1
|
Hu Q, Tang L, Xu Z, Yan F, Song G, Feng X. Design, Synthesis, and Biological Activity of 8-Hydroxyurolithin A Class PDE2 Inhibitors. Chem Biol Drug Des 2025; 105:e70119. [PMID: 40432205 DOI: 10.1111/cbdd.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 05/29/2025]
Abstract
Urolithin A (UA) is a dibenzo[b,d]pyran-6-one polyhydroxy derivative produced as intestinal microbe metabolize ellagitannin and ellagic acid. Because of its superior anti-inflammatory and antioxidant effects, it can cure neuronal damage in a variety of ways and play a neuroprotective role. More and more research has revealed that UA is a potential medicine for the treatment of neurodegenerative diseases. Due to UA source limitations, it is insufficient to achieve disease treatment concentrations, and the activity of UA inhibiting PDE2 needs further enhancement. As a result, we used UA as the parent nucleus structure, independently designed and used Discovery Studio software to assist in the structural design and molecular docking screening of the compounds, and tested the in vitro enzyme activity of the synthesized compounds, hoping to obtain UA-based PDE2 inhibitors. The IC50 of 6-18, 6-19, 6-20, 6-22, and 6-29 were 0.62, 0.85, 1.51, 1.09, and 1.58 μM, respectively. In this study, UA derivatives that can bind to the crystal structure of PDE2 protein 4HTX were proposed, which laid a groundwork for further structural modification, lead design, and development of small molecule inhibitors with inhibitory activity of PDE2.
Collapse
Affiliation(s)
- Qiulin Hu
- School of Pharmacy and School of Biological and Food Engineering, Changzhou University, Changzhou, China
| | - Long Tang
- School of Pharmacy and School of Biological and Food Engineering, Changzhou University, Changzhou, China
| | - Zhongqiu Xu
- School of Pharmacy and School of Biological and Food Engineering, Changzhou University, Changzhou, China
| | - Fen Yan
- School of Pharmacy and School of Biological and Food Engineering, Changzhou University, Changzhou, China
| | - Guoqiang Song
- School of Pharmacy and School of Biological and Food Engineering, Changzhou University, Changzhou, China
| | - Xiaoqing Feng
- School of Pharmacy and School of Biological and Food Engineering, Changzhou University, Changzhou, China
| |
Collapse
|
2
|
Banos G, Girma M, Solomon B, Davoudi P, Esatu W, Dessie T, Psifidi A, Watson K, Hanotte O, Sánchez-Molano E. Growth resilience to weather variation in commercial free-ranging chickens in Ethiopia. BMC Genomics 2025; 26:371. [PMID: 40229704 PMCID: PMC11998408 DOI: 10.1186/s12864-025-11561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND The poultry industry in sub-Saharan Africa is a rapidly developing sector mostly based on smallholder farming. Increased demand for poultry-derived products, driven by the growing economy and population, has intensified importations of highly productive exotic breeds and crossbreeding with local ecotypes. However, commercial chickens with exotic genes often struggle to adapt to the local climate under smallholder farmers management. Understanding the chicken response to weather changes is crucial for developing selection schemes that ensure proper adaptation. In the present study, we derived individual phenotypes for growth resilience of commercial free-ranging chickens to changing weather conditions in Ethiopia. In addition, we performed genomic association analyses to assess the genetic background of these phenotypes and identify potential candidate genes of interest. RESULTS Novel resilience phenotypes describing changes in chicken growth profiles in response to weather fluctuation were developed. Variations in daily air temperature, relative humidity and amount of precipitation had the strongest impact on growth. Significant genomic variance was detected for growth resilience to changes in air temperature measurements and a temperature-humidity index. Genomic markers correlated with these resilience traits were mostly located within or near candidate genes associated with lipid metabolism and adipocyte homeostasis. Some of these genes have been previously linked to animal responses to environmental stressors in other species. CONCLUSIONS The phenotypes of growth resilience of chickens to changing weather conditions exhibited significant genomic variation. The outcomes of this study may facilitate the genomic selection of commercial chickens that are not only highly productive, but also capable of maintaining their production levels under varying weather conditions.
Collapse
Grants
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- 13760629_13760631 Roslin ISP Pump Priming Grant (BBSRC)
Collapse
Affiliation(s)
- Georgios Banos
- Centre for Tropical Livestock Genetics and Health (CTLGH), Scotland's Rural College, Animal and Veterinary Sciences, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Mekonnen Girma
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Bersabhe Solomon
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Pourya Davoudi
- Centre for Tropical Livestock Genetics and Health (CTLGH), Scotland's Rural College, Animal and Veterinary Sciences, Easter Bush, Midlothian, EH25 9RG, UK
| | - Wondmeneh Esatu
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Tadelle Dessie
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Androniki Psifidi
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- Royal Veterinary College, University of London, London, NW1 0TU, UK
| | - Kellie Watson
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Olivier Hanotte
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, P.O. Box 5689, Addis Ababa, Ethiopia
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Enrique Sánchez-Molano
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| |
Collapse
|
3
|
Ismail EA, El-Sakka AI. An overview of conventional and investigational phosphodiesterase 5 inhibitors for treating erectile dysfunction and other conditions. Expert Opin Investig Drugs 2024; 33:925-938. [PMID: 39096237 DOI: 10.1080/13543784.2024.2388569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION There is a rising concern about developing innovative, efficacious PDE5I molecules that provide better safety, efficacy, and tolerability with less adverse effects. Innovative PDE5I with dual targets have also been defined in the literature. Additionally, some of PDE5I are able to selectively inhibit other enzymes such as histone deacetylase, acetylcholine esterase, and cyclooxygenase or act as nitric oxide donors. This review presents knowledge concerning the advanced trends and perspectives in using PDE5I in treatment of ED and other conditions. AREAS COVERED Pre-clinical and early clinical trials that investigated the safety, efficacy, and tolerability of novel PDE5I such as Udenafil, Mirodenafil, Lodenafil, Youkenafil, Celecoxib, and TPN729 in treatment of ED and other conditions. EXPERT OPINION Preclinical and limited early clinical studies of the new molecules of PDE5I have demonstrated encouraging results; however, safety, efficacy, and tolerability are still issues that necessitate further long-term multicenter clinical studies to ensure justification of their uses in treatment of ED and other conditions. Progress in molecular delivery techniques and tailored patient-specific management and additional therapeutic technology will dramatically improve care for ED and other conditions. The dream of ED and many other conditions becoming more effectively managed may be feasible in the near future.
Collapse
Affiliation(s)
- Ezzat A Ismail
- Department of Urology, Suez Canal University, Ismailia, Egypt
| | | |
Collapse
|
4
|
Staller DW, Bennett RG, Mahato RI. Therapeutic perspectives on PDE4B inhibition in adipose tissue dysfunction and chronic liver injury. Expert Opin Ther Targets 2024; 28:545-573. [PMID: 38878273 PMCID: PMC11305103 DOI: 10.1080/14728222.2024.2369590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Chronic liver disease (CLD) is a complex disease associated with profound dysfunction. Despite an incredible burden, the first and only pharmacotherapy for metabolic-associated steatohepatitis was only approved in March of this year, indicating a gap in the translation of preclinical studies. There is a body of preclinical work on the application of phosphodiesterase 4 inhibitors in CLD, none of these molecules have been successfully translated into clinical use. AREAS COVERED To design therapies to combat CLD, it is essential to consider the dysregulation of other tissues that contribute to its development and progression. As such, proper therapies must combat this throughout the body rather than focusing only on the liver. To detail this, literature characterizing the pathogenesis of CLD was pulled from PubMed, with a particular focus placed on the role of PDE4 in inflammation and metabolism. Then, the focus is shifted to detailing the available information on existing PDE4 inhibitors. EXPERT OPINION This review gives a brief overview of some of the pathologies of organ systems that are distinct from the liver but contribute to disease progression. The demonstrated efficacy of PDE4 inhibitors in other human inflammatory diseases should earn them further examination for the treatment of CLD.
Collapse
Affiliation(s)
- Dalton W. Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert G. Bennett
- Department of Internal Medicine, Division of Diabetes Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ram I. Mahato
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
5
|
Han R, Gaurav A, Mai CW, Gautam V, Gabriel Akyirem A. Phosphodiesterase Inhibitors of Natural Origin. THE NATURAL PRODUCTS JOURNAL 2024; 14. [DOI: 10.2174/0122103155251390230927064442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 01/09/2025]
Abstract
Abstract:
Phosphodiesterases (PDEs) function to hydrolyze intracellular cyclic adenosine monophosphate
(cAMP) and cyclic guanosine monophosphate (cGMP), regulating a variety of intracellular
signal transduction and physiological activities. PDEs can be divided into 11 families
(PDE1~11) and the diversity and complex expression of PDE family genes suggest that different
subtypes may have different mechanisms. PDEs are involved in various disease pathologies such
as inflammation, asthma, depression, and erectile dysfunction and are thus targets of interest for
several drug discovery campaigns. Natural products have always been an important source of bioactive
compounds for drug discovery, over the years several natural compounds have shown potential
as inhibitors of PDEs. In this article, phosphodiesterase inhibitors of natural origin have been
reviewed with emphasis on their chemistry and biological activities.
Collapse
Affiliation(s)
- Rui Han
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught,
Cheras Kuala Lumpur, 56000, Malaysia
| | - Anand Gaurav
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught,
Cheras Kuala Lumpur, 56000, Malaysia
- Department of Pharmaceutical Sciences, School of Health Sciences and
Technology, UPES, Dehradun, 248007, Uttarakhand, India
- Faculty of Health Sciences, Villa College, QI Campus,
Rahdhebai Hingun, Male', 20373, Republic of Maldives
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught,
Cheras Kuala Lumpur, 56000, Malaysia
| | - Vertika Gautam
- Institute of Pharmaceutical Research, GLA University,
Mathura, 281406, Uttar Pradesh, India
| | - Akowuah Gabriel Akyirem
- School of Pharmacy, Monash University Malaysia Jalan Lagoon Selatan,
47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
6
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
7
|
Afshari H, Noori S, Shokri B, Zarghi A. Co-treatment of Naringenin and Ketoprofen-RGD Suppresses Cell Proliferation via Calmodulin/PDE/cAMP/PKA Axis Pathway in Leukemia and Ovarian Cancer Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e136131. [PMID: 38116560 PMCID: PMC10728835 DOI: 10.5812/ijpr-136131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 12/21/2023]
Abstract
Background Naringenin (Nar) has anti-inflammatory and anticarcinogenic properties. Arginine-glycine- aspartate (RGD) is a tripeptidic sequence used as an integrin ligand and targeting system for delivering chemotherapeutic agents to cancer cells. Objectives In this study, the inhibitory effects of Nar and ketoprofen-RGD on leukemia and ovarian cancer cells (K562 and SKOV3) were explored for the first time, focusing on their proliferation activity and their anti-inflammatory capacity. Methods Analyses were conducted on the calmodulin (CaM)-dependent phosphodiesterase 1 (PDE1) activation by ketoprofen-RGD, Nar, and their combination. These drugs' effects on protein kinase A (PKA) activation, intracellular cyclic adenosine monophosphate (cAMP) level, and PDE1 inhibition were identified. Later, it was also evaluated if ketoprofen-RGD alone or in combination with Nar had anti-inflammatory effects. Results Nar improved the antagonizing consequences of ketoprofen-RGD on the CaM protein, which hinders PDE1, improving PKA activity and cAMP levels. A mixture of ketoprofen-RGD and Nar and ketoprofen-RGD alone diminished K562 and SKOV3 cell viability through the cAMP/PKA pathway by inhibiting PDE1 and CaM. These two compounds showed anti-inflammatory effects on both cell lines. Conclusions This study indicated for the first time that combining ketoprofen-RGD and Nar can be a promising anti-inflammatory therapeutic regimen for treating leukemia and ovarian cancer.
Collapse
Affiliation(s)
- Havva Afshari
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoofe Noori
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Shokri
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Tadalafil and Steroid Hormones Interactions in Adipose, Bone and Prostate Tissues: Focus on Translational Perspectives. Int J Mol Sci 2022; 23:ijms23084191. [PMID: 35457011 PMCID: PMC9024809 DOI: 10.3390/ijms23084191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Tadalafil is a selective phosphodiesterase type-5 (PDE5) inhibitor that is approved for the treatment of men with erectile dysfunction (ED) and/or benign prostate hyperplasia (BPH) -associated symptoms. Besides its classical actions on PDE5 within the genitourinary tract, where the specific enzyme expression is maximal, it may exert different systemic effects. This is mainly due to the pleiotropic distribution of PDE5 enzyme throughout the human (and animal) body, where it can exert protective effects in different clinical conditions. Recently, it has been demonstrated that tadalafil may display novel actions on androgen receptor (AR) expression and activity and cytochrome P19a1 (Cyp19a1) and estrogen receptor β (ERβ) expression in different in vitro systems, such as adipose, bone and prostate cancer cells, where it can act as a selective modulator of steroid hormone production. This may determine novel potential mechanism(s) of control in pathophysiologic pathways. In this review, we summarize basic research and translational results applicable to the use of tadalafil in the treatment of obesity, bone loss and prostate cancer.
Collapse
|
9
|
Weighted Gene Coexpression Network Analysis in Mouse Livers following Ischemia-Reperfusion and Extensive Hepatectomy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:3897715. [PMID: 35003298 PMCID: PMC8736699 DOI: 10.1155/2021/3897715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
In mouse models, the recovery of liver volume is mainly mediated by the proliferation of hepatocytes after partial hepatectomy that is commonly accompanied with ischemia-reperfusion. The identification of differently expressed genes in liver following partial hepatectomy benefits the better understanding of the molecular mechanisms during liver regeneration (LR) with appliable clinical significance. Briefly, studying different gene expression patterns in liver tissues collected from the mice group that survived through extensive hepatectomy will be of huge critical importance in LR than those collected from the mice group that survived through appropriate hepatectomy. In this study, we performed the weighted gene coexpression network analysis (WGCNA) to address the central candidate genes and to construct the free-scale gene coexpression networks using the identified dynamic different expressive genes in liver specimens from the mice with 85% hepatectomy (20% for seven-day survial rate) and 50% hepatectomy (100% for seven-day survial rate under ischemia-reperfusion condition compared with the sham group control mice). The WGCNA combined with Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses pinpointed out the apparent distinguished importance of three gene expression modules: the blue module for apoptotic process, the turquoise module for lipid metabolism, and the green module for fatty acid metabolic process in LR following extensive hepatectomy. WGCNA analysis and protein-protein interaction (PPI) network construction highlighted FAM175B, OGT, and PDE3B were the potential three hub genes in the previously mentioned three modules. This work may help to provide new clues to the future fundamental study and treatment strategy for LR following liver injury and hepatectomy.
Collapse
|
10
|
Tettey A, Jiang Y, Li X, Li Y. Therapy for Pulmonary Arterial Hypertension: Glance on Nitric Oxide Pathway. Front Pharmacol 2021; 12:767002. [PMID: 34867394 PMCID: PMC8633825 DOI: 10.3389/fphar.2021.767002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 01/11/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease with a resultant increase of the mean pulmonary arterial pressure, right ventricular hypertrophy and eventual death. Research in recent years has produced various therapeutic options for its clinical management but the high mortality even under treatment remains a big challenge attributed to the complex pathophysiology. Studies from clinical and non-clinical experiments have revealed that the nitric oxide (NO) pathway is one of the key pathways underlying the pathophysiology of PAH. Many of the essential drugs used in the management of PAH act on this pathway highlighting its significant role in PAH. Meanwhile, several novel compounds targeting on NO pathway exhibits great potential to become future therapy medications. Furthermore, the NO pathway is found to interact with other crucial pathways. Understanding such interactions could be helpful in the discovery of new drug that provide better clinical outcomes.
Collapse
Affiliation(s)
- Abraham Tettey
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
| | - Yujie Jiang
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
11
|
Harvey RD, Clancy CE. Mechanisms of cAMP compartmentation in cardiac myocytes: experimental and computational approaches to understanding. J Physiol 2021; 599:4527-4544. [PMID: 34510451 DOI: 10.1113/jp280801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
The small diffusible second messenger 3',5'-cyclic adenosine monophosphate (cAMP) is found in virtually every cell in our bodies, where it mediates responses to a variety of different G protein coupled receptors (GPCRs). In the heart, cAMP plays a critical role in regulating many different aspects of cardiac myocyte function, including gene transcription, cell metabolism, and excitation-contraction coupling. Yet, not all GPCRs that stimulate cAMP production elicit the same responses. Subcellular compartmentation of cAMP is essential to explain how different receptors can utilize the same diffusible second messenger to elicit unique functional responses. However, the mechanisms contributing to this behaviour and its significance in producing physiological and pathological responses are incompletely understood. Mathematical modelling has played an essential role in gaining insight into these questions. This review discusses what we currently know about cAMP compartmentation in cardiac myocytes and questions that are yet to be answered.
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, NV, 89557, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
12
|
Bayarri MA, Milara J, Estornut C, Cortijo J. Nitric Oxide System and Bronchial Epithelium: More Than a Barrier. Front Physiol 2021; 12:687381. [PMID: 34276407 PMCID: PMC8279772 DOI: 10.3389/fphys.2021.687381] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Airway epithelium forms a physical barrier that protects the lung from the entrance of inhaled allergens, irritants, or microorganisms. This epithelial structure is maintained by tight junctions, adherens junctions and desmosomes that prevent the diffusion of soluble mediators or proteins between apical and basolateral cell surfaces. This apical junctional complex also participates in several signaling pathways involved in gene expression, cell proliferation and cell differentiation. In addition, the airway epithelium can produce chemokines and cytokines that trigger the activation of the immune response. Disruption of this complex by some inflammatory, profibrotic, and carcinogens agents can provoke epithelial barrier dysfunction that not only contributes to an increase of viral and bacterial infection, but also alters the normal function of epithelial cells provoking several lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) or lung cancer, among others. While nitric oxide (NO) molecular pathway has been linked with endothelial function, less is known about the role of the NO system on the bronchial epithelium and airway epithelial cells function in physiological and different pathologic scenarios. Several data indicate that the fraction of exhaled nitric oxide (FENO) is altered in lung diseases such as asthma, COPD, lung fibrosis, and cancer among others, and that reactive oxygen species mediate uncoupling NO to promote the increase of peroxynitrite levels, thus inducing bronchial epithelial barrier dysfunction. Furthermore, iNOS and the intracellular pathway sGC-cGMP-PKG are dysregulated in bronchial epithelial cells from patients with lung inflammation, fibrosis, and malignancies which represents an attractive drug molecular target. In this review we describe in detail current knowledge of the effect of NOS-NO-GC-cGMP-PKG pathway activation and disruption in bronchial epithelial cells barrier integrity and its contribution in different lung diseases, focusing on bronchial epithelial cell permeability, inflammation, transformation, migration, apoptosis/necrosis, and proliferation, as well as the specific NO molecular pathways involved.
Collapse
Affiliation(s)
- María Amparo Bayarri
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| | - Cristina Estornut
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Research and Teaching Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| |
Collapse
|
13
|
Amin KM, Hegazy GH, George RF, Ibrahim NR, Mohamed NM. Design, synthesis, and pharmacological characterization of some 2-substituted-3-phenyl-quinazolin-4(3H)-one derivatives as phosphodiesterase inhibitors. Arch Pharm (Weinheim) 2021; 354:e2100051. [PMID: 33977557 DOI: 10.1002/ardp.202100051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022]
Abstract
Some 3-phenyl-quinazolin-4(3H)-one-2-thioethers (3a-e, 5a,b, 7a-e, 9a-d, 10a-d, and 12) along with 2-aminoquinazoline derivatives 13a-c were prepared and screened for their in vitro phosphodiesterase (PDE) inhibitory activity. Some compounds such as 7d,e, 9a,b,d, 10a,d, and 13b exhibited promising activity as compared with the non-selective PDE inhibitor IBMX. This inhibitory activity was validated by molecular docking in the active site of PDE7A and PDE4 to investigate their selectivity. Furthermore, the most active compound 10d (IC50 = 1.15 μM) was tested in vivo using behavioral tests. Compound 10d was able to pass the blood-brain barrier and improve scopolamine-induced cognitive deficits. Therefore, this core can be considered as a promising scaffold for further optimization to obtain new compounds with better PDE7A selective inhibition.
Collapse
Affiliation(s)
- Kamilia M Amin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Gehan H Hegazy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham F George
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nahla R Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nada M Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information MTI, Cairo, Egypt
| |
Collapse
|
14
|
Functional modulation of phosphodiesterase-6 by calcium in mouse rod photoreceptors. Sci Rep 2021; 11:8938. [PMID: 33903621 PMCID: PMC8076185 DOI: 10.1038/s41598-021-88140-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Phosphodiesterase-6 (PDE6) is a key protein in the G-protein cascade converting photon information to bioelectrical signals in vertebrate photoreceptor cells. Here, we demonstrate that PDE6 is regulated by calcium, contrary to the common view that PDE1 is the unique PDE class whose activity is modulated by intracellular Ca2+. To broaden the operating range of photoreceptors, mammalian rod photoresponse recovery is accelerated mainly by two calcium sensor proteins: recoverin, modulating the lifetime of activated rhodopsin, and guanylate cyclase-activating proteins (GCAPs), regulating the cGMP synthesis. We found that decreasing rod intracellular Ca2+ concentration accelerates the flash response recovery and increases the basal PDE6 activity (βdark) maximally by ~ 30% when recording local electroretinography across the rod outer segment layer from GCAPs-/- recoverin-/- mice. Our modeling shows that a similar elevation in βdark can fully explain the observed acceleration of flash response recovery in low Ca2+. Additionally, a reduction of the free Ca2+ in GCAPs-/- recoverin-/- rods shifted the inhibition constants of competitive PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX) against the thermally activated and light-activated forms of PDE6 to opposite directions, indicating a complex interaction between IBMX, PDE6, and calcium. The discovered regulation of PDE6 is a previously unknown mechanism in the Ca2+-mediated modulation of rod light sensitivity.
Collapse
|
15
|
Abdel-Halim M, Sigler S, Racheed NAS, Hefnawy A, Fathalla RK, Hammam MA, Maher A, Maxuitenko Y, Keeton AB, Hartmann RW, Engel M, Piazza GA, Abadi AH. From Celecoxib to a Novel Class of Phosphodiesterase 5 Inhibitors: Trisubstituted Pyrazolines as Novel Phosphodiesterase 5 Inhibitors with Extremely High Potency and Phosphodiesterase Isozyme Selectivity. J Med Chem 2021; 64:4462-4477. [PMID: 33793216 DOI: 10.1021/acs.jmedchem.0c01120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A ligand-based approach involving systematic modifications of a trisubstituted pyrazoline scaffold derived from the COX2 inhibitor, celecoxib, was used to develop novel PDE5 inhibitors. Novel pyrazolines were identified with potent PDE5 inhibitory activity lacking COX2 inhibitory activity. Compound d12 was the most potent with an IC50 of 1 nM, which was three times more potent than sildenafil and more selective with a selectivity index of >10,000-fold against all other PDE isozymes. Sildenafil inhibited the full-length and catalytic fragment of PDE5, while compound d12 only inhibited the full-length enzyme, suggesting a mechanism of enzyme inhibition distinct from sildenafil. The PDE5 inhibitory activity of compound d12 was confirmed in cells using a cGMP biosensor assay. Oral administration of compound d12 achieved plasma levels >1000-fold higher than IC50 values and showed no discernable toxicity after repeated dosing. These results reveal a novel strategy to inhibit PDE5 with unprecedented potency and isozyme selectivity.
Collapse
Affiliation(s)
- Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Sara Sigler
- Departments of Oncologic Sciences and Pharmacology, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, United States
| | - Nora A S Racheed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Amr Hefnawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Reem K Fathalla
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Mennatallah A Hammam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ahmed Maher
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 11266, Egypt
| | - Yulia Maxuitenko
- Departments of Oncologic Sciences and Pharmacology, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, United States
| | - Adam B Keeton
- Departments of Oncologic Sciences and Pharmacology, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, United States
| | - Rolf W Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Gary A Piazza
- Departments of Oncologic Sciences and Pharmacology, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, United States
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
16
|
Wen C, Wang H, Wang H, Mo H, Zhong W, Tang J, Lu Y, Zhou W, Tan A, Liu Y, Xie W. A three-gene signature based on tumour microenvironment predicts overall survival of osteosarcoma in adolescents and young adults. Aging (Albany NY) 2020; 13:619-645. [PMID: 33281116 PMCID: PMC7835013 DOI: 10.18632/aging.202170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
Evidences shows that immune and stroma related genes in the tumour microenvironment (TME) play a key regulator in the prognosis of Osteosarcomas (OSs). The purpose of this study was to develop a TME-related risk model for assessing the prognosis of OSs. 82 OSs cases aged ≤25 years from TARGET were divided into two groups according to the immune/stromal scores that were analyzed by the Estimate algorithm. The differentially expressed genes (DEGs) between the two groups were analyzed and 122 DEGs were revealed. Finally, three genes (COCH, MYOM2 and PDE1B) with the minimum AIC value were derived from 122 DEGs by multivariate cox analysis. The three-gene risk model (3-GRM) could distinguish patients with high risk from the training (TARGET) and validation (GSE21257) cohort. Furthermore, a nomogram model included 3-GRM score and clinical features were developed, with the AUC values in predicting 1, 3 and 5-year survival were 0.971, 0.853 and 0.818, respectively. In addition, in the high 3-GRM score group, the enrichment degrees of infiltrating immune cells were significantly lower and immune-related pathways were markedly suppressed. In summary, this model may be used as a marker to predict survival for OSs patients in adolescent and young adults.
Collapse
Affiliation(s)
- Chunkai Wen
- Department of Breast, Bone and Soft Tissue Oncology, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China.,Graduate School of Guangxi Medical University, Nanning 530021, China
| | - Hongxue Wang
- Department of Breast, Bone and Soft Tissue Oncology, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Han Wang
- Department of Breast, Bone and Soft Tissue Oncology, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hao Mo
- Department of Bone and Soft Tissue Tumor Surgery, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wuning Zhong
- Department of Breast, Bone and Soft Tissue Oncology, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jing Tang
- Department of Breast, Bone and Soft Tissue Oncology, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yongkui Lu
- Department of Breast, Bone and Soft Tissue Oncology, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wenxian Zhou
- Department of Breast, Bone and Soft Tissue Oncology, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Aihua Tan
- Department of Breast, Bone and Soft Tissue Oncology, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yan Liu
- Department of Breast, Bone and Soft Tissue Oncology, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Weimin Xie
- Department of Breast, Bone and Soft Tissue Oncology, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
17
|
Discovery of trisubstituted pyrazolines as a novel scaffold for the development of selective phosphodiesterase 5 inhibitors. Bioorg Chem 2020; 104:104322. [PMID: 33142429 DOI: 10.1016/j.bioorg.2020.104322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/25/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
Celecoxib, is a selective cyclooxygenase-2 (COX2) inhibitor with a 1,5-diaryl pyrazole scaffold. Celecoxib has a better safety profile compared to other COX2 inhibitors having side effects of systemic hypertension and thromboembolic complications. This may be partly attributed to an off-target activity involving phosphodiesterase 5 (PDE5) inhibition and the potentiation of NO/cGMP signalling allowing coronary vasodilation and aortic relaxation. Inspired by the structure of celecoxib, we synthesized a chemically diverse series of compounds containing a 1,3,5-trisubstituted pyrazoline scaffold to improve PDE5 inhibitory potency, while eliminating COX2 inhibitory activity. SAR studies for PDE5 inhibition revealed an essential role for a carboxylic acid functionality at the 1-phenyl and the importance of the non-planar pyrazoline core over the planar pyrazole with the 5-phenyl moiety tolerating a range of substituents. These modifications led to new PDE5 inhibitors with approximately 20-fold improved potency to inhibit PDE5 and no COX-2 inhibitory activity compared with celecoxib. PDE isozyme profiling of compound 11 revealed a favorable selectivity profile. These results suggest that trisubstituted pyrazolines provide a promising scaffold for further chemical optimization to identify novel PDE5 inhibitors with potential for less side effects compared with available PDE5 inhibitors used for the treatment of penile erectile dysfunction and pulmonary hypertension.
Collapse
|
18
|
Sertkaya Z, Koca O, Ozturk M, Akyuz M, Gumrukcu G, Kutluhan MA, Karaman MI. Protective Effect of Udenafil Against Ischemia Reperfusion Injury Due to Testicular Torsion/Detorsion in Rat Model. Eurasian J Med 2020; 52:115-119. [PMID: 32612416 DOI: 10.5152/eurasianjmed.2020.19229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 09/29/2019] [Indexed: 11/22/2022] Open
Abstract
Objective Testicular torsion causes migration of neutrophils to the ischemic region and formation of free oxygen radicals that have a critical effect on ischemic reperfusion (I/R) injury. Udenafil is a selective, strong, and reversible inhibitor of phosphodiesterase type enzyme. In our study, we evaluate the protective effect of udenafil against reperfusion injury due to I/R. Materials and Methods Twenty-one male, adult, Wistar-Albino rats aged 8 months were randomly divided into three groups; sham, I/R, and I/R+udenafil. One hour before the detorsion operation, the sham and I/R groupssaline, and I/R+udenafil groups were administered 2 mg/kg udenafil intraperitoneally. Blood samples were collected to evaluate the inflammatory mediators. Spermatogenic factors were evaluated according to Johnsen criteria. Results Histopathological and molecular parameters from all groups were compared. Mean values of TNF-α and IL-1β in venous blood samples were calculated. We observed that TNF-a values were statistically significantly increased in the I/R group than those in sham groups, and these values were decreased with udenafil treatment Furthermore, the glutathione peroxidase (GPx) level was statistically significantly decreased in the I/R group, and treatment with udenafil prevented this decrease. Evaluation of spermatogenesis using the Johnsen scoring system showed no statistically significant difference in mean scores between the groups. Conclusion We concluded that deterioration of biochemical and histopathological parameters are reversed, and injury due to I/R in testicle tissue may be decreased with udenafil treatment. Results of this experimental study show that efficacy of the udenafil treatment in testis torsion should be investigated.
Collapse
Affiliation(s)
- Zulfu Sertkaya
- Department of Urology, Memorial Hospital, Diyarbakir, Turkey
| | - Orhan Koca
- Department of Urology, Medistate Hospital, Istanbul, Turkey
| | - Metin Ozturk
- Department of Urology, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Akyuz
- Department of Urology, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Gulistan Gumrukcu
- Department of Pathology, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Musab Ali Kutluhan
- Department of Urology, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey
| | | |
Collapse
|
19
|
Development of a Rapid Mass Spectrometric Determination of AMP and Cyclic AMP for PDE3 Activity Study: Application and Computational Analysis for Evaluating the Effect of a Novel 2-oxo-1,2-dihydropyridine-3-carbonitrile Derivative as PDE-3 Inhibitor. Molecules 2020; 25:molecules25081817. [PMID: 32326556 PMCID: PMC7221589 DOI: 10.3390/molecules25081817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
A simple, quick, easy and cheap tandem mass spectrometry (MS/MS) method for the determination of adenosine monophosphate (AMP) and cyclic adenosine monophosphate (cAMP) has been newly developed. This novel MS/MS method was applied for the evaluation of the inhibitory effect of a novel 2-oxo-1,2-dihydropyridine-3-carbonitrile derivative, also named DF492, on PDE3 enzyme activity in comparison to its parent drug milrinone. Molecule DF492, with an IC50 of 409.5 nM, showed an inhibition of PDE3 greater than milrinone (IC50 = 703.1 nM). To explain the inhibitory potential of DF492, molecular docking studies toward the human PDE3A were carried out with the aim of predicting the binding mode of DF492. The presence of different bulkier decorating fragments in DF492 was pursued to shift affinity of this novel molecule toward PDE3A compared to milrinone in accordance with both the theoretical and experimental results. The described mass spectrometric approach could have a wider potential use in kinetic and biomedical studies and could be applied for the determination of other phosphodiesterase inhibitor molecules.
Collapse
|
20
|
Salek AB, Edler MC, McBride JP, Baucum AJ. Spinophilin regulates phosphorylation and interactions of the GluN2B subunit of the N-methyl-d-aspartate receptor. J Neurochem 2019; 151:185-203. [PMID: 31325175 DOI: 10.1111/jnc.14831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/21/2019] [Accepted: 07/13/2019] [Indexed: 12/20/2022]
Abstract
N-methyl-d-Aspartate receptors (NMDARs) are abundant postsynaptic proteins that are critical for normal synaptic communication. NMDAR channel function is regulated by multiple properties, including phosphorylation. Inhibition of protein phosphatase 1 (PP1) in hippocampal neurons increases NMDAR activity, an effect abrogated by loss of spinophilin, the major PP1-targeting protein in the postsynaptic density. However, how spinophilin regulates PP1-dependent NMDAR function is unclear. We hypothesize that spinophilin regulates PP1 binding to the NMDAR to alter NMDAR phosphorylation. Our data demonstrate that spinophilin interacts with the GluN2B subunit of the NMDAR. In human embryonic kidney 293 FT cells, activation and/or overexpression of protein kinase A increased the association between spinophilin and the GluN2B subunit of the NMDAR. Functionally, we found that spinophilin overexpression decreased PP1 binding to the GluN2B subunit of the NMDAR and attenuated the PP1-dependent dephosphorylation of GluN2B at Ser-1284. Moreover, in P28 hippocampal lysates isolated from spinophilin KO compared to WT mice, there was increased binding of GluN2B to PP1, decreased phosphorylation of GluN2B at Ser-1284, and altered GluN2B protein interactions with postsynaptic density-enriched proteins. Together, our data demonstrate that spinophilin decreases PP1 binding to GluN2B and concomitantly enhances the phosphorylation of GluN2B at Ser-1284. The putative consequences of these spinophilin-dependent alterations in GluN2B phosphorylation and interactions on synaptic GluN2B localization and function are discussed. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Asma B Salek
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Michael C Edler
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jonathon P McBride
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Anthony J Baucum
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
21
|
MicroRNA-19a/b-3p protect the heart from hypertension-induced pathological cardiac hypertrophy through PDE5A. J Hypertens 2019; 36:1847-1857. [PMID: 29664809 PMCID: PMC6080882 DOI: 10.1097/hjh.0000000000001769] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM PDE5A is a leading factor contributing to cGMP signaling and cardiac hypertrophy. However, microRNA-mediated posttranscriptional regulation of PDE5A has not been reported. The aim of this study is to screen the microRNAs that are able to regulate PDE5A and explore the function of the microRNAs in cardiac hypertrophy and remodeling. METHODS AND RESULTS Although miR-19a/b-3p (microRNA-19a-3p and microRNA-19b-3p) have been reported to be differentially expressed during cardiac hypertrophy, the direct targets and the functions of this microRNA family for regulation of cardiac hypertrophy have not yet been investigated. The present study identified some direct targets and the underlying functions of miR-19a/b-3p by using bioinformatics tools and gene manipulations within mouse neonatal cardiomyocytes. Transfection of miR-19a/b-3p down-regulated endogenous expressions of PDE5A at both mRNA and protein levels with real-time PCR and western blot. Luciferase reporter assays showed that PDE5A was a direct target of miR-19a/b-3p. In mouse models of cardiac hypertrophy, we found that miR-19a/b-3p was expressed in cardiomyocytes and that its expression was reduced in pressure overload-induced hypertrophic hearts. miR-19a/b-3p transgenic mice prevented the progress of cardiac hypertrophy and cardiac remodeling in response to angiotensin II infusion with echocardiographic assessment and pressure-volume relation analysis. CONCLUSION Our study elucidates that PDE5A is a novel direct target of miR-19a/b-3p, and demonstrates that antihypertrophic roles of the miR-19a/b-3p family in Ang II-induced hypertrophy and cardiac remodeling, suggests that endogenous miR-19a/b-3p might have clinical potential to suppress cardiac hypertrophy and heart failure.
Collapse
|
22
|
Bollinger WL, Sial N, Dawson-Scully K. BK channels and a cGMP-dependent protein kinase (PKG) function through independent mechanisms to regulate the tolerance of synaptic transmission to acute oxidative stress at the Drosophila larval neuromuscular junction. J Neurogenet 2018; 32:246-255. [DOI: 10.1080/01677063.2018.1500571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wesley L. Bollinger
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Nadia Sial
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
- Brain Institute Research Scholars Program, Florida Atlantic University, Boca Raton, FL, USA
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
23
|
Deng WT, Kolandaivelu S, Dinculescu A, Li J, Zhu P, Chiodo VA, Ramamurthy V, Hauswirth WW. Cone Phosphodiesterase-6γ' Subunit Augments Cone PDE6 Holoenzyme Assembly and Stability in a Mouse Model Lacking Both Rod and Cone PDE6 Catalytic Subunits. Front Mol Neurosci 2018; 11:233. [PMID: 30038560 PMCID: PMC6046437 DOI: 10.3389/fnmol.2018.00233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 11/13/2022] Open
Abstract
Rod and cone phosphodiesterase 6 (PDE6) are key effector enzymes of the vertebrate phototransduction pathway. Rod PDE6 consists of two catalytic subunits PDE6α and PDE6β and two identical inhibitory PDE6γ subunits, while cone PDE6 is composed of two identical PDE6α’ catalytic subunits and two identical cone-specific PDE6γ’ inhibitory subunits. Despite their prominent function in regulating cGMP levels and therefore rod and cone light response properties, it is not known how each subunit contributes to the functional differences between rods and cones. In this study, we generated an rd10/cpfl1 mouse model lacking rod PDE6β and cone PDE6α’ subunits. Both rod and cone photoreceptor cells are degenerated with age and all PDE6 subunits degrade in rd10/cpfl1 mice. We expressed cone PDE6α’ in both rods and cones of rd10/cpfl1 mice by adeno-associated virus (AAV)-mediated delivery driven by the ubiquitous, constitutive small chicken β-actin promoter. We show that expression of PDE6α’ rescues rod function in rd10/cpfl1 mice, and the restoration of rod light sensitivity is attained through restoration of endogenous rod PDE6γ and formation of a functional PDE6α’γ complex. However, improved photopic cone responses were achieved only after supplementation of both cone PDE6α’ and PDE6γ’ subunits but not by PDE6α’ treatment alone. We observed a two fold increase of PDE6α’ levels in the eyes injected with both PDE6α’ plus PDE6γ’ relative to eyes receiving PDE6α’ alone. Despite the presence of both PDE6γ’ and PDE6γ, the majority of PDE6α’ formed functional complexes with PDE6γ’, suggesting that PDE6α’ has a higher association affinity for PDE6γ’ than for PDE6γ. These results suggest that the presence of PDE6γ’ augments cone PDE6 assembly and enhances its stability. Our finding has important implication for gene therapy of PDE6α’-associated achromatopsia.
Collapse
Affiliation(s)
- Wen-Tao Deng
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Saravanan Kolandaivelu
- Departments of Ophthalmology and Biochemistry, Center for Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Astra Dinculescu
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Jie Li
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Ping Zhu
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Vince A Chiodo
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| | - Visvanathan Ramamurthy
- Departments of Ophthalmology and Biochemistry, Center for Neuroscience, West Virginia University, Morgantown, WV, United States
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
24
|
Barone I, Giordano C, Bonofiglio D, Andò S, Catalano S. Phosphodiesterase type 5 and cancers: progress and challenges. Oncotarget 2017; 8:99179-99202. [PMID: 29228762 PMCID: PMC5716802 DOI: 10.18632/oncotarget.21837] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/23/2017] [Indexed: 01/05/2023] Open
Abstract
Cancers are an extraordinarily heterogeneous collection of diseases with distinct genetic profiles and biological features that directly influence response patterns to various treatment strategies as well as clinical outcomes. Nevertheless, our growing understanding of cancer cell biology and tumor progression is gradually leading towards rational, tailored medical treatments designed to destroy cancer cells by exploiting the unique cellular pathways that distinguish them from normal healthy counterparts. Recently, inhibition of the activity of phosphodiesterase type 5 (PDE5) is emerging as a promising approach to restore normal intracellular cyclic guanosine monophosphate (cGMP) signalling, and thereby resulting into the activation of various downstream molecules to inhibit proliferation, motility and invasion of certain cancer cells. In this review, we present an overview of the experimental and clinical evidences highlighting the role of PDE5 in the pathogenesis and prevention of various malignancies. Current data are still not sufficient to draw conclusive statements for cancer patient management, but could provide further rational for testing PDE5-targeting drugs as anticancer agents in clinical settings.
Collapse
Affiliation(s)
- Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Cinzia Giordano
- Centro Sanitario, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
25
|
Differences in the renal antifibrotic cGMP/cGKI-dependent signaling of serelaxin, zaprinast, and their combination. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:939-948. [PMID: 28660304 DOI: 10.1007/s00210-017-1394-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/13/2017] [Indexed: 01/19/2023]
Abstract
Renal fibrosis is an important factor for end-stage renal failure. However, only few therapeutic options for its treatment are established. Zaprinast, a phosphodiesterase 5 inhibitor, and serelaxin, the recombinant form of the naturally occurring hormone relaxin, are differently acting modulators of cyclic guanosine monophosphate (cGMP) signaling. Both agents enhance cGMP availability in kidney tissue. These substances alone or in combination might interfere with the development of kidney fibrosis. Therefore, we compared the effects of combination therapy with the effects of monotherapy on renal fibrosis. Renal fibrosis was induced by unilateral ureteral obstruction (UUO) for 7 days in wild-type (WT) and cGKI knockout (KO) mice. Renal antifibrotic effects were assessed after 7 days. In WT, zaprinast and the combination of zaprinast and serelaxin significantly reduced renal interstitial fibrosis assessed by α-SMA, fibronectin, collagen1A1, and gelatinases (MMP2 and MMP9). Intriguingly in cGKI-KO, mRNA and protein expression of fibronectin and collagen1A1 were reduced by zaprinast, in contrast to serelaxin. Gelatinases are not regulated by zaprinast. Although both substances showed similar antifibrotic properties in WT, they distinguished in their effect mechanisms. In contrast to serelaxin which acts both on Smad2 and Erk1, zaprinast did not significantly diminish Erk1/2 phosphorylation. Interestingly, the combination of serelaxin/zaprinast achieved no additive antifibrotic effects compared to the monotherapy. Due to antifibrotic effects of zaprinast in cGKI-KO, we hypothesize that additional cGKI-independent mechanisms are supposed for antifibrotic signaling of zaprinast.
Collapse
|
26
|
Subbotina A, Ravna AW, Lysaa RA, Abagyan R, Bugno R, Sager G. Inhibition of PDE5A1 guanosine cyclic monophosphate (cGMP) hydrolysing activity by sildenafil analogues that inhibit cellular cGMP efflux. ACTA ACUST UNITED AC 2017; 69:675-683. [PMID: 28211580 PMCID: PMC5434896 DOI: 10.1111/jphp.12693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/18/2016] [Indexed: 12/16/2022]
Abstract
Objectives To determine the ability of 11 sildenafil analogues to discriminate between cyclic nucleotide phosphodiesterases (cnPDEs) and to characterise their inhibitory potencies (Ki values) of PDE5A1‐dependent guanosine cyclic monophosphate (cGMP) hydrolysis. Methods Sildenafil analogues were identified by virtual ligand screening (VLS) and screened for their ability to inhibit adenosine cyclic monophosphate (cAMP) hydrolysis by PDE1A1, PDE1B1, PDE2A1, PDE3A, PDE10A1 and PDE10A2, and cGMP hydrolysis by PDE5A, PDE6C, PDE9A2 for a low (1 nm) and high concentration (10 μm). Complete IC50 plots for all analogues were performed for PDE5A‐dependent cGMP hydrolysis. Docking studies and scoring were made using the ICM molecular modelling software. Key findings The analogues in a low concentration showed no or low inhibition of PDE1A1, PDE1B1, PDE2A1, PDE3A, PDE10A1 and PDE10A2. In contrast, PDE5A and PDE6C were markedly inhibited to a similar extent by the analogues in a low concentration, whereas PDE9A2 was much less inhibited. The analogues showed a relative narrow range of Ki values for PDE5A inhibition (1.2–14 nm). The sildenafil molecule was docked in the structure of PDE5A1 co‐crystallised with sildenafil. All the analogues had similar binding poses as sildenafil. Conclusions Sildenafil analogues that inhibit cellular cGMP efflux are potent inhibitors of PDE5A and PDE6C.
Collapse
Affiliation(s)
- Anna Subbotina
- Experimental and Clinical Pharmacology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Aina W Ravna
- Experimental and Clinical Pharmacology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Roy A Lysaa
- Experimental and Clinical Pharmacology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California - San Diego, La Jolla, CA, USA
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Georg Sager
- Experimental and Clinical Pharmacology, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
27
|
Fusco FR, Paldino E. Role of Phosphodiesterases in Huntington’s Disease. ADVANCES IN NEUROBIOLOGY 2017; 17:285-304. [DOI: 10.1007/978-3-319-58811-7_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Li D, Paterson DJ. Cyclic nucleotide regulation of cardiac sympatho-vagal responsiveness. J Physiol 2016; 594:3993-4008. [PMID: 26915722 DOI: 10.1113/jp271827] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are now recognized as important intracellular signalling molecules that modulate cardiac sympatho-vagal balance in the progression of heart disease. Recent studies have identified that a significant component of autonomic dysfunction associated with several cardiovascular pathologies resides at the end organ, and is coupled to impairment of cyclic nucleotide targeted pathways linked to abnormal intracellular calcium handling and cardiac neurotransmission. Emerging evidence also suggests that cyclic nucleotide coupled phosphodiesterases (PDEs) play a key role limiting the hydrolysis of cAMP and cGMP in disease, and as a consequence this influences the action of the nucleotide on its downstream biological target. In this review, we illustrate the action of nitric oxide-CAPON signalling and brain natriuretic peptide on cGMP and cAMP regulation of cardiac sympatho-vagal transmission in hypertension and ischaemic heart disease. Moreover, we address how PDE2A is now emerging as a major target that affects the efficacy of soluble/particulate guanylate cyclase coupling to cGMP in cardiac dysautonomia.
Collapse
Affiliation(s)
- Dan Li
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
29
|
Design and Microwave Assisted Synthesis of Coumarin Derivatives as PDE Inhibitors. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2016; 2016:9890630. [PMID: 26998358 PMCID: PMC4779523 DOI: 10.1155/2016/9890630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/26/2015] [Accepted: 12/27/2015] [Indexed: 12/04/2022]
Abstract
Coumarins appended to benzimidazole through pyrazole are designed and synthesized using microwave irradiation. These compounds were analyzed for phosphodiesterase (PDE) inhibition indirectly by motility pattern in human spermatozoa. Some of the synthesized compounds, namely, 5d, 5e, 5f, 5g, 5h, and 5k, have exhibited potent inhibitory activity on PDE.
Collapse
|
30
|
Location, location, location: PDE4D5 function is directed by its unique N-terminal region. Cell Signal 2016; 28:701-5. [PMID: 26808969 DOI: 10.1016/j.cellsig.2016.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Irkilata L, Aydin HR, Ozer I, Aydin M, Demirel HC, Moral C, Atilla MK. The efficacy of udenafil in end-stage renal disease patients undergoing hemodialysis. Ren Fail 2016; 38:357-61. [PMID: 26727286 DOI: 10.3109/0886022x.2015.1128840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Erectile dysfunction (ED) is frequently observed in end-stage renal disease (ESRD) patients on hemodialysis (HD) compared to non-uremic patients. This situation causes severe psychogenic problems in patients and disrupts the quality of life. Different phosphodiesterase type 5 (PDE-5) inhibitors have been used, and efficacies revealed, for the treatment of ED in HD patients; however, there are no studies related to udenafil use or results for HD patients. This study retrospectively evaluated the efficacy and reliability of udenafil for HD patients. MATERIALS AND METHODS The laboratory findings, side effects after treatment, and International Index of Erectile Function (IIEF) scores before and after treatment were compared and evaluated for HD patients who applied to our urology clinic with ED complaints and were treated with udenafil. RESULTS The results showed that in the HD patient group with ED, apart from ED, there were severe rates of other sexual dysfunction. In our patient group, there was a statistically significant improvement in all scores for erectile function (p = 0.033), orgasmic function (p < 0.001), sexual desire (p < 0.001), relationship satisfaction (p < 0.001), and general satisfaction (p < 0.001) after treatment. The reported side effects were headache in one patient and dyspepsia in one patient. CONCLUSION We concluded that udenafil is an effective and reliable treatment approach for HD patients; however, our results require support from prospective randomized crossover studies with sildenafil.
Collapse
Affiliation(s)
- Lokman Irkilata
- a Department of Urology , Samsun Training and Research Hospital , Samsun , Turkey
| | - Hasan Riza Aydin
- b Department of Urology, Medical Faculty, Recep Tayyip Erdogan University , Rize , Turkey
| | - Ismail Ozer
- c Department of Nephrology , Samsun Training and Research Hospital , Samsun , Turkey
| | - Mustafa Aydin
- a Department of Urology , Samsun Training and Research Hospital , Samsun , Turkey
| | | | - Caner Moral
- a Department of Urology , Samsun Training and Research Hospital , Samsun , Turkey
| | - Mustafa Kemal Atilla
- a Department of Urology , Samsun Training and Research Hospital , Samsun , Turkey
| |
Collapse
|
32
|
Matange N. Revisiting bacterial cyclic nucleotide phosphodiesterases: cyclic AMP hydrolysis and beyond. FEMS Microbiol Lett 2015; 362:fnv183. [PMID: 26424768 DOI: 10.1093/femsle/fnv183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 12/15/2022] Open
Abstract
Cyclic-3',5'-adenosine monophosphate (cAMP) is a universal second messenger that regulates vital activities in bacteria and eukaryotes. Enzymes that hydrolyze cAMP, called phosphodiesterases (PDEs), negatively regulate the levels of this messenger molecule and are therefore crucial for signal 'termination'. In this minireview, I shall summarize the available literature on bacterial cAMP-PDEs, with particular emphasis on enzymes belonging to the ubiquitously encoded Class III PDE family exemplified by CpdA from Escherichia coli and Rv0805 from Mycobacterium tuberculosis. Using available biochemical, structural and biological information, I shall make a case for re-examining the functions of these enzymes as merely regulators of intrabacterial cAMP levels and suggest that some members of this class may have evolved cAMP-independent functions as well. Finally, I shall highlight the major lacunae in our understanding of these enzymes and present unanswered questions in the area.
Collapse
Affiliation(s)
- Nishad Matange
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
33
|
Moon C, Zhang W, Sundaram N, Yarlagadda S, Reddy VS, Arora K, Helmrath MA, Naren AP. Drug-induced secretory diarrhea: A role for CFTR. Pharmacol Res 2015; 102:107-112. [PMID: 26429773 DOI: 10.1016/j.phrs.2015.08.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 12/29/2022]
Abstract
Many medications induce diarrhea as a side effect, which can be a major obstacle to therapeutic efficacy and also a life-threatening condition. Secretory diarrhea can be caused by excessive fluid secretion in the intestine under pathological conditions. The cAMP/cGMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR) is the primary chloride channel at the apical membrane of intestinal epithelial cells and plays a major role in intestinal fluid secretion and homeostasis. CFTR forms macromolecular complexes at discreet microdomains at the plasma membrane, and its chloride channel function is regulated spatiotemporally through protein-protein interactions and cAMP/cGMP-mediated signaling. Drugs that perturb CFTR-containing macromolecular complexes in the intestinal epithelium and upregulate intracellular cAMP and/or cGMP levels can hyperactivate the CFTR channel, causing excessive fluid secretion and secretory diarrhea. Inhibition of CFTR chloride-channel activity may represent a novel approach to the management of drug-induced secretory diarrhea.
Collapse
Affiliation(s)
- Changsuk Moon
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Weiqiang Zhang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nambirajan Sundaram
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sunitha Yarlagadda
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Vadde Sudhakar Reddy
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kavisha Arora
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael A Helmrath
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of General Surgery, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Anjaparavanda P Naren
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
34
|
Celik O, Celik N, Gungor S, Haberal ET, Aydin S. Selective Regulation of Oocyte Meiotic Events Enhances Progress in Fertility Preservation Methods. BIOCHEMISTRY INSIGHTS 2015; 8:11-21. [PMID: 26417205 PMCID: PMC4577271 DOI: 10.4137/bci.s28596] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 11/15/2022]
Abstract
Following early embryonic germ cell migration, oocytes are surrounded by somatic cells and remain arrested at diplotene stage until luteinizing hormone (LH) surge. Strict regulation of both meiotic arrest and meiotic resumption during dormant stage are critical for future fertility. Inter-cellular signaling system between the somatic compartment and oocyte regulates these meiotic events and determines the follicle quality. As well as the collected number of eggs, their qualities are also important for in vitro fertilization (IVF) outcome. In spontaneous and IVF cycles, germinal vesicle (GV)–stage oocytes, premature GV breakdown, and persistence of first meiotic arrest limit the reproductive performance. Likewise, both women with premature ovarian aging and young cancer women are undergoing chemoradiotherapy under the risk of follicle loss because of unregulated meiotic events. Understanding of oocyte meiotic events is therefore critical for the prevention of functional ovarian reserve. High levels of cyclic guanosine monophophate (cGMP), cyclic adenosine monophophate (cAMP) and low phosphodiesterase (PDE) 3A enzyme activity inside the oocyte are responsible for maintaining of meiotic arrest before the LH surge. cGMP is produced in the somatic compartment, and natriuretic peptide precursor C (Nppc) and natriuretic peptide receptor 2 (Npr2) regulate its production. cGMP diffuses into the oocyte and reduces the PDE3A activity, which inhibits the conversion of cAMP to the 5′AMP, and cAMP levels are enhanced. In addition, oocyte itself has the ability to produce cAMP. Taken together, accumulation of cAMP inside the oocyte induces protein kinase activity, which leads to the inhibition of maturation-promoting factor and meiotic arrest also continues. By stimulating the expression of epidermal growth factor, LH inhibits the Nppc/Npr2 system, blocks cGMP synthesis, and initiates meiotic resumption. Oocytes lacking the functional of this pathway may lead to persistence of the GV oocyte, which reduces the number of good quality eggs. Selective regulation of somatic cell signals and oocyte meiotic events enhance progress in fertility preservation methods, which may give us the opportunity to prevent follicle loss in prematurely aging women and young women with cancer are undergoing chemoradiotherapy.
Collapse
Affiliation(s)
- Onder Celik
- Private Clinic, Obstetrics and Gynecology, Usak, Turkey
| | - Nilufer Celik
- Behçet Uz Children's Hospital, Department of Biochemistry, İzmir, Turkey
| | - Sami Gungor
- Private Medical Hospital, Obstetrics and Gynecology, Elazig, Turkey
| | - Esra Tustas Haberal
- Umraniye Education and Research Hospital, Obstetrics and Gynecology, İstanbul, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry (Firat Hormone Research Group), School of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
35
|
Pinto CS, Raman A, Reif GA, Magenheimer BS, White C, Calvet JP, Wallace DP. Phosphodiesterase Isoform Regulation of Cell Proliferation and Fluid Secretion in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2015; 27:1124-34. [PMID: 26289612 DOI: 10.1681/asn.2015010047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 07/21/2015] [Indexed: 11/03/2022] Open
Abstract
cAMP stimulates cell proliferation and Cl(-)-dependent fluid secretion, promoting the progressive enlargement of renal cysts in autosomal dominant polycystic kidney disease (ADPKD). Intracellular cAMP levels are determined by the balance of cAMP synthesis by adenylyl cyclases and degradation by phosphodiesterases (PDEs). Therefore, PDE isoform expression and activity strongly influence global and compartmentalized cAMP levels. We report here that PDE3 and PDE4 expression levels are lower in human ADPKD tissue and cells compared with those of normal human kidneys (NHKs), whereas PDE1 levels are not significantly different. Inhibition of PDE4 caused a greater increase in basal and vasopressin (AVP)-stimulated cAMP levels and Cl(-) secretion by ADPKD cells than inhibition of PDE1, and inhibition of PDE4 induced cyst-like dilations in cultured mouse Pkd1(-/-) embryonic kidneys. In contrast, inhibition of PDE1 caused greater stimulation of extracellular signal-regulated kinase (ERK) and proliferation of ADPKD cells than inhibition of PDE4, and inhibition of PDE1 enhanced AVP-induced ERK activation. Notably, inhibition of PDE1, the only family of Ca(2+)-regulated PDEs, also induced a mitogenic response to AVP in NHK cells, similar to the effect of restricting intracellular Ca(2+). PDE1 coimmunoprecipitated with B-Raf and A-kinase anchoring protein 79, and AVP increased this interaction in ADPKD but not NHK cells. These data suggest that whereas PDE4 is the major PDE isoform involved in the regulation of global intracellular cAMP and Cl(-) secretion, PDE1 specifically affects the cAMP signal to the B-Raf/MEK/ERK pathway and regulates AVP-induced proliferation of ADPKD cells.
Collapse
Affiliation(s)
| | - Archana Raman
- The Kidney Institute, Department of Molecular and Integrative Physiology, and
| | - Gail A Reif
- Department of Internal Medicine, The Kidney Institute
| | - Brenda S Magenheimer
- The Kidney Institute, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Corey White
- Department of Internal Medicine, The Kidney Institute
| | - James P Calvet
- The Kidney Institute, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Darren P Wallace
- Department of Internal Medicine, The Kidney Institute, Department of Molecular and Integrative Physiology, and
| |
Collapse
|
36
|
Herbs to curb cyclic nucleotide phosphodiesterase and their potential role in Alzheimer's disease. Mech Ageing Dev 2015; 149:75-87. [PMID: 26050556 DOI: 10.1016/j.mad.2015.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/22/2015] [Accepted: 05/27/2015] [Indexed: 01/02/2023]
Abstract
Cyclic nucleotides viz., cAMP/cGMP has been well known to play important role in cellular function and deficiency in their levels has been implicated in the pathogenesis of various neurodegenerative disorders including Alzheimer's disease (AD). Phosphodiesterases (PDE) are the enzymes involved in the metabolism of cyclic nucleotides and the inhibition of phosphodiesterases is considered to be viable strategy to restore the level of cyclic nucleotides and their functions in the brain. Various synthetic PDE inhibitors had been used clinically for various disorders and also suggested to be useful candidates for treating neurological disorders. However, side effects of these synthetic PDE inhibitors have limited their use in clinical practice. Natural plant extracts or their bio-active compounds are considered to be safe and are widely acceptable. During the last decade, many plant extracts or their bio-active compounds were tested pre-clinically for PDE inhibitory activity and are reported to be equally potent in inhibiting PDE's, as that of synthetic compounds. The present review is aimed to discuss the potential plant extract/compounds with PDE inhibitory activity and critically discuss their potential role in Alzheimer's disease.
Collapse
|
37
|
Radwan AA. Pharmacophore elucidation and molecular docking studies on phosphodiesterase-5 inhibitors. Bioinformation 2015; 11:63-6. [PMID: 25848165 PMCID: PMC4369680 DOI: 10.6026/97320630011063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 01/10/2015] [Indexed: 11/23/2022] Open
Abstract
cGMP-binding cGMP-specific PDE, PDE5 plays a key role in the hydrolysis of cyclic guanidine monophosphate. Because cGMP mediates vascular functions, a PDE5 inhibitor that elevates cGMP level is an attractive means for vasodilatation and treatment of erectile dysfunction. In this paper we report the elucidation of the common pharmacophore hypothesis of different classes of PDE5 inhibitors. Using LigandScout program, pharmacophore modelling studies were performed on prior reported potent PDE5 inhibitors with a variety of scaffolds in order to identify one common set of critical chemical features of these PDE5 inhibitors 1-52. The best pharmacophore model, model-1, characterized by four chemical features: one aromatic ring, one hydrophobe, one hydrogen acceptors and one hydrogen donor. Using Dock6 program, docking studies were performed in order to investigate the mode of binding of these compounds. The molecular docking study allowed confirming the preferential binding mode of different classes of PDE5 inhibitors inside the active site. The obtained binding mode was as same as that of vardenafil, X-ray ligand with different orientation with varied PDE5 inhibitors׳ scaffold.
Collapse
Affiliation(s)
- Awwad Abdoh Radwan
- King Saud University, College of Pharmacy, Department of Pharmaceutics, Riyadh 11451, Saudi Arabia ; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
38
|
Zhang Z, He F, Constantine R, Baker ML, Baehr W, Schmid MF, Wensel TG, Agosto MA. Domain organization and conformational plasticity of the G protein effector, PDE6. J Biol Chem 2015; 290:12833-43. [PMID: 25809480 DOI: 10.1074/jbc.m115.647636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 11/06/2022] Open
Abstract
The cGMP phosphodiesterase of rod photoreceptor cells, PDE6, is the key effector enzyme in phototransduction. Two large catalytic subunits, PDE6α and -β, each contain one catalytic domain and two non-catalytic GAF domains, whereas two small inhibitory PDE6γ subunits allow tight regulation by the G protein transducin. The structure of holo-PDE6 in complex with the ROS-1 antibody Fab fragment was determined by cryo-electron microscopy. The ∼11 Å map revealed previously unseen features of PDE6, and each domain was readily fit with high resolution structures. A structure of PDE6 in complex with prenyl-binding protein (PrBP/δ) indicated the location of the PDE6 C-terminal prenylations. Reconstructions of complexes with Fab fragments bound to N or C termini of PDE6γ revealed that PDE6γ stretches from the catalytic domain at one end of the holoenzyme to the GAF-A domain at the other. Removal of PDE6γ caused dramatic structural rearrangements, which were reversed upon its restoration.
Collapse
Affiliation(s)
- Zhixian Zhang
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Feng He
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Ryan Constantine
- Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132
| | - Matthew L Baker
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Wolfgang Baehr
- Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132
| | - Michael F Schmid
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Theodore G Wensel
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Melina A Agosto
- From the Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| |
Collapse
|
39
|
Alinejad B, Shafiee-Nick R, Ghorbani A, Sadeghian H. MC2, a new phosphodiesterase-3 inhibitor with antilipolytic and hypolipidemic effects in normal and diabetic rats. Int J Diabetes Dev Ctries 2015. [DOI: 10.1007/s13410-015-0291-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Rajagopal S, Nalli AD, Kumar DP, Bhattacharya S, Hu W, Mahavadi S, Grider JR, Murthy KS. Cytokine-induced S-nitrosylation of soluble guanylyl cyclase and expression of phosphodiesterase 1A contribute to dysfunction of longitudinal smooth muscle relaxation. J Pharmacol Exp Ther 2015; 352:509-18. [PMID: 25550199 PMCID: PMC4352595 DOI: 10.1124/jpet.114.221929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/29/2014] [Indexed: 01/12/2023] Open
Abstract
The effect of proinflammatory cytokines on the expression and activity of soluble guanylyl cyclase (sGC) and cGMP-phosphodiesterases (PDEs) was determined in intestinal longitudinal smooth muscle. In control muscle cells, cGMP levels are regulated via activation of sGC and PDE5; the activity of the latter is regulated via feedback phosphorylation by cGMP-dependent protein kinase. In muscle cells isolated from muscle strips cultured with interleukin-1β (IL-1β) or tumor necrosis factor α (TNF-α) or obtained from the colon of TNBS (2,4,6-trinitrobenzene sulfonic acid)-treated mice, expression of inducible nitric oxide synthase (iNOS) was induced and sGC was S-nitrosylated, resulting in attenuation of nitric oxide (NO)-induced sGC activity and cGMP formation. The effect of cytokines on sGC S-nitrosylation and activity was blocked by the iNOS inhibitor 1400W [N-([3-(aminomethyl)phenyl]methyl)ethanimidamide dihydrochloride]. The effect of cytokines on cGMP levels measured in the absence of IBMX (3-isobutyl-1-methylxanthine), however, was partly reversed by 1400W or PDE1 inhibitor vinpocetine and completely reversed by a combination of 1400W and vinpocetine. Expression of PDE1A was induced and was accompanied by an increase in PDE1A activity in muscle cells isolated from muscle strips cultured with IL-1β or TNF-α or obtained from the colon of TNBS-treated mice; the effect of cytokines on PDE1 expression and activity was blocked by MG132 (benzyl N-[(2S)-4-methyl-1-[[(2S)-4-methyl-1-[[(2S)-4-methyl-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]carbamate), an inhibitor of nuclear factor κB activity. NO-induced muscle relaxation was inhibited in longitudinal muscle cells isolated from muscle strips cultured with IL-1β or TNF-α or obtained from the colon of TNBS-treated mice, and this inhibition was completely reversed by the combination of both 1400W and vinpocetine. Inhibition of smooth muscle relaxation during inflammation reflects the combined effects of decreased sGC activity via S-nitrosylation and increased cGMP hydrolysis via PDE1 expression.
Collapse
Affiliation(s)
- Senthilkumar Rajagopal
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Ancy D Nalli
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Divya P Kumar
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Sayak Bhattacharya
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Wenhui Hu
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Sunila Mahavadi
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - John R Grider
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S Murthy
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
41
|
Alinejad B, Shafiee-Nick R, Sadeghian H, Ghorbani A. Metabolic effects of newly synthesized phosphodiesterase-3 inhibitor 6-[4-(4-methylpiperidin-1-yl)-4-oxobutoxy]-4-methylquinolin-2(1H)-one on rat adipocytes. ACTA ACUST UNITED AC 2015; 23:19. [PMID: 25880831 PMCID: PMC4355504 DOI: 10.1186/s40199-015-0100-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 02/05/2015] [Indexed: 11/30/2022]
Abstract
Background Clinical use of selective PDE3 inhibitors as cardiotonic agents is limited because of their chronotropic and lipolytic side effects. In our previous work, we synthesized a new PDE3 inhibitor named MC2 (6-[4-(4-methylpiperidin-1-yl)-4-oxobutoxy]-4-methylquinolin-2(1H)-one) which produced a high positive inotropic action with a negative chronotropic effect. This work was done to evaluate the effects of MC2 on adipocytes and compare its effects with those of amrinone and cilostamide. Methods Preadipocytes were isolated from rat adipose tissue and differentiated to adipocyte in the presence of cilostamide, amrinone or MC2. Lipolysis and adipogenesis was evaluated by measuring glycerol level and Oil Red O staining, respectively. Adipocyte proliferation and apoptosis were determined with MTT assay and Annexin V/PI staining, respectively. Results Differentiation to adipocyte was induced by amrinone but not by cilostamide or MC2. Basal and isoproterenol-stimulated lipolysis significantly increased by cilostamide (p < 0.05). Similarly, amrinone enhanced the stimulated lipolysis (p < 0.01). On the other hand, MC2 significantly decreased both adipogenesis (p < 0.05) and stimulated lipolysis (p < 0.001). Also, incubation of differentiated adipocytes with MC2 caused the loss of cell viability, which was associated with the elevation in apoptotic rate (p < 0.05). Conclusion Our data indicate that selective PDE3 inhibitors produce differential effects on adipogenesis and lipolysis. MC2 has proapoptotic and antilipolytic effects on adipocytes and does not stimulate adipogenesis. Therefore, in comparison with the clinically available selective PDE3 inhibitors, MC2 has lowest metabolic side effects and might be a good candidate for treatment of congestive heart failure.
Collapse
Affiliation(s)
- Bagher Alinejad
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Reza Shafiee-Nick
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hamid Sadeghian
- Department of laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Cyclic nucleotide signalling in kidney fibrosis. Int J Mol Sci 2015; 16:2320-51. [PMID: 25622251 PMCID: PMC4346839 DOI: 10.3390/ijms16022320] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/14/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022] Open
Abstract
Kidney fibrosis is an important factor for the progression of kidney diseases, e.g., diabetes mellitus induced kidney failure, glomerulosclerosis and nephritis resulting in chronic kidney disease or end-stage renal disease. Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were implicated to suppress several of the above mentioned renal diseases. In this review article, identified effects and mechanisms of cGMP and cAMP regarding renal fibrosis are summarized. These mechanisms include several signalling pathways of nitric oxide/ANP/guanylyl cyclases/cGMP-dependent protein kinase and cAMP/Epac/adenylyl cyclases/cAMP-dependent protein kinase. Furthermore, diverse possible drugs activating these pathways are discussed. From these diverse mechanisms it is expected that new pharmacological treatments will evolve for the therapy or even prevention of kidney failure.
Collapse
|
43
|
Afifi MA, Al-Rabia MW. The immunomodulatory effects of rolipram abolish drug-resistant latent phase of Toxoplasma gondii infection in a murine model. J Microsc Ultrastruct 2015; 3:86-91. [PMID: 30023187 PMCID: PMC6014187 DOI: 10.1016/j.jmau.2014.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 01/10/2023] Open
Abstract
Background: Latent toxoplasmosis always has the risk of reactivation leading to significant sequelae. The available medications, for chronic toxoplasmosis, are awfully limited by resistance of Toxoplasma cysts. Therefore, there is a growing necessity for novel therapeutic approaches. Agents increasing cAMP levels and downregulating proinflammatory cytokine could inhibit Toxoplasma conversion to the bradyzoite stage. This study explores a potential immunomodulatory effect of rolipram, a PDE4 inhibitor, on the course of experimental toxoplasmosis and links this role to deterrence of the resistant chronic phase of the disease. Materials and methods: Mice infected with low pathogenic strain of Toxoplasma gondii were treated with rolipram for three weeks. The effect of rolipram was evaluated through tissue injury scoring, brain cyst count, specific IgG titers as well as TNF-α, IFN-γ and IL-12 assays. Results: Rolipram was partially able to prevent the progression to chronic toxoplasmosis. Toxoplasma brain cyst burden showed a 74% reduction while Toxoplasma-induced inflammatory foci per liver area and nucleated cells per inflammatory focus were significantly reduced: 57.14% and 61.3% respectively. Significant reduction of TNF-α (84.6%), IFN-γ (76.7%) and IL-12 (71%) levels was demonstrated along with significant inhibition of anti-Toxoplasma antibody response. Conclusion: Rolipram efficiently modulated the Toxoplasma-induced immunological changes with a consequent remission of chronic toxoplasmosis. This study is the first to report the utilization of PDE4 inhibitors as possible immune modulators of chronic phase of Toxoplasma infection.
Collapse
Affiliation(s)
- Mohammed A Afifi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Parasitology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Mohammed W Al-Rabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
44
|
Lomas O, Zaccolo M. Phosphodiesterases maintain signaling fidelity via compartmentalization of cyclic nucleotides. Physiology (Bethesda) 2014; 29:141-9. [PMID: 24583770 PMCID: PMC3949206 DOI: 10.1152/physiol.00040.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Novel technological advances have improved our understanding of how cyclic nucleotides are able to convey signals faithfully between cellular compartments. Phosphodiesterases play a crucial role in shaping these signals in health and disease. The concept of compartmentalization is guiding the search for therapies that have the potential to offer greater efficacy and tolerability compared with current treatments.
Collapse
Affiliation(s)
- Oliver Lomas
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; and
| | | |
Collapse
|
45
|
A tool set to map allosteric networks through the NMR chemical shift covariance analysis. Sci Rep 2014; 4:7306. [PMID: 25482377 PMCID: PMC4258684 DOI: 10.1038/srep07306] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/07/2014] [Indexed: 11/30/2022] Open
Abstract
Allostery is an essential regulatory mechanism of biological function. Allosteric sites are also pharmacologically relevant as they are often targeted with higher selectivity than orthosteric sites. However, a comprehensive map of allosteric sites poses experimental challenges because allostery is driven not only by structural changes, but also by modulations in dynamics that typically remain elusive to classical structure determination methods. An avenue to overcome these challenges is provided by the NMR chemical shift covariance analysis (CHESCA), as chemical shifts are exquisitely sensitive to redistributions in dynamic conformational ensembles. Here, we propose a set of complementary CHESCA algorithms designed to reliably detect allosteric networks with minimal occurrences of false positives or negatives. The proposed CHESCA toolset was tested for two allosteric proteins (PKA and EPAC) and is expected to complement traditional comparative structural analyses in the comprehensive identification of functionally relevant allosteric sites, including those in otherwise elusive partially unstructured regions.
Collapse
|
46
|
Mahavadi S, Nalli AD, Kumar DP, Hu W, Kuemmerle JF, Grider JR, Murthy KS. Cytokine-induced iNOS and ERK1/2 inhibit adenylyl cyclase type 5/6 activity and stimulate phosphodiesterase 4D5 activity in intestinal longitudinal smooth muscle. Am J Physiol Cell Physiol 2014; 307:C402-11. [PMID: 24944202 PMCID: PMC4137135 DOI: 10.1152/ajpcell.00123.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/17/2014] [Indexed: 01/26/2023]
Abstract
This study identified a distinctive pattern of expression and activity of adenylyl cyclase (AC) and phosphodiesterase (PDE) isoforms in mouse colonic longitudinal smooth muscle cells and determined the changes in their expression and/or activity in response to proinflammatory cytokines (IL-1β and TNF-α) in vitro and 2,4,6 trinitrobenzene sulphonic acid (TNBS)-induced colonic inflammation in vivo. AC5/6 and PDE4D5, expressed in circular muscle cells, were also expressed in longitudinal smooth muscle. cAMP formation was tightly regulated via feedback phosphorylation of AC5/6 and PDE4D5 by PKA. Inhibition of PKA activity by myristoylated PKI blocked phosphorylation of AC5/6 and PDE4D5 and enhanced cAMP formation. TNBS treatment in vivo and IL-1β and TNF-α in vitro induced inducible nitric oxide synthase (iNOS) expression, stimulated ERK1/2 activity, caused iNOS-mediated S-nitrosylation and inhibition of AC5/6, and induced phosphorylation of PDE4D5 and stimulated its activity. The resultant decrease in AC5/6 activity and increase in PDE4D5 activity decreased cAMP formation and smooth muscle relaxation. S-nitrosylation and inhibition of AC5/6 activity were reversed by the iNOS inhibitor 1400W, whereas phosphorylation and activation of PDE4D5 were reversed by the phosphatidylinositol 3-kinase inhibitor LY294002 and the ERK1/2 inhibitor PD98059. The effects of IL-1β or TNF-α on forskolin-stimulated cAMP formation and smooth muscle relaxation reflected inhibition of AC5/6 activity and activation of PDE4D5 and were partly reversed by 1400W or PD98059 and completely reversed by a combination of the two inhibitors. The changes in the cAMP/PKA signaling and smooth muscle relaxation contribute to colonic dysmotility during inflammation.
Collapse
Affiliation(s)
- Sunila Mahavadi
- Department of Physiology and Biophysics, Virginia Commonwealth University Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia; and
| | - Ancy D Nalli
- Department of Physiology and Biophysics, Virginia Commonwealth University Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia; and
| | - Divya P Kumar
- Department of Physiology and Biophysics, Virginia Commonwealth University Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia; and
| | - Wenhui Hu
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - John F Kuemmerle
- Department of Physiology and Biophysics, Virginia Commonwealth University Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia; and
| | - John R Grider
- Department of Physiology and Biophysics, Virginia Commonwealth University Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia; and
| | - Karnam S Murthy
- Department of Physiology and Biophysics, Virginia Commonwealth University Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia; and
| |
Collapse
|
47
|
Pharmacophore modeling, 3DQSAR, and docking-based design of polysubstituted quinolines derivatives as inhibitors of phosphodiesterase 4, and preliminary evaluation of their anti-asthmatic potential. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1048-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Abstract
Erectile dysfunction (ED) is often perceived by both patients and sexual partners as a serious problem that can jeopardize quality of life, psychosocial or emotional well-being, and the partnership in the long term. Since their introduction, oral phosphodiesterase type 5 inhibitors (PDE5Is) have been found to be highly effective and well tolerated, and are available as the first-line therapy for the treatment of ED. Udenafil is one of the selective PDE5Is made available in recent years for the treatment of ED. Udenafil has clinical properties of both relatively rapid onset and long duration of action due to its pharmacokinetic profile, thereby providing an additional treatment option for ED men to better suit individual needs. There is positive evidence that udenafil is effective and well tolerated in the treatment of ED of a broad spectrum of etiologies or severity. Udenafil is as effective in the treatment of diabetes mellitus-associated ED as other PDE5Is. Due to the clinical property of relatively long duration of action, udenafil may be another option in daily dosing treatment for ED, as suggested by its favorable efficacy and safety profile. Most adverse effects reported from clinical trials are mild or moderate in severity, without any serious adverse event, with headache and flushing being the most common. Also, the concomitant use of anti-hypertensive drugs or alpha-1-blockers does not significantly affect the efficacy and safety profile of udenafil. However, additional studies with larger cohorts including prospective, multicenter, comparative studies with patients of different ethnicities are needed to further validate the favorable findings of udenafil in the treatment of ED.
Collapse
Affiliation(s)
- Min Chul Cho
- Department of Urology, Dongguk University College of Medicine, Goyang, Korea
| | - Jae-Seung Paick
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Otero C, Peñaloza JP, Rodas PI, Fernández-Ramires R, Velasquez L, Jung JE. Temporal and spatial regulation of cAMP signaling in disease: role of cyclic nucleotide phosphodiesterases. Fundam Clin Pharmacol 2014; 28:593-607. [PMID: 24750474 DOI: 10.1111/fcp.12080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/28/2014] [Accepted: 04/17/2014] [Indexed: 01/19/2023]
Abstract
Since its discovery, cAMP has been proposed as one of the most versatile second messengers. The remarkable feature of cAMP to tightly control highly diverse physiological processes, including metabolism, homeostasis, secretion, muscle contraction, cell proliferation and migration, immune response, and gene transcription, is reflected by millions of different articles worldwide. Compartmentalization of cAMP in space and time, maintained by mainly phosphodiesterases, contributes to the maintenance of equilibrium inside the cell where one signal can trigger many different events. Novel cAMP sensors seem to carry out certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Measuring space and time events with biosensors will increase our current knowledge on the pathophysiology of diseases, such as chronic obstructive pulmonary disease, asthma, cognitive impairment, cancer, and renal and heart failure. Further insights into the cAMP dynamics will help to optimize the pharmacological treatment for these diseases.
Collapse
Affiliation(s)
- Carolina Otero
- Center for Integrative Medicine and Innovative Science, Universidad Andres Bello, Santiago, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnologia, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
50
|
Doseyici S, Mehmetoglu I, Toker A, Yerlikaya FH, Erbay E. The effects of forskolin and rolipram on cAMP, cGMP and free fatty acid levels in diet induced obesity. Biotech Histochem 2014; 89:388-92. [PMID: 24520882 DOI: 10.3109/10520295.2014.883463] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Obesity is a major health problem. We investigated the effects of forskolin and rolipram in the diet of animals in which obesity had been induced. We used 50 female albino Wistar rats that were assigned randomly into five groups as follows: group 1, control; group 2, high fat diet; group 3, high fat diet + forskolin; group 4, high fat diet + rolipram; and group 5, high fat diet + rolipram + forskolin. The rats were fed for 10 weeks and rolipram and forskolin were administered during last two weeks. The animals were sacrificed and blood samples were obtained. Serum cAMP, cGMP and free fatty acids (FFA) levels were measured using ELISA assays. We also measured weight gain during the 10 week period. cAMP and FFA levels of groups 3, 4 and 5 were significantly higher than those of groups 1 and 2. We found no significant differences in serum cGMP levels among the groups. The weight gain in groups 3, 4 and 5 was significantly less than for group 2. We also found that the weight gain in group 5 was significantly less than in groups 3 and 4. We found that both forskolin and rolipram stimulated lipolysis and inhibited body weight increase by increasing cAMP levels. Also, combination therapy using the two agents may be more effective in preventing diet induced obesity than either agent alone. We found also that these agents did not effect cellular cGMP levels in diet induced obesity.
Collapse
Affiliation(s)
- S Doseyici
- Necmettin Erbakan University, Meram Medical Faculty, Department of Biochemistry , Konya , Turkey
| | | | | | | | | |
Collapse
|