1
|
Ahmed N, Headley DB, Paré D. Optogenetic study of central medial and paraventricular thalamic projections to the basolateral amygdala. J Neurophysiol 2021; 126:1234-1247. [PMID: 34469705 PMCID: PMC8560422 DOI: 10.1152/jn.00253.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
The central medial (CMT) and paraventricular (PVT) thalamic nuclei project strongly to the basolateral amygdala (BL). Similarities between the responsiveness of CMT, PVT, and BL neurons suggest that these nuclei strongly influence BL activity. Supporting this possibility, an electron microscopic study reported that, in contrast with other extrinsic afferents, CMT and PVT axon terminals form very few synapses with BL interneurons. However, since limited sampling is a concern in electron microscopic studies, the present investigation was undertaken to compare the impact of CMT and PVT thalamic inputs on principal and local-circuit BL neurons with optogenetic methods and whole cell recordings in vitro. Optogenetic stimulation of CMT and PVT axons elicited glutamatergic excitatory postsynaptic potentials (EPSPs) or excitatory postsynaptic currents (EPSCs) in principal cells and interneurons, but they generally had a longer latency in interneurons. Moreover, after blockade of polysynaptic interactions with tetrodotoxin (TTX), a lower proportion of interneurons (50%) than principal cells (90%) remained responsive to CMT and PVT inputs. Although the presence of TTX-resistant responses in some interneurons indicates that CMT and PVT inputs directly contact some local-circuit cells, their lower incidence and amplitude after TTX suggest that CMT and PVT inputs form fewer synapses with them than with principal BL cells. Together, these results indicate that CMT and PVT inputs mainly contact principal BL neurons such that when CMT or PVT neurons fire, limited feedforward inhibition counters their excitatory influence over principal BL cells. However, CMT and PVT axons can also recruit interneurons indirectly, via the activation of principal cells, thereby generating feedback inhibition.NEW & NOTEWORTHY Midline thalamic (MTh) nuclei contribute major projections to the basolateral amygdala (BL). Similarities between the responsiveness of MTh and BL neurons suggest that MTh neurons exert a significant influence over BL activity. Using optogenetic techniques, we show that MTh inputs mainly contact principal BL neurons such that when MTh neurons fire, little feedforward inhibition counters their excitatory influence over principal cells. Thus, MTh inputs may be major determinants of BL activity.
Collapse
Affiliation(s)
- Nowrin Ahmed
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| |
Collapse
|
2
|
Smits SM, Mathon DS, Burbach JPH, Ramakers GMJ, Smidt MP. Molecular and cellular alterations in the Pitx3-deficient midbrain dopaminergic system. Mol Cell Neurosci 2005; 30:352-63. [PMID: 16140547 DOI: 10.1016/j.mcn.2005.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 07/07/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by loss of midbrain dopaminergic (mDA) neurons in the substantia nigra compacta (SNc). In order to provide insights into adaptive mechanisms of the mDA system in pathology, specific molecular and cellular parameters of the mDA system were studied in Pitx3-deficient Aphakia (ak) mice, which suffer from severe developmental failure of SNc mDA neurons. Here, we demonstrate differential changes in striatal gene expression, reflecting the specific neuronal loss in these mice. In addition, the neuronal activity of remaining mDA neurons in the ventral tegmental area (VTA) was significantly increased in ak mice. In conclusion, ak mice display specific molecular and cellular alterations in the mDA system that provide new insights in compensatory mechanisms present in mDA-associated disorders such as PD.
Collapse
Affiliation(s)
- Simone M Smits
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
3
|
Abstract
The world is a dangerous place. Whether this danger takes the form of an automobile careening toward you or a verbal threat from a stranger, your brain is highly adapted to perceive such threats, organize appropriate defensive behaviors, and record the circumstances surrounding the experience. Indeed, memories of fearful events serve a critical biological function by allowing humans and other animals to anticipate future dangers. But these memories can also feed pathological fear, yielding crippling clinical conditions such as panic disorder. In this review, the author will examine how the brain builds fear memories and how these memories come to be suppressed when they no longer predict danger. The review will focus on the fundamental role for synapses in the amygdala in acquiring fear memories and the function of neural circuits interconnecting the amygdala, hippocampus, and prefrontal cortex in modulating the expression of such memories once learned. The discovery of the neural architecture for fear memory highlights the powerful interplay between animal and human research and the promise for understanding the neurobiological mechanisms of other complex cognitive phenomena.
Collapse
Affiliation(s)
- Stephen Maren
- University of Michigan, Ann Arbor, MI 48109-1109, USA.
| |
Collapse
|
4
|
Sotres-Bayon F, Bush DEA, LeDoux JE. Emotional perseveration: an update on prefrontal-amygdala interactions in fear extinction. Learn Mem 2004; 11:525-35. [PMID: 15466303 DOI: 10.1101/lm.79504] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fear extinction refers to the ability to adapt as situations change by learning to suppress a previously learned fear. This process involves a gradual reduction in the capacity of a fear-conditioned stimulus to elicit fear by presenting the conditioned stimulus repeatedly on its own. Fear extinction is context-dependent and is generally considered to involve the establishment of inhibitory control of the prefrontal cortex over amygdala-based fear processes. In this paper, we review research progress on the neural basis of fear extinction with a focus on the role of the amygdala and the prefrontal cortex. We evaluate two competing hypotheses for how the medial prefrontal cortex inhibits amygdala output. In addition, we present new findings showing that lesions of the basal amygdala do not affect fear extinction. Based on this result, we propose an updated model for integrating hippocampal-based contextual information with prefrontal-amygdala circuitry.
Collapse
|
5
|
Goosens KA, Maren S. NMDA receptors are essential for the acquisition, but not expression, of conditional fear and associative spike firing in the lateral amygdala. Eur J Neurosci 2004; 20:537-48. [PMID: 15233763 DOI: 10.1111/j.1460-9568.2004.03513.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined the contribution of N-methyl-D-aspartate (NMDA) receptors (NMDARs) to the acquisition and expression of amygdaloid plasticity and Pavlovian fear conditioning using single-unit recording techniques in behaving rats. We demonstrate that NMDARs are essential for the acquisition of both behavioral and neuronal correlates of conditional fear, but play a comparatively limited role in their expression. Administration of the competitive NMDAR antagonist +/--3-(2-carboxypiperazin-4-yl) propyl-1-phosphonic acid (CPP) prior to auditory fear conditioning completely abolished the acquisition of conditional freezing and conditional single-unit activity in the lateral amygdala (LA). In contrast, CPP given prior to extinction testing did not affect the expression of conditional single-unit activity in LA, despite producing deficits in conditional freezing. Administration of CPP also blocked the induction of long-term potentiation in the amygdala. Together, these data suggest that NMDARs are essential for the acquisition of conditioning-related plasticity in the amygdala, and that NMDARs are more critical for regulating synaptic plasticity and learning than routine synaptic transmission in the circuitry supporting fear conditioning.
Collapse
Affiliation(s)
- Ki A Goosens
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1109, USA
| | | |
Collapse
|
6
|
Fitzakerley JL, Star KV, Rinn JL, Elmquist BJ. Expression of Shal potassium channel subunits in the adult and developing cochlear nucleus of the mouse. Hear Res 2000; 147:31-45. [PMID: 10962171 DOI: 10.1016/s0378-5955(00)00118-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pattern of expression of potassium (K(+)) channel subunits is thought to contribute to the establishment of the unique discharge characteristics exhibited by cochlear nucleus (CN) neurons. This study describes the developmental distribution of mRNA for the three Shal channel subunits Kv4.1, Kv4.2 and Kv4.3 within the mouse CN, as assessed with in situ hybridization and RT-PCR techniques. Kv4.1 was not present in CN at any age. Kv4.2 mRNA was detectable as early as postnatal day 2 (P2) in all CN subdivisions, and continued to be constitutively expressed throughout development. Kv4.2 was abundantly expressed in a variety of CN cell types, including all of the major projection neuron classes (i.e., octopus, bushy, stellate, fusiform, and giant cells). In contrast, Kv4.3 was expressed at lower levels and by fewer cell types. Kv4.3-labeled cells were more prevalent in ventral subdivisions than in the dorsal CN. Kv4.3 expression was significantly delayed developmentally in comparison to Kv4.2, as it was detectable only after P14. Although the techniques employed in this study detect mRNA and not protein, it can be inferred from the differential distribution of Kv4 transcripts that CN neurons selectively regulate the expression of Shal K(+) channels among individual neurons throughout development.
Collapse
Affiliation(s)
- J L Fitzakerley
- Departments of Pharmacology and Medical and Molecular Physiology, University of Minnesota School of Medicine, Duluth 55812, USA.
| | | | | | | |
Collapse
|
7
|
Sutherland ML, Williams SH, Abedi R, Overbeek PA, Pfaffinger PJ, Noebels JL. Overexpression of a Shaker-type potassium channel in mammalian central nervous system dysregulates native potassium channel gene expression. Proc Natl Acad Sci U S A 1999; 96:2451-5. [PMID: 10051663 PMCID: PMC26805 DOI: 10.1073/pnas.96.5.2451] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/1998] [Indexed: 11/18/2022] Open
Abstract
The nervous system maintains a delicate balance between excitation and inhibition, partly through the complex interplay between voltage-gated sodium and potassium ion channels. Because K+ channel blockade or gene deletion causes hyperexcitability, it is generally assumed that increases in K+ channel gene expression should reduce neuronal network excitability. We have tested this hypothesis by creating a transgenic mouse that expresses a Shaker-type K+ channel gene. Paradoxically, we find that addition of the extra K+ channel gene results in a hyperexcitable rather than a hypoexcitable phenotype. The presence of the transgene leads to a complex deregulation of endogenous Shaker genes in the adult central nervous system as well as an increase in network excitability that includes spontaneous cortical spike and wave discharges and a lower threshold for epileptiform bursting in isolated hippocampal slices. These data suggest that an increase in K+ channel gene dosage leads to dysregulation of normal K+ channel gene expression, and it may underlie a mechanism contributing to the pathogenesis of human aneuploidies such as Down syndrome.
Collapse
Affiliation(s)
- M L Sutherland
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Various types of voltage gated potassium channels (Kv) are responsible for setting the resting potential and shaping the membrane potential waveform in the subcellular domains of neurons. In order to visualize the expression behaviour of recombinant Kv channels, we have fused green fluorescent protein (GFP) to the N-terminal of the alpha subunits Kv1.3 and Kv1.4. In transiently transfected HEK 293 cells the GFP-Kv chimeras localize to the plasma membrane. Whole-cell voltage clamp recordings demonstrate that they form functional potassium channels. Kinetic analysis reveals that the gating kinetics of GFP-Kv1.3 are virtually indistinguishable from those displayed by its wild-type correlate. For GFP-Kv1.4 channels we find that their gating is modified in an expected manner. In response to short depolarizing voltage pulses they do not inactivate, indicating that the attached GFP interferes with the fast N-type inactivation mechanism present in wild type Kv1.4 channels. We suggest that GFP tagging of Kv channels might be a useful tool to monitor the spatiotemporal distribution of recombinant potassium channels expressed in living neurons.
Collapse
Affiliation(s)
- J Kupper
- Max-Planck-Institute for Biochemistry, Department of Membrane- and Neurophysics, Martinsried, Germany.
| |
Collapse
|
9
|
Picciotto MR, Wickman K. Using knockout and transgenic mice to study neurophysiology and behavior. Physiol Rev 1998; 78:1131-63. [PMID: 9790572 DOI: 10.1152/physrev.1998.78.4.1131] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reverse genetics, in which detailed knowledge of a gene of interest permits in vivo modification of its expression or function, provides a powerful method for examining the physiological relevance of any protein. Transgenic and knockout mouse models are particularly useful for studies of complex neurobiological problems. The primary aims of this review are to familiarize the nonspecialist with the techniques and limitations of mouse mutagenesis, to describe new technologies that may overcome these limitations, and to illustrate, using representative examples from the literature, some of the ways in which genetically altered mice have been used to analyze central nervous system function. The goal is to provide the information necessary to evaluate critically studies in which mutant mice have been used to study neurobiological problems.
Collapse
Affiliation(s)
- M R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
10
|
Butler DM, Ono JK, Chang T, McCaman RE, Barish ME. Mouse brain potassium channel ?1 subunit mRNA: Cloning and distribution during development. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-4695(19980205)34:2<135::aid-neu4>3.0.co;2-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Maren S. Synaptic transmission and plasticity in the amygdala. An emerging physiology of fear conditioning circuits. Mol Neurobiol 1996; 13:1-22. [PMID: 8892333 DOI: 10.1007/bf02740749] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Numerous studies in both rats and humans indicate the importance of the amygdala in the acquisition and expression of learned fear. The identification of the amygdala as an essential neural substrate for fear conditioning has permitted neurophysiological examinations of synaptic processes in the amygdala that may mediate fear conditioning. One candidate cellular mechanism for fear conditioning is long-term potentiation (LTP), an enduring increase in synaptic transmission induced by high-frequency stimulation of excitatory afferents. At present, the mechanisms underlying the induction and expression of amygdaloid LTP are only beginning to be understood, and probably involve both the N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) subclasses of glutamate receptors. This article will examine recent studies of synaptic transmission and plasticity in the amygdala in an effort to understand the relationships of these processes to aversive learning and memory.
Collapse
Affiliation(s)
- S Maren
- Department of Psychology, University of Michigan, Ann Arbor 48109-1109, USA
| |
Collapse
|
12
|
Farb CR, Aoki C, Ledoux JE. Differential localization of NMDA and AMPA receptor subunits in the lateral and basal nuclei of the amygdala: a light and electron microscopic study. J Comp Neurol 1995; 362:86-108. [PMID: 8576430 DOI: 10.1002/cne.903620106] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Anatomical and physiological studies indicate that the amino acid L-glutamate is the excitatory transmitter in sensory afferent pathways to the amygdala and in intraamygdala circuits involving the lateral and basal nuclei. The regional, cellular, and subcellular immunocytochemical localizations of N-methyl-D-aspartate (NMDA) and L-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), two major classes of glutamate receptors, were examined in these areas of the amygdala. A monoclonal antibody and a polyclonal antiserum directed against the R1 subunit of the NMDA receptor were used. Each immunoreagent produced distinct distributions of perikaryal and neuropilar staining. Dendritic immunoreactivity was localized primarily to asymmetric (excitatory) synaptic junctions, mostly on spines, consistent with the conventional view of the organization and function of NMDA receptors. Whereas the anti-NMDAR1 antiserum produced sparse presynaptic axon terminal labeling and extensive glial labeling, the anti-NMDAR1 antibody labeled considerably fewer glia and many more presynaptic axon terminals. Labeled presynaptic terminals formed asymmetric and symmetric synapses, suggesting presynaptic regulation of both excitatory and inhibitory transmission. Immunoreactivity for different subunits of the AMPA receptor (GluR1, GluR2/3, and GluR4) was uniquely distributed across neuronal populations, and some receptor subunits were specific to certain cell types. Immunoreactivity for GluR1 and Glu2/3 was predominantely localized to dendritic shafts and was more extensive than that of GluR4 due to heavy labeling of proximal portions of dendrites. The distribution of GluR4 immunoreactivity was similar to NMDAR1: GluR4 was seen in presynaptic terminals, glia, and dendrites and was primarily localized to spines. The presynaptic localization of GluR4 in the absence of GluR2 suggests glutamate-mediated modulation of presynaptic Ca++ concentrations. These data add to our understanding of the morphological basis of pre- and postsynaptic transmission mechanisms and synaptic plasticity in the amygdala.
Collapse
Affiliation(s)
- C R Farb
- Center for Neural Science, New York University 10003, USA
| | | | | |
Collapse
|