1
|
Bazzi M, Chabot M, Rambhatla A, Chung E. Diagnostic algorithm in men suspected with nonobstructive azoospermia. Asian J Androl 2025:00129336-990000000-00310. [PMID: 40275557 DOI: 10.4103/aja202529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
ABSTRACT This review focuses on the diagnostic algorithm for nonobstructive azoospermia (NOA), a significant male factor contributing to infertility. NOA, characterized by the absence of sperm in the ejaculate, requires a systematic diagnostic approach to identify reversible conditions, genetic factors, and prognosis for achieving pregnancy. The diagnostic pathway involves semen analysis and a comprehensive evaluation for hormonal deficiencies, anatomical abnormalities, and genetic factors. The importance of medical history, physical examination, endocrine evaluation, imaging, and genetic testing is emphasized. This review highlights the significance of differentiating NOA from obstructive azoospermia (OA) and outlines key considerations for effective management, including surgical sperm retrieval and assisted reproductive techniques. Testicular biopsy is discussed as a definitive method to distinguish obstructive cases from nonobstructive cases, providing valuable prognostic information. Overall, a thorough and systematic diagnostic approach is essential for the effective management of men suspected with NOA, offering insights into potential treatment options and reproductive outcomes.
Collapse
Affiliation(s)
- Mahdi Bazzi
- Vattikuti Urology Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Matthew Chabot
- Vattikuti Urology Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Amarnath Rambhatla
- Vattikuti Urology Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Eric Chung
- The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| |
Collapse
|
2
|
Gabris-Weber B, Forghani R, Bernd Dschietzig T, Romero G, Salama G. Periodic injections of Relaxin 2, its pharmacokinetics and remodeling of rat hearts. Biochem Pharmacol 2024; 223:116136. [PMID: 38494063 DOI: 10.1016/j.bcp.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Relaxin-2 (RLX), a critical hormone in pregnancy, has been investigated as a therapy for heart failure. In most studies, the peptide was delivered continuously, subcutaneously for 2 weeks in animals or intravenously for 2-days in human subjects, for stable circulating [RLX]. However, pulsatile hormone levels may better uncover the normal physiology. This premise was tested by subcutaneously injecting Sprague Dawley rats (250 g, N = 2 males, 2 females/group) with human RLX (0, 30, 100, or 500 µg/kg), every 12 h for 1 day, then measuring changes in Nav1.5, connexin43, and β-catenin, 24 h later. Pulsatile RLX was measured by taking serial blood draws, post-injection. After an injection, RLX reached a peak in ∼ 60 min, fell to 50 % in 5-6 h; injections of 0, 30, 100 or 500 µg/kg yielded peak levels of 0, 11.26 ± 3.52, 58.33 ± 16.10, and 209.42 ± 29.04 ng/ml and residual levels after 24-hrs of 0, 4.9, 45.1 and 156 pg/ml, respectively. The 30 µg/kg injections had no effect and 100 µg/kg injections increased Nav1.5 (25 %), Cx43 (30 %) and β-catenin (90 %). The 500 µg/kg injections also increased Nav1.5 and Cx43 but were less effective at upregulating β-catenin (up by 25 % vs. 90 %). Periodic injections of 100 µg/kg were highly effective at increasing the expression of Nav1.5 and Cx43 which are key determinants of conduction velocity in the heart and the suppression of arrhythmias. Periodic RLX is effective at eliciting changes in cardiac protein expression and may be a better strategy for its longer-term delivery in the clinical setting.
Collapse
Affiliation(s)
- Beth Gabris-Weber
- University of Pittsburgh, School of Medicine, Department of Medicine, Heart and Vascular Medicine Institute, Pittsburgh, PA 15261, United States
| | - Rameen Forghani
- University of Pittsburgh, School of Medicine, Department of Medicine, Heart and Vascular Medicine Institute, Pittsburgh, PA 15261, United States
| | - Thomas Bernd Dschietzig
- Relaxera Pharmazeutische Gesellschaft mbH & Co. KG, Stubenwald-Allee 8a, 64625 Bensheim, Germany
| | - Guillermo Romero
- University of Pittsburgh, School of Medicine, Department of Medicine, Heart and Vascular Medicine Institute, Pittsburgh, PA 15261, United States; University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15261, United States
| | - Guy Salama
- University of Pittsburgh, School of Medicine, Department of Medicine, Heart and Vascular Medicine Institute, Pittsburgh, PA 15261, United States.
| |
Collapse
|
3
|
Gerlach J, Decker ES, Plank AC, Mestermann S, Purbojo A, Cesnjevar RA, Kratz O, Eichler A. Long-Term Effects of Child Early Surgical Ventricular Septal Defect Repair on Maternal Stress. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1832. [PMID: 38136034 PMCID: PMC10741485 DOI: 10.3390/children10121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023]
Abstract
The ventricular septal defect (VSD) represents the most common congenital heart defect (CHD). The diagnosis of and cardiac surgery for their child's VSD are highly stressful experiences for parents; especially mothers, who are at risk of developing long-lasting stress-related symptoms. This study examined long-term alterations in maternal stress including self-reported psychological and biophysiological stress levels in a case-control design. We investigated 24 mothers of children with an isolated, surgically corrected VSD compared to non-affected controls. Maternal self-reports on psychopathology, everyday stress, parenting stress and hair cortisol concentrations (HCC) were measured during children's primary school age (6-9 years, t1) and early adolescence (10-14 years, t2). In maternal self-reports, psychopathology and stress symptoms in the VSD-group and controls were comparable at t1, whereas at t2, mothers in the VSD-group even showed a decrease in psychopathology. Maternal HCC levels in the VSD-group were significantly lower (hypocortisolism) than HCC levels of controls at t1. This effect was no longer observed at t2 reflecting an approximation of HCC levels in the VSD-group to controls' levels. This study highlights the potential for improved stress hormone balance and psychological well-being in mothers following their child's surgical VSD repair. However, the need for parent-centered interventions is discussed, particularly during peri-operative phases and in early child developmental stages.
Collapse
Affiliation(s)
- Jennifer Gerlach
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Elena S. Decker
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Anne-Christine Plank
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Stefan Mestermann
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Ariawan Purbojo
- Department of Pediatric Cardiac Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Robert A. Cesnjevar
- Department of Pediatric Cardiac Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Pediatric Cardiovascular Surgery, Pediatric Heart Center, University Children’s Hospital, 8032 Zürich, Switzerland
| | - Oliver Kratz
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Anna Eichler
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
4
|
Alexa AI, Zamfir CL, Bogdănici CM, Oancea A, Maștaleru A, Abdulan IM, Brănișteanu DC, Ciobîcă A, Balmuș M, Stratulat-Alexa T, Ciuntu RE, Severin F, Mocanu M, Leon MM. The Impact of Chronic Stress on Behavior and Body Mass in New Animal Models. Brain Sci 2023; 13:1492. [PMID: 37891859 PMCID: PMC10605805 DOI: 10.3390/brainsci13101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Exposure to different sources of stress can have a significant effect on both psychological and physical processes. (2) Methods: The study took place over a period of 34 days and included a total of 40 animals. Regarding the exposure to chronic stressors, we opted for physiological, non-invasive stressors, e.g., running, swimming, and changes in the intensity of light. An unforeseen stress batch was also created that alternated all these stress factors. The animals were divided into five experimental groups, each consisting of eight individuals. In the context of conducting the open field test for behavioral assessment before and after stress exposure, we aimed to investigate the impact of stress exposure on the affective traits of the animals. We also monitored body mass every two days. (3) Results: The control group exhibited an average increase in weight of approximately 30%. The groups exposed to stress factors showed slower growth rates, the lowest being the running group, recording a rate of 20.55%, and the unpredictable stress group at 24.02%. The anxious behavior intensified in the group with unforeseen stress, in the one with light variations, and in the running group. (4) Conclusions: Our research validates the animal model of intermittent light exposure during the dark phase as a novel method of inducing stress. The modification of some anxiety parameters was observed; they vary according to the type of stress. Body mass was found to increase in all groups, especially in the sedentary groups, likely due to the absence of cognitive, spatial, and social stimuli except for cohabitation.
Collapse
Affiliation(s)
- Anisia Iuliana Alexa
- Department of Surgery II, Discipline of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.A.); (C.M.B.); (D.C.B.); (R.E.C.)
| | - Carmen Lăcrămioara Zamfir
- Department of Morpho-Funcțional Sciences I, Discipline of Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Camelia Margareta Bogdănici
- Department of Surgery II, Discipline of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.A.); (C.M.B.); (D.C.B.); (R.E.C.)
| | - Andra Oancea
- Department of Medical Specialties I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.M.); (I.M.A.); (M.M.L.)
| | - Alexandra Maștaleru
- Department of Medical Specialties I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.M.); (I.M.A.); (M.M.L.)
| | - Irina Mihaela Abdulan
- Department of Medical Specialties I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.M.); (I.M.A.); (M.M.L.)
| | - Daniel Constantin Brănișteanu
- Department of Surgery II, Discipline of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.A.); (C.M.B.); (D.C.B.); (R.E.C.)
| | - Alin Ciobîcă
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University Iasi, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, 700506 Iasi, Romania
- Academy of Romanian Scientists, Str Splaiul Independentei no. 54, Sector 5, 050094 Bucharest, Romania
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Miruna Balmuș
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Alexandru Lapusneanu Street, No. 26, 700057 Iasi, Romania;
| | - Teodora Stratulat-Alexa
- Department of Medical Oncology, Discipline of Oncology-Radiation Therapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Roxana Elena Ciuntu
- Department of Surgery II, Discipline of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.A.); (C.M.B.); (D.C.B.); (R.E.C.)
| | - Florentina Severin
- Department of Surgery II, Discipline of Oto Rhino Laryngology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Mădălina Mocanu
- Department of Medical Health III, Discipline of Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria Magdalena Leon
- Department of Medical Specialties I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.M.); (I.M.A.); (M.M.L.)
| |
Collapse
|
5
|
Agorastos A, Mansueto AC, Hager T, Pappi E, Gardikioti A, Stiedl O. Heart Rate Variability as a Translational Dynamic Biomarker of Altered Autonomic Function in Health and Psychiatric Disease. Biomedicines 2023; 11:1591. [PMID: 37371686 DOI: 10.3390/biomedicines11061591] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The autonomic nervous system (ANS) is responsible for the precise regulation of tissue functions and organs and, thus, is crucial for optimal stress reactivity, adaptive responses and health in basic and challenged states (survival). The fine-tuning of central ANS activity relies on the internal central autonomic regulation system of the central autonomic network (CAN), while the peripheral activity relies mainly on the two main and interdependent peripheral ANS tracts, the sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS). In disease, autonomic imbalance is associated with decreased dynamic adaptability and increased morbidity and mortality. Acute or prolonged autonomic dysregulation, as observed in stress-related disorders, affects CAN core centers, thereby altering downstream peripheral ANS function. One of the best established and most widely used non-invasive methods for the quantitative assessment of ANS activity is the computerized analysis of heart rate variability (HRV). HRV, which is determined by different methods from those used to determine the fluctuation of instantaneous heart rate (HR), has been used in many studies as a powerful index of autonomic (re)activity and an indicator of cardiac risk and ageing. Psychiatric patients regularly show altered autonomic function with increased HR, reduced HRV and blunted diurnal/circadian changes compared to the healthy state. The aim of this article is to provide basic knowledge on ANS function and (re)activity assessment and, thus, to support a much broader use of HRV as a valid, transdiagnostic and fully translational dynamic biomarker of stress system sensitivity and vulnerability to stress-related disorders in neuroscience research and clinical psychiatric practice. In particular, we review the functional levels of central and peripheral ANS control, the main neurobiophysiologic theoretical models (e.g., polyvagal theory, neurovisceral integration model), the precise autonomic influence on cardiac function and the definition and main aspects of HRV and its different measures (i.e., time, frequency and nonlinear domains). We also provide recommendations for the proper use of electrocardiogram recordings for HRV assessment in clinical and research settings and highlight pathophysiological, clinical and research implications for a better functional understanding of the neural and molecular mechanisms underlying healthy and malfunctioning brain-heart interactions in individual stress reactivity and psychiatric disorders.
Collapse
Affiliation(s)
- Agorastos Agorastos
- II. Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 56430 Thessaloniki, Greece
| | - Alessandra C Mansueto
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam, 1081 HV Amsterdam, The Netherlands
- Centre for Urban Mental Health, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Torben Hager
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Eleni Pappi
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Angeliki Gardikioti
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Oliver Stiedl
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Health, Safety and Environment, Vrije Universiteit (VU) Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Agorastos A, Chrousos GP. The neuroendocrinology of stress: the stress-related continuum of chronic disease development. Mol Psychiatry 2022; 27:502-513. [PMID: 34290370 DOI: 10.1038/s41380-021-01224-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Stress is defined as a state of threatened homeodynamic balance by a wide range of intrinsic or extrinsic, real or perceived challenges or stimuli, defined as stressors. To preserve this optimal homeodynamic state within a physiologic range, organisms have developed a highly sophisticated system, the stress system, which serves self-regulation and adaptability of the organism by energy redirection according to the current needs. Repeated, ephemeral, and motivating stress states lead to adaptive responses and response habituations, being fairly beneficial; in contrast, inadequate, aversive, excessive, or prolonged stress may surpass the regulatory capacity and adjustive resources of the organism and produce maladaptive responses and a chronically altered homeodynamic state associated with compromised mental and physical health and life expectancy. Neuroendocrine responses to stress depend on developmental timing, duration, time of day and nature of stressors leading to a vulnerable phenotype with disrupted stress reactivity (i.e., hyper- or hypoactivation of the stress system), impaired glucocorticoid signaling, and accumulated cacostatic load with cumulatively elevated long-term risk of mental and physical morbidity. This article offers a brief overview on the organization and physiology of the human stress system and its (re)activity, refreshes the plethora of somatic effects of acute and chronic stress and discusses a conceptual model of acute and chronic stress pathophysiology as a continuum in chronic disease development.
Collapse
Affiliation(s)
- Agorastos Agorastos
- II. Department of Psychiatry, Division of Neurosciences, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece. .,VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, USA.
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
7
|
Ashraf S, Ashraf N, Yilmaz G, Harmancey R. Crosstalk between beta-adrenergic and insulin signaling mediates mechanistic target of rapamycin hyperactivation in liver of high-fat diet-fed male mice. Physiol Rep 2021; 9:e14958. [PMID: 34231324 PMCID: PMC8261682 DOI: 10.14814/phy2.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. While increased nutrient intake and sympathetic activity have been associated with the disease, the pathogenesis of NAFLD remains incompletely understood. We investigated the impact of the interaction of high dietary fat and sugar intake with increased beta-adrenergic receptor (β-AR) signaling on the activity of nutrient-sensing pathways and fuel storage in the liver. C57BL/6J mice were fed a standard rodent diet (STD), a high-fat diet (HFD), a high-fat/high-sugar Western diet (WD), a high-sugar diet with mixed carbohydrates (HCD), or a high-sucrose diet (HSD). After 6 week on diets, mice were treated with isoproterenol (ISO) and the activity of liver mTOR complex 1 (mTORC1)-related signaling analyzed by immunoblotting and correlated with tissue triglyceride and glycogen contents. ISO-stimulated AKT- and ERK-mediated activation of mTORC1 in STD-fed mice. Consumption of all four high-calorie diets exacerbated downstream activation of ribosomal protein S6 kinase beta-1 (S6K1) in response to ISO. S6K1 activity was greater with the fat-enriched HFD and WD and correlated with the presence of metabolic syndrome and a stronger activation of AKT and ERK1/2 pathways. Fat-enriched diets also increased triglyceride accumulation and inhibited glycogen mobilization under β-AR stimulation. In conclusion, crosstalk between β-AR and insulin signaling may contribute to HFD-induced hepatic steatosis through ERK1/2- and AKT-mediated hyperactivation of the mTORC1/S6K1 axis. The findings provide further rationale for the development of therapies aimed at targeting augmented β-AR signaling in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Sadia Ashraf
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
- Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| | | | - Gizem Yilmaz
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
- Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Romain Harmancey
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
- Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| |
Collapse
|
8
|
Liu Q. Effects of Environmental Endocrine-Disrupting Chemicals on Female Reproductive Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:205-229. [PMID: 33523436 DOI: 10.1007/978-981-33-4187-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Environmental endocrine-disrupting chemicals (EDCs) are xenobiotic compounds that are frequently contacted in daily life. With the species and quantity of substances created and utilized by human beings significantly surpassing the self-purification capacity of nature, a large number of hazardous substances are enriched in the human body through the respiratory tract, digestive tract, and skin. Some of these compounds cause many problems endangering female reproductive health by simulating/antagonizing endogenous hormones or affecting the synthesis, metabolism, and bioavailability of endogenous hormones, including reproductive disorders, fetal birth defects, fetal developmental abnormalities, endocrine and metabolic disorders, and even gynecological malignancies. Therefore, the study of the relationship between environmental EDCs and female reproductive diseases and related mechanisms is of considerable significance to women, children health care, and improve the quality of the population.
Collapse
Affiliation(s)
- Qicai Liu
- Center for Reproductive Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
9
|
Agorastos A, Olff M. Traumatic stress and the circadian system: neurobiology, timing and treatment of posttraumatic chronodisruption. Eur J Psychotraumatol 2020; 11:1833644. [PMID: 33408808 PMCID: PMC7747941 DOI: 10.1080/20008198.2020.1833644] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Humans have an evolutionary need for a well-preserved internal 'clock', adjusted to the 24-hour rotation period of our planet. This intrinsic circadian timing system enables the temporal organization of numerous physiologic processes, from gene expression to behaviour. The human circadian system is tightly and bidirectionally interconnected to the human stress system, as both systems regulate each other's activity along the anticipated diurnal challenges. The understanding of the temporal relationship between stressors and stress responses is critical in the molecular pathophysiology of stress-and trauma-related diseases, such as posttraumatic stress disorder (PTSD). Objectives/Methods: In this narrative review, we present the functional components of the stress and circadian system and their multilevel interactions and discuss how traumatic stress can affect the harmonious interplay between the two systems. Results: Circadian dysregulation after trauma exposure (posttraumatic chronodisruption) may represent a core feature of trauma-related disorders mediating enduring neurobiological correlates of traumatic stress through a loss of the temporal order at different organizational levels. Posttraumatic chronodisruption may, thus, affect fundamental properties of neuroendocrine, immune and autonomic systems, leading to a breakdown of biobehavioral adaptive mechanisms with increased stress sensitivity and vulnerability. Given that many traumatic events occur in the late evening or night hours, we also describe how the time of day of trauma exposure can differentially affect the stress system and, finally, discuss potential chronotherapeutic interventions. Conclusion: Understanding the stress-related mechanisms susceptible to chronodisruption and their role in PTSD could deliver new insights into stress pathophysiology, provide better psychochronobiological treatment alternatives and enhance preventive strategies in stress-exposed populations.
Collapse
Affiliation(s)
- Agorastos Agorastos
- II. Department of Psychiatry, Division of Neurosciences, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, USA
| | - Miranda Olff
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.,ARQ Psychotrauma Expert Group, Diemen, The Netherlands
| |
Collapse
|
10
|
Keenan DM, Pichler Hefti J, Veldhuis JD, Von Wolff M. Regulation and adaptation of endocrine axes at high altitude. Am J Physiol Endocrinol Metab 2020; 318:E297-E309. [PMID: 31770013 DOI: 10.1152/ajpendo.00243.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a model of extreme conditions, eight healthy women, part of a 40-member Nepal mountain-climbing expedition, were monitored for dynamic endocrine adaptations. Endocrine measurements were made at frequent intervals over a 6-10-h period at four altitudes: 450 m, 4,800 m (base camp), 6,050 m, and again at 4,800 m (on descent) after an acclimatization (A) period (4,800 mA). Quantified hormones were growth hormone (GH), prolactin (PROL), cortisol (Cort), thyroid-stimulating hormone (TSH), and free thyroxine. These hormones are important to the anabolic/catabolic balance of the body, and are vital to growth, homeostasis, hypothalamic inhibition, regulation of stress, and metabolism. A key secondary question was the degree to which acclimatization can stabilize hormonal disruption. On the basis of statistical false discovery rates, the present analyses unveil marked adaptive changes in the thyroid axis at the level of pulsatile secretion of the pituitary hormone TSH and its downstream product, free thyroxine; strong effects on the mass of GH, TSH, Cort, and PROL secretion per burst; and prominent pulsatile frequency disruption and recovery for PROL and Cort. Because pulsatility changes reflect de facto perturbations in hypothalamo-pituitary control mechanisms, the present data introduce the concept of both frequency- and amplitude-dependent adaptive control of brain-pituitary neuroendocrine signals under conditions of extreme altitude exertion and exposure.
Collapse
Affiliation(s)
- Daniel M Keenan
- Department of Statistics, University of Virginia, Charlottesville, Virginia
| | - Jacqueline Pichler Hefti
- Department of Pulmonary Medicine, University Hospital and University of Berne, Inselspital, Berne, Switzerland
| | - Johannes D Veldhuis
- Department of Medicine, Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Michael Von Wolff
- Women's University Hospital, Department of Gynecological endocrinology and Reproductive Medicine, Berne, Switzerland
| |
Collapse
|
11
|
Chu C, Hammock EAD, Joiner TE. Unextracted plasma oxytocin levels decrease following in-laboratory social exclusion in young adults with a suicide attempt history. J Psychiatr Res 2020; 121:173-181. [PMID: 31835187 PMCID: PMC6939138 DOI: 10.1016/j.jpsychires.2019.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/01/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Social exclusion is associated with greater suicide risk and more needs to be known about the biological processes contributing to this association. Oxytocin, a neuropeptide that regulates social interactions, may protect against the negative effects of exclusion by motivating social engagement. Oxytocin levels and desire for social engagement increase when non-psychiatric controls experience acute social exclusion. However, among individuals with borderline personality disorder and chronic depression, oxytocin levels decrease following exclusion. Both of these psychiatric illnesses are associated with high rates of suicidal behavior. No research has examined changes in oxytocin following social exclusion among individuals at risk for suicide. This quasi-experimental study examined differences in oxytocin levels and perceptions of social connectedness following an in-laboratory, acute social exclusion task among (a) individuals with no depression or suicide attempt histories, (b) individuals with current depression symptoms, and (c) individuals with current depression symptoms and suicide attempt histories. Young adults (N = 100) completed self-report measures and provided blood samples before and after an acute social exclusion task (Cyberball). Oxytocin was quantified via enzyme-linked immunosorbent assay. Mixed-design ANCOVAs were used to evaluate changes in unextracted and extracted oxytocin levels, desire for emotional support, thwarted belongingness, and perceived burdensomeness. Among suicide attempters, unextracted oxytocin levels decreased and desire for emotional support did not significantly change following exclusion. Among depressed and healthy controls, desire for emotional support increased and unextracted oxytocin levels did not significantly change. No significant changes in extracted oxytocin levels, thwarted belongingness and perceived burdensomeness emerged. Further research is needed to determine if dysregulated oxytocin-related processes biologically predispose individuals with suicide attempt histories to greater social disconnection and suicide risk.
Collapse
Affiliation(s)
- Carol Chu
- Department of Psychology, Harvard University, Cambridge, MA, USA.
| | | | - Thomas E Joiner
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
12
|
Guest PC. Multiplex Analysis of Circulating Hormone Levels in Rat Models of Age-Related Diseases. Methods Mol Biol 2020; 2138:381-389. [PMID: 32219765 DOI: 10.1007/978-1-0716-0471-7_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This chapter describes the application of multiplex immunoassay of hormones which are known to be present at different levels during aging and may therefore be precipitous in age-related diseases. As an example, we have analyzed serum from 12-week-old rats using multiplexes for the hormones insulin, leptin, growth hormone, corticosterone, and testosterone, which have been implicated in sarcopenia. The same technique can be used in the investigation of other sarcopenia biomarkers as well as in other disease cases involving both clinical and preclinical biomarker studies.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
13
|
Qin X, Li Q, Chen W, Bai Y, Baban B, Mao J. The circadian expression of osteogenic factors in periodontal tissue loading mechanical force: new concepts of the personalized orthodontic care. EPMA J 2019; 10:13-20. [PMID: 30984310 DOI: 10.1007/s13167-019-0161-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
Abstract
Objective The need for orthodontic treatment continues to increase. Strategies that shorten the treatment course and reduce discomfort are most welcome in clinic. Circadian rhythm plays important role in various physiological processes, including bone formation. This study intended to depict a possible circadian releasing property of the osteogenic factors within the periodontal tissue during orthodontic treatment, which may direct a more efficient and satisfactory orthodontic treatment to the patient. Methods Primary periodontal ligament cells (PDLCs) were obtained from the Sprague-Dawley (SD) rats. An equibiaxial strain value of 12% was applied on rat PDLCs (rPDLCs). After 2 h stimuli of 10-7 M dexamethasone (DX), the osteogenic genes' expressions were detected by real-time polymerase chain reaction (RT-PCR) at Zeitgeber times 0, 4, 8, 12, 16, 20, and 24. An orthodontic appliance was placed on 45 SD rats. Animals were maintained under 12-h light/dark periods and euthanized at 9 time points over the diurnal cycle. The orthodontic sensitive tissues of the mesial root of the maxillary first molar were collected for RT-PCR and immunohistological assay. Results The rPDLCs displayed typical fibroblastic spindle shape, and subcultured steadily in vitro. Induced by DX, the mRNA expression of Col-1, OPN, and IBSP within the loaded/unloaded rPDLCs oscillated as that of the main clock gene Per-1. The osteogenic genes' expressions as well as the protein releases sustained a circadian oscillation trend in vivo. Conclusions This study indicates the existence of a circadian rhythm of the osteogenic factors within the orthodontic sensitive tissues, which highlights the importance of precise timing of force loading in further orthodontic treatment. Thus, a periodicity pattern of orthodontic traction at night may prove a more efficient tooth movement while minimizing the treatment window and discomfort complains.
Collapse
Affiliation(s)
- Xu Qin
- 1Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Qiaokou District, Wuhan, 430030 Hubei China
| | - Qilin Li
- 1Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Qiaokou District, Wuhan, 430030 Hubei China
| | - Weimin Chen
- 1Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Qiaokou District, Wuhan, 430030 Hubei China
| | - Yumin Bai
- 1Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Qiaokou District, Wuhan, 430030 Hubei China.,2School of Stomatology, Fujian Medical University, Fuzhou, Fujian China
| | - Babak Baban
- 3Department of Oral Biology, College of Dental Medicine, Augusta University, Augusta, GA USA
| | - Jing Mao
- 1Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Qiaokou District, Wuhan, 430030 Hubei China
| |
Collapse
|
14
|
Suszka‐Świtek A, Pałasz A, Filipczyk Ł, Menezes IC, Mordecka‐Chamera K, Angelone T, Bogus K, Bacopoulou F, Worthington JJ, Wiaderkiewicz R. The Gn
RH
analogues affect novel neuropeptide
SMIM
20/phoenixin and
GPR
173 receptor expressions in the female rat hypothalamic–pituitary–gonadal (
HPG
) axis. Clin Exp Pharmacol Physiol 2019; 46:350-359. [DOI: 10.1111/1440-1681.13061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/21/2018] [Accepted: 12/28/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Aleksandra Suszka‐Świtek
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Artur Pałasz
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Łukasz Filipczyk
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Itiana Castro Menezes
- Department of Neurosciences and Behaviour Faculty of Medicine University of São Paulo São Paulo Brazil
| | - Kinga Mordecka‐Chamera
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiac Physiology Department of Biology, Ecology and Earth Sciences University of Calabria Arcavacata di Rende Italy
| | - Katarzyna Bogus
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care First Department of Pediatrics School of Medicine National and Kapodistrian University of Athens ‘Aghia Sophia’ Children's Hospital Athens Greece
| | - John J. Worthington
- Division of Biomedical and Life Sciences Faculty of Health and Medicine Lancaster University Lancaster UK
| | - Ryszard Wiaderkiewicz
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| |
Collapse
|
15
|
Agorastos A, Pervanidou P, Chrousos GP, Baker DG. Developmental Trajectories of Early Life Stress and Trauma: A Narrative Review on Neurobiological Aspects Beyond Stress System Dysregulation. Front Psychiatry 2019; 10:118. [PMID: 30914979 PMCID: PMC6421311 DOI: 10.3389/fpsyt.2019.00118] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Early life stressors display a high universal prevalence and constitute a major public health problem. Prolonged psychoneurobiological alterations as sequelae of early life stress (ELS) could represent a developmental risk factor and mediate risk for disease, leading to higher physical and mental morbidity rates in later life. ELS could exert a programming effect on sensitive neuronal brain networks related to the stress response during critical periods of development and thus lead to enduring hyper- or hypo-activation of the stress system and altered glucocorticoid signaling. In addition, alterations in emotional and autonomic reactivity, circadian rhythm disruption, functional and structural changes in the brain, as well as immune and metabolic dysregulation have been lately identified as important risk factors for a chronically impaired homeostatic balance after ELS. Furthermore, human genetic background and epigenetic modifications through stress-related gene expression could interact with these alterations and explain inter-individual variation in vulnerability or resilience to stress. This narrative review presents relevant evidence from mainly human research on the ten most acknowledged neurobiological allostatic pathways exerting enduring adverse effects of ELS even decades later (hypothalamic-pituitary-adrenal axis, autonomic nervous system, immune system and inflammation, oxidative stress, cardiovascular system, gut microbiome, sleep and circadian system, genetics, epigenetics, structural, and functional brain correlates). Although most findings back a causal relation between ELS and psychobiological maladjustment in later life, the precise developmental trajectories and their temporal coincidence has not been elucidated as yet. Future studies should prospectively investigate putative mediators and their temporal sequence, while considering the potentially delayed time-frame for their phenotypical expression. Better screening strategies for ELS are needed for a better individual prevention and treatment.
Collapse
Affiliation(s)
- Agorastos Agorastos
- II. Department of Psychiatry, Division of Neurosciences, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dewleen G Baker
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,VA Center of Excellence for Stress and Mental Health, San Diego, La Jolla, CA, United States
| |
Collapse
|
16
|
Agorastos A, Nicolaides NC, Bozikas VP, Chrousos GP, Pervanidou P. Multilevel Interactions of Stress and Circadian System: Implications for Traumatic Stress. Front Psychiatry 2019; 10:1003. [PMID: 32047446 PMCID: PMC6997541 DOI: 10.3389/fpsyt.2019.01003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The dramatic fluctuations in energy demands by the rhythmic succession of night and day on our planet has prompted a geophysical evolutionary need for biological temporal organization across phylogeny. The intrinsic circadian timing system (CS) represents a highly conserved and sophisticated internal "clock," adjusted to the 24-h rotation period of the earth, enabling a nyctohemeral coordination of numerous physiologic processes, from gene expression to behavior. The human CS is tightly and bidirectionally interconnected to the stress system (SS). Both systems are fundamental for survival and regulate each other's activity in order to prepare the organism for the anticipated cyclic challenges. Thereby, the understanding of the temporal relationship between stressors and stress responses is critical for the comprehension of the molecular basis of physiology and pathogenesis of disease. A critical loss of the harmonious timed order at different organizational levels may affect the fundamental properties of neuroendocrine, immune, and autonomic systems, leading to a breakdown of biobehavioral adaptative mechanisms with increased stress sensitivity and vulnerability. In this review, following an overview of the functional components of the SS and CS, we present their multilevel interactions and discuss how traumatic stress can alter the interplay between the two systems. Circadian dysregulation after traumatic stress exposure may represent a core feature of trauma-related disorders mediating enduring neurobiological correlates of trauma through maladaptive stress regulation. Understanding the mechanisms susceptible to circadian dysregulation and their role in stress-related disorders could provide new insights into disease mechanisms, advancing psychochronobiological treatment possibilities and preventive strategies in stress-exposed populations.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, United States
| | - Nicolas C Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vasilios P Bozikas
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George P Chrousos
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Panagiota Pervanidou
- Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
17
|
Agorastos A, Pervanidou P, Chrousos GP, Kolaitis G. Early life stress and trauma: developmental neuroendocrine aspects of prolonged stress system dysregulation. Hormones (Athens) 2018; 17:507-520. [PMID: 30280316 DOI: 10.1007/s42000-018-0065-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Experience of early life stress (ELS) and trauma is highly prevalent in the general population and has a high public health impact, as it can trigger a health-related risk cascade and lead to impaired homeostatic balance and elevated cacostatic load even decades later. The prolonged neuropsychobiological impact of ELS can, thus, be conceptualized as a common developmental risk factor for disease associated with increased physical and mental morbidity in later life. ELS during critical periods of brain development with elevated neuroplasticity could exert a programming effect on particular neuronal networks related to the stress response and lead to enduring neuroendocrine alterations, i.e., hyper- or hypoactivation of the stress system, associated with adult hypothalamic-pituitary-adrenal axis and glucocorticoid signaling dysregulation. This paper reviews the pathophysiology of the human stress response and provides evidence from human research on the most acknowledged stress axis-related neuroendocrine pathways exerting the enduring adverse effects of ELS and mediating the cumulative long-term risk of disease vulnerability in adulthood.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry, Division of Neurosciences, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- Thessaloniki General Hospital "G. Papanicolaou", Psychiatric Hospital of Thessaloniki, Lagkada Str. 196, Stavroupoli, 56430, Thessaloniki, Greece.
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Kolaitis
- Department of Child Psychiatry, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
de Castro Barbosa T, Salgueiro RB, Serrano-Nascimento C, Amaral FG, Cipolla-Neto J, Nunes MT. Molecular basis of growth hormone daily mRNA and protein synthesis in rats. Life Sci 2018; 207:36-41. [PMID: 29842863 DOI: 10.1016/j.lfs.2018.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 05/25/2018] [Indexed: 10/16/2022]
Abstract
AIMS Daily and seasonal rhythms coordinate the endocrine and metabolic functions. The pituitary gland is the master regulator of several endocrine activities, and its function is classically regulated by endocrine signals from its target glands as well as from the hypothalamus. The growth hormone (GH) produced and secreted by the anterior pituitary presents a pulsatile secretion throughout the 24-hour cycle. However, the molecular mechanisms regulating the daily pattern of GH secretion are still unclear. Herein we investigated whether circadian GH mRNA and protein synthesis is modulated by acute adjustments in the stability and expression of GH mRNA. MAIN METHODS GH mRNA and protein content were evaluated by real-time PCR and Western blotting, respectively, in pituitary gland of rats euthanized every 3 h during a 24-h period at the Zeitgeber times (ZT3 to ZT24). The GH mRNA poly(A) tail length was determined by RACE-PAT assay. KEY FINDINGS We identified two main peaks of GH mRNA level in the pituitary gland of rats; one in the middle of the light-cycle and another in the middle of the dark-cycle. The latter was associated with an increase in pituitary GH protein content. Interestingly, an increment in the poly(A) tail length of the GH transcript was observed in association to reduced migration rate of the GH transcript and increased mRNA content in the dark-cycle period. SIGNIFICANCE Our findings provide evidence that changes in the GH mRNA poly(A) length may underlie the circadian pattern of GH mRNA and protein levels in the pituitary gland of rats.
Collapse
Affiliation(s)
- T de Castro Barbosa
- Karolinska Institutet, Department of Medicine H7, Huddinge, Sweden; University of Sao Paulo, Department of Physiology and Biophysics, Sao Paulo, Brazil.
| | - R B Salgueiro
- University of Sao Paulo, Department of Physiology and Biophysics, Sao Paulo, Brazil
| | - C Serrano-Nascimento
- University of Sao Paulo, Department of Physiology and Biophysics, Sao Paulo, Brazil; Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - F G Amaral
- University of Sao Paulo, Department of Physiology and Biophysics, Sao Paulo, Brazil; Federal University of Sao Paulo, Department of Physiology, Sao Paulo, Brazil
| | - J Cipolla-Neto
- University of Sao Paulo, Department of Physiology and Biophysics, Sao Paulo, Brazil
| | - M T Nunes
- University of Sao Paulo, Department of Physiology and Biophysics, Sao Paulo, Brazil
| |
Collapse
|
19
|
Reiter E, Ayoub MA, Pellissier LP, Landomiel F, Musnier A, Tréfier A, Gandia J, De Pascali F, Tahir S, Yvinec R, Bruneau G, Poupon A, Crépieux P. β-arrestin signalling and bias in hormone-responsive GPCRs. Mol Cell Endocrinol 2017; 449:28-41. [PMID: 28174117 DOI: 10.1016/j.mce.2017.01.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) play crucial roles in the ability of target organs to respond to hormonal cues. GPCRs' activation mechanisms have long been considered as a two-state process connecting the agonist-bound receptor to heterotrimeric G proteins. This view is now challenged as mounting evidence point to GPCRs being connected to large arrays of transduction mechanisms involving heterotrimeric G proteins as well as other players. Amongst the G protein-independent transduction mechanisms, those elicited by β-arrestins upon their recruitment to the active receptors are by far the best characterized and apply to most GPCRs. These concepts, in conjunction with remarkable advances made in the field of GPCR structural biology and biophysics, have supported the notion of ligand-selective signalling also known as pharmacological bias. Interestingly, recent reports have opened intriguing prospects to the way β-arrestins control GPCR-mediated signalling in space and time within the cells. In the present paper, we review the existing evidence linking endocrine-related GPCRs to β-arrestin recruitement, signalling, pathophysiological implications and selective activation by biased ligands and/or receptor modifications. Emerging concepts surrounding β-arrestin-mediated transduction are discussed in the light of the peculiarities of endocrine systems.
Collapse
Affiliation(s)
- Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Mohammed Akli Ayoub
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, 45000, Orléans, France; Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Flavie Landomiel
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Astrid Musnier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Aurélie Tréfier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Jorge Gandia
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Shifa Tahir
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Romain Yvinec
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Gilles Bruneau
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Anne Poupon
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Pascale Crépieux
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
20
|
Birkebaek NH, Hougaard DM, Cohen AS. Monitoring steroid replacement therapy in children with congenital adrenal hyperplasia. J Pediatr Endocrinol Metab 2017; 30:85-88. [PMID: 27977405 DOI: 10.1515/jpem-2016-0203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 11/03/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND The objective of this study was to compare the analysis of 17-hydroxyprogesterone (17-OHP) by radio-immunoassay (RIA) in serum with analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) on dried blood spot samples (DBSS) for monitoring therapy in children with congenital adrenal hyperplasia (CAH), and to investigate differences in 17-OHP values during the day. METHODS Fourteen children (8 females), median age 4.2 (0.3-16.0) years, were studied. Serum samples and DBSS were drawn before hydrocortisone dosing. RESULTS 17-OHP by LC-MS/MS in DBSS were highly correlated to 17-OHP by RIA in serum, r=0.956, p<0.01. A total of 26 three-time-point series were investigated. Using only the afternoon 17-OHP values to determine the hydrocortisone doses would have led to overdosing seven times and underdosing six times. CONCLUSIONS Good agreement was demonstrated between 17-OHP determination by RIA in serum and LC-MS/MS on DBSS. Multiple 17-OHP measurements per day are required to ensure sufficient hydrocortisone dose adjustment.
Collapse
|
21
|
Agorastos A, Linthorst ACE. Potential pleiotropic beneficial effects of adjuvant melatonergic treatment in posttraumatic stress disorder. J Pineal Res 2016; 61:3-26. [PMID: 27061919 DOI: 10.1111/jpi.12330] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Loss of circadian rhythmicity fundamentally affects the neuroendocrine, immune, and autonomic system, similar to chronic stress and may play a central role in the development of stress-related disorders. Recent articles have focused on the role of sleep and circadian disruption in the pathophysiology of posttraumatic stress disorder (PTSD), suggesting that chronodisruption plays a causal role in PTSD development. Direct and indirect human and animal PTSD research suggests circadian system-linked neuroendocrine, immune, metabolic and autonomic dysregulation, linking circadian misalignment to PTSD pathophysiology. Recent experimental findings also support a specific role of the fundamental synchronizing pineal hormone melatonin in mechanisms of sleep, cognition and memory, metabolism, pain, neuroimmunomodulation, stress endocrinology and physiology, circadian gene expression, oxidative stress and epigenetics, all processes affected in PTSD. In the current paper, we review available literature underpinning a potentially beneficiary role of an add-on melatonergic treatment in PTSD pathophysiology and PTSD-related symptoms. The literature is presented as a narrative review, providing an overview on the most important and clinically relevant publications. We conclude that adjuvant melatonergic treatment could provide a potentially promising treatment strategy in the management of PTSD and especially PTSD-related syndromes and comorbidities. Rigorous preclinical and clinical studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry and Psychotherapy, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Astrid C E Linthorst
- Faculty of Health Sciences, Neurobiology of Stress and Behaviour Research Group, School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
22
|
Abstract
Sleep and its disorders are known to affect the functions of essential organs and systems in the body. However, very little is known about how the blood-brain barrier (BBB) is regulated. A few years ago, we launched a project to determine the impact of sleep fragmentation and chronic sleep restriction on BBB functions, including permeability to fluorescent tracers, tight junction protein expression and distribution, glucose and other solute transporter activities, and mediation of cellular mechanisms. Recent publications and relevant literature allow us to summarize here the sleep-BBB interactions in five sections: (1) the structural basis enabling the BBB to serve as a huge regulatory interface; (2) BBB transport and permeation of substances participating in sleep-wake regulation; (3) the circadian rhythm of BBB function; (4) the effect of experimental sleep disruption maneuvers on BBB activities, including regional heterogeneity, possible threshold effect, and reversibility; and (5) implications of sleep disruption-induced BBB dysfunction in neurodegeneration and CNS autoimmune diseases. After reading the review, the general audience should be convinced that the BBB is an important mediating interface for sleep-wake regulation and a crucial relay station of mind-body crosstalk. The pharmaceutical industry should take into consideration that sleep disruption alters the pharmacokinetics of BBB permeation and CNS drug delivery, being attentive to the chrono timing and activation of co-transporters in subjects with sleep disorders.
Collapse
Affiliation(s)
- Weihong Pan
- 1 Biopotentials Sleep Center, Baton Rouge, LA 70809
| | - Abba J Kastin
- 2 Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
23
|
Lewis AL, Jordan F, Patel T, Jeffery K, King G, Savage M, Shalet S, Illum L. Intranasal Human Growth Hormone (hGH) Induces IGF-1 Levels Comparable With Subcutaneous Injection With Lower Systemic Exposure to hGH in Healthy Volunteers. J Clin Endocrinol Metab 2015; 100:4364-71. [PMID: 26425883 PMCID: PMC4702464 DOI: 10.1210/jc.2014-4146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CONTEXT The development of an improved, efficacious human GH (hGH) product administered by a noninjectable route of delivery such as the nasal route is highly desirable. We have developed a novel nasal hGH product (CP024) that showed excellent nasal absorption in animal models; however, the translation of these results into the clinical setting is essential because past attempts to develop such formulations by other groups have been unable to induce IGF-1 in man. OBJECTIVE The objective of the study was to assess the pharmacokinetics, pharmacodynamics, and tolerability of CP024 compared with a sc hGH injection. DESIGN This was a single-center, nonrandomized placebo-controlled, open-label, five-way crossover study in eight healthy volunteers. SETTING The study was carried out at a contract research organization, Quotient Bioresearch. VOLUNTEERS Eight healthy male volunteers, given an iv infusion of octreotide to suppress the endogenous GH secretion during the study period, participated in the study. No volunteers were withdrawn due to side effects. MAIN OUTCOME MEASURES Measurement of hGH and IGF-1 levels and tolerability of the drug product was performed. RESULTS No serious adverse events were reported and no subjects withdrawn from study due to the treatment. After the nasal administration of CP024, 3-fold higher hGH blood levels were obtained as compared with hGH nasal control. The relative bioavailability was about 3%. CP024 (given twice daily) induced a significant increase in IGF-1 levels up to 19 hours after administration, with no significant difference to those obtained after the sc injection of hGH. CONCLUSIONS The study indicates that CP024 is a promising candidate for an efficacious nasal product for the treatment of GH deficiency due to induction of IGF-1 similar to that after a sc injection, despite the lower plasma hGH concentration obtained. A dose-response study is needed to evaluate the optimal nasal dose.
Collapse
Affiliation(s)
- Andrew L Lewis
- Critical Pharmaceuticals Ltd (A.L.L., F.J., T.P., K.J., G.K., L.I.), BioCity Nottingham, Nottingham NG1 1GF, United Kingdom; Department of Endocrinology (M.S.), William Harvey Research Institute, Barts and the Royal London School of Medicine and Dentistry, London E1 1BB, United Kingdom; and Department of Endocrinology (S.S.), Christie Hospital, Manchester M20 4BX, United Kingdom
| | - Faron Jordan
- Critical Pharmaceuticals Ltd (A.L.L., F.J., T.P., K.J., G.K., L.I.), BioCity Nottingham, Nottingham NG1 1GF, United Kingdom; Department of Endocrinology (M.S.), William Harvey Research Institute, Barts and the Royal London School of Medicine and Dentistry, London E1 1BB, United Kingdom; and Department of Endocrinology (S.S.), Christie Hospital, Manchester M20 4BX, United Kingdom
| | - Tina Patel
- Critical Pharmaceuticals Ltd (A.L.L., F.J., T.P., K.J., G.K., L.I.), BioCity Nottingham, Nottingham NG1 1GF, United Kingdom; Department of Endocrinology (M.S.), William Harvey Research Institute, Barts and the Royal London School of Medicine and Dentistry, London E1 1BB, United Kingdom; and Department of Endocrinology (S.S.), Christie Hospital, Manchester M20 4BX, United Kingdom
| | - Kirk Jeffery
- Critical Pharmaceuticals Ltd (A.L.L., F.J., T.P., K.J., G.K., L.I.), BioCity Nottingham, Nottingham NG1 1GF, United Kingdom; Department of Endocrinology (M.S.), William Harvey Research Institute, Barts and the Royal London School of Medicine and Dentistry, London E1 1BB, United Kingdom; and Department of Endocrinology (S.S.), Christie Hospital, Manchester M20 4BX, United Kingdom
| | - Gareth King
- Critical Pharmaceuticals Ltd (A.L.L., F.J., T.P., K.J., G.K., L.I.), BioCity Nottingham, Nottingham NG1 1GF, United Kingdom; Department of Endocrinology (M.S.), William Harvey Research Institute, Barts and the Royal London School of Medicine and Dentistry, London E1 1BB, United Kingdom; and Department of Endocrinology (S.S.), Christie Hospital, Manchester M20 4BX, United Kingdom
| | - Martin Savage
- Critical Pharmaceuticals Ltd (A.L.L., F.J., T.P., K.J., G.K., L.I.), BioCity Nottingham, Nottingham NG1 1GF, United Kingdom; Department of Endocrinology (M.S.), William Harvey Research Institute, Barts and the Royal London School of Medicine and Dentistry, London E1 1BB, United Kingdom; and Department of Endocrinology (S.S.), Christie Hospital, Manchester M20 4BX, United Kingdom
| | - Stephen Shalet
- Critical Pharmaceuticals Ltd (A.L.L., F.J., T.P., K.J., G.K., L.I.), BioCity Nottingham, Nottingham NG1 1GF, United Kingdom; Department of Endocrinology (M.S.), William Harvey Research Institute, Barts and the Royal London School of Medicine and Dentistry, London E1 1BB, United Kingdom; and Department of Endocrinology (S.S.), Christie Hospital, Manchester M20 4BX, United Kingdom
| | - Lisbeth Illum
- Critical Pharmaceuticals Ltd (A.L.L., F.J., T.P., K.J., G.K., L.I.), BioCity Nottingham, Nottingham NG1 1GF, United Kingdom; Department of Endocrinology (M.S.), William Harvey Research Institute, Barts and the Royal London School of Medicine and Dentistry, London E1 1BB, United Kingdom; and Department of Endocrinology (S.S.), Christie Hospital, Manchester M20 4BX, United Kingdom
| |
Collapse
|
24
|
Abstract
Sleep and wake are fundamental behavioral states whose molecular regulation remains mysterious. Brain states and body functions change dramatically between sleep and wake, are regulated by circadian and homeostatic processes, and depend on the nutritional and emotional condition of the animal. Sleep-wake transitions require the coordination of several brain regions and engage multiple neurochemical systems, including neuropeptides. Neuropeptides serve two main functions in sleep-wake regulation. First, they represent physiological states such as energy level or stress in response to environmental and internal stimuli. Second, neuropeptides excite or inhibit their target neurons to induce, stabilize, or switch between sleep-wake states. Thus, neuropeptides integrate physiological subsystems such as circadian time, previous neuron usage, energy homeostasis, and stress and growth status to generate appropriate sleep-wake behaviors. We review the roles of more than 20 neuropeptides in sleep and wake to lay the foundation for future studies uncovering the mechanisms that underlie the initiation, maintenance, and exit of sleep and wake states.
Collapse
Affiliation(s)
- Constance Richter
- Department of Molecular and Cellular Biology, Center for Brain Science, Division of Sleep Biology, Harvard University, Cambridge, Massachusetts 02138; ,
| | | | | |
Collapse
|
25
|
Hammock EAD. Developmental perspectives on oxytocin and vasopressin. Neuropsychopharmacology 2015; 40:24-42. [PMID: 24863032 PMCID: PMC4262889 DOI: 10.1038/npp.2014.120] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/08/2022]
Abstract
The related neuropeptides oxytocin and vasopressin are involved in species-typical behavior, including social recognition behavior, maternal behavior, social bonding, communication, and aggression. A wealth of evidence from animal models demonstrates significant modulation of adult social behavior by both of these neuropeptides and their receptors. Over the last decade, there has been a flood of studies in humans also implicating a role for these neuropeptides in human social behavior. Despite popular assumptions that oxytocin is a molecule of social bonding in the infant brain, less mechanistic research emphasis has been placed on the potential role of these neuropeptides in the developmental emergence of the neural substrates of behavior. This review summarizes what is known and assumed about the developmental influence of these neuropeptides and outlines the important unanswered questions and testable hypotheses. There is tremendous translational need to understand the functions of these neuropeptides in mammalian experience-dependent development of the social brain. The activity of oxytocin and vasopressin during development should inform our understanding of individual, sex, and species differences in social behavior later in life.
Collapse
Affiliation(s)
- Elizabeth A D Hammock
- Vanderbilt Kennedy Center and Department of Pediatrics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
26
|
Nunemaker CS, Satin LS. Episodic hormone secretion: a comparison of the basis of pulsatile secretion of insulin and GnRH. Endocrine 2014; 47:49-63. [PMID: 24610206 PMCID: PMC4382805 DOI: 10.1007/s12020-014-0212-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/13/2014] [Indexed: 01/01/2023]
Abstract
Rhythms govern many endocrine functions. Examples of such rhythmic systems include the insulin-secreting pancreatic beta-cell, which regulates blood glucose, and the gonadotropin-releasing hormone (GnRH) neuron, which governs reproductive function. Although serving very different functions within the body, these cell types share many important features. Both GnRH neurons and beta-cells, for instance, are hypothesized to generate at least two rhythms endogenously: (1) a burst firing electrical rhythm and (2) a slower rhythm involving metabolic or other intracellular processes. This review discusses the importance of hormone rhythms to both physiology and disease and compares and contrasts the rhythms generated by each system.
Collapse
Affiliation(s)
- Craig S. Nunemaker
- Division of Endocrinology and Metabolism, Department of, Medicine, University of Virginia, P.O. Box 801413, Charlottesville, VA 22901, USA,
| | - Leslie S. Satin
- Pharmacology Department, University of Michigan Medical School, 5128 Brehm Tower, Ann Arbor, MI 48105, USA
- Brehm Diabetes Research Center, University of Michigan, Medical School, 5128 Brehm Tower, Ann Arbor, MI 48105, USA
| |
Collapse
|
27
|
Escribano BM, Moreno A, Tasset I, Túnez I. Impact of light/dark cycle patterns on oxidative stress in an adriamycin-induced nephropathy model in rats. PLoS One 2014; 9:e97713. [PMID: 24852173 PMCID: PMC4031229 DOI: 10.1371/journal.pone.0097713] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/23/2014] [Indexed: 01/24/2023] Open
Abstract
The principal goal of this study was to determine the effect of the photoperiod on oxidative damage biomarkers in rats submitted to different light/darkness patterns, in a hyperlipidemic nephropathy model (induced by adriamycin), as well as its possible relationship with melatonin and leptin secretion rhythms. To test this hypothesis, six different groups were used (N = 6 rats per group): control (12 h/12h light:dark); exposure to permanent illumination (24 h light); exposure to darkness (22 h dark); injected with adriamycin, 12h/12h light:dark; injected with adriamycin + exposure to permanent illumination and injected with adriamycin + exposure to darkness (22 h dark). The different photoperiods were begun two weeks prior to medication and were maintained up to the day of the animal's sacrifice, ten days after medication. The following parameters were analysed: i) weight evolution; ii) in plasma: urea, creatinine, uric acid, total proteins, albumen, lactate dehydrogenase, creatinine-quinase, aspartate aminotransferase, alanine aminotransferase and total cholesterol; iii) in urine: urea, creatinine, total proteins and microalbumen; iv) biomarkers of oxidative damage in kidneys, heart, liver and brain: lipoperoxides, total glutathione, reduced glutathione, catalase, glutathione peroxidase, glutathione reductase and glutathione transferase; v) melatonin (pineal gland tissue and plasma) and leptin (plasma). From the results obtained it was concluded that the administration of adriamycin generated oxidative stress in renal, cerebral, hepatic and cardiac tissue. Additionally, in the healthy animal, but of a lesser relevance in the adriamycin animal, permanent light worsened the oxidative stress, whereas darkness improved it. This could be related to the circadian rhythm of the inverse release shown by melatonin and leptin, accentuating the release of melatonin in the darkness phase and that of leptin in the light phase. The correlation between melatonin and leptin in the healthy animal seemed to confirm the relationship between both variables and their influence on oxidative damage biomarkers.
Collapse
Affiliation(s)
- Begoña M. Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, Córdoba University, Córdoba, Spain
| | - Antonia Moreno
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba University, Córdoba, Spain
| | - Inmaculada Tasset
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba University, Córdoba, Spain
| | - Isaac Túnez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba University, Córdoba, Spain
- * E-mail:
| |
Collapse
|
28
|
Zelinski EL, Deibel SH, McDonald RJ. The trouble with circadian clock dysfunction: multiple deleterious effects on the brain and body. Neurosci Biobehav Rev 2014; 40:80-101. [PMID: 24468109 DOI: 10.1016/j.neubiorev.2014.01.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 01/07/2014] [Accepted: 01/16/2014] [Indexed: 02/08/2023]
Abstract
This review consolidates research employing human correlational and experimental work across brain and body with experimental animal models to provide a more complete representation of how circadian rhythms influence almost all aspects of life. In doing so, we will cover the morphological and biochemical pathways responsible for rhythm generation as well as interactions between these systems and others (e.g., stress, feeding, reproduction). The effects of circadian disruption on the health of humans, including time of day effects, cognitive sequelae, dementia, Alzheimer's disease, diet, obesity, food preferences, mood disorders, and cancer will also be discussed. Subsequently, experimental support for these largely correlational human studies conducted in non-human animal models will be described.
Collapse
Affiliation(s)
- Erin L Zelinski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
29
|
Abstract
Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Public Health, Division of Environmental Health Sciences, University of Massachusetts - Amherst, Amherst, Massachusetts, USA.
| |
Collapse
|
30
|
Abstract
The endocrine system plays a major role in human survival. Endocrine glands secrete chemical messengers or hormones that affect every tissue of the body, including the periodontium, during the life of the individual. As the endocrine system influences a broad assortment of biological activities necessary for life, a general understanding of the principal components and functions of this system is essential. A fundamental assessment of hormone structure, mechanism of action and hormone transport, as well as influence on homeostasis is reviewed. A concise evaluation of the functions of the central endocrine glands, the functions of the major peripheral endocrine glands (other than gonadal tissues) and the known relationships of these hormones to the periodontium is examined.
Collapse
|
31
|
Wiehle R, Cunningham GR, Pitteloud N, Wike J, Hsu K, Fontenot GK, Rosner M, Dwyer A, Podolski J. Testosterone Restoration by Enclomiphene Citrate in Men with Secondary Hypogonadism: Pharmacodynamics and Pharmacokinetics. BJU Int 2013; 112:1188-1200. [PMID: 23875626 PMCID: PMC4155868 DOI: 10.1111/bju.12363] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To determine the pharmacodynamic (PD) profile of serum total testosterone levels (TT) and luteinizing hormone (LH) in men with secondary hypogonadism following initial and chronic daily oral doses of enclomiphene citrate in comparison to transdermal testosterone. To determine the effects of daily oral doses of enclomiphene citrate (Androxal®) in comparison to transdermal testosterone on other hormones and markers in men with secondary hypogonadism. PATIENTS AND METHODS This was a randomized, single blind, two-center phase II study to evaluate three different doses of enclomiphene citrate (6.25mg, 12.5mg and 25 mg Androxal®), versus AndroGel®, a transdermal testosterone, on 24-hour LH and TT in otherwise normal healthy men with secondary hypogonadism. Forty-eight men were enrolled in the trial (ITT Population), but 4 men had T levels >350 ng/dL at baseline. Forty-four men completed the study per protocol (PP population). All subjects enrolled in this trial had serum TT in the low range (<350 ng/dL) and had low to normal LH (<12 IU/L) on at least two occasions. TT and LH levels were assessed each hour for 24 hours to examine the effects at each of three treatment doses of enclomiphene versus a standard dose (5 grams) of transdermal testosterone (AndroGel). In the initial profile TT and LH were determined in a naïve population following a single initial oral or transdermal treatment (Day 1). This was contrasted to that seen after six weeks of continuous daily oral or transdermal treatment (Day 42). The pharmacokinetics of enclomiphene was performed in a select subpopulation. Serum samples were obtained over the course of the study to determine levels of various hormones and lipids. RESULTS After six weeks of continuous use, the mean ± SD concentration of TT at Day 42 C0hrTT, was 604 ± 160 ng/dL for men taking the highest of dose of enclomiphene citrate (enclomiphene, 25 mg daily) and 500 ± 278 ng in those men treated with transdermal testosterone. These values were higher than Day 1 values but not different from each other (p = 0.23, T-test). All three doses of enclomiphene increased C0hrTT, CavgTT, CmaxTT, CminTT and CrangeTT. Transdermal testosterone also raised TT, albeit with more variability, and with suppressed LH levels. The patterns of TT over 24 hour period following six weeks of dosing could be fit to a non-linear function with morning elevations, mid-day troughs, and rising night-time levels. Enclomiphene and transdermal testosterone increased levels of TT within two weeks, but they had opposite effects on FSH and LH Treatment with enclomiphene did not significantly affect levels of TSH, ACTH, cortisol, lipids, or bone markers. Both transdermal testosterone and enclomiphene citrate decreased IGF-1 levels (p<0.05) but suppression was greater in the enclomiphene citrate groups. CONCLUSIONS Enclomiphene citrate increased serum LH and TT; however, there was not a temporal association between the peak drug levels and the Cmax levels LH or TT. Enclomiphene citrate consistently increased serum TT into the normal range and increased LH and FSH above the normal range. The effects on LH and TT persisted for at least one week after stopping treatment.
Collapse
|
32
|
Veldhuis JD, Liu PY, Takahashi PY, Weist SM, Wigham JR. Analysis of the impact of intravenous LH pulses versus continuous LH infusion on testosterone secretion during GnRH-receptor blockade. Am J Physiol Regul Integr Comp Physiol 2012; 303:R994-R1002. [PMID: 22992702 DOI: 10.1152/ajpregu.00314.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) pulsatility is required for optimal luteinizing hormone (LH) secretion, but whether LH pulsatility is required for physiological testosterone (T) secretion is not known. To test the postulate that pulses of recombinant human (rh) LH stimulate greater T secretion than continuous infusion of the same dose, a potent selective GnRH antagonist was administered overnight to 19 healthy men ages 18-49 yr. Subjects then received saline or rhLH intravenously continuously or as 6-min pulses intravenously every 1 or 2 h at the same total dose. Blood was sampled every 10 min for 10 h to quantify T responses. For the four interventions, the descending rank order of mean LH and mean T concentrations was 1-h = 2-h rhLH pulses > continuous rhLH > saline (P < 10(-3)). Plateau LH and T concentrations correlated positively (R(2) = 0.943, P = 0.029) as did LH concentrations and LH half-lives (R(2) = 0.962, P = 0.019). Percentage pulsatile T secretion assessed by deconvolution analysis (Keenan DM, Takahashi PY, Liu PY, Roebuck PD, Nehra AX, Iranmanesh A, Veldhuis JD. Endocrinology 147: 2817-2828, 2006) was the highest (P = 0.019), and half-time to attain peak T concentrations was the shortest (P < 10(-6)), for 1-h rhLH pulses. Approximate entropy (a pattern-regularity measure) revealed more orderly T secretion for 1- than 2-h rhLH pulses (P = 0.0076). Accordingly, a pulsatile LH signal, while not obligatory to maintain mean T concentrations, controls the mean plasma LH concentration and determines quantifiable patterns of T secretion. These data introduce the question whether blood T patterns in turn supervise distinctive target-tissue responses.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Endocrine Research Unit, Dept. of Internal Medicine, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
33
|
Prevalence of and risk factors for obstructive sleep apnea syndrome in Brazilian railroad workers. Sleep Med 2012; 13:1028-32. [DOI: 10.1016/j.sleep.2012.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 04/16/2012] [Accepted: 06/14/2012] [Indexed: 11/23/2022]
|
34
|
|
35
|
Kirsch S, Thijssen S, Alarcon Salvador S, Heine GH, van Bentum K, Fliser D, Sester M, Sester U. T-cell Numbers and Antigen-specific T-cell Function Follow Different Circadian Rhythms. J Clin Immunol 2012; 32:1381-9. [DOI: 10.1007/s10875-012-9730-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/21/2012] [Indexed: 11/29/2022]
|
36
|
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33:378-455. [PMID: 22419778 PMCID: PMC3365860 DOI: 10.1210/er.2011-1050] [Citation(s) in RCA: 2076] [Impact Index Per Article: 159.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/07/2012] [Indexed: 02/08/2023]
Abstract
For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Tufts University, Center for Regenerative and Developmental Biology, Department of Biology, 200 Boston Avenue, Suite 4600, Medford, Massachusetts 02155, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ishizaki F, Hara N, Takizawa I, Nishiyama T, Isahaya E, Kawasaki T, Takahashi K. Deficiency in androgens and upregulation of insulin-like growth factor-1 are involved in high bone turnover in men receiving androgen deprivation therapy for prostate cancer. Growth Horm IGF Res 2012; 22:122-128. [PMID: 22579549 DOI: 10.1016/j.ghir.2012.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 04/09/2012] [Accepted: 04/16/2012] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This study was performed to elucidate the mechanism of high bone turnover during androgen deprivation therapy (ADT) in terms of osteogenic endocrine activity by testosterone, adrenal androgens, and insulin-like growth factor-1 (IGF-I), and to identify markers reflecting the bone mineral density (BMD) during ADT. DESIGN BMD and samples of blood and urine were studied before and after 6months of ADT in 70 patients with localized prostate cancer. RESULTS Before ADT, serum free-testosterone, dehydroepiandrosterone sulfate (DHEA-S), androstenedione, and IGF-I levels were correlated with BMD (rs=0.344, p=0.004; rs=0.264, p=0.027; rs=0.329, p=0.005; rs=0.300, p=0.012, respectively). The serum IGF-I level was independently correlated with the pretreatment BMD (Multivariate p=0.001). These relationships disappeared after ADT (p=0.519, 0.316, 0.116, and 0.597, respectively). After ADT, serum levels of free-testosterone decreased (7.9 to 0.2pg/mL), and DHEA-S and androstenedione were also reduced (3.6 to 2.3μmol/L and 5.6 to 2.9nmol/L, respectively) (p<0.001 in all). In contrast, IGF-I levels were elevated after ADT by 11.6% (19.9 to 22.3nmol/L, p<0.001). Delta-values of IGF-I (post- minus pretreatment levels, mean: +2.2, ranged between -7.1 and +15.3) were inversely correlated with the pretreatment (rs=-0.333 p=0.005) and post-treatment (rs=-0.408, p=0.001) BMD. After ADT, the serum IGF-I level was closely correlated with the serum level of the bone formation marker bone-specific alkaline phosphatase (BAP) (rs=0.328, p=0.006), and delta-IGF-I and delta-BAP showed a close positive correlation (rs=0.388, p=0.001). The post-treatment BMD was correlated only with the urine deoxypyridinoline (DPD) concentration (rs=-0.302, p=0.024) among the bone formation/resorption markers including serum/urine N-telopeptide. CONCLUSIONS Serum IGF-I levels increased during ADT in men with a low BMD. Coupled with reduced androgen levels, elevated IGF-I levels, which were positively correlated with BAP during ADT, possibly explain the mechanism of ADT-related high bone turnover. The increase of IGF-I is more prominent in men whose BMD is already low at the baseline, and urine DPD might be a marker that reflects BMD during ADT.
Collapse
Affiliation(s)
- Fumio Ishizaki
- Division of Urology, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Veldhuis JD, Bowers CY. Regulated recovery of pulsatile growth hormone secretion from negative feedback: a preclinical investigation. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1143-52. [PMID: 21795635 DOI: 10.1152/ajpregu.00293.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although stimulatory (feedforward) and inhibitory (feedback) dynamics jointly control neurohormone secretion, the factors that supervise feedback restraint are poorly understood. To parse the regulation of growth hormone (GH) escape from negative feedback, 25 healthy men and women were studied eight times each during an experimental GH feedback clamp. The clamp comprised combined bolus infusion of GH or saline and continuous stimulation by saline GH-releasing hormone (GHRH), GHRP-2, or both peptides after randomly ordered supplementation with placebo (both sexes) vs. E(2) (estrogen; women) and T (testosterone; men). Endpoints were GH pulsatility and entropy (a model-free measure of feedback quenching). Gender determined recovery of pulsatile GH secretion from negative feedback in all four secretagog regimens (0.003 ≤ P ≤ 0.017 for women>men). Peptidyl secretagog controlled the mass, number, and duration of feedback-inhibited GH secretory bursts (each, P < 0.001). E(2)/T administration potentiated both pulsatile (P = 0.006) and entropic (P < 0.001) modes of GH recovery. IGF-I positively predicted the escape of GH secretory burst number and mode (P = 0.022), whereas body mass index negatively forecast GH secretory burst number and mass (P = 0.005). The composite of gender, body mass index, E(2), IGF-I, and peptidyl secretagog strongly regulates the escape of pulsatile and entropic GH secretion from autonegative feedback. The ensemble factors identified in this preclinical investigation enlarge the dynamic model of GH control in humans.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
39
|
Piersma AH, Hernandez LG, van Benthem J, Muller JJA, van Leeuwen FR, Vermeire TG, van Raaij MTM. Reproductive toxicants have a threshold of adversity. Crit Rev Toxicol 2011; 41:545-54. [DOI: 10.3109/10408444.2011.554794] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Hara N, Takizawa I, Isahaya E, Nishiyama T, Hoshii T, Ishizaki F, Takahashi K. Insulin-like growth factor-1 is associated with regulation of the luteinizing hormone production in men receiving androgen deprivation therapy with gonadotropin-releasing hormone analogues for localized prostate cancer. Urol Oncol 2011; 30:596-601. [PMID: 21458314 DOI: 10.1016/j.urolonc.2010.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 11/01/2010] [Accepted: 11/03/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND Luteinizing hormone (LH) during androgen-deprivation therapy (ADT) with gonadotropin-releasing hormone analogues (GnRHa) has been thought to be biologically inactive, and the regulation of LH during ADT with GnRHa is thus unknown. Insulin-like growth factor-1 (IGF-1) is involved in the regulation of cell proliferation and differentiation, and IGF-1 production in the liver is dependent on growth hormone (GH) secretion from the anterior pituitary. Despite the presence of IGF-1 receptors in the gonadotroph, associations between the GH/IGF-1 and pituitary-gonadal axes, e.g., whether IGF-1 elicits the LH secretion, remain unclear. METHODS Seventy-one patients with localized prostate cancer, who received ADT with GnRHa, were prospectively studied based on their blood samples before treatment and after ADT for 6 months. We employed highly sensitive assays for measurement of serum testosterone (electrochemiluminescence immunoassay), GH/IGF-1 (radioimmunoassay), adrenocorticotropic hormone (ACTH: immunoradiometric assay), LH (chemiluminescent immunoassay), and dehydroepiandrosterone sulfate (DHEA-S: chemiluminescent enzyme immunoassay). RESULTS No correlation was noted between the pretreatment LH and IGF-1 levels; after ADT, the serum LH level was closely correlated with the IGF-1 concentration [Spearman's correlation coefficient (rs) = 0.370, P = 0.001]. The serum levels of androgens and gonadotropins reduced following ADT (P < 0.001 in all). The serum IGF-1 level increased (22 ± 6 nmol/L) compared with that at the baseline (19 ± 5 nmol/L) (P < 0.001), but no change was observed in the serum GH concentration between before and after ADT (1.4 ± 2.3 vs. 0.9 ± 0.9 μg/L, respectively, P = 0.691). The serum testosterone level was not correlated with the LH level either before or after ADT. The testosterone and DHEA-S levels after ADT were correlated with ACTH concentration (rs = 0.367, P = 0.002 and rs = 0.354, P = 0.002, respectively). We did not identify any correlations between the serum IGF-1 concentration and Gleason score, PSA value, or androgen levels. CONCLUSIONS During ADT with GnRHa, IGF-1 possibly promotes LH production, although its role is unclear. Associations among pituitary-gonadal, pituitary-adrenal, and GH/IGF-1 axes represented by IGF-1-mediated LH secretion and ACTH-mediated androgen synthesis are of interest, since both prostate epithelium proliferation and male anabolic activity are involved in these 3 axes. Assessment of oncologic outcomes is warranted for their significance in patients with prostate cancer.
Collapse
Affiliation(s)
- Noboru Hara
- Division of Urology, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Urbanski HF. Role of circadian neuroendocrine rhythms in the control of behavior and physiology. Neuroendocrinology 2011; 93:211-22. [PMID: 21508622 PMCID: PMC3128131 DOI: 10.1159/000327399] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 03/13/2011] [Indexed: 12/27/2022]
Abstract
Hormones play a major role in regulating behavior and physiology, and their efficacy is often dependent on the temporal pattern in which they are secreted. Significant insights into the mechanisms underlying rhythmic hormone secretion have been gained from transgenic rodent models, suggesting that many of the body's rhythmic functions are regulated by a coordinated network of central and peripheral circadian pacemakers. Some neuroendocrine rhythms are driven by transcriptional-posttranslational feedback circuits comprising 'core clock genes', while others represent a cyclic cascade of neuroendocrine events. This review focuses on recent data from the rhesus macaque, a non-human primate model with high clinical translation potential. With primary emphasis on adrenal and gonadal steroids, it illustrates the rhythmic nature of hormone secretion, and discusses the impact that fluctuating hormone levels have on the accuracy of clinical diagnoses and on the design of effective hormone replacement therapies in the elderly. In addition, this minireview raises awareness of the rhythmic expression patterns shown by many genes, and discusses how this could impact interpretation of data obtained from gene profiling studies, especially from nocturnal rodents.
Collapse
Affiliation(s)
- Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oreg., USA.
| |
Collapse
|