
- Shuqiu Zheng
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, Box 801392, USA
| | | | | | | | | |
Collapse
|
20
|
Caspase-6 activity in a BACHD mouse modulates steady-state levels of mutant huntingtin protein but is not necessary for production of a 586 amino acid proteolytic fragment. J Neurosci 2012; 32:7454-65. [PMID: 22649225 DOI: 10.1523/jneurosci.6379-11.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Huntington's disease (HD) is caused by a mutation in the huntingtin (htt) gene encoding an expansion of glutamine repeats at the N terminus of the Htt protein. Proteolysis of Htt has been identified as a critical pathological event in HD models. In particular, it has been postulated that proteolysis of Htt at the putative caspase-6 cleavage site (at amino acid Asp-586) plays a critical role in disease progression and pathogenesis. However, whether caspase-6 is indeed the essential enzyme that cleaves Htt at this site in vivo has not been determined. To evaluate, we crossed the BACHD mouse model with a caspase-6 knock-out mouse (Casp6(-/-)). Western blot and immunocytochemistry confirmed the lack of caspase-6 protein in Casp6(-/-) mice, regardless of HD genotype. We predicted the Casp6(-/-) mouse would have reduced levels of caspase-6 Htt fragments and increased levels of full-length Htt protein. In contrast, we found a significant reduction of full-length mutant Htt (mHtt) and fragments in the striatum of BACHD Casp6(-/-) mice. Importantly, we detected the presence of Htt fragments consistent with cleavage at amino acid Asp-586 of Htt in the BACHD Casp6(-/-) mouse, indicating that caspase-6 activity cannot fully account for the generation of the Htt 586 fragment in vivo. Our data are not consistent with the hypothesis that caspase-6 activity is critical in generating a potentially toxic 586 aa Htt fragment in vivo. However, our studies do suggest a role for caspase-6 activity in clearance pathways for mHtt protein.
Collapse
|
21
|
Sugaya K, Matsubara S. Quantitative connection between polyglutamine aggregation kinetics and neurodegenerative process in patients with Huntington's disease. Mol Neurodegener 2012; 7:20. [PMID: 22583646 PMCID: PMC3468392 DOI: 10.1186/1750-1326-7-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 04/16/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite enormous progress in elucidating the biophysics of aggregation, no cause-and-effect relationship between protein aggregation and neurodegenerative disease has been unequivocally established. Here, we derived several risk-based stochastic kinetic models that assess genotype/phenotype correlations in patients with Huntington's disease (HD) caused by the expansion of a CAG repeat. Fascinating disease-specific aspects of HD include the polyglutamine (polyQ)-length dependence of both age at symptoms onset and the propensity of the expanded polyQ protein to aggregate. In vitro, aggregation of polyQ peptides follows a simple nucleated growth polymerization pathway. Our models that reflect polyQ aggregation kinetics in a nucleated growth polymerization divided aggregate process into the length-dependent nucleation and the nucleation-dependent elongation. In contrast to the repeat-length dependent variability of age at onset, recent studies have shown that the extent of expansion has only a subtle effect on the rate of disease progression, suggesting possible differences in the mechanisms underlying the neurodegenerative process. RESULTS Using polyQ-length as an index, these procedures enabled us for the first time to establish a quantitative connection between aggregation kinetics and disease process, including onset and the rate of progression. Although the complexity of disease process in HD, the time course of striatal neurodegeneration can be precisely predicted by the mathematical model in which neurodegeneration occurs by different mechanisms for the initiation and progression of disease processes. Nucleation is sufficient to initiate neuronal loss as a series of random events in time. The stochastic appearance of nucleation in a cell population acts as the constant risk of neuronal cell damage over time, while elongation reduces the risk by nucleation in proportion to the increased extent of the aggregates during disease progression. CONCLUSIONS Our findings suggest that nucleation is a critical step in gaining toxic effects to the cell, and provide a new insight into the relationship between polyQ aggregation and neurodegenerative process in HD.
Collapse
Affiliation(s)
- Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan.
| | | |
Collapse
|
22
|
Wetzel R. Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. J Mol Biol 2012; 421:466-90. [PMID: 22306404 DOI: 10.1016/j.jmb.2012.01.030] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/18/2012] [Indexed: 01/08/2023]
Abstract
Polyglutamine (polyQ) sequences of unknown normal function are present in a significant number of proteins, and their repeat expansion is associated with a number of genetic neurodegenerative diseases. PolyQ solution structure and properties are important not only because of the normal and abnormal biology associated with these sequences but also because they represent an interesting case of a biologically relevant homopolymer. As the common thread in expanded polyQ repeat diseases, it is important to understand the structure and properties of simple polyQ sequences. At the same time, experience has shown that sequences attached to polyQ, whether in artificial constructs or in disease proteins, can influence structure and properties. The two major contenders for the molecular source of the neurotoxicity implicit in polyQ expansion within disease proteins are a populated toxic conformation in the monomer ensemble and a toxic aggregated species. This review summarizes experimental and computational studies on the solution structure and aggregation properties of both simple and complex polyQ sequences, and their repeat-length dependence. As a representative of complex polyQ proteins, the behavior of huntingtin N-terminal fragments, such as exon-1, receives special attention.
Collapse
Affiliation(s)
- Ronald Wetzel
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
23
|
Blockx I, De Groof G, Verhoye M, Van Audekerke J, Raber K, Poot D, Sijbers J, Osmand AP, Von Hörsten S, Van der Linden A. Microstructural changes observed with DKI in a transgenic Huntington rat model: Evidence for abnormal neurodevelopment. Neuroimage 2012; 59:957-67. [DOI: 10.1016/j.neuroimage.2011.08.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/12/2011] [Accepted: 08/21/2011] [Indexed: 10/17/2022] Open
|
24
|
Alexandru A, Jagla W, Graubner S, Becker A, Bäuscher C, Kohlmann S, Sedlmeier R, Raber KA, Cynis H, Rönicke R, Reymann KG, Petrasch-Parwez E, Hartlage-Rübsamen M, Waniek A, Rossner S, Schilling S, Osmand AP, Demuth HU, von Hörsten S. Selective hippocampal neurodegeneration in transgenic mice expressing small amounts of truncated Aβ is induced by pyroglutamate-Aβ formation. J Neurosci 2011; 31:12790-801. [PMID: 21900558 PMCID: PMC6623394 DOI: 10.1523/jneurosci.1794-11.2011] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/09/2011] [Accepted: 07/12/2011] [Indexed: 12/24/2022] Open
Abstract
Posttranslational amyloid-β (Aβ) modification is considered to play an important role in Alzheimer's disease (AD) etiology. An N-terminally modified Aβ species, pyroglutamate-amyloid-β (pE3-Aβ), has been described as a major constituent of Aβ deposits specific to human AD but absent in normal aging. Formed via cyclization of truncated Aβ species by glutaminyl cyclase (QC; QPCT) and/or its isoenzyme (isoQC; QPCTL), pE3-Aβ aggregates rapidly and is known to seed additional Aβ aggregation. To directly investigate pE3-Aβ toxicity in vivo, we generated and characterized transgenic TBA2.1 and TBA2.2 mice, which express truncated mutant human Aβ. Along with a rapidly developing behavioral phenotype, these mice showed progressively accumulating Aβ and pE3-Aβ deposits in brain regions of neuronal loss, impaired long-term potentiation, microglial activation, and astrocytosis. Illustrating a threshold for pE3-Aβ neurotoxicity, this phenotype was not found in heterozygous animals but in homozygous TBA2.1 or double-heterozygous TBA2.1/2.2 animals only. A significant amount of pE3-Aβ formation was shown to be QC-dependent, because crossbreeding of TBA2.1 with QC knock-out, but not isoQC knock-out, mice significantly reduced pE3-Aβ levels. Hence, lowering the rate of QC-dependent posttranslational pE3-Aβ formation can, in turn, lower the amount of neurotoxic Aβ species in AD.
Collapse
MESH Headings
- Aging/pathology
- Aging/psychology
- Alzheimer Disease/pathology
- Amyloid beta-Protein Precursor/biosynthesis
- Animals
- Behavior, Animal
- Brain/pathology
- Enzyme-Linked Immunosorbent Assay
- Gliosis/pathology
- Heredodegenerative Disorders, Nervous System/genetics
- Heredodegenerative Disorders, Nervous System/pathology
- Heredodegenerative Disorders, Nervous System/psychology
- Hippocampus/pathology
- Humans
- Immunohistochemistry
- Kinetics
- Long-Term Potentiation/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Microscopy, Electron
- Neuronal Plasticity/genetics
- Neuronal Plasticity/physiology
- Phenotype
- Postural Balance/physiology
- Protein Processing, Post-Translational
- Pyrrolidonecarboxylic Acid/metabolism
- Reflex, Startle/physiology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kerstin A. Raber
- Experimental Therapy, Friedrich Alexander University Erlangen Nürnberg, 91054 Erlangen, Germany
| | | | - Raik Rönicke
- German Center of Neurodegenerative Diseases, 39120 Magdeburg, Germany
| | - Klaus G. Reymann
- German Center of Neurodegenerative Diseases, 39120 Magdeburg, Germany
- Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | | | - Maike Hartlage-Rübsamen
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04109 Leipzig, Germany, and
| | - Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04109 Leipzig, Germany, and
| | - Steffen Rossner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04109 Leipzig, Germany, and
| | | | - Alexander P. Osmand
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920
| | - Hans-Ulrich Demuth
- Ingenium Pharmaceuticals, 82152 Martinsried, Germany
- Probiodrug, 06120 Halle/Saale, Germany
| | - Stephan von Hörsten
- Experimental Therapy, Friedrich Alexander University Erlangen Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
25
|
Wilburn B, Rudnicki DD, Zhao J, Weitz TM, Cheng Y, Gu X, Greiner E, Park CS, Wang N, Sopher BL, La Spada AR, Osmand A, Margolis RL, Sun YE, Yang XW. An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington's disease-like 2 mice. Neuron 2011; 70:427-40. [PMID: 21555070 PMCID: PMC3107122 DOI: 10.1016/j.neuron.2011.03.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2011] [Indexed: 12/22/2022]
Abstract
Huntington's disease-like-2 (HDL2) is a phenocopy of Huntington's disease caused by CTG/CAG repeat expansion at the Junctophilin-3 (JPH3) locus. The mechanisms underlying HDL2 pathogenesis remain unclear. Here we developed a BAC transgenic mouse model of HDL2 (BAC-HDL2) that exhibits progressive motor deficits, selective neurodegenerative pathology, and ubiquitin-positive nuclear inclusions (NIs). Molecular analyses reveal a promoter at the transgene locus driving the expression of a CAG repeat transcript (HDL2-CAG) from the strand antisense to JPH3, which encodes an expanded polyglutamine (polyQ) protein. Importantly, BAC-HDL2 mice, but not control BAC mice, accumulate polyQ-containing NIs in a pattern strikingly similar to those in the patients. Furthermore, BAC mice with genetic silencing of the expanded CUG transcript still express HDL2-CAG transcript and manifest polyQ pathogenesis. Finally, studies of HDL2 mice and patients revealed CBP sequestration into NIs and evidence for interference of CBP-mediated transcriptional activation. These results suggest overlapping polyQ-mediated pathogenic mechanisms in HD and HDL2.
Collapse
Affiliation(s)
- Brian Wilburn
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Dept. Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095
| | - Dobrila D. Rudnicki
- Division of Neurobiology, Lab of Genetic Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Jing Zhao
- Dept. Psychiatry and Biobehavioral Sciences, Brain Research Institute, Mental Retardation Research Center, Dept. Pharmacology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095
| | - Tara Murphy Weitz
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Dept. Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095
| | - Yin Cheng
- Dept. Psychiatry and Biobehavioral Sciences, Brain Research Institute, Mental Retardation Research Center, Dept. Pharmacology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Dept. Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095
| | - Erin Greiner
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Dept. Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095-1569
| | - Chang Sin Park
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Dept. Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095
| | - Nan Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Dept. Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095
| | - Bryce L. Sopher
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, WA 98195
| | - Albert R. La Spada
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, WA 98195
- Departments of Pediatrics and Cellular & Molecular Medicine, and the Division of Biological Sciences, Institute for Genomic Medicine, University of California, San Diego; La Jolla, CA 92093; Rady Children’s Hospital, San Diego, CA 92123
| | - Alex Osmand
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920
| | - Russell L. Margolis
- Division of Neurobiology, Lab of Genetic Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Yi E. Sun
- Dept. Psychiatry and Biobehavioral Sciences, Brain Research Institute, Mental Retardation Research Center, Dept. Pharmacology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095
| | - X. William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Dept. Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
26
|
Heng MY, Duong DK, Albin RL, Tallaksen-Greene SJ, Hunter JM, Lesort MJ, Osmand A, Paulson HL, Detloff PJ. Early autophagic response in a novel knock-in model of Huntington disease. Hum Mol Genet 2010; 19:3702-20. [PMID: 20616151 DOI: 10.1093/hmg/ddq285] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aggregation of mutant polyglutamine (polyQ) proteins has sparked interest in the role of protein quality-control pathways in Huntington's disease (HD) and related polyQ disorders. Employing a novel knock-in HD mouse model, we provide in vivo evidence of early, sustained alterations of autophagy in response to mutant huntingtin (mhtt). The HdhQ200 knock-in model, derived from the selective breeding of HdhQ150 knock-in mice, manifests an accelerated and more robust phenotype than the parent line. Heterozygous HdhQ200 mice accumulate htt aggregates as cytoplasmic aggregation foci (AF) as early as 9 weeks of age and striatal neuronal intranuclear inclusions (NIIs) by 20 weeks. By 40 weeks, striatal AF are perinuclear and immunoreactive for ubiquitin and the autophagosome marker LC3. Striatal NIIs accumulate earlier in HdhQ200 mice than in HdhQ150 mice. The earlier appearance of aggregate pathology in HdhQ200 mice is paralleled by earlier and more rapidly progressive motor deficits: progressive imbalance and decreased motor coordination by 50 weeks, gait deficits by 60 weeks and gross motor impairment by 80 weeks of age. At 80 weeks, heterozygous HdhQ200 mice exhibit striatal and cortical astrogliosis and a approximately 50% reduction in striatal dopamine receptor binding. Increased LC3-II protein expression, which is noted early and sustained throughout the disease course, is paralleled by increased expression of the autophagy-related protein, p62. Early and sustained expression of autophagy-related proteins in this genetically precise mouse model of HD suggests that the alteration of autophagic flux is an important and early component of the neuronal response to mhtt.
Collapse
Affiliation(s)
- Mary Y Heng
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ravache M, Abou-Sleymane G, Trottier Y. [Neurodegenerative polyglutamine expansion diseases: physiopathology and therapeutic strategies]. ACTA ACUST UNITED AC 2010; 58:357-66. [PMID: 20299163 DOI: 10.1016/j.patbio.2009.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 12/29/2009] [Indexed: 10/19/2022]
Abstract
Polyglutamine expansion diseases are adult-onset inherited neurodegenerative disorders that lead to death 10 to 20 years after the first symptoms. Currently, there is no therapy to fight against these diseases. They include Huntington's disease, spinobulbar muscular atrophy, dentatorubral-pallido-luysian atrophy and six types of spino-cerebellar ataxia. The diseases are caused by a unique mutational mechanism: an expansion of the CAG trinucleotide in the corresponding genes coding for an expanded tract of glutamine in the mutated proteins. Polyglutamine expansion confers to the mutant proteins toxic properties that cause neuronal cell death in brain regions specific to each disease. Thanks to cellular and animal models (fly, fish, mouse and rat) of these diseases, we have considerably improved our understanding of the toxic nature of polyglutamine expansion and the physiopathology, and we are now in position to design and test therapeutic strategies to prevent or delay the disease process.
Collapse
Affiliation(s)
- M Ravache
- Département de Neurobiologie et Génétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/Inserm, université de Strasbourg, BP 10142, 67404 Illkirch cedex, France
| | | | | |
Collapse
|
28
|
Landles C, Sathasivam K, Weiss A, Woodman B, Moffitt H, Finkbeiner S, Sun B, Gafni J, Ellerby LM, Trottier Y, Richards WG, Osmand A, Paganetti P, Bates GP. Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. J Biol Chem 2010; 285:8808-23. [PMID: 20086007 DOI: 10.1074/jbc.m109.075028] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Huntingtin proteolysis has been implicated in the molecular pathogenesis of Huntington disease (HD). Despite an intense effort, the identity of the pathogenic smallest N-terminal fragment has not been determined. Using a panel of anti-huntingtin antibodies, we employed an unbiased approach to generate proteolytic cleavage maps of mutant and wild-type huntingtin in the HdhQ150 knock-in mouse model of HD. We identified 14 prominent N-terminal fragments, which, in addition to the full-length protein, can be readily detected in cytoplasmic but not nuclear fractions. These fragments were detected at all ages and are not a consequence of the pathogenic process. We demonstrated that the smallest fragment is an exon 1 huntingtin protein, known to contain a potent nuclear export signal. Prior to the onset of behavioral phenotypes, the exon 1 protein, and possibly other small fragments, accumulate in neuronal nuclei in the form of a detergent insoluble complex, visualized as diffuse granular nuclear staining in tissue sections. This methodology can be used to validate the inhibition of specific proteases as therapeutic targets for HD by pharmacological or genetic approaches.
Collapse
Affiliation(s)
- Christian Landles
- Department Medical and Molecular Genetics, King's College London School of Medicine, King's College London, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gu X, Greiner ER, Mishra R, Kodali R, Osmand A, Finkbeiner S, Steffan JS, Thompson LM, Wetzel R, Yang XW. Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron 2009; 64:828-40. [PMID: 20064390 PMCID: PMC2807408 DOI: 10.1016/j.neuron.2009.11.020] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2009] [Indexed: 12/22/2022]
Abstract
The N-terminal 17 amino acids of huntingtin (NT17) can be phosphorylated on serines 13 and 16; however, the significance of these modifications in Huntington's disease pathogenesis remains unknown. In this study, we developed BAC transgenic mice expressing full-length mutant huntingtin (fl-mhtt) with serines 13 and 16 mutated to either aspartate (phosphomimetic or SD) or alanine (phosphoresistant or SA). Both mutant proteins preserve the essential function of huntingtin in rescuing knockout mouse phenotypes. However, fl-mhtt-induced disease pathogenesis, including motor and psychiatric-like behavioral deficits, mhtt aggregation, and selective neurodegeneration are abolished in SD but preserved in SA mice. Moreover, modification of these serines in expanded repeat huntingtin peptides modulates aggregation and amyloid fibril formation in vitro. Together, our findings demonstrate that serines 13 and 16 are critical determinants of fl-mhtt-induced disease pathogenesis in vivo, supporting the targeting of huntingtin NT17 domain and its modifications in HD therapy.
Collapse
Affiliation(s)
- Xiaofeng Gu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90095
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA 90095
- Brain Research Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Erin R. Greiner
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095
| | - Rakesh Mishra
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Ravindra Kodali
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Alex Osmand
- Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville TN 37920
| | - Steven Finkbeiner
- Gladstone Institute of Neurological Disease, Taube-Koret Center for Huntington’s Disease Research, Departments of Neurology and Physiology, University of California, San Francisco, 1650 Owens St., Office 308, San Francisco, CA 94158, USA
| | - Joan S. Steffan
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA 92697
| | - Leslie Michels Thompson
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA 92697
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697
| | - Ronald Wetzel
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - X. William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90095
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA 90095
- Brain Research Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| |
Collapse
|
30
|
Single homopolypeptide chains collapse into mechanically rigid conformations. Proc Natl Acad Sci U S A 2009; 106:12605-10. [PMID: 19549822 DOI: 10.1073/pnas.0900678106] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease is linked to the insertion of glutamine (Q) in the protein huntingtin, resulting in polyglutamine (polyQ) expansions that self-associate to form aggregates. While polyQ aggregation has been the subject of intense study, a correspondingly thorough understanding of individual polyQ chains is lacking. Here we demonstrate a single molecule force-clamp technique that directly probes the mechanical properties of single polyQ chains. We have made polyQ constructs of varying lengths that span the length range of normal and diseased polyQ expansions. Each polyQ construct is flanked by the I27 titin module, providing a clear mechanical fingerprint of the molecule being pulled. Remarkably, under the application of force, no extension is observed for any of the polyQ constructs. This is in direct contrast with the random coil protein PEVK of titin, which readily extends under force. Our measurements suggest that polyQ chains form mechanically stable collapsed structures. We test this hypothesis by disrupting polyQ chains with insertions of proline residues and find that their mechanical extensibility is sensitive to the position of the proline interruption. These experiments demonstrate that polyQ chains collapse to form a heterogeneous ensemble of conformations that are mechanically resilient. We further use a heat-annealing molecular dynamics protocol to extensively search the conformation space and find that polyQ can exist in highly mechanically stable compact globular conformations. The mechanical rigidity of these collapsed structures may exceed the functional ability of eukaryotic proteasomes, resulting in the accumulation of undigested polyQ sequences in vivo.
Collapse
|
31
|
Jayaraman M, Kodali R, Wetzel R. The impact of ataxin-1-like histidine insertions on polyglutamine aggregation. Protein Eng Des Sel 2009; 22:469-78. [PMID: 19541676 DOI: 10.1093/protein/gzp023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is one of a group of nine expanded CAG repeat diseases, in which polyglutamine (polyQ) expansion above a threshold is associated with increased disease risk and aggregation. SCA1 is unique in which the polyQ in the disease protein, ataxin1, often contains a few His residues that appear to block toxicity. Here, we ask how His insertions affect aggregation by comparing a Q(30) peptide with and without a centrally inserted His-Gln-His sequence. We found that at pH 7.5-8.5, His interruptions decrease polyQ aggregation rates but do not change the spontaneous growth mechanism: nucleated growth polymerization with a critical nucleus of one without non-fibrillar intermediates. The decreased aggregation rates are because of reductions in nucleation equilibrium constants. At pH 6, however, the His-interrupted peptide aggregates by a different mechanism that involves a low ThT-binding intermediate and produces a polymorphic amyloid product. In aggregates grown at pH 7.5, the His residues are solvent-accessible. Aggregates of His-inserted polyQ are good seeds for Q(30) elongation, suggesting the potential to recruit polyQ proteins in the cell. Our data are therefore most consistent with His insertions blocking toxicity by suppressing rates and/or altering pathways of spontaneous aggregation.
Collapse
Affiliation(s)
- Murali Jayaraman
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Biomedical Sciences Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
32
|
Neuroanatomic profile of polyglutamine immunoreactivity in Huntington disease brains. J Neuropathol Exp Neurol 2009; 68:250-61. [PMID: 19225411 DOI: 10.1097/nen.0b013e318198d320] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A pathologic hallmark of Huntington disease (HD) is the presence of intraneuronal aggregates of polyglutamine-containing huntingtin protein fragments. Monoclonal antibody 1C2 is a commercial antibody to normal human TATA-binding protein that detects long stretches of glutamine residues. Using 1C2 as a surrogate marker formutant huntingtin protein, we immunostained 19 HD cases, 10 normal controls, and 10 cases of frontotemporal degeneration with ubiquitinated inclusions as diseased controls. In the HD cases, there was consistent 1C2 immunoreactivity in the neocortex, striatum, hippocampus, lateral geniculate body, basis pontis, medullary reticular formation, and cerebellar dentate nucleus. The normal and diseased controls demonstrated 1C2 immunoreactivity only in the substantia nigra, locus coeruleus, and pituitary gland. Staining of 5 HD cases and 5 normal controls revealed a less consistent and less diagnostically useful morphologic immunoreactivity profile. These results indicate that widespread 1C2 immunoreactivity is present in diverse central nervous system areas in HD, and that in the appropriate setting, 1C2 staining can be a useful tool in the postmortem diagnosis of HD when neuromelanin-containing neuronal populations are avoided.
Collapse
|
33
|
Nguyen HP, Kobbe P, Rahne H, Wörpel T, Jäger B, Stephan M, Pabst R, Holzmann C, Riess O, Korr H, Kántor O, Petrasch-Parwez E, Wetzel R, Osmand A, von Hörsten S. Behavioral abnormalities precede neuropathological markers in rats transgenic for Huntington's disease. Hum Mol Genet 2006; 15:3177-94. [PMID: 16984963 DOI: 10.1093/hmg/ddl394] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is caused by an expanded CAG repeat leading to the synthesis of an aberrant protein and to the formation of polyglutamine (polyQ)-containing inclusions and aggregates. Limited information is available concerning the association of neuropathological markers with the development of behavioral markers in HD. Using a previously generated transgenic rat model of HD (tgHD rat), we performed association studies on the time-course of behavioral symptoms (motor function, learning, anxiety) and the appearance of striatal atrophy, 1C2 immunopositive aggregates and polyQ recruitment sites, a precursor to these aggregates. At the age of 1 month, tgHD rats exhibited reduced anxiety and improved motor performance, while at 6 months motor impairments and at 9 months cognitive decline occurred. In contrast, polyQ recruitment sites appeared at around 6-9 months of age, indicating that HD-like behavioral markers preceded the appearance of currently detectable neuropathological markers. Interestingly, numerous punctate sites containing polyQ aggregates were also seen in areas receiving afferents from the densely recruiting regions suggesting either transport of recruitment-competent aggregates to terminal projections where initially 1C2 positive aggregates were formed or different internal properties of neurons in different regions. Furthermore, striatal atrophy was observed at the age of 12 months. Taken together, our findings support the hypothesis of a dynamic process leading to region- and age-specific polyQ recruitment and aggregation. The dissociation of onset between behavioral and neuropathological markers is suggestive of as yet undetected processes, which contribute to the early phenotype of these HD transgenic rats.
Collapse
Affiliation(s)
- Huu Phuc Nguyen
- Department of Functional and Applied Anatomy, Medical School of Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bhattacharyya AM, Thakur AK, Wetzel R. polyglutamine aggregation nucleation: thermodynamics of a highly unfavorable protein folding reaction. Proc Natl Acad Sci U S A 2005; 102:15400-5. [PMID: 16230628 PMCID: PMC1266079 DOI: 10.1073/pnas.0501651102] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 09/12/2005] [Indexed: 12/25/2022] Open
Abstract
Polyglutamine (polyGln) aggregation is implicated in the disease progression of Huntington's disease and other expanded CAG repeat diseases. PolyGln aggregation in vitro follows a simple nucleated growth polymerization pathway without apparent complications such as populated intermediates, alternative assembly pathways, or secondary nucleation phenomena. Previous analysis of the aggregation of simple polyGln peptides revealed that the critical nucleus (the number of monomeric units involved in the formation of an energetically unfavorable aggregation nucleus) is equal to one, suggesting that polyGln nucleation can be viewed as an unfavorable protein folding reaction. We provide here a method for experimentally determining the number of elongation growth sites per unit weight for any polyGln aggregate preparation, a key parameter required for completion of the nucleation kinetics analysis and determination of the thermodynamics of nucleation. We find that, for the polyGln peptide Q(47), the second-order rate constant for fibril elongation is 11,400 liters/mol per s, whereas K(n*)), the equilibrium constant for nucleation of aggregation, is remarkably small, equal to 2.6 x 10(-9). The latter value corresponds to a free energy of nucleus formation of +12.2 kcal/mol, a value consistent with a highly unfavorable folding reaction. The methods introduced here should allow further analysis of the energetics of polyGln nucleus formation and accurate comparisons of the seeding capabilities of different fibril preparations, a task of increasing importance in the amyloid field.
Collapse
Affiliation(s)
- Anusri M Bhattacharyya
- Graduate School of Medicine, University of Tennessee, 1924 Alcoa Highway, Knoxville, TN 37920, USA
| | | | | |
Collapse
|