1
|
Ruan H, Lemke EA. Resolving Conformational Plasticity in Mammalian Cells with High-Resolution Fluorescence Tools. Annu Rev Phys Chem 2025; 76:103-128. [PMID: 40258244 DOI: 10.1146/annurev-physchem-082423-030632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Investigating protein dynamic structural changes is fundamental for understanding protein function, drug discovery, and disease mechanisms. Traditional studies of protein dynamics often rely on investigations of purified systems, which fail to capture the complexity of the cellular environment. The intracellular milieu imposes distinct physicochemical constraints that affect macromolecular interactions and dynamics in ways not easily replicated in isolated experimental setups. We discuss the use of fluorescence resonance energy transfer, fluorescence anisotropy, and minimal photon flux imaging technologies to address these challenges and directly investigate protein conformational dynamics in mammalian cells. Key findings from the application of these techniques demonstrate their potential to reveal intricate details of protein conformational plasticity. By overcoming the limitations of traditional in vitro methods, these approaches offer a more accurate and comprehensive understanding of protein function and behavior within the complex environment of mammalian cells.
Collapse
Affiliation(s)
- Hao Ruan
- BioCenter, Johannes Gutenberg University Mainz, Mainz, Germany;
- IMB Postdoc Program, Institute of Molecular Biology, Mainz, Germany
| | - Edward A Lemke
- BioCenter, Johannes Gutenberg University Mainz, Mainz, Germany;
- Institute of Molecular Biology, Mainz, Germany
| |
Collapse
|
2
|
Nüesch M, Ivanović MT, Nettels D, Best RB, Schuler B. Accuracy of distance distributions and dynamics from single-molecule FRET. Biophys J 2025:S0006-3495(25)00202-4. [PMID: 40165371 DOI: 10.1016/j.bpj.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/12/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025] Open
Abstract
Single-molecule spectroscopy combined with Förster resonance energy transfer is widely used to quantify distance dynamics and distributions in biomolecules. Most commonly, measurements are interpreted using simple analytical relations between experimental observables and the underlying distance distributions. However, these relations make simplifying assumptions, such as a separation of timescales between interdye distance dynamics, fluorescence lifetimes, and dye reorientation, the validity of which is notoriously difficult to assess from experimental data alone. Here, we use experimentally validated long-timescale, all-atom explicit-solvent molecular dynamics simulations of a disordered peptide with explicit fluorophores for testing these assumptions, in particular the separation of the relevant timescales and the description of chain dynamics in terms of diffusion in a potential of mean force. Our results allow us to quantitatively assess the resulting errors; they indicate that, even outside the simple limiting regimes, the errors from common approximations in data analysis are generally smaller than the systematic uncertainty limiting the accuracy of Förster resonance energy transfer efficiencies. We also illustrate how the direct comparison between measured and simulated experimental data can be employed to optimize force field parameters and develop increasingly realistic simulation models.
Collapse
Affiliation(s)
- Mark Nüesch
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Miloš T Ivanović
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland; Department of Physics, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Peulen TO, Hemmen K, Greife A, Webb BM, Felekyan S, Sali A, Seidel CAM, Sanabria H, Heinze KG. tttrlib: modular software for integrating fluorescence spectroscopy, imaging, and molecular modeling. Bioinformatics 2025; 41:btaf025. [PMID: 39836627 PMCID: PMC11796090 DOI: 10.1093/bioinformatics/btaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 01/04/2025] [Accepted: 01/17/2025] [Indexed: 01/23/2025] Open
Abstract
SUMMARY We introduce software for reading, writing and processing fluorescence single-molecule and image spectroscopy data and developing analysis pipelines to unify various spectroscopic analysis tools. Our software can be used for processing multiple experiment types, e.g. for time-resolved single-molecule spectroscopy, laser scanning microscopy, fluorescence correlation spectroscopy and image correlation spectroscopy. The software is file format agnostic and processes multiple time-resolved data formats and outputs. Our software eliminates the need for data conversion and mitigates data archiving issues. AVAILABILITY AND IMPLEMENTATION tttrlib is available via pip (https://pypi.org/project/tttrlib/) and bioconda while the open-source code is available via GitHub (https://github.com/fluorescence-tools/tttrlib). Presented examples and additional documentation demonstrating how to implement in vitro and live-cell image spectroscopy analysis are available at https://docs.peulen.xyz/tttrlib and https://zenodo.org/records/14002224.
Collapse
Affiliation(s)
- Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and Quantitative Biosciences Institute, University of California, San Francisco, CA, 94143, United States
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University Würzburg (JMU), Würzburg, 97080, Germany
| | - Katherina Hemmen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University Würzburg (JMU), Würzburg, 97080, Germany
| | - Annemarie Greife
- Chair of Molecular Physical Chemistry, Heinrich-Heine University, Düsseldorf, 40225, Germany
| | - Benjamin M Webb
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and Quantitative Biosciences Institute, University of California, San Francisco, CA, 94143, United States
| | - Suren Felekyan
- Chair of Molecular Physical Chemistry, Heinrich-Heine University, Düsseldorf, 40225, Germany
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and Quantitative Biosciences Institute, University of California, San Francisco, CA, 94143, United States
| | - Claus A M Seidel
- Chair of Molecular Physical Chemistry, Heinrich-Heine University, Düsseldorf, 40225, Germany
| | - Hugo Sanabria
- Department of Physics & Astronomy, Clemson University, Clemson, SC, 29634, United States
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University Würzburg (JMU), Würzburg, 97080, Germany
| |
Collapse
|
4
|
Cadden GM, Schloetel JG, McKenzie G, Boocock MR, Magennis SW, Stark WM. Direct observation of subunit rotation during DNA strand exchange by serine recombinases. Nat Commun 2024; 15:10407. [PMID: 39613732 PMCID: PMC11607074 DOI: 10.1038/s41467-024-54531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
Serine recombinases are proposed to catalyse site-specific recombination by a unique mechanism called subunit rotation. Cutting and rejoining DNA occurs within an intermediate synaptic complex comprising a recombinase tetramer bound to two DNA sites. After double-strand cleavage at both sites, one half of the complex rotates 180° relative to the other, before re-ligation of the DNA ends. We used single-molecule FRET (smFRET) methods to provide compelling direct physical evidence for subunit rotation by recombinases Tn3 resolvase and Sin. Synaptic complexes containing fluorescently labelled DNA show FRET fluctuations consistent with the subunit rotation model. FRET changes were associated with the rotation steps, on a timescale of 0.4-1.1s - 1 , as well as opening and closing of the gap between the scissile phosphates during cleavage and ligation. Multiple rounds of recombination were observed within the ~25 s observation period, including frequent consecutive rotation events in the cleaved-DNA state without evidence of intermediate ligation.
Collapse
Affiliation(s)
- Gillian M Cadden
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, UK
| | - Jan-Gero Schloetel
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK
| | - Grant McKenzie
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK
| | - Martin R Boocock
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK
| | - Steven W Magennis
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, UK.
| | - W Marshall Stark
- School of Molecular Biosciences, University of Glasgow, Bower Building, University Avenue, Glasgow, UK.
| |
Collapse
|
5
|
Moya Muñoz GG, Brix O, Klocke P, Harris PD, Luna Piedra JR, Wendler ND, Lerner E, Zijlstra N, Cordes T. Single-molecule detection and super-resolution imaging with a portable and adaptable 3D-printed microscopy platform (Brick-MIC). SCIENCE ADVANCES 2024; 10:eado3427. [PMID: 39321299 PMCID: PMC11423890 DOI: 10.1126/sciadv.ado3427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Over the past decades, single-molecule and super-resolution microscopy have advanced and represent essential tools for life science research. There is, however, a growing gap between the state of the art and what is accessible to biologists, biochemists, medical researchers, or labs with financial constraints. To bridge this gap, we introduce Brick-MIC, a versatile and affordable open-source 3D-printed microspectroscopy and imaging platform. Brick-MIC enables the integration of various fluorescence imaging techniques with single-molecule resolution within a single platform and exchange between different modalities within minutes. We here present variants of Brick-MIC that facilitate single-molecule fluorescence detection, fluorescence correlation spectroscopy, time-correlated single-photon counting and super-resolution imaging (STORM and PAINT). Detailed descriptions of the hardware and software components, as well as data analysis routines, are provided, to allow non-optics specialists to operate their own Brick-MIC with minimal effort and investments. We foresee that our affordable, flexible, and open-source Brick-MIC platform will be a valuable tool for many laboratories worldwide.
Collapse
Affiliation(s)
- Gabriel G. Moya Muñoz
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany
| | - Oliver Brix
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Philipp Klocke
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Paul D. Harris
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jorge R. Luna Piedra
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Nicolas D. Wendler
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Niels Zijlstra
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany
| |
Collapse
|
6
|
Gopich IV, Chung HS. Unraveling Burst Selection Bias in Single-Molecule FRET of Species with Unequal Brightness and Diffusivity. J Phys Chem B 2024; 128:5576-5589. [PMID: 38833567 DOI: 10.1021/acs.jpcb.4c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Single-molecule free diffusion experiments enable accurate quantification of coexisting species or states. However, unequal brightness and diffusivity introduce a burst selection bias and affect the interpretation of experimental results. We address this issue with a photon-by-photon maximum likelihood method, burstML, which explicitly considers burst selection criteria. BurstML accurately estimates parameters, including photon count rates, diffusion times, Förster resonance energy transfer (FRET) efficiencies, and population, even in cases where species are poorly distinguished in FRET efficiency histograms. We develop a quantitative theory that determines the fraction of photon bursts corresponding to each species and thus obtain accurate species populations from the measured burst fractions. In addition, we provide a simple approximate formula for burst fractions and establish the range of parameters where unequal brightness and diffusivity can significantly affect the results obtained by conventional methods. The performance of the burstML method is compared with that of a maximum likelihood method that assumes equal species brightness and diffusivity, as well as standard Gaussian fitting of FRET efficiency histograms, using both simulated and real single-molecule data for cold-shock protein, protein L, and protein G. The burstML method enhances the accuracy of parameter estimation in single-molecule fluorescence studies.
Collapse
Affiliation(s)
- Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
7
|
Liu Z, Liu H, Vera AM, Yang B, Tinnefeld P, Nash MA. Engineering an artificial catch bond using mechanical anisotropy. Nat Commun 2024; 15:3019. [PMID: 38589360 PMCID: PMC11001878 DOI: 10.1038/s41467-024-46858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Catch bonds are a rare class of protein-protein interactions where the bond lifetime increases under an external pulling force. Here, we report how modification of anchor geometry generates catch bonding behavior for the mechanostable Dockerin G:Cohesin E (DocG:CohE) adhesion complex found on human gut bacteria. Using AFM single-molecule force spectroscopy in combination with bioorthogonal click chemistry, we mechanically dissociate the complex using five precisely controlled anchor geometries. When tension is applied between residue #13 on CohE and the N-terminus of DocG, the complex behaves as a two-state catch bond, while in all other tested pulling geometries, including the native configuration, it behaves as a slip bond. We use a kinetic Monte Carlo model with experimentally derived parameters to simulate rupture force and lifetime distributions, achieving strong agreement with experiments. Single-molecule FRET measurements further demonstrate that the complex does not exhibit dual binding mode behavior at equilibrium but unbinds along multiple pathways under force. Together, these results show how mechanical anisotropy and anchor point selection can be used to engineer artificial catch bonds.
Collapse
Affiliation(s)
- Zhaowei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
- Department of Bionanoscience, Delft University of Technology, 2629HZ, Delft, the Netherlands
| | - Haipei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Andrés M Vera
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Byeongseon Yang
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
- Botnar Research Centre for Child Health, 4051, Basel, Switzerland
- National Center for Competence in Research (NCCR) Molecular Systems Engineering, 4058, Basel, Switzerland
| | - Philip Tinnefeld
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
- Botnar Research Centre for Child Health, 4051, Basel, Switzerland.
- National Center for Competence in Research (NCCR) Molecular Systems Engineering, 4058, Basel, Switzerland.
- Swiss Nanoscience Institute, 4056, Basel, Switzerland.
| |
Collapse
|
8
|
Clark BS, Silvernail I, Gordon K, Castaneda JF, Morgan AN, Rolband LA, LeBlanc SJ. A practical guide to time-resolved fluorescence microscopy and spectroscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577300. [PMID: 38586000 PMCID: PMC10996486 DOI: 10.1101/2024.01.25.577300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Time-correlated single photon counting (TCSPC) coupled with confocal microscopy is a versatile biophysical tool that enables real-time monitoring of biomolecular dynamics across many timescales. With TCSPC, Fluorescence correlation spectroscopy (FCS) and pulsed interleaved excitation-Förster resonance energy transfer (PIE-FRET) are collected simultaneously on diffusing molecules to extract diffusion characteristics and proximity information. This article is a guide to calibrating FCS and PIE-FRET measurements with several biological samples including liposomes, streptavidin-coated quantum dots, proteins, and nucleic acids for reliable determination of diffusion coefficients and FRET efficiency. The FRET efficiency results are also compared to surface-attached single molecules using fluorescence lifetime imaging microscopy (FLIM-FRET). Combining the methods is a powerful approach to revealing mechanistic details of biological processes and pathways.
Collapse
|
9
|
Morales-Inostroza L, Folz J, Kühnemuth R, Felekyan S, Wieser FF, Seidel CAM, Götzinger S, Sandoghdar V. An optofluidic antenna for enhancing the sensitivity of single-emitter measurements. Nat Commun 2024; 15:2545. [PMID: 38514627 PMCID: PMC10957926 DOI: 10.1038/s41467-024-46730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Many single-molecule investigations are performed in fluidic environments, for example, to avoid unwanted consequences of contact with surfaces. Diffusion of molecules in this arrangement limits the observation time and the number of collected photons, thus, compromising studies of processes with fast or slow dynamics. Here, we introduce a planar optofluidic antenna (OFA), which enhances the fluorescence signal from molecules by about 5 times per passage, leads to about 7-fold more frequent returns to the observation volume, and significantly lengthens the diffusion time within one passage. We use single-molecule multi-parameter fluorescence detection (sm-MFD), fluorescence correlation spectroscopy (FCS) and Förster resonance energy transfer (FRET) measurements to characterize our OFAs. The antenna advantages are showcased by examining both the slow (ms) and fast (50 μs) dynamics of DNA four-way (Holliday) junctions with real-time resolution. The FRET trajectories provide evidence for the absence of an intermediate conformational state and introduce an upper bound for its lifetime. The ease of implementation and compatibility with various microscopy modalities make OFAs broadly applicable to a diverse range of studies.
Collapse
Affiliation(s)
- Luis Morales-Inostroza
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Julian Folz
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Ralf Kühnemuth
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Suren Felekyan
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Franz-Ferdinand Wieser
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Claus A M Seidel
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Stephan Götzinger
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052, Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany.
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany.
| |
Collapse
|
10
|
Bjarnason S, McIvor JAP, Prestel A, Demény KS, Bullerjahn JT, Kragelund BB, Mercadante D, Heidarsson PO. DNA binding redistributes activation domain ensemble and accessibility in pioneer factor Sox2. Nat Commun 2024; 15:1445. [PMID: 38365983 PMCID: PMC10873366 DOI: 10.1038/s41467-024-45847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
More than 1600 human transcription factors orchestrate the transcriptional machinery to control gene expression and cell fate. Their function is conveyed through intrinsically disordered regions (IDRs) containing activation or repression domains but lacking quantitative structural ensemble models prevents their mechanistic decoding. Here we integrate single-molecule FRET and NMR spectroscopy with molecular simulations showing that DNA binding can lead to complex changes in the IDR ensemble and accessibility. The C-terminal IDR of pioneer factor Sox2 is highly disordered but its conformational dynamics are guided by weak and dynamic charge interactions with the folded DNA binding domain. Both DNA and nucleosome binding induce major rearrangements in the IDR ensemble without affecting DNA binding affinity. Remarkably, interdomain interactions are redistributed in complex with DNA leading to variable exposure of two activation domains critical for transcription. Charged intramolecular interactions allowing for dynamic redistributions may be common in transcription factors and necessary for sensitive tuning of structural ensembles.
Collapse
Affiliation(s)
- Sveinn Bjarnason
- Department of Biochemistry, Science Institute, University of Iceland, Sturlugata 7, 102, Reykjavík, Iceland
| | - Jordan A P McIvor
- School of Chemical Science, University of Auckland, Auckland, New Zealand
| | - Andreas Prestel
- Department of Biology, REPIN and Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Kinga S Demény
- Department of Biochemistry, Science Institute, University of Iceland, Sturlugata 7, 102, Reykjavík, Iceland
| | - Jakob T Bullerjahn
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Birthe B Kragelund
- Department of Biology, REPIN and Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Davide Mercadante
- School of Chemical Science, University of Auckland, Auckland, New Zealand.
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Sturlugata 7, 102, Reykjavík, Iceland.
| |
Collapse
|
11
|
Hartmann A, Sreenivasa K, Schenkel M, Chamachi N, Schake P, Krainer G, Schlierf M. An automated single-molecule FRET platform for high-content, multiwell plate screening of biomolecular conformations and dynamics. Nat Commun 2023; 14:6511. [PMID: 37845199 PMCID: PMC10579363 DOI: 10.1038/s41467-023-42232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Single-molecule FRET (smFRET) has become a versatile tool for probing the structure and functional dynamics of biomolecular systems, and is extensively used to address questions ranging from biomolecular folding to drug discovery. Confocal smFRET measurements are amongst the widely used smFRET assays and are typically performed in a single-well format. Thus, sampling of many experimental parameters is laborious and time consuming. To address this challenge, we extend here the capabilities of confocal smFRET beyond single-well measurements by integrating a multiwell plate functionality to allow for continuous and automated smFRET measurements. We demonstrate the broad applicability of the multiwell plate assay towards DNA hairpin dynamics, protein folding, competitive and cooperative protein-DNA interactions, and drug-discovery, revealing insights that would be very difficult to achieve with conventional single-well format measurements. For the adaptation into existing instrumentations, we provide a detailed guide and open-source acquisition and analysis software.
Collapse
Affiliation(s)
- Andreas Hartmann
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany.
| | - Koushik Sreenivasa
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
- Department of Bionanoscience, Delft University of Technology, 2629HZ, Delft, Netherlands
| | - Mathias Schenkel
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Neharika Chamachi
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Philipp Schake
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Georg Krainer
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010, Graz, Austria
| | - Michael Schlierf
- B CUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307, Dresden, Germany.
- Physics of Life, DFG Cluster of Excellence, TU Dresden, 01062, Dresden, Germany.
- Faculty of Physics, TU Dresden, 01062, Dresden, Germany.
| |
Collapse
|
12
|
Chowdhury A, Borgia A, Ghosh S, Sottini A, Mitra S, Eapen RS, Borgia MB, Yang T, Galvanetto N, Ivanović MT, Łukijańczuk P, Zhu R, Nettels D, Kundagrami A, Schuler B. Driving forces of the complex formation between highly charged disordered proteins. Proc Natl Acad Sci U S A 2023; 120:e2304036120. [PMID: 37796987 PMCID: PMC10576128 DOI: 10.1073/pnas.2304036120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/22/2023] [Indexed: 10/07/2023] Open
Abstract
Highly disordered complexes between oppositely charged intrinsically disordered proteins present a new paradigm of biomolecular interactions. Here, we investigate the driving forces of such interactions for the example of the highly positively charged linker histone H1 and its highly negatively charged chaperone, prothymosin α (ProTα). Temperature-dependent single-molecule Förster resonance energy transfer (FRET) experiments and isothermal titration calorimetry reveal ProTα-H1 binding to be enthalpically unfavorable, and salt-dependent affinity measurements suggest counterion release entropy to be an important thermodynamic driving force. Using single-molecule FRET, we also identify ternary complexes between ProTα and H1 in addition to the heterodimer at equilibrium and show how they contribute to the thermodynamics observed in ensemble experiments. Finally, we explain the observed thermodynamics quantitatively with a mean-field polyelectrolyte theory that treats counterion release explicitly. ProTα-H1 complex formation resembles the interactions between synthetic polyelectrolytes, and the underlying principles are likely to be of broad relevance for interactions between charged biomolecules in general.
Collapse
Affiliation(s)
- Aritra Chowdhury
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Alessandro Borgia
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Souradeep Ghosh
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Andrea Sottini
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Soumik Mitra
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Rohan S. Eapen
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | | | - Tianjin Yang
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Nicola Galvanetto
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
- Department of Physics, University of Zurich, Zurich8057, Switzerland
| | - Miloš T. Ivanović
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Paweł Łukijańczuk
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Ruijing Zhu
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Arindam Kundagrami
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
- Department of Physics, University of Zurich, Zurich8057, Switzerland
| |
Collapse
|
13
|
Ponzar N, Pozzi N. Probing the conformational dynamics of thiol-isomerases using non-canonical amino acids and single-molecule FRET. Methods 2023; 214:8-17. [PMID: 37068599 PMCID: PMC10203983 DOI: 10.1016/j.ymeth.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
Disulfide bonds drive protein correct folding, prevent protein aggregation, and stabilize three-dimensional structures of proteins and their assemblies. Dysregulation of this activity leads to several disorders, including cancer, neurodegeneration, and thrombosis. A family of 20+ enzymes, called thiol-isomerases (TIs), oversee this process in the endoplasmic reticulum of human cells to ensure efficacy and accuracy. While the biophysical and biochemical properties of cysteine residues are well-defined, our structural knowledge of how TIs select, interact and process their substrates remains poorly understood. How TIs structurally and functionally respond to changes in redox environment and other post-translational modifications remain unclear, too. We recently developed a workflow for site-specific incorporation of non-canonical amino acids into protein disulfide isomerase (PDI), the prototypical member of TIs. Combined with click chemistry, this strategy enabled us to perform single-molecule biophysical studies of PDI under various solution conditions. This paper details protocols and discusses challenges in performing these experiments. We expect this approach, combined with other emerging technologies in single-molecule biophysics and structural biology, to facilitate the exploration of the mechanisms by which TIs carry out their fascinating but poorly understood roles in humans, especially in the context of thrombosis.
Collapse
Affiliation(s)
- Nathan Ponzar
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
14
|
Gupta R, Singh V, Sarawagi N, Kaur G, Kaur R, Priyadarshi N, Rishi V, Goyal B, Mishra PP, Singhal NK. Salmonella typhimurium detection and ablation using OmpD specific aptamer with non-magnetic and magnetic graphene oxide. Biosens Bioelectron 2023; 234:115354. [PMID: 37126873 DOI: 10.1016/j.bios.2023.115354] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
Foodborne diseases have increased in the last few years due to the increased consumption of packaged and contaminated food. Major foodborne bacteria cause diseases such as diarrhea, vomiting, and sometimes death. So, there is a need for early detection of foodborne bacteria as pre-existing detection techniques are time-taking and tedious. Aptamer has gained interest due to its high stability, specificity, and sensitivity. Here, aptamer has been developed against Salmonella Typhimurium through the Cell-Selex method, and to further find the reason for specificity and sensitivity, OmpD protein was isolated, and binding studies were done. Single molecular FRET experiment using aptamer and graphene oxide studies has also been done to understand the mechanism of FRET and subsequently used for target bacterial detection. Using this assay, Salmonella Typhimurium can be detected up to 10 CFU/mL. Further, Magnetic Graphene oxide was used to develop an assay to separate and ablate bacteria using 808 nm NIR where temperature increase was more than 60 °C within 30 s and has been shown by plating as well as a confocal live dead assay. Thus, using various techniques, bacteria can be detected and ablated using specific aptamer and Graphene oxide.
Collapse
Affiliation(s)
- Ritika Gupta
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306, India; Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Vishal Singh
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306, India; ICMR-National Institute for Implementation Research on Non-Communicable Diseases, New Pali Road, Jodhpur, 342005, Rajasthan, India
| | - Nikita Sarawagi
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306, India
| | - Gurmeet Kaur
- Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, 147004, Punjab, India
| | - Raminder Kaur
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306, India; Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306, India
| | - Bhupesh Goyal
- Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, 147004, Punjab, India.
| | - Padmaja P Mishra
- Saha Institute of Nuclear Physics, Bidhan Nagar, Kolkata, 700064, West Bengal, India; Homi Bhaba National Institute, Mumbai, 400094, Maharashtra, India.
| | - Nitin K Singhal
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306, India.
| |
Collapse
|
15
|
Maslov I, Volkov O, Khorn P, Orekhov P, Gusach A, Kuzmichev P, Gerasimov A, Luginina A, Coucke Q, Bogorodskiy A, Gordeliy V, Wanninger S, Barth A, Mishin A, Hofkens J, Cherezov V, Gensch T, Hendrix J, Borshchevskiy V. Sub-millisecond conformational dynamics of the A 2A adenosine receptor revealed by single-molecule FRET. Commun Biol 2023; 6:362. [PMID: 37012383 PMCID: PMC10070357 DOI: 10.1038/s42003-023-04727-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
The complex pharmacology of G-protein-coupled receptors (GPCRs) is defined by their multi-state conformational dynamics. Single-molecule Förster Resonance Energy Transfer (smFRET) is well suited to quantify dynamics for individual protein molecules; however, its application to GPCRs is challenging. Therefore, smFRET has been limited to studies of inter-receptor interactions in cellular membranes and receptors in detergent environments. Here, we performed smFRET experiments on functionally active human A2A adenosine receptor (A2AAR) molecules embedded in freely diffusing lipid nanodiscs to study their intramolecular conformational dynamics. We propose a dynamic model of A2AAR activation that involves a slow (>2 ms) exchange between the active-like and inactive-like conformations in both apo and antagonist-bound A2AAR, explaining the receptor's constitutive activity. For the agonist-bound A2AAR, we detected faster (390 ± 80 µs) ligand efficacy-dependent dynamics. Our work establishes a general smFRET platform for GPCR investigations that can potentially be used for drug screening and/or mechanism-of-action studies.
Collapse
Affiliation(s)
- Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | | | - Polina Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Philipp Orekhov
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Anastasiia Gusach
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Pavel Kuzmichev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Andrey Gerasimov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Vyatka State University, Kirov, Russia
| | - Aleksandra Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Quinten Coucke
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Valentin Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - Simon Wanninger
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Anders Barth
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, HZ, Delft, The Netherlands
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
- Max Plank Institute for Polymer Research, Mainz, Germany
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Thomas Gensch
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, Diepenbeek, Belgium.
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium.
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
- Joint Institute for Nuclear Research, Dubna, Russian Federation.
| |
Collapse
|
16
|
Agam G, Gebhardt C, Popara M, Mächtel R, Folz J, Ambrose B, Chamachi N, Chung SY, Craggs TD, de Boer M, Grohmann D, Ha T, Hartmann A, Hendrix J, Hirschfeld V, Hübner CG, Hugel T, Kammerer D, Kang HS, Kapanidis AN, Krainer G, Kramm K, Lemke EA, Lerner E, Margeat E, Martens K, Michaelis J, Mitra J, Moya Muñoz GG, Quast RB, Robb NC, Sattler M, Schlierf M, Schneider J, Schröder T, Sefer A, Tan PS, Thurn J, Tinnefeld P, van Noort J, Weiss S, Wendler N, Zijlstra N, Barth A, Seidel CAM, Lamb DC, Cordes T. Reliability and accuracy of single-molecule FRET studies for characterization of structural dynamics and distances in proteins. Nat Methods 2023; 20:523-535. [PMID: 36973549 PMCID: PMC10089922 DOI: 10.1038/s41592-023-01807-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/31/2023] [Indexed: 03/29/2023]
Abstract
Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.
Collapse
Affiliation(s)
- Ganesh Agam
- Department of Chemistry, Ludwig-Maximilians University München, München, Germany
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Milana Popara
- Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecca Mächtel
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Julian Folz
- Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Neharika Chamachi
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Sang Yoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | | | - Marijn de Boer
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, AG Groningen, the Netherlands
| | - Dina Grohmann
- Department of Biochemistry, Genetics and Microbiology, Institute of Microbiology, Single-Molecule Biochemistry Laboratory, University of Regensburg, Regensburg, Germany
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine and Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Andreas Hartmann
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jelle Hendrix
- Dynamic Bioimaging Laboratory, Advanced Optical Microscopy Center and Biomedical Research Institute, Hasselt University, Agoralaan C (BIOMED), Hasselt, Belgium
- Department of Chemistry, KU Leuven, Leuven, Belgium
| | | | | | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Dominik Kammerer
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
- Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Hyun-Seo Kang
- Bayerisches NMR Zentrum, Department of Bioscience, School of Natural Sciences, Technical University of München, Garching, Germany
| | - Achillefs N Kapanidis
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
- Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Georg Krainer
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Kevin Kramm
- Department of Biochemistry, Genetics and Microbiology, Institute of Microbiology, Single-Molecule Biochemistry Laboratory, University of Regensburg, Regensburg, Germany
| | - Edward A Lemke
- Biocenter, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics and Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Kirsten Martens
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands
| | | | - Jaba Mitra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine and Howard Hughes Medical Institute, Baltimore, MD, USA
- Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Gabriel G Moya Muñoz
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Robert B Quast
- Centre de Biologie Structurale (CBS), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicole C Robb
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
- Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford, UK
- Warwick Medical School, The University of Warwick, Coventry, UK
| | - Michael Sattler
- Bayerisches NMR Zentrum, Department of Bioscience, School of Natural Sciences, Technical University of München, Garching, Germany
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Munich, Germany
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Jonathan Schneider
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Tim Schröder
- Department of Chemistry, Ludwig-Maximilians University München, München, Germany
| | - Anna Sefer
- Institute for Biophysics, Ulm University, Ulm, Germany
| | - Piau Siong Tan
- Biocenter, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Johann Thurn
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Institute of Technical Physics, German Aerospace Center (DLR), Stuttgart, Germany
| | - Philip Tinnefeld
- Department of Chemistry, Ludwig-Maximilians University München, München, Germany
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Nicolas Wendler
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Niels Zijlstra
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Anders Barth
- Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| | - Claus A M Seidel
- Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Don C Lamb
- Department of Chemistry, Ludwig-Maximilians University München, München, Germany.
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany.
| |
Collapse
|
17
|
Khamari L, Mukherjee S. Deciphering the Nanoconfinement Effect on the Folding Pathway of c-MYC Promoter-Based Intercalated-Motif DNA by Single-Molecule Förster Resonance Energy Transfer. J Phys Chem Lett 2022; 13:8169-8176. [PMID: 36005552 DOI: 10.1021/acs.jpclett.2c01893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intercalated-motif (i-motif) DNA formed by cytosine (C)-rich sequences has been considered a novel target in anticancer research. Interestingly, this type of noncanonical DNA structure is highly dynamic and can display several conformational polymorphisms based on the immediate surrounding environment. However, studies regarding the folding pathway of i-motifs having disease-specific sequences under a confined environment at physiological pH are relatively scarce. This thereby warrants more explorations that will decipher their structural and functional properties inside constrained media. Herein, using the single-molecule Förster Resonance Energy Transfer (smFRET) studies, for the first time, we have illustrated the conformational dynamics of c-MYC promoter-based i-motif structures at physiological pH inside microemulsions of different dimensions. We concluded that the folding of such motifs under confined space is not a direct transition between the random coil and i-motif conformations; rather it occurs through a partially folded intermediate, depending on the confined dimension.
Collapse
Affiliation(s)
- Laxmikanta Khamari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
18
|
Smyth S, Zhang Z, Bah A, Tsangaris TE, Dawson J, Forman-Kay JD, Gradinaru CC. Multisite phosphorylation and binding alter conformational dynamics of the 4E-BP2 protein. Biophys J 2022; 121:3049-3060. [PMID: 35841142 PMCID: PMC9463650 DOI: 10.1016/j.bpj.2022.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) play critical roles in regulatory protein interactions, but detailed structural/dynamic characterization of their ensembles remain challenging, both in isolation and when they form dynamic "fuzzy" complexes. Such is the case for mRNA cap-dependent translation initiation, which is regulated by the interaction of the predominantly folded eukaryotic initiation factor 4E (eIF4E) with the intrinsically disordered eIF4E binding proteins (4E-BPs) in a phosphorylation-dependent manner. Single-molecule Förster resonance energy transfer showed that the conformational changes of 4E-BP2 induced by binding to eIF4E are non-uniform along the sequence; while a central region containing both motifs that bind to eIF4E expands and becomes stiffer, the C-terminal region is less affected. Fluorescence anisotropy decay revealed a non-uniform segmental flexibility around six different labeling sites along the chain. Dynamic quenching of these fluorescent probes by intrinsic aromatic residues measured via fluorescence correlation spectroscopy report on transient intra- and inter-molecular contacts on nanosecond-to-microsecond timescales. Upon hyperphosphorylation, which induces folding of ∼40 residues in 4E-BP2, the quenching rates decreased at most labeling sites. The chain dynamics around sites in the C-terminal region far away from the two binding motifs significantly increased upon binding to eIF4E, suggesting that this region is also involved in the highly dynamic 4E-BP2:eIF4E complex. Our time-resolved fluorescence data paint a sequence-level rigidity map of three states of 4E-BP2 differing in phosphorylation or binding status and distinguish regions that form contacts with eIF4E. This study adds complementary structural and dynamics information to recent studies of 4E-BP2, and it constitutes an important step toward a mechanistic understanding of this important IDP via integrative modeling.
Collapse
Affiliation(s)
- Spencer Smyth
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Zhenfu Zhang
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Alaji Bah
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas E Tsangaris
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Jennifer Dawson
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
19
|
Srinivasan S, Regmi R, Lin X, Dreyer CA, Chen X, Quinn SD, He W, Coleman MA, Carraway KL, Zhang B, Schlau-Cohen GS. Ligand-induced transmembrane conformational coupling in monomeric EGFR. Nat Commun 2022; 13:3709. [PMID: 35794108 PMCID: PMC9259572 DOI: 10.1038/s41467-022-31299-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/13/2022] [Indexed: 01/26/2023] Open
Abstract
Single pass cell surface receptors regulate cellular processes by transmitting ligand-encoded signals across the plasma membrane via changes to their extracellular and intracellular conformations. This transmembrane signaling is generally initiated by ligand binding to the receptors in their monomeric form. While subsequent receptor-receptor interactions are established as key aspects of transmembrane signaling, the contribution of monomeric receptors has been challenging to isolate due to the complexity and ligand-dependence of these interactions. By combining membrane nanodiscs produced with cell-free expression, single-molecule Förster Resonance Energy Transfer measurements, and molecular dynamics simulations, we report that ligand binding induces intracellular conformational changes within monomeric, full-length epidermal growth factor receptor (EGFR). Our observations establish the existence of extracellular/intracellular conformational coupling within a single receptor molecule. We implicate a series of electrostatic interactions in the conformational coupling and find the coupling is inhibited by targeted therapeutics and mutations that also inhibit phosphorylation in cells. Collectively, these results introduce a facile mechanism to link the extracellular and intracellular regions through the single transmembrane helix of monomeric EGFR, and raise the possibility that intramolecular transmembrane conformational changes upon ligand binding are common to single-pass membrane proteins.
Collapse
Affiliation(s)
- Shwetha Srinivasan
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Raju Regmi
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA ,grid.4444.00000 0001 2112 9282Present Address: Institut Curie, CNRS, Laboratoire Physico Chimie Curie, Paris, France
| | - Xingcheng Lin
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Courtney A. Dreyer
- grid.27860.3b0000 0004 1936 9684Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Xuyan Chen
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Steven D. Quinn
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA ,grid.5685.e0000 0004 1936 9668Present Address: Department of Physics, University of York, York, UK
| | - Wei He
- grid.250008.f0000 0001 2160 9702Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - Matthew A. Coleman
- grid.250008.f0000 0001 2160 9702Lawrence Livermore National Laboratory, Livermore, CA 94550 USA ,grid.27860.3b0000 0004 1936 9684Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Kermit L. Carraway
- grid.27860.3b0000 0004 1936 9684Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Bin Zhang
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Gabriela S. Schlau-Cohen
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
20
|
Adhikari S, Orrit M. Progress and perspectives in single-molecule optical spectroscopy. J Chem Phys 2022; 156:160903. [PMID: 35489995 DOI: 10.1063/5.0087003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We review some of the progress of single-molecule optical experiments in the past 20 years and propose some perspectives for the coming years. We particularly focus on methodological advances in fluorescence, super-resolution, photothermal contrast, and interferometric scattering and briefly discuss a few of the applications. These advances have enabled the exploration of new emitters and quantum optics; the chemistry and biology of complex heterogeneous systems, nanoparticles, and plasmonics; and the detection and study of non-fluorescing and non-absorbing nano-objects. We conclude by proposing some ideas for future experiments. The field will move toward more and better signals of a broader variety of objects and toward a sharper view of the surprising complexity of the nanoscale world of single (bio-)molecules, nanoparticles, and their nano-environments.
Collapse
Affiliation(s)
- Subhasis Adhikari
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2333 CA Leiden, The Netherlands
| | - Michel Orrit
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2333 CA Leiden, The Netherlands
| |
Collapse
|
21
|
Yukhnovets O, Höfig H, Bustorff N, Katranidis A, Fitter J. Impact of Molecule Concentration, Diffusion Rates and Surface Passivation on Single-Molecule Fluorescence Studies in Solution. Biomolecules 2022; 12:468. [PMID: 35327660 PMCID: PMC8946791 DOI: 10.3390/biom12030468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
For single-molecule studies in solution, very small concentrations of dye-labelled molecules are employed in order to achieve single-molecule sensitivity. In typical studies with confocal microscopes, often concentrations in the pico-molar regime are required. For various applications that make use of single-molecule Förster resonance energy transfer (smFRET) or two-color coincidence detection (TCCD), the molecule concentration must be set explicitly to targeted values and furthermore needs to be stable over a period of several hours. As a consequence, specific demands must be imposed on the surface passivation of the cover slides during the measurements. The aim of having only one molecule in the detection volume at the time is not only affected by the absolute molecule concentration, but also by the rate of diffusion. Therefore, we discuss approaches to control and to measure absolute molecule concentrations. Furthermore, we introduce an approach to calculate the probability of chance coincidence events and demonstrate that measurements with challenging smFRET samples require a strict limit of maximal sample concentrations in order to produce meaningful results.
Collapse
Affiliation(s)
- Olessya Yukhnovets
- AG Biophysik, I. Physikalisches Institut (IA), RWTH Aachen University, 52074 Aachen, Germany;
| | - Henning Höfig
- AG Biophysik, I. Physikalisches Institut (IA), RWTH Aachen University, 52074 Aachen, Germany;
| | - Nuno Bustorff
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3), Institute of Biological Information Processing IBI-6, Forschungszentrum Jülich, 52425 Jülich, Germany; (N.B.); (A.K.)
| | - Alexandros Katranidis
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3), Institute of Biological Information Processing IBI-6, Forschungszentrum Jülich, 52425 Jülich, Germany; (N.B.); (A.K.)
| | - Jörg Fitter
- AG Biophysik, I. Physikalisches Institut (IA), RWTH Aachen University, 52074 Aachen, Germany;
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3), Institute of Biological Information Processing IBI-6, Forschungszentrum Jülich, 52425 Jülich, Germany; (N.B.); (A.K.)
| |
Collapse
|
22
|
Harris PD, Narducci A, Gebhardt C, Cordes T, Weiss S, Lerner E. Multi-parameter photon-by-photon hidden Markov modeling. Nat Commun 2022; 13:1000. [PMID: 35194038 PMCID: PMC8863987 DOI: 10.1038/s41467-022-28632-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Single molecule Förster resonance energy transfer (smFRET) is a unique biophysical approach for studying conformational dynamics in biomacromolecules. Photon-by-photon hidden Markov modeling (H2MM) is an analysis tool that can quantify FRET dynamics of single biomolecules, even if they occur on the sub-millisecond timescale. However, dye photophysical transitions intertwined with FRET dynamics may cause artifacts. Here, we introduce multi-parameter H2MM (mpH2MM), which assists in identifying FRET dynamics based on simultaneous observation of multiple experimentally-derived parameters. We show the importance of using mpH2MM to decouple FRET dynamics caused by conformational changes from photophysical transitions in confocal-based smFRET measurements of a DNA hairpin, the maltose binding protein, MalE, and the type-III secretion system effector, YopO, from Yersinia species, all exhibiting conformational dynamics ranging from the sub-second to microsecond timescales. Overall, we show that using mpH2MM facilitates the identification and quantification of biomolecular sub-populations and their origin.
Collapse
Affiliation(s)
- Paul David Harris
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| | - Alessandra Narducci
- Physical and Synthetic Biology. Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Christian Gebhardt
- Physical and Synthetic Biology. Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology. Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los Angeles, CA, USA
- CaliforniaNanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
23
|
Release of linker histone from the nucleosome driven by polyelectrolyte competition with a disordered protein. Nat Chem 2022; 14:224-231. [PMID: 34992286 DOI: 10.1038/s41557-021-00839-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/19/2021] [Indexed: 12/13/2022]
Abstract
Highly charged intrinsically disordered proteins are essential regulators of chromatin structure and transcriptional activity. Here we identify a surprising mechanism of molecular competition that relies on the pronounced dynamical disorder present in these polyelectrolytes and their complexes. The highly positively charged human linker histone H1.0 (H1) binds to nucleosomes with ultrahigh affinity, implying residence times incompatible with efficient biological regulation. However, we show that the disordered regions of H1 retain their large-amplitude dynamics when bound to the nucleosome, which enables the highly negatively charged and disordered histone chaperone prothymosin α to efficiently invade the H1-nucleosome complex and displace H1 via a competitive substitution mechanism, vastly accelerating H1 dissociation. By integrating experiments and simulations, we establish a molecular model that rationalizes the remarkable kinetics of this process structurally and dynamically. Given the abundance of polyelectrolyte sequences in the nuclear proteome, this mechanism is likely to be widespread in cellular regulation.
Collapse
|
24
|
Zosel F, Holla A, Schuler B. Labeling of Proteins for Single-Molecule Fluorescence Spectroscopy. Methods Mol Biol 2022; 2376:207-233. [PMID: 34845612 DOI: 10.1007/978-1-0716-1716-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single-molecule fluorescence spectroscopy has become an important technique for studying the conformational dynamics and folding of proteins. A key step for performing such experiments is the availability of high-quality samples. This chapter describes a simple and widely applicable strategy for preparing proteins that are site-specifically labeled with a donor and an acceptor dye for single-molecule Förster resonance energy transfer (FRET) experiments. The method is based on introducing two cysteine residues that are labeled with maleimide-functionalized fluorophores, combined with high-resolution chromatography. We discuss how to optimize site-specific labeling even in the absence of orthogonal coupling chemistry and present purification strategies that are suitable for samples ranging from intrinsically disordered proteins to large folded proteins. We also discuss common problems in protein labeling, how to avoid them, and how to stringently control sample quality.
Collapse
Affiliation(s)
- Franziska Zosel
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Novo Nordisk A/S, Måløv, Denmark
| | - Andrea Holla
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
- Department of Physics, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Gopich IV, Chung HS. Theory and Analysis of Single-Molecule FRET Experiments. Methods Mol Biol 2022; 2376:247-282. [PMID: 34845614 DOI: 10.1007/978-1-0716-1716-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inter-dye distances and conformational dynamics can be studied using single-molecule FRET measurements. We consider two approaches to analyze sequences of photons with recorded photon colors and arrival times. The first approach is based on FRET efficiency histograms obtained from binned photon sequences. The experimental histograms are compared with the theoretical histograms obtained using the joint distribution of acceptor and donor photons or the Gaussian approximation. In the second approach, a photon sequence is analyzed without binning. The parameters of a model describing conformational dynamics are found by maximizing the appropriate likelihood function. The first approach is simpler, while the second one is more accurate, especially when the population of species is small and transition rates are fast. The likelihood-based analysis as well as the recoloring method has the advantage that diffusion of molecules through the laser focus can be rigorously handled.
Collapse
Affiliation(s)
- Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Naudi-Fabra S, Blackledge M, Milles S. Synergies of Single Molecule Fluorescence and NMR for the Study of Intrinsically Disordered Proteins. Biomolecules 2021; 12:biom12010027. [PMID: 35053175 PMCID: PMC8773649 DOI: 10.3390/biom12010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Single molecule fluorescence and nuclear magnetic resonance spectroscopy (NMR) are two very powerful techniques for the analysis of intrinsically disordered proteins (IDPs). Both techniques have individually made major contributions to deciphering the complex properties of IDPs and their interactions, and it has become evident that they can provide very complementary views on the distance-dynamics relationships of IDP systems. We now review the first approaches using both NMR and single molecule fluorescence to decipher the molecular properties of IDPs and their interactions. We shed light on how these two techniques were employed synergistically for multidomain proteins harboring intrinsically disordered linkers, for veritable IDPs, but also for liquid–liquid phase separated systems. Additionally, we provide insights into the first approaches to use single molecule Förster resonance energy transfer (FRET) and NMR for the description of multiconformational models of IDPs.
Collapse
|
27
|
Wilson H, Wang Q. Joint Detection of Change Points in Multichannel Single-Molecule Measurements. J Phys Chem B 2021; 125:13425-13435. [PMID: 34870418 DOI: 10.1021/acs.jpcb.1c08869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent developments in single-molecule measurement technology have expanded the capability to measure multiple parameters. These emergent modalities provide more holistic observations of complex biomolecular processes and call for new analysis methods to detect state changes in multichannel data. Here we develop an algorithm called MULLR (MUlti-channel Log-Likelihood Ratio test) to jointly identify change points in multichannel single-molecule measurements. MULLR is an extension of the popular single-channel implementation for change point detection based on a binary segmentation and log-likelihood ratio test framework. We validate the algorithm on simulated data and characterize the power of detection and false positive rate. We show that MULLR can identify change points in experimental multichannel data and naturally works with different noise statistics and time resolutions across channels. Further, we quantify the benefit of MULLR compared to single-channel analysis. We envision that the MULLR algorithm will be useful to a range of multiparameter single-molecule measurements.
Collapse
Affiliation(s)
- Hugh Wilson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
| | - Quan Wang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
28
|
Naudi-Fabra S, Tengo M, Jensen MR, Blackledge M, Milles S. Quantitative Description of Intrinsically Disordered Proteins Using Single-Molecule FRET, NMR, and SAXS. J Am Chem Soc 2021; 143:20109-20121. [PMID: 34817999 PMCID: PMC8662727 DOI: 10.1021/jacs.1c06264] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Studying the conformational landscape of intrinsically disordered and partially folded proteins is challenging and only accessible to a few solution state techniques, such as nuclear magnetic resonance (NMR), small-angle scattering techniques, and single-molecule Förster resonance energy transfer (smFRET). While each of the techniques is sensitive to different properties of the disordered chain, such as local structural propensities, overall dimension, or intermediate- and long-range contacts, conformational ensembles describing intrinsically disordered proteins (IDPs) accurately should ideally respect all of these properties. Here we develop an integrated approach using a large set of FRET efficiencies and fluorescence lifetimes, NMR chemical shifts, and paramagnetic relaxation enhancements (PREs), as well as small-angle X-ray scattering (SAXS) to derive quantitative conformational ensembles in agreement with all parameters. Our approach is tested using simulated data (five sets of PREs and 15 FRET efficiencies) and validated experimentally on the example of the disordered domain of measles virus phosphoprotein, providing new insights into the conformational landscape of this viral protein that comprises transient structural elements and is more compact than an unfolded chain throughout its length. Rigorous cross-validation using FRET efficiencies, fluorescence lifetimes, and SAXS demonstrates the predictive nature of the calculated conformational ensembles and underlines the potential of this strategy in integrative dynamic structural biology.
Collapse
Affiliation(s)
- Samuel Naudi-Fabra
- Institut de Biologie Structurale,
Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38044 Grenoble, France
| | - Maud Tengo
- Institut de Biologie Structurale,
Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38044 Grenoble, France
| | - Malene Ringkjøbing Jensen
- Institut de Biologie Structurale,
Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38044 Grenoble, France
| | - Martin Blackledge
- Institut de Biologie Structurale,
Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38044 Grenoble, France
| | - Sigrid Milles
- Institut de Biologie Structurale,
Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38044 Grenoble, France
| |
Collapse
|
29
|
Abstract
Super-resolution fluorescence microscopy and Förster Resonance Energy Transfer (FRET) form a well-established family of techniques that has provided unique tools to study the dynamic architecture and functionality of biological systems, as well as to investigate nanomaterials. In the last years, the integration of super-resolution methods with FRET measurements has generated advances in two fronts. On the one hand, FRET-based probes have enhanced super-resolution imaging. On the other, the development of super-resolved FRET imaging methods has allowed the visualization of molecular interaction patterns with higher spatial resolution, less averaging and higher dynamic range. Here, we review these advances and discuss future perspectives, including the possible integration of FRET with next generation super-resolution techniques capable of reaching true molecular-scale spatial resolution.
Collapse
Affiliation(s)
- Alan M Szalai
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina.
| | - Cecilia Zaza
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
30
|
Kolimi N, Pabbathi A, Saikia N, Ding F, Sanabria H, Alper J. Out-of-Equilibrium Biophysical Chemistry: The Case for Multidimensional, Integrated Single-Molecule Approaches. J Phys Chem B 2021; 125:10404-10418. [PMID: 34506140 PMCID: PMC8474109 DOI: 10.1021/acs.jpcb.1c02424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Out-of-equilibrium
processes are ubiquitous across living organisms
and all structural hierarchies of life. At the molecular scale, out-of-equilibrium
processes (for example, enzyme catalysis, gene regulation, and motor
protein functions) cause biological macromolecules to sample an ensemble
of conformations over a wide range of time scales. Quantifying and
conceptualizing the structure–dynamics to function relationship
is challenging because continuously evolving multidimensional energy
landscapes are necessary to describe nonequilibrium biological processes
in biological macromolecules. In this perspective, we explore the
challenges associated with state-of-the-art experimental techniques
to understanding biological macromolecular function. We argue that
it is time to revisit how we probe and model functional out-of-equilibrium
biomolecular dynamics. We suggest that developing integrated single-molecule
multiparametric force–fluorescence instruments and using advanced
molecular dynamics simulations to study out-of-equilibrium biomolecules
will provide a path towards understanding the principles of and mechanisms
behind the structure–dynamics to function paradigm in biological
macromolecules.
Collapse
Affiliation(s)
- Narendar Kolimi
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Ashok Pabbathi
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Nabanita Saikia
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Joshua Alper
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.,Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
31
|
Allosteric modulators enhance agonist efficacy by increasing the residence time of a GPCR in the active state. Nat Commun 2021; 12:5426. [PMID: 34521824 PMCID: PMC8440590 DOI: 10.1038/s41467-021-25620-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/20/2021] [Indexed: 01/17/2023] Open
Abstract
Much hope in drug development comes from the discovery of positive allosteric modulators (PAM) that display target subtype selectivity and act by increasing agonist potency and efficacy. How such compounds can allosterically influence agonist action remains unclear. Metabotropic glutamate receptors (mGlu) are G protein-coupled receptors that represent promising targets for brain diseases, and for which PAMs acting in the transmembrane domain have been developed. Here, we explore the effect of a PAM on the structural dynamics of mGlu2 in optimized detergent micelles using single molecule FRET at submillisecond timescales. We show that glutamate only partially stabilizes the extracellular domains in the active state. Full activation is only observed in the presence of a PAM or the Gi protein. Our results provide important insights on the role of allosteric modulators in mGlu activation, by stabilizing the active state of a receptor that is otherwise rapidly oscillating between active and inactive states. Here, the authors use smFRET to assess the structural dynamics of metabotropic glutamate receptor mGlu2 and show that a positive allosteric modulator or the Gi protein stabilize mGlu2 in the glutamate-induced active state, leading to the full activation of the receptor.
Collapse
|
32
|
Alston JJ, Soranno A, Holehouse AS. Integrating single-molecule spectroscopy and simulations for the study of intrinsically disordered proteins. Methods 2021; 193:116-135. [PMID: 33831596 PMCID: PMC8713295 DOI: 10.1016/j.ymeth.2021.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Over the last two decades, intrinsically disordered proteins and protein regions (IDRs) have emerged from a niche corner of biophysics to be recognized as essential drivers of cellular function. Various techniques have provided fundamental insight into the function and dysfunction of IDRs. Among these techniques, single-molecule fluorescence spectroscopy and molecular simulations have played a major role in shaping our modern understanding of the sequence-encoded conformational behavior of disordered proteins. While both techniques are frequently used in isolation, when combined they offer synergistic and complementary information that can help uncover complex molecular details. Here we offer an overview of single-molecule fluorescence spectroscopy and molecular simulations in the context of studying disordered proteins. We discuss the various means in which simulations and single-molecule spectroscopy can be integrated, and consider a number of studies in which this integration has uncovered biological and biophysical mechanisms.
Collapse
Affiliation(s)
- Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA.
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA.
| |
Collapse
|
33
|
Dingfelder F, Macocco I, Benke S, Nettels D, Faccioli P, Schuler B. Slow Escape from a Helical Misfolded State of the Pore-Forming Toxin Cytolysin A. JACS AU 2021; 1:1217-1230. [PMID: 34467360 PMCID: PMC8397351 DOI: 10.1021/jacsau.1c00175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 05/12/2023]
Abstract
The pore-forming toxin cytolysin A (ClyA) is expressed as a large α-helical monomer that, upon interaction with membranes, undergoes a major conformational rearrangement into the protomer conformation, which then assembles into a cytolytic pore. Here, we investigate the folding kinetics of the ClyA monomer with single-molecule Förster resonance energy transfer spectroscopy in combination with microfluidic mixing, stopped-flow circular dichroism experiments, and molecular simulations. The complex folding process occurs over a broad range of time scales, from hundreds of nanoseconds to minutes. The very slow formation of the native state occurs from a rapidly formed and highly collapsed intermediate with large helical content and nonnative topology. Molecular dynamics simulations suggest pronounced non-native interactions as the origin of the slow escape from this deep trap in the free-energy surface, and a variational enhanced path-sampling approach enables a glimpse of the folding process that is supported by the experimental data.
Collapse
Affiliation(s)
- Fabian Dingfelder
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Iuri Macocco
- Department
of Physics, Trento University, Via Sommarive 14, 38123 Povo (Trento), Italy
- SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Stephan Benke
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel Nettels
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Pietro Faccioli
- Department
of Physics, Trento University, Via Sommarive 14, 38123 Povo (Trento), Italy
- INFN-TIFPA, Via Sommarive 14, 38123 Povo (Trento), Italy
| | - Benjamin Schuler
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
34
|
Vera AM, Galera-Prat A, Wojciechowski M, Różycki B, Laurents DV, Carrión-Vázquez M, Cieplak M, Tinnefeld P. Cohesin-dockerin code in cellulosomal dual binding modes and its allosteric regulation by proline isomerization. Structure 2021; 29:587-597.e8. [PMID: 33561387 DOI: 10.1016/j.str.2021.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/25/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022]
Abstract
Cellulose is the most abundant organic molecule on Earth and represents a renewable and practically everlasting feedstock for the production of biofuels and chemicals. Self-assembled owing to the high-affinity cohesin-dockerin interaction, cellulosomes are huge multi-enzyme complexes with unmatched efficiency in the degradation of recalcitrant lignocellulosic substrates. The recruitment of diverse dockerin-borne enzymes into a multicohesin protein scaffold dictates the three-dimensional layout of the complex, and interestingly two alternative binding modes have been proposed. Using single-molecule fluorescence resonance energy transfer and molecular simulations on a range of cohesin-dockerin pairs, we directly detect varying distributions between these binding modes that follow a built-in cohesin-dockerin code. Surprisingly, we uncover a prolyl isomerase-modulated allosteric control mechanism, mediated by the isomerization state of a single proline residue, which regulates the distribution and kinetics of binding modes. Overall, our data provide a novel mechanistic understanding of the structural plasticity and dynamics of cellulosomes.
Collapse
Affiliation(s)
- Andrés Manuel Vera
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany.
| | - Albert Galera-Prat
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Michał Wojciechowski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników, 32/46, 02-668 Warsaw, Poland
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników, 32/46, 02-668 Warsaw, Poland
| | - Douglas V Laurents
- Instituto de Química Física "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | | | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Al. Lotników, 32/46, 02-668 Warsaw, Poland
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany
| |
Collapse
|
35
|
Nasir I, Bentley EP, Deniz AA. Ratiometric Single-Molecule FRET Measurements to Probe Conformational Subpopulations of Intrinsically Disordered Proteins. ACTA ACUST UNITED AC 2021; 12:e80. [PMID: 32159932 PMCID: PMC7508418 DOI: 10.1002/cpch.80] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past few decades, numerous examples have demonstrated that intrinsic disorder in proteins lies at the heart of many vital processes, including transcriptional regulation, stress response, cellular signaling, and most recently protein liquid-liquid phase separation. The so-called intrinsically disordered proteins (IDPs) involved in these processes have presented a challenge to the classic protein "structure-function paradigm," as their functions do not necessarily involve well-defined structures. Understanding the mechanisms of IDP function is likewise challenging because traditional structure determination methods often fail with such proteins or provide little information about the diverse array of structures that can be related to different functions of a single IDP. Single-molecule fluorescence methods can overcome this ensemble-average masking, allowing the resolution of subpopulations and dynamics and thus providing invaluable insights into IDPs and their function. In this protocol, we describe a ratiometric single-molecule Förster resonance energy transfer (smFRET) routine that permits the investigation of IDP conformational subpopulations and dynamics. We note that this is a basic protocol, and we provide brief information and references for more complex analysis schemes available for in-depth characterization. This protocol covers optical setup preparation and protein handling and provides insights into experimental design and outcomes, together with background information about theory and a brief discussion of troubleshooting. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Ratiometric smFRET detection and analysis of IDPs Support Protocol 1: Fluorophore labeling of a protein through maleimide chemistry Support Protocol 2: Sample chamber preparation Support Protocol 3: Determination of direct excitation of acceptor by donor excitation and leakage of donor emission to acceptor emission channel.
Collapse
Affiliation(s)
- Irem Nasir
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California.,Department of Biology and Biological Engineering, Division of Chemical Biology, Chalmers Institute of Technology, Gothenburg, Sweden
| | - Emily P Bentley
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
36
|
Ma J, Saikia N, Godar S, Hamilton GL, Ding F, Alper J, Sanabria H. Ensemble Switching Unveils a Kinetic Rheostat Mechanism of the Eukaryotic Thiamine Pyrophosphate Riboswitch. RNA (NEW YORK, N.Y.) 2021; 27:rna.075937.120. [PMID: 33863818 PMCID: PMC8208051 DOI: 10.1261/rna.075937.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/13/2021] [Indexed: 05/05/2023]
Abstract
Thiamine pyrophosphate (TPP) riboswitches regulate thiamine metabolism by inhibiting the translation of enzymes essential to thiamine synthesis pathways upon binding to thiamine pyrophosphate in cells across all domains of life. Recent work on the Arabidopsis thaliana TPP riboswitch suggests a multi-step TPP binding process involving multiple riboswitch configurational ensembles and that Mg2+ dependence underlies the mechanism of TPP recognition and subsequent transition to the expression-inhibiting state of the aptamer domain followed by changes in the expression platform. However, details of the relationship between TPP riboswitch conformational changes and interactions with TPP and Mg2+ ¬¬in the aptamer domain constituting this mechanism are unknown. Therefore, we integrated single-molecule multiparameter fluorescence and force spectroscopy with atomistic molecular dynamics simulations and found that conformational transitions within the aptamer domain's sensor helices associated with TPP and Mg2+ ligand binding occurred between at least five different ensembles on timescales ranging from µs to ms. These dynamics are orders of magnitude faster than the 10 second-timescale folding kinetics associated with expression-state switching in the switch sequence. Together, our results show that a TPP and Mg2+ dependent mechanism determines dynamic configurational state ensemble switching of the aptamer domain's sensor helices that regulates the stability of the switch helix, which ultimately may lead to the expression-inhibiting state of the riboswitch. Additionally, we propose that two pathways exist for ligand recognition and that this mechanism underlies a kinetic rheostat-like behavior of the Arabidopsis thaliana TPP riboswitch.
Collapse
Affiliation(s)
- Junyan Ma
- Department of Chemistry, Clemson University
| | | | - Subash Godar
- Department of Physics and Astronomy, Clemson University
| | | | - Feng Ding
- Department of Physics and Astronomy, Clemson University
| | - Joshua Alper
- Department of Physics and Astronomy, Clemson University
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University
| |
Collapse
|
37
|
Sanders JC, Holmstrom ED. Integrating single-molecule FRET and biomolecular simulations to study diverse interactions between nucleic acids and proteins. Essays Biochem 2021; 65:37-49. [PMID: 33600559 PMCID: PMC8052285 DOI: 10.1042/ebc20200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
The conformations of biological macromolecules are intimately related to their cellular functions. Conveniently, the well-characterized dipole-dipole distance-dependence of Förster resonance energy transfer (FRET) makes it possible to measure and monitor the nanoscale spatial dimensions of these conformations using fluorescence spectroscopy. For this reason, FRET is often used in conjunction with single-molecule detection to study a wide range of conformationally dynamic biochemical processes. Written for those not yet familiar with the subject, this review aims to introduce biochemists to the methodology associated with single-molecule FRET, with a particular emphasis on how it can be combined with biomolecular simulations to study diverse interactions between nucleic acids and proteins. In the first section, we highlight several conceptual and practical considerations related to this integrative approach. In the second section, we review a few recent research efforts wherein various combinations of single-molecule FRET and biomolecular simulations were used to study the structural and dynamic properties of biochemical systems involving different types of nucleic acids (e.g., DNA and RNA) and proteins (e.g., folded and disordered).
Collapse
Affiliation(s)
- Joshua C Sanders
- Department of Chemistry, University of Kansas, Lawrence, KS, U.S.A
| | - Erik D Holmstrom
- Department of Chemistry, University of Kansas, Lawrence, KS, U.S.A
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, U.S.A
| |
Collapse
|
38
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
39
|
Ligand modulation of the conformational dynamics of the A 2A adenosine receptor revealed by single-molecule fluorescence. Sci Rep 2021; 11:5910. [PMID: 33723285 PMCID: PMC7960716 DOI: 10.1038/s41598-021-84069-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of transmembrane proteins, making them an important target for therapeutics. Activation of these receptors is modulated by orthosteric ligands, which stabilize one or several states within a complex conformational ensemble. The intra- and inter-state dynamics, however, is not well documented. Here, we used single-molecule fluorescence to measure ligand-modulated conformational dynamics of the adenosine A2A receptor (A2AR) on nanosecond to millisecond timescales. Experiments were performed on detergent-purified A2R in either the ligand-free (apo) state, or when bound to an inverse, partial or full agonist ligand. Single-molecule Förster resonance energy transfer (smFRET) was performed on detergent-solubilized A2AR to resolve active and inactive states via the separation between transmembrane (TM) helices 4 and 6. The ligand-dependent changes of the smFRET distributions are consistent with conformational selection and with inter-state exchange lifetimes ≥ 3 ms. Local conformational dynamics around residue 2296.31 on TM6 was measured using fluorescence correlation spectroscopy (FCS), which captures dynamic quenching due to photoinduced electron transfer (PET) between a covalently-attached dye and proximal aromatic residues. Global analysis of PET-FCS data revealed fast (150-350 ns), intermediate (50-60 μs) and slow (200-300 μs) conformational dynamics in A2AR, with lifetimes and amplitudes modulated by ligands and a G-protein mimetic (mini-Gs). Most notably, the agonist binding and the coupling to mini-Gs accelerates and increases the relative contribution of the sub-microsecond phase. Molecular dynamics simulations identified three tyrosine residues (Y112, Y2887.53, and Y2907.55) as being responsible for the dynamic quenching observed by PET-FCS and revealed associated helical motions around residue 2296.31 on TM6. This study provides a quantitative description of conformational dynamics in A2AR and supports the idea that ligands bias not only GPCR conformations but also the dynamics within and between distinct conformational states of the receptor.
Collapse
|
40
|
Gomes GN, Levine ZA. Defining the Neuropathological Aggresome across in Silico, in Vitro, and ex Vivo Experiments. J Phys Chem B 2021; 125:1974-1996. [PMID: 33464098 PMCID: PMC8362740 DOI: 10.1021/acs.jpcb.0c09193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The loss of proteostasis over the life course is associated with a wide range of debilitating degenerative diseases and is a central hallmark of human aging. When left unchecked, proteins that are intrinsically disordered can pathologically aggregate into highly ordered fibrils, plaques, and tangles (termed amyloids), which are associated with countless disorders such as Alzheimer's disease, Parkinson's disease, type II diabetes, cancer, and even certain viral infections. However, despite significant advances in protein folding and solution biophysics techniques, determining the molecular cause of these conditions in humans has remained elusive. This has been due, in part, to recent discoveries showing that soluble protein oligomers, not insoluble fibrils or plaques, drive the majority of pathological processes. This has subsequently led researchers to focus instead on heterogeneous and often promiscuous protein oligomers. Unfortunately, significant gaps remain in how to prepare, model, experimentally corroborate, and extract amyloid oligomers relevant to human disease in a systematic manner. This Review will report on each of these techniques and their successes and shortcomings in an attempt to standardize comparisons between protein oligomers across disciplines, especially in the context of neurodegeneration. By standardizing multiple techniques and identifying their common overlap, a clearer picture of the soluble neuropathological aggresome can be constructed and used as a baseline for studying human disease and aging.
Collapse
Affiliation(s)
- Gregory-Neal Gomes
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Zachary A. Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
41
|
Medina E, R Latham D, Sanabria H. Unraveling protein's structural dynamics: from configurational dynamics to ensemble switching guides functional mesoscale assemblies. Curr Opin Struct Biol 2021; 66:129-138. [PMID: 33246199 PMCID: PMC7965259 DOI: 10.1016/j.sbi.2020.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
Evidence regarding protein structure and function manifest the imperative role that dynamics play in proteins, underlining reconsideration of the unanimated sequence-to-structure-to-function paradigm. Structural dynamics portray a heterogeneous energy landscape described by conformational ensembles where each structural representation can be responsible for unique functions or enable macromolecular assemblies. Using the human p27/Cdk2/Cyclin A ternary complex as an example, we highlight the vital role of intramolecular and intermolecular dynamics for target recognition, binding, and inhibition as a critical modulator of cell division. Rapidly sampling configurations is critical for the population of different conformational ensembles encoding functional roles. To garner this knowledge, we present how the integration of (sub)ensemble and single-molecule fluorescence spectroscopy with molecular dynamic simulations can characterize structural dynamics linking the heterogeneous ensembles to function. The incorporation of dynamics into the sequence-to-structure-to-function paradigm promises to assist in tackling various challenges, including understanding the formation and regulation of mesoscale assemblies inside cells.
Collapse
Affiliation(s)
- Exequiel Medina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile; Department of Physics and Astronomy, Clemson University, Clemson 29634, United States
| | - Danielle R Latham
- Department of Physics and Astronomy, Clemson University, Clemson 29634, United States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson 29634, United States.
| |
Collapse
|
42
|
Conformational and migrational dynamics of slipped-strand DNA three-way junctions containing trinucleotide repeats. Nat Commun 2021; 12:204. [PMID: 33420051 PMCID: PMC7794359 DOI: 10.1038/s41467-020-20426-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Expansions of CAG/CTG trinucleotide repeats in DNA are the cause of at least 17 degenerative human disorders, including Huntington’s Disease. Repeat instability is thought to occur via the formation of intrastrand hairpins during replication, repair, recombination, and transcription though relatively little is known about their structure and dynamics. We use single-molecule Förster resonance energy transfer to study DNA three-way junctions (3WJs) containing slip-outs composed of CAG or CTG repeats. 3WJs that only have repeats in the slip-out show two-state behavior, which we attribute to conformational flexibility at the 3WJ branchpoint. When the triplet repeats extend into the adjacent duplex, additional dynamics are observed, which we assign to interconversion of positional isomers. We propose a branchpoint migration model that involves conformational rearrangement, strand exchange, and bulge-loop movement. This migration has implications for how repeat slip-outs are processed by the cellular machinery, disease progression, and their development as drug targets. DNA three-way junctions are branched structures formed during replication, repair, and recombination, and are involved in models of repeat expansion. Here the authors use single-molecule Förster resonance energy transfer to reveal the dynamics of DNA three-way junctions containing slip-outs composed of CAG or CTG repeats.
Collapse
|
43
|
Regmi R, Srinivasan S, Latham AP, Kukshal V, Cui W, Zhang B, Bose R, Schlau-Cohen GS. Phosphorylation-Dependent Conformations of the Disordered Carboxyl-Terminus Domain in the Epidermal Growth Factor Receptor. J Phys Chem Lett 2020; 11:10037-10044. [PMID: 33179922 PMCID: PMC8063277 DOI: 10.1021/acs.jpclett.0c02327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, regulates basic cellular functions and is a major target for anticancer therapeutics. The carboxyl-terminus domain is a disordered region of EGFR that contains the tyrosine residues, which undergo autophosphorylation followed by docking of signaling proteins. Local phosphorylation-dependent secondary structure has been identified and is thought to be associated with the signaling cascade. Deciphering and distinguishing the overall conformations, however, have been challenging because of the disordered nature of the carboxyl-terminus domain and resultant lack of well-defined three-dimensional structure for most of the domain. We investigated the overall conformational states of the isolated EGFR carboxyl-terminus domain using single-molecule Förster resonance energy transfer and coarse-grained simulations. Our results suggest that electrostatic interactions between charged residues emerge within the disordered domain upon phosphorylation, producing a looplike conformation. This conformation may enable binding of downstream signaling proteins and potentially reflect a general mechanism in which electrostatics transiently generate functional architectures in disordered regions of a well-folded protein.
Collapse
Affiliation(s)
- Raju Regmi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shwetha Srinivasan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Vandna Kukshal
- Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Weidong Cui
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ron Bose
- Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Durham RJ, Latham DR, Sanabria H, Jayaraman V. Structural Dynamics of Glutamate Signaling Systems by smFRET. Biophys J 2020; 119:1929-1936. [PMID: 33096078 PMCID: PMC7732771 DOI: 10.1016/j.bpj.2020.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is a powerful technique for investigating the structural dynamics of biological macromolecules. smFRET reveals the conformational landscape and dynamic changes of proteins by building on the static structures found using cryo-electron microscopy, x-ray crystallography, and other methods. Combining smFRET with static structures allows for a direct correlation between dynamic conformation and function. Here, we discuss the different experimental setups, fluorescence detection schemes, and data analysis strategies that enable the study of structural dynamics of glutamate signaling across various timescales. We illustrate the versatility of smFRET by highlighting studies of a wide range of questions, including the mechanism of activation and transport, the role of intrinsically disordered segments, and allostery and cooperativity between subunits in biological systems responsible for glutamate signaling.
Collapse
Affiliation(s)
- Ryan J Durham
- University of Texas Health Science Center at Houston, Houston, Texas
| | | | | | | |
Collapse
|
45
|
Gomes GNW, Krzeminski M, Namini A, Martin EW, Mittag T, Head-Gordon T, Forman-Kay JD, Gradinaru CC. Conformational Ensembles of an Intrinsically Disordered Protein Consistent with NMR, SAXS, and Single-Molecule FRET. J Am Chem Soc 2020; 142:15697-15710. [PMID: 32840111 PMCID: PMC9987321 DOI: 10.1021/jacs.0c02088] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intrinsically disordered proteins (IDPs) have fluctuating heterogeneous conformations, which makes their structural characterization challenging. Although challenging, characterization of the conformational ensembles of IDPs is of great interest, since their conformational ensembles are the link between their sequences and functions. An accurate description of IDP conformational ensembles depends crucially on the amount and quality of the experimental data, how it is integrated, and if it supports a consistent structural picture. We used integrative modeling and validation to apply conformational restraints and assess agreement with the most common structural techniques for IDPs: Nuclear Magnetic Resonance (NMR) spectroscopy, Small-angle X-ray Scattering (SAXS), and single-molecule Förster Resonance Energy Transfer (smFRET). Agreement with such a diverse set of experimental data suggests that details of the generated ensembles can now be examined with a high degree of confidence. Using the disordered N-terminal region of the Sic1 protein as a test case, we examined relationships between average global polymeric descriptions and higher-moments of their distributions. To resolve apparent discrepancies between smFRET and SAXS inferences, we integrated SAXS data with NMR data and reserved the smFRET data for independent validation. Consistency with smFRET, which was not guaranteed a priori, indicates that, globally, the perturbative effects of NMR or smFRET labels on the Sic1 ensemble are minimal. Analysis of the ensembles revealed distinguishing features of Sic1, such as overall compactness and large end-to-end distance fluctuations, which are consistent with biophysical models of Sic1's ultrasensitive binding to its partner Cdc4. Our results underscore the importance of integrative modeling and validation in generating and drawing conclusions from IDP conformational ensembles.
Collapse
Affiliation(s)
- Gregory-Neal W Gomes
- Department of Physics, University of Toronto, Toronto, Ontario M5G 1X8, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Mickaël Krzeminski
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Ashley Namini
- Department of Physics, University of Toronto, Toronto, Ontario M5G 1X8, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Erik W Martin
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Teresa Head-Gordon
- Departments of Chemistry, Bioengineering, Chemical and Biomolecular Engineering University of California, Berkeley, California 94720, United States
| | - Julie D Forman-Kay
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, Ontario M5G 1X8, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
46
|
Medina E, Villalobos P, Hamilton GL, Komives EA, Sanabria H, Ramírez-Sarmiento CA, Babul J. Intrinsically Disordered Regions of the DNA-Binding Domain of Human FoxP1 Facilitate Domain Swapping. J Mol Biol 2020; 432:5411-5429. [PMID: 32735805 PMCID: PMC7663421 DOI: 10.1016/j.jmb.2020.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023]
Abstract
Forkhead box P (FoxP) proteins are unique transcription factors that spatiotemporally regulate gene expression by tethering two chromosome loci together via functional domain-swapped dimers formed through their DNA-binding domains. Further, the differential kinetics on this dimerization mechanism underlie an intricate gene regulation network at physiological conditions. Nonetheless, poor understanding of the structural dynamics and steps of the association process impedes to link the functional domain swapping to human-associated diseases. Here, we have characterized the DNA-binding domain of human FoxP1 by integrating single-molecule Förster resonance energy transfer and hydrogen-deuterium exchange mass spectrometry data with molecular dynamics simulations. Our results confirm the formation of a previously postulated domain-swapped (DS) FoxP1 dimer in solution and reveal the presence of highly populated, heterogeneous, and locally disordered dimeric intermediates along the dimer dissociation pathway. The unique features of FoxP1 provide a glimpse of how intrinsically disordered regions can facilitate domain swapping oligomerization and other tightly regulated association mechanisms relevant in biological processes.
Collapse
Affiliation(s)
- Exequiel Medina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Pablo Villalobos
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - George L Hamilton
- Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Elizabeth A Komives
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Hugo Sanabria
- Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| |
Collapse
|
47
|
Reinartz I, Weiel M, Schug A. FRET Dyes Significantly Affect SAXS Intensities of Proteins. Isr J Chem 2020. [DOI: 10.1002/ijch.202000007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ines Reinartz
- Institute for Automation and Applied InformaticsKarlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- HIDSS4Health – Helmholtz Information and Data Science School for Health Karlsruhe/Heidelberg Germany
| | - Marie Weiel
- Department of PhysicsKarlsruhe Institute of Technology Wolfgang-Gaede-Str. 1 76131 Karlsruhe Germany
- Steinbuch Centre for ComputingKarlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Alexander Schug
- Institute for Advanced Simulation Jülich Supercomputing Center Wilhelm-Johnen-Straße 52428 Jülich Germany
- Faculty of BiologyUniversity of Duisburg-Essen Germany
| |
Collapse
|
48
|
Abstract
FRET is both a phenomenon and a spectroscopic technique, capable of measuring one geometric quantity: kappa-squared divided by the sixth power of the donor-acceptor distance. Kappa-squared is often replaced by a constant even though such a replacement may lead to serious errors. Kappaphobia, the fear of kappa or the reluctance to deal with kappa-squared adequately, is a looming presence in the FRET community. Unfortunately, this reluctance, or fear, is often tolerated, and sometimes encouraged. A decrease in kappaphobia will lead to an increase in the impact and success of FRET.
Collapse
Affiliation(s)
- B Wieb VanDerMeer
- Professor Emeritus of Physics and Biophysics, Western Kentucky University, Bowling Green, KY 42101, United States of America
| |
Collapse
|
49
|
Soranno A. Physical basis of the disorder-order transition. Arch Biochem Biophys 2020; 685:108305. [DOI: 10.1016/j.abb.2020.108305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
|
50
|
Abstract
Intrinsically disordered proteins (IDPs) are now widely recognized as playing critical roles in a broad range of cellular functions as well as being implicated in diverse diseases. Their lack of stable secondary structure and tertiary interactions, coupled with their sensitivity to measurement conditions, stymies many traditional structural biology approaches. Single-molecule Förster resonance energy transfer (smFRET) is now widely used to characterize the physicochemical properties of these proteins in isolation and is being increasingly applied to more complex assemblies and experimental environments. This review provides an overview of confocal diffusion-based smFRET as an experimental tool, including descriptions of instrumentation, data analysis, and protein labeling. Recent papers are discussed that illustrate the unique capability of smFRET to provide insight into aggregation-prone IDPs, protein–protein interactions involving IDPs, and IDPs in complex experimental milieus.
Collapse
Affiliation(s)
- Lauren Ann Metskas
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|