1
|
Yadav DK, Srivastava GP, Singh A, Singh M, Yadav N, Tuteja N. Proteome-wide analysis reveals G protein-coupled receptor-like proteins in rice ( Oryza sativa). PLANT SIGNALING & BEHAVIOR 2024; 19:2365572. [PMID: 38904257 PMCID: PMC11195488 DOI: 10.1080/15592324.2024.2365572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of transmembrane proteins in metazoans that mediate the regulation of various physiological responses to discrete ligands through heterotrimeric G protein subunits. The existence of GPCRs in plant is contentious, but their comparable crucial role in various signaling pathways necessitates the identification of novel remote GPCR-like proteins that essentially interact with the plant G protein α subunit and facilitate the transduction of various stimuli. In this study, we identified three putative GPCR-like proteins (OsGPCRLPs) (LOC_Os06g09930.1, LOC_Os04g36630.1, and LOC_Os01g54784.1) in the rice proteome using a stringent bioinformatics workflow. The identified OsGPCRLPs exhibited a canonical GPCR 'type I' 7TM topology, patterns, and biologically significant sites for membrane anchorage and desensitization. Cluster-based interactome mapping revealed that the identified proteins interact with the G protein α subunit which is a characteristic feature of GPCRs. Computational results showing the interaction of identified GPCR-like proteins with G protein α subunit and its further validation by the membrane yeast-two-hybrid assay strongly suggest the presence of GPCR-like 7TM proteins in the rice proteome. The absence of a regulator of G protein signaling (RGS) box in the C- terminal domain, and the presence of signature motifs of canonical GPCR in the identified OsGPCRLPs strongly suggest that the rice proteome contains GPCR-like proteins that might be involved in signal transduction.
Collapse
Affiliation(s)
- Dinesh K. Yadav
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Gyan Prakash Srivastava
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Ananya Singh
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Madhavi Singh
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Neelam Yadav
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Narendra Tuteja
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
2
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|
3
|
Srivastava D, Yadav RP, Inamdar SM, Huang Z, Sokolov M, Boyd K, Artemyev NO. Transducin Partners Outside the Phototransduction Pathway. Front Cell Neurosci 2020; 14:589494. [PMID: 33173469 PMCID: PMC7591391 DOI: 10.3389/fncel.2020.589494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022] Open
Abstract
Transducin mediates signal transduction in a classical G protein-coupled receptor (GPCR) phototransduction cascade. Interactions of transducin with the receptor and the effector molecules had been extensively investigated and are currently defined at the atomic level. However, partners and functions of rod transducin α (Gαt 1) and βγ (Gβ1γ1) outside the visual pathway are not well-understood. In particular, light-induced redistribution of rod transducin from the outer segment to the inner segment and synaptic terminal (IS/ST) allows Gαt1 and/or Gβ1γ1 to modulate synaptic transmission from rods to rod bipolar cells (RBCs). Protein-protein interactions underlying this modulation are largely unknown. We discuss known interactors of transducin in the rod IS/ST compartment and potential pathways leading to the synaptic effects of light-dispersed Gαt1 and Gβ1γ1. Furthermore, we show that a prominent non-GPCR guanine nucleotide exchange factor (GEF) and a chaperone of Gα subunits, resistance to inhibitors of cholinesterase 8A (Ric-8A) protein, is expressed throughout the retina including photoreceptor cells. Recent structures of Ric-8A alone and in complexes with Gα subunits have illuminated the structural underpinnings of the Ric-8A activities. We generated a mouse model with conditional knockout of Ric-8A in rods in order to begin defining the functional roles of the protein in rod photoreceptors and the retina. Our analysis suggests that Ric-8A is not an obligate chaperone of Gαt1. Further research is needed to investigate probable roles of Ric-8A as a GEF, trafficking chaperone, or a mediator of the synaptic effects of Gαt1.
Collapse
Affiliation(s)
- Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Shivangi M Inamdar
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Zhen Huang
- Department of Neurology and Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Maxim Sokolov
- Department of Ophthalmology, Biochemistry and Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Department of Ophthalmology and Visual Sciences, Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
4
|
Petrukhin OV, Orlova TG, Nezvetsky AR, Orlov NY. Modeling of phototransduction processes in the photoreceptor disk membranes by the Monte Carlo method. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s000635091606021x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Orlandi C, Xie K, Masuho I, Fajardo-Serrano A, Lujan R, Martemyanov KA. Orphan Receptor GPR158 Is an Allosteric Modulator of RGS7 Catalytic Activity with an Essential Role in Dictating Its Expression and Localization in the Brain. J Biol Chem 2015; 290:13622-39. [PMID: 25792749 DOI: 10.1074/jbc.m115.645374] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/06/2022] Open
Abstract
Regulators of G protein signaling control the duration and extent of signaling via G protein-coupled receptor (GPCR) pathways by accelerating the GTP hydrolysis on G protein α subunits thereby promoting termination of GPCR signaling. A member of this family, RGS7, plays a critical role in the nervous system where it regulates multiple neurotransmitter GPCRs that mediate vision, memory, and the action of addictive drugs. Previous studies have established that in vivo RGS7 forms mutually exclusive complexes with the membrane protein RGS7-binding protein or the orphan receptor GPR158. In this study, we examine the impact of GPR158 on RGS7 in the brain. We report that knock-out of GPR158 in mice results in marked post-transcriptional destabilization of RGS7 and substantial loss of its association with membranes in several brain regions. We further identified the RGS7-binding site in the C terminus of GPR158 and found that it shares significant homology with the RGS7-binding protein. The proximal portion of the GPR158 C terminus additionally contained a conserved sequence that was capable of enhancing RGS7 GTPase-activating protein activity in solution by an allosteric mechanism acting in conjunction with the regulators of the G protein signaling-binding domain. The distal portion of the GPR158 C terminus contained several phosphodiesterase E γ-like motifs and selectively recruited G proteins in their activated state. The results of this study establish GPR158 as an essential regulator of RGS7 in the native nervous system with a critical role in controlling its expression, membrane localization, and catalytic activity.
Collapse
Affiliation(s)
- Cesare Orlandi
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458 and
| | - Keqiang Xie
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458 and
| | - Ikuo Masuho
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458 and
| | - Ana Fajardo-Serrano
- the Instituto de Investigación en Descapacidades Neuronales (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Rafael Lujan
- the Instituto de Investigación en Descapacidades Neuronales (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Kirill A Martemyanov
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458 and
| |
Collapse
|
6
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
7
|
Martemyanov KA. G protein signaling in the retina and beyond: the Cogan lecture. Invest Ophthalmol Vis Sci 2014; 55:8201-7. [PMID: 25511392 PMCID: PMC4541486 DOI: 10.1167/iovs.14-15928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Kirill A. Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States
| |
Collapse
|
8
|
Petrukhin OV, Orlova TG, Nezvetsky AR, Orlov NY. Activation of bovine retinal rod outer segment cGMP-specific phosphodiesterase by the transducin-GTP complex in a physiologically significant range of free calcium ion concentrations. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914050200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Liapis E, Sandiford S, Wang Q, Gaidosh G, Motti D, Levay K, Slepak VZ. Subcellular localization of regulator of G protein signaling RGS7 complex in neurons and transfected cells. J Neurochem 2012; 122:568-81. [PMID: 22640015 DOI: 10.1111/j.1471-4159.2012.07811.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The R7 family of regulators of G protein signaling (RGS) is involved in many functions of the nervous system. This family includes RGS6, RGS7, RGS9, and RGS11 gene products and is defined by the presence of the characteristic first found in Disheveled, Egl-10, Pleckstrin (DEP), DEP helical extension (DHEX), Gγ-like, and RGS domains. Herein, we examined the subcellular localization of RGS7, the most broadly expressed R7 member. Our immunofluorescence studies of retinal and dorsal root ganglion neurons showed that RGS7 concentrated at the plasma membrane of cell bodies, in structures resembling lamellipodia or filopodia along the processes, and at the dendritic tips. At the plasma membrane of dorsal root ganglia neurons, RGS7 co-localized with its known binding partners R7 RGS binding protein (R7BP), Gαo, and Gαq. More than 50% of total RGS7-specific immunofluorescence was present in the cytoplasm, primarily within numerous small puncta that did not co-localize with R7BP. No specific RGS7 or R7BP immunoreactivity was detected in the nuclei. In transfected cell lines, ectopic RGS7 had both diffuse cytosolic and punctate localization patterns. RGS7 also localized in centrosomes. Structure-function analysis showed that the punctate localization was mediated by the DEP/DHEX domains, and centrosomal localization was dependent on the DHEX domain.
Collapse
Affiliation(s)
- Evangelos Liapis
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Seeing begins in the photoreceptors, where light is absorbed and signaled to the nervous system. Throughout the animal kingdom, photoreceptors are diverse in design and purpose. Nonetheless, phototransduction-the mechanism by which absorbed photons are converted into an electrical response-is highly conserved and based almost exclusively on a single class of photoproteins, the opsins. In this Review, we survey the G protein-coupled signaling cascades downstream from opsins in photoreceptors across vertebrate and invertebrate species, noting their similarities as well as differences.
Collapse
Affiliation(s)
- King-Wai Yau
- Solomon H. Snyder Department of Neuroscience and Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
11
|
Slepak VZ. Structure, function, and localization of Gβ5-RGS complexes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:157-203. [PMID: 20374716 PMCID: PMC3312022 DOI: 10.1016/s1877-1173(09)86006-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Members of the R7 subfamily of regulator of G protein signaling (RGS) proteins (RGS6, 7, 9, and 11) exist as heterodimers with the G protein beta subunit Gβ5. These protein complexes are only found in neurons and are defined by the presence of three domains: DEP/DHEX, Gβ5/GGL, and RGS. This article summarizes published work in the following areas: (1) the functional significance of structural organization of Gβ5-R7 complexes, (2) regional distribution of Gβ5-R7 in the nervous system and regulation of R7 family expression, (3) subcellular localization of Gβ5-R7 complexes, and (4) novel binding partners of Gβ5-R7 proteins. The review points out some contradictions between observations made by different research groups and highlights the importance of using alternative experimental approaches to obtain conclusive information about Gβ5-R7 function in vivo.
Collapse
Affiliation(s)
- Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology and the Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
12
|
Mojumder DK, Qian Y, Wensel TG. Two R7 regulator of G-protein signaling proteins shape retinal bipolar cell signaling. J Neurosci 2009; 29:7753-65. [PMID: 19535587 PMCID: PMC2717019 DOI: 10.1523/jneurosci.1794-09.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/02/2009] [Indexed: 11/21/2022] Open
Abstract
RGS7, RGS11, and their binding partner Gbeta5 are localized to the dendritic tips of retinal ON bipolar cells (ON-BPC), where mGluR6 responds to glutamate released from photoreceptor terminals by activation of the RGS7/RGS11 substrate, Galphao. To determine their functions in retinal signaling, we investigated cell-specific expression patterns of RGS7 and RGS11 by immunostaining, and measured light responses by electroretinography in mice with targeted disruptions of the genes encoding them. RGS7 staining is present in dendritic tips of all rod ON-BPC, but missing in those for subsets of cone ON-BPC, whereas the converse was true for RGS11 staining. Genetic disruption of either RGS7 or RGS11 produced delays in the ON-BPC-derived electroretinogram b-wave, but no changes in the photoreceptor-derived a-wave. Homozygous RGS7 mutant mice had delays in rod-driven b-waves, whereas RGS11 mutant mice had delays in rod-driven, and especially in cone-driven b-waves. The b-wave delays were further enhanced in mice homozygous for both RGS7 and RGS11 gene disruptions. Thus, RGS7 and RGS11 act in parallel to regulate the kinetics of ON bipolar cell responses, with differential impacts on the rod and cone pathways.
Collapse
Affiliation(s)
- Deb Kumar Mojumder
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Yan Qian
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Theodore G. Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
13
|
Changes in striatal signaling induce remodeling of RGS complexes containing Gbeta5 and R7BP subunits. Mol Cell Biol 2009; 29:3033-44. [PMID: 19332565 DOI: 10.1128/mcb.01449-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurotransmitter signaling via G protein coupled receptors is crucially controlled by regulators of G protein signaling (RGS) proteins that shape the duration and extent of the cellular response. In the striatum, members of the R7 family of RGS proteins modulate signaling via D2 dopamine and mu-opioid receptors controlling reward processing and locomotor coordination. Recent findings have established that R7 RGS proteins function as macromolecular complexes with two subunits: type 5 G protein beta (Gbeta5) and R7 binding protein (R7BP). In this study, we report that the subunit compositions of these complexes in striatum undergo remodeling upon changes in neuronal activity. We found that under normal conditions two equally abundant striatal R7 RGS proteins, RGS9-2 and RGS7, are unequally coupled to the R7BP subunit, which is present in complex predominantly with RGS9-2 rather than with RGS7. Changes in the neuronal excitability or oxygenation status resulting in extracellular calcium entry, uncouples RGS9-2 from R7BP, triggering its selective degradation. Concurrently, released R7BP binds to mainly intracellular RGS7 and recruits it to the plasma membrane and the postsynaptic density. These observations introduce activity-dependent remodeling of R7 RGS complexes as a new molecular plasticity mechanism in striatal neurons and suggest a general model for achieving rapid posttranslational subunit rearrangement in multisubunit complexes.
Collapse
|
14
|
Chapter 7 Biology and Functions of the RGS9 Isoforms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:205-27. [DOI: 10.1016/s1877-1173(09)86007-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Narayanan V, Sandiford SL, Wang Q, Keren-Raifman T, Levay K, Slepak VZ. Intramolecular interaction between the DEP domain of RGS7 and the Gbeta5 subunit. Biochemistry 2007; 46:6859-70. [PMID: 17511476 DOI: 10.1021/bi700524w] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The R7 family of RGS proteins (RGS6, -7, -9, -11) is characterized by the presence of three domains: DEP, GGL, and RGS. The RGS domain interacts with Galpha subunits and exhibits GAP activity. The GGL domain permanently associates with Gbeta5. The DEP domain interacts with the membrane anchoring protein, R7BP. Here we provide evidence for a novel interaction within this complex: between the DEP domain and Gbeta5. GST fusion of the RGS7 DEP domain (GST-R7DEP) binds to both native and recombinant Gbeta5-RGS7, recombinant Gbetagamma complexes, and monomeric Gbeta5 and Gbeta1 subunits. Co-immunoprecipitation and FRET assays supported the GST pull-down experiments. GST-R7DEP reduced FRET between CFP-Gbeta5 and YFP-RGS7, indicating that the DEP-Gbeta5 interaction is dynamic. In transfected cells, R7BP had no effect on the Gbeta5/RGS7 pull down by GST-R7DEP. The DEP domain of RGS9 did not bind to Gbeta5. Substitution of RGS7 Glu-73 and Asp-74 for the corresponding Ser and Gly residues (ED/SG mutation) of RGS9 diminished the DEP-Gbeta5 interaction. In the absence of R7BP both the wild-type RGS7 and the ED/SG mutant attenuated muscarinic M3 receptor-mediated Ca2+ mobilization. In the presence of R7BP, wild-type RGS7 lost this inhibitory activity, whereas the ED/SG mutant remained active. Taken together, our results are consistent with the following model. The Gbeta5-RGS7 molecule can exist in two conformations: "closed" and "open", when the DEP domain and Gbeta5 subunit either do or do not interact. The closed conformation appears to be less active with respect to its effect on Gq-mediated signaling than the open conformation.
Collapse
Affiliation(s)
- Vijaya Narayanan
- Department of Molecular and Cellular Pharmacology and Neuroscience Program, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | | | |
Collapse
|
16
|
Song JH, Waataja JJ, Martemyanov KA. Subcellular targeting of RGS9-2 is controlled by multiple molecular determinants on its membrane anchor, R7BP. J Biol Chem 2006; 281:15361-9. [PMID: 16574655 DOI: 10.1074/jbc.m600749200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS9-2, a member of the R7 regulators of G protein signaling (RGS) protein family of neuronal RGS, is a critical regulator of G protein signaling. In striatal neurons, RGS9-2 is tightly associated with a novel palmitoylated protein, R7BP (R7 family binding protein). Here we report that R7BP acts to target the localization of RGS9-2 to the plasma membrane. Examination of the subcellular distribution in native striatal neurons revealed that both R7BP and RGS9-2 are almost entirely associated with the neuronal membranes. In addition to the plasma membrane, a large portion of RGS9-2 was found in the neuronal specializations, the postsynaptic densities, where it forms complexes with R7BP and its constitutive partner Gbeta5. Using site-directed mutagenesis we found that the molecular determinants that specify the subcellular targeting of RGS9-2.Gbeta5.R7BP complex are contained within the 21 C-terminal amino acids of R7BP. This function of the C terminus was found to require the synergistic contributions of its two distinct elements, a polybasic motif and palmitoylated cysteines, which when combined are sufficient for directing the intracellular localization of the constituent protein. In differentiated neurons, the C-terminal targeting motif of R7BP was found to be essential for mediating its postsynaptic localization. In addition to the plasma membrane targeting elements, we identified two functional nuclear localization sequences that can mediate the import of R7BP into the nucleus upon depalmitoylation. These findings provide a mechanism for the subcellular targeting of RGS9-2 in neurons.
Collapse
Affiliation(s)
- Joseph H Song
- Department of Pharmacology, University of Minnesota, and Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
17
|
Strissel KJ, Lishko PV, Trieu LH, Kennedy MJ, Hurley JB, Arshavsky VY. Recoverin undergoes light-dependent intracellular translocation in rod photoreceptors. J Biol Chem 2005; 280:29250-5. [PMID: 15961391 DOI: 10.1074/jbc.m501789200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photoreceptor cells have a remarkable capacity to adapt the sensitivity and speed of their responses to ever changing conditions of ambient illumination. Recent studies have revealed that a major contributor to this adaptation is the phenomenon of light-driven translocation of key signaling proteins into and out of the photoreceptor outer segment, the cellular compartment where phototransduction takes place. So far, only two such proteins, transducin and arrestin, have been established to be involved in this mechanism. To investigate the extent of this phenomenon we examined additional photoreceptor proteins that might undergo light-driven translocation, focusing on three Ca(2+)-binding proteins, recoverin and guanylate cyclase activating proteins 1 (GCAP1) and GCAP2. The changes in the subcellular distribution of each protein were assessed quantitatively using a recently developed technique combining serial tangential sectioning of mouse retinas with Western blot analysis of the proteins in the individual sections. Our major finding is that light causes a significant reduction of recoverin in rod outer segments, accompanied by its redistribution toward rod synaptic terminals. In both cases the majority of recoverin was found in rod inner segments, with approximately 12% present in the outer segments in the dark and less than 2% remaining in that compartment in the light. We suggest that recoverin translocation is adaptive because it may reduce the inhibitory constraint that recoverin imposes on rhodopsin kinase, an enzyme responsible for quenching the photo-excited rhodopsin during the photoresponse. To the contrary, no translocation of rhodopsin kinase itself or either GCAP was identified.
Collapse
Affiliation(s)
- Katherine J Strissel
- Department of Ophthalmology, Harvard Medical School and the Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
18
|
Drenan RM, Doupnik CA, Boyle MP, Muglia LJ, Huettner JE, Linder ME, Blumer KJ. Palmitoylation regulates plasma membrane-nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family. ACTA ACUST UNITED AC 2005; 169:623-33. [PMID: 15897264 PMCID: PMC2171691 DOI: 10.1083/jcb.200502007] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RGS7 (R7) family of RGS proteins bound to the divergent Gβ subunit Gβ5 is a crucial regulator of G protein–coupled receptor (GPCR) signaling in the visual and nervous systems. Here, we identify R7BP, a novel neuronally expressed protein that binds R7–Gβ5 complexes and shuttles them between the plasma membrane and nucleus. Regional expression of R7BP, Gβ5, and R7 isoforms in brain is highly coincident. R7BP is palmitoylated near its COOH terminus, which targets the protein to the plasma membrane. Depalmitoylation of R7BP translocates R7BP–R7–Gβ5 complexes from the plasma membrane to the nucleus. Compared with nonpalmitoylated R7BP, palmitoylated R7BP greatly augments the ability of RGS7 to attenuate GPCR-mediated G protein–regulated inward rectifying potassium channel activation. Thus, by controlling plasma membrane nuclear–shuttling of R7BP–R7–Gβ5 complexes, reversible palmitoylation of R7BP provides a novel mechanism that regulates GPCR signaling and potentially transduces signals directly from the plasma membrane to the nucleus.
Collapse
Affiliation(s)
- Ryan M Drenan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The experimental strategies developed in kinetic studies of interactions between RGS9 isoforms with G proteins of the Gi subfamily provide a useful framework for conducting similar studies with essentially any regulator of G-protein signaling (RGS) protein-G-protein pair. This article describes two major kinetic approaches used in the studies of RGS9 isoforms: single turnover and multiple turnover GTPase assays. We also describe pull-down assays as a method complementary to the kinetic assays. The discussion of the strengths and limitations of each individual assay emphasizes the importance of combining multiple experimental approaches in order to obtain comprehensive and internally consistent information regarding the mechanisms of RGS protein action.
Collapse
Affiliation(s)
- Kirill A Martemyanov
- Howe Laboratory of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
20
|
Hu G, Wensel TG. Characterization of R9AP, a membrane anchor for the photoreceptor GTPase-accelerating protein, RGS9-1. Methods Enzymol 2004; 390:178-96. [PMID: 15488178 DOI: 10.1016/s0076-6879(04)90012-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The proper recovery of photoreceptor light responses requires timely inactivation of the G-protein transducin (Gt) by GTP hydrolysis. It is now well established that the GTPase-accelerating protein (GAP) RGS9-1 plays an important role in determining the recovery kinetics of photoresponses. RGS9-1 has been found to be anchored to photoreceptor disk membranes by a novel photoreceptor protein, R9AP. R9AP has a single transmembrane domain at its C-terminal region. Membrane tethering by R9AP enhances RGS9-1 GAP activity in vitro and has been hypothesized to be important for the regulation of RGS9-1 function in vivo. In addition, R9AP shows structural similarity to the SNARE complex protein syntaxin and has been shown to be required for the correct targeting and localization of the RGS9-1 protein in photoreceptors. Therefore, R9AP may have additional functions other than that in the phototransduction pathway. This article presents methods and protocols developed for the functional characterization of R9AP in phototransduction, including the immunoprecipitation of the endogenous protein, the expression and purification of recombinant proteins, the reconstitution of proteoliposomes, and assays for its interaction with RGS9-1 and its effects on RGS9-1 GAP activity. These methods may also be applied to the study of R9AP function in other pathways or other cell types or to the studies of other membrane proteins that are structurally similar to R9AP.
Collapse
Affiliation(s)
- Guang Hu
- Brigham and Women's Hospital, Department of Medicine, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
21
|
Li XY, Yang Z, Greenwood MT. Gα protein dependent and independent effects of human RGS1 expression in yeast. Cell Signal 2004; 16:43-9. [PMID: 14607274 DOI: 10.1016/s0898-6568(03)00096-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Regulators of G-protein Signalling (RGS) regulate the functional lifetime of G-Protein Coupled Receptor (GPCR)-activated heterotrimeric G-protein by serving as GTPase Accelerating Proteins (GAPs) for the G(alpha) subunit. A number of mammalian RGSs can functionally replace the yeast RGS containing SST2 gene and inhibit GPCR signalling. Using yeast strains harbouring a G(betagamma)-responsive FUS1-LacZ reporter gene, we demonstrate that heterologously expressed mammalian RGS1 also serves to decrease basal signalling in the absence of agonist. Although this effect was dependent on the expression of a GPA1-encoded functional G(alpha) protein, the GPCR itself was nevertheless not required. Using the GAL1 inducible promoter to express RGS1, we further demonstrate that in addition to serving as a GAP for Gpa1p in yeast, RGS1 is a dosage-dependent inhibitor of growth. This effect is specific to RGS1 since growth is not altered in cells expressing either mammalian RGS2 or RGS5. We further demonstrate that neither of the two yeast G(alpha) proteins is responsible for mediating this growth inhibitory effect of RGS1. Taken together, our results indicate that RGS1 can function in both G-protein-dependent and -independent manners in yeast.
Collapse
Affiliation(s)
- Xiao Yu Li
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
22
|
Natochin M, Artemyev NO. A point mutation uncouples transducin-alpha from the photoreceptor RGS and effector proteins. J Neurochem 2003; 87:1262-71. [PMID: 14622106 DOI: 10.1046/j.1471-4159.2003.02103.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel gain-of-function mutation, R243Q, has been recently identified in the Candida elegans Gqalpha protein EGL-30. The position corresponding to Arg243 in EGL-30 is absolutely conserved among heterotrimeric G proteins. This mutation appears to be the first gain-of-function mutation in the switch III region of Galpha subunits. To investigate consequences of the R-->Q mutation we introduced the corresponding R238Q mutation into transducin-like Gtalpha* subunit. The mutant retained intact interactions with Gtbetagamma and rhodopsin but exhibited a twofold reduction in the kcat value for guanosine 5'-triphosphate (GTP) hydrolysis. The GTPase activity of R238Q was not accelerated by the RGS domain of the visual GTPase-activating protein, RGS9-1. In addition, R238Q displayed a significant impairment in the effector function. Our data and the crystal structures of transducin suggest that the major reason for the reduced intrinsic GTPase activity of R238Q and the lack of RGS9 function is the break of the conserved ionic contact between Arg238 and Glu39, which apparently stabilizes the transitional state for GTP hydrolysis. We hypothesize that the R243Q mutation in EGL-30 severs the ionic interaction of Arg243 with Glu43, leading to a defective inactivation of the mutant by the C. elegans RGS protein EAT-16.
Collapse
Affiliation(s)
- Michael Natochin
- Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|
23
|
Abstract
DEP (for Disheveled, EGL-10, Pleckstrin) homology domains are present in numerous signaling proteins, including many in the nervous system, but their function remains mostly elusive. We report that the DEP domain of a photoreceptor-specific signaling protein, RGS9 (for regulator of G-protein signaling 9), plays an essential role in RGS9 delivery to the intracellular compartment of its functioning, the rod outer segment. We generated a transgenic mouse in which RGS9 was replaced by its mutant lacking the DEP domain. We then used a combination of the quantitative technique of serial tangential sectioning-Western blotting with electrophysiological recordings to demonstrate that mutant RGS9 is expressed in rods in the normal amount but is completely excluded from the outer segments. The delivery of RGS9 to rod outer segments is likely to be mediated by the DEP domain interaction with a transmembrane protein, R9AP (for RGS9 anchoring protein), known to anchor RGS9 on the surface of photoreceptor membranes and to potentiate RGS9 catalytic activity. We show that both of these functions are also abolished as the result of the DEP domain deletion. These findings indicate that a novel function of the DEP domain is to target a signaling protein to a specific compartment of a highly polarized neuron. Interestingly, sequence analysis of R9AP reveals the presence of a conserved R-SNARE (for soluble N-ethylmaleimide-sensitive factor attachment protein receptor) motif and a predicted overall structural homology with SNARE proteins involved in vesicular trafficking and fusion. This presents the possibility that DEP domains might serve to target various DEP-containing proteins to the sites of their intracellular action via interactions with the members of extended SNARE protein family.
Collapse
|
24
|
Keresztes G, Martemyanov KA, Krispel CM, Mutai H, Yoo PJ, Maison SF, Burns ME, Arshavsky VY, Heller S. Absence of the RGS9.Gbeta5 GTPase-activating complex in photoreceptors of the R9AP knockout mouse. J Biol Chem 2003; 279:1581-4. [PMID: 14625292 DOI: 10.1074/jbc.c300456200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Timely termination of the light response in retinal photoreceptors requires rapid inactivation of the G protein transducin. This is achieved through the stimulation of transducin GTPase activity by the complex of the ninth member of the regulator of G protein signaling protein family (RGS9) with type 5 G protein beta subunit (Gbeta5). RGS9.Gbeta5 is anchored to photoreceptor disc membranes by the transmembrane protein, R9AP. In this study, we analyzed visual signaling in the rods of R9AP knockout mice. We found that light responses from R9AP knockout rods were very slow to recover and were indistinguishable from those of RGS9 or Gbeta5 knockout rods. This effect was a consequence of the complete absence of any detectable RGS9 from the retinas of R9AP knockout mice. On the other hand, the level of RGS9 mRNA was not affected by the knockout. These data indicate that in photoreceptors R9AP determines the stability of the RGS9.Gbeta5 complex, and therefore all three proteins, RGS9, Gbeta5 , and R9AP, are obligate members of the regulatory complex that speeds the rate at which transducin hydrolyzes GTP.
Collapse
Affiliation(s)
- Gabor Keresztes
- Department of Otolaryngology/Eaton Peabody Laboratory, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Timely deactivation of G-protein signaling is essential for the proper function of many cells, particularly neurons. Termination of the light response of retinal rods requires GTP hydrolysis by the G-protein transducin, which is catalyzed by a protein complex that includes regulator of G-protein signaling RGS9-1 and the G-protein beta subunit Gbeta5-L. Disruption of the Gbeta5 gene in mice (Gbeta5-/-) abolishes the expression of Gbeta5-L in the retina and also greatly reduces the expression level of RGS9-1. We examined transduction in dark- and light-adapted rods from wild-type and Gbeta5-/- mice. Responses of Gbeta5-/- rods were indistinguishable in all respects from those of RGS9-/- rods. Loss of Gbeta5-L (and RGS9-1) had no effect on the activation of the G-protein cascade, but profoundly slowed its deactivation and interfered with the speeding of incremental dim flashes during light adaptation. Both RGS9-/- and Gbeta5-/- responses were consistent with another factor weakly regulating GTP hydrolysis by transducin in a manner proportional to the inward current. Our results indicate that a complex containing RGS9-1-Gbeta5-L is essential for normal G-protein deactivation and rod function. In addition, our light adaptation studies support the notion than an additional weak GTPase-accelerating factor in rods is regulated by intracellular calcium and/or cGMP.
Collapse
|
26
|
Druey KM. Regulators of G protein signalling: potential targets for treatment of allergic inflammatory diseases such as asthma. Expert Opin Ther Targets 2003; 7:475-84. [PMID: 12885267 DOI: 10.1517/14728222.7.4.475] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Asthma, a disease that affects nearly 15% of the world's population, is characterised by lung inflammation and reversible airway obstruction, which leads to wheezing and dyspnoea. Asthma is a prototype for allergic processes initiated by tissue inflammatory leukocytes, such as mast cells, whose secreted mediators recruit lymphocytes and eosinophils to the lung parenchyma. Signals transmitted through G-protein-coupled receptors (GPCRs) contribute to both the development and perpetuation of allergic processes, and pharmacological agents that block or stimulate GPCR action have been a mainstay of allergic disease therapy. Despite the widespread use of GPCR-targeted agents, little is understood about intracellular regulation of G protein pathways in immune cells. Regulators of G protein signalling (RGS proteins) enhance G protein deactivation and may contribute to the specificity and precision characteristic of GPCR signalling pathways. This review discusses the emerging functions of RGS proteins in immune processes and inflammatory states such as asthma, and their potential value as therapeutic targets for the treatment of allergic disease.
Collapse
Affiliation(s)
- Kirk M Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 2441 Parklawn Drive, Rockville, MD 20852, USA.
| |
Collapse
|
27
|
Abstract
RGS proteins act as negative regulators of G protein signaling, and there is growing evidence that the RGS family is important for regulating signaling in neurons. Two articles in this issue of Neuron (Martemyanov et al. and Rahman et al.) shed light on the function of one family member, RGS9-2, in behavioral responses to dopamine signaling in the striatum and on the relationship between its structure and its function.
Collapse
Affiliation(s)
- Marie E Burns
- Center for Neuroscience and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95616, USA
| | | |
Collapse
|
28
|
Hu G, Zhang Z, Wensel TG. Activation of RGS9-1GTPase acceleration by its membrane anchor, R9AP. J Biol Chem 2003; 278:14550-4. [PMID: 12560335 DOI: 10.1074/jbc.m212046200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GTPase-accelerating protein (GAP) complex RGS9-1.G beta(5) plays an important role in the kinetics of light responses by accelerating the GTP hydrolysis of G alpha(t) in vertebrate photoreceptors. Much, but not all, of this complex is tethered to disk membranes by the transmembrane protein R9AP. To determine the effect of the R9AP membrane complex on GAP activity, we purified recombinant R9AP and reconstituted it into lipid vesicles along with the photon receptor rhodopsin. Full-length RGS9-1.G beta(5) bound to R9AP-containing vesicles with high affinity (K(d) < 10 nm), but constructs lacking the DEP (dishevelled/EGL-10/pleckstrin) domain bound with much lower affinity, and binding of those lacking the entire N-terminal domain (i.e. the dishevelled/EGL-10/pleckstrin domain plus intervening domain) was not detectable. Formation of the membrane-bound complex with R9AP increased RGS9-1 GAP activity by a factor of 4. Vesicle titrations revealed that on the time scale of phototransduction, the entire reaction sequence from GTP uptake to GAP-catalyzed hydrolysis is a membrane-delimited process, and exchange of G alpha(t) between membrane surfaces is much slower than hydrolysis. Because in rod cells different pools exist of RGS9-1.G beta(5) that are either associated with R9AP or not, regulation of the association between R9AP and RGS9-1.G beta(5) represents a potential mechanism for the regulation of recovery kinetics.
Collapse
Affiliation(s)
- Guang Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
29
|
Sokal I, Hu G, Liang Y, Mao M, Wensel TG, Palczewski K. Identification of protein kinase C isozymes responsible for the phosphorylation of photoreceptor-specific RGS9-1 at Ser475. J Biol Chem 2003; 278:8316-25. [PMID: 12499365 DOI: 10.1074/jbc.m211782200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inactivation of the visual G-protein transducin by GTP hydrolysis is regulated by the GTPase-accelerating protein (GAP) RGS9-1. Regulation of RGS9-1 itself is poorly understood, but we found previously that it is subject to a light- and Ca(2+)-sensitive phosphorylation on Ser(475). Because there are much higher RGS9-1 levels in cones than in rods, we investigated whether Ser(475) is phosphorylated in rods using Coneless mice and found that both the phosphorylation and its regulation by light occur in rods. Therefore, we used rod outer segments as the starting material for the purification of RGS9-1 kinase activity. Two major peaks of activity corresponded to protein kinase C (PKC) isozymes, PKCalpha and PKCtheta. A synthetic peptide corresponding to the Ser(475) RGS9-1 sequence and RGS9-1 were substrates for recombinant PKCalpha and PKCtheta. This phosphorylation was removed efficiently by protein phosphatase 2A, an endogenous phosphatase in rod outer segments, but not by PP1 or PP2B. Phosphorylation of RGS9-1 by PKC had little effect on its activity in solution but significantly decreased its affinity for its membrane anchor protein and GAP enhancer, RGS9-1 anchor protein (R9AP). PKCtheta immunostaining was at higher levels in cone outer segments than in rod outer segments, as was found for the components of the RGS9-1 GAP complex. Thus, PKC-mediated phosphorylation of RGS9-1 represents a potential mechanism for feedback control of the kinetics of photoresponse recovery in both rods and cones, with this mechanism probably especially important in cones.
Collapse
Affiliation(s)
- Izabela Sokal
- Department of Ophthalmology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
30
|
Martemyanov KA, Arshavsky VY. Noncatalytic domains of RGS9-1.Gbeta 5L play a decisive role in establishing its substrate specificity. J Biol Chem 2002; 277:32843-8. [PMID: 12093815 DOI: 10.1074/jbc.m205170200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complex between the photoreceptor-specific regulator of G protein signaling (RGS) protein, RGS9-1, and type 5 G protein beta-subunit, Gbeta5L, regulates the duration of the cellular response to light by stimulating the GTPase activity of G protein, transducin. An important property of RGS9-1.Gbeta5L is that it interacts specifically with transducin bound to its effector, cGMP phosphodiesterase, rather than with transducin alone. The minimal structure within the RGS9-1.Gbeta5L complex capable of activating transducin GTPase is the catalytic domain of RGS9. This domain itself is also able to discriminate between free and effector-bound transducin but to a lesser degree than RGS9-1.Gbeta5L. The goal of this study was to determine whether other, noncatalytic domains of RGS9-1.Gbeta5L enhance the intrinsic specificity of the catalytic domain or whether they set the specificity of RGS9-1.Gbeta5L regardless of the specificity of its catalytic domain. We found that a double L353E/R360P amino acid substitution reversed the specificity of the recombinant catalytic domain but did not reverse the specificity of RGS9-1.Gbeta5L. However, the degree of discrimination between free and effector-bound transducin was reduced. Therefore, noncatalytic domains of RGS9-1.Gbeta5L play a decisive role in establishing its substrate specificity, yet the high degree of this specificity observed under physiological conditions requires an additional contribution from the catalytic domain.
Collapse
Affiliation(s)
- Kirill A Martemyanov
- Department of Ophthalmology, Harvard Medical School and the Massachusetts Eye and Ear Infirmary, Boston Massachusetts 02114, USA
| | | |
Collapse
|
31
|
Lishko PV, Martemyanov KA, Hopp JA, Arshavsky VY. Specific binding of RGS9-Gbeta 5L to protein anchor in photoreceptor membranes greatly enhances its catalytic activity. J Biol Chem 2002; 277:24376-81. [PMID: 12006596 DOI: 10.1074/jbc.m203237200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complex between the short splice variant of the ninth member of the RGS protein family and the long splice variant of type 5 G protein beta subunit (RGS9-Gbeta5L) plays a critical role in regulating the duration of the light response in vertebrate photoreceptors by activating the GTPase activity of the photoreceptor-specific G protein, transducin. RGS9-Gbeta5L is tightly associated with the membranes of photoreceptor outer segments; however, the nature of this association remains unknown. Here we demonstrate that rod outer segment membranes contain a limited number of sites for high affinity RGS9-Gbeta5L binding, which are highly sensitive to proteolysis. In membranes isolated from bovine rod outer segments, all of these sites are occupied by the endogenous RGS9-Gbeta5L, which prevents the binding of exogenous recombinant RGS9-Gbeta5L to these sites. However, treating membranes with urea or high pH buffers causes either removal or denaturation of the endogenous RGS9-Gbeta5L, allowing for high affinity binding of recombinant RGS9-Gbeta5L to these sites. This binding results in a striking approximately 70-fold increase in the RGS9-Gbeta5L ability to activate transducin GTPase. The DEP (disheveled/EGL-10/pleckstrin) domain of RGS9 plays a crucial role in the RGS9-Gbeta5L membrane attachment, as evident from the analysis of membrane-binding properties of deletion mutants lacking either N- or C-terminal parts of the RGS9 molecule. Our data indicate that specific association of RGS9-Gbeta5L with photoreceptor disc membranes serves not only as a means of targeting it to an appropriate subcellular compartment but also serves as an important determinant of its catalytic activity.
Collapse
Affiliation(s)
- Polina V Lishko
- Department of Ophthalmology, Harvard Medical School and the Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
32
|
Dumont JE, Dremier S, Pirson I, Maenhaut C. Cross signaling, cell specificity, and physiology. Am J Physiol Cell Physiol 2002; 283:C2-28. [PMID: 12055068 DOI: 10.1152/ajpcell.00581.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The literature on intracellular signal transduction presents a confusing picture: every regulatory factor appears to be regulated by all signal transduction cascades and to regulate all cell processes. This contrasts with the known exquisite specificity of action of extracellular signals in different cell types in vivo. The confusion of the in vitro literature is shown to arise from several causes: the inevitable artifacts inherent in reductionism, the arguments used to establish causal effect relationships, the use of less than adequate models (cell lines, transfections, acellular systems, etc.), and the implicit assumption that networks of regulations are universal whereas they are in fact cell and stage specific. Cell specificity results from the existence in any cell type of a unique set of proteins and their isoforms at each level of signal transduction cascades, from the space structure of their components, from their combinatorial logic at each level, from the presence of modulators of signal transduction proteins and of modulators of modulators, from the time structure of extracellular signals and of their transduction, and from quantitative differences of expression of similar sets of factors.
Collapse
Affiliation(s)
- J E Dumont
- Institute of Interdisciplinary Research, Free University of Brussels, Campus Erasme, B-1070 Brussels, Belgium.
| | | | | | | |
Collapse
|
33
|
Lichtarge O, Sowa ME, Philippi A. Evolutionary traces of functional surfaces along G protein signaling pathway. Methods Enzymol 2002; 344:536-56. [PMID: 11771409 DOI: 10.1016/s0076-6879(02)44739-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Olivier Lichtarge
- Department of Molecular and Human Genetics, Program in Structural and Computational Biology and Molecular Biophysics, Baylor Human Genome Sequencing Center, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
34
|
Abstract
Phototransduction is the process by which a photon of light captured by a molecule of visual pigment generates an electrical response in a photoreceptor cell. Vertebrate rod phototransduction is one of the best-studied G protein signaling pathways. In this pathway the photoreceptor-specific G protein, transducin, mediates between the visual pigment, rhodopsin, and the effector enzyme, cGMP phosphodiesterase. This review focuses on two quantitative features of G protein signaling in phototransduction: signal amplification and response timing. We examine how the interplay between the mechanisms that contribute to amplification and those that govern termination of G protein activity determine the speed and the sensitivity of the cellular response to light.
Collapse
Affiliation(s)
- Vadim Y Arshavsky
- Howe Laboratory of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
35
|
Skiba NP, Martemyanov KA, Elfenbein A, Hopp JA, Bohm A, Simonds WF, Arshavsky VY. RGS9-G beta 5 substrate selectivity in photoreceptors. Opposing effects of constituent domains yield high affinity of RGS interaction with the G protein-effector complex. J Biol Chem 2001; 276:37365-72. [PMID: 11495924 DOI: 10.1074/jbc.m106431200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS proteins regulate the duration of G protein signaling by increasing the rate of GTP hydrolysis on G protein alpha subunits. The complex of RGS9 with type 5 G protein beta subunit (G beta 5) is abundant in photoreceptors, where it stimulates the GTPase activity of transducin. An important functional feature of RGS9-G beta 5 is its ability to activate transducin GTPase much more efficiently after transducin binds to its effector, cGMP phosphodiesterase. Here we show that different domains of RGS9-G beta 5 make opposite contributions toward this selectivity. G beta 5 bound to the G protein gamma subunit-like domain of RGS9 acts to reduce RGS9 affinity for transducin, whereas other structures restore this affinity specifically for the transducin-phosphodiesterase complex. We suggest that this mechanism may serve as a general principle conferring specificity of RGS protein action.
Collapse
Affiliation(s)
- N P Skiba
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
McBee JK, Palczewski K, Baehr W, Pepperberg DR. Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 2001; 20:469-529. [PMID: 11390257 DOI: 10.1016/s1350-9462(01)00002-7] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Absorption of light by rhodopsin or cone pigments in photoreceptors triggers photoisomerization of their universal chromophore, 11-cis-retinal, to all-trans-retinal. This photoreaction is the initial step in phototransduction that ultimately leads to the sensation of vision. Currently, a great deal of effort is directed toward elucidating mechanisms that return photoreceptors to the dark-adapted state, and processes that restore rhodopsin and counterbalance the bleaching of rhodopsin. Most notably, enzymatic isomerization of all-trans-retinal to 11-cis-retinal, called the visual cycle (or more properly the retinoid cycle), is required for regeneration of these visual pigments. Regeneration begins in rods and cones when all-trans-retinal is reduced to all-trans-retinol. The process continues in adjacent retinal pigment epithelial cells (RPE), where a complex set of reactions converts all-trans-retinol to 11-cis-retinal. Although remarkable progress has been made over the past decade in understanding the phototransduction cascade, our understanding of the retinoid cycle remains rudimentary. The aim of this review is to summarize recent developments in our current understanding of the retinoid cycle at the molecular level, and to examine the relevance of these reactions to phototransduction.
Collapse
Affiliation(s)
- J K McBee
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
37
|
Hu G, Jang GF, Cowan CW, Wensel TG, Palczewski K. Phosphorylation of RGS9-1 by an endogenous protein kinase in rod outer segments. J Biol Chem 2001; 276:22287-95. [PMID: 11292825 PMCID: PMC1364467 DOI: 10.1074/jbc.m011539200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inactivation of the visual G protein transducin, during recovery from photoexcitation, is regulated by RGS9-1, a GTPase-accelerating protein of the ubiquitous RGS protein family. Incubation of dark-adapted bovine rod outer segments with [gamma-(32)P]ATP led to RGS9-1 phosphorylation by an endogenous kinase in rod outer segment membranes, with an average stoichiometry of 0.2-0.45 mol of phosphates/mol of RGS9-1. Mass spectrometry revealed a single major site of phosphorylation, Ser(475). The kinase responsible catalyzed robust phosphorylation of recombinant RGS9-1 and not of an S475A mutant. A synthetic peptide corresponding to the region surrounding Ser(475) was also phosphorylated, and a similar peptide with the S475A substitution inhibited RGS9-1 phosphorylation. The RGS9-1 kinase is a peripheral membrane protein that co-purifies with rhodopsin in sucrose gradients and can be extracted in buffers of high ionic strength. It is not inhibited or activated significantly by a panel of inhibitors or activators of protein kinase A, protein kinase G, rhodopsin kinase, CaM kinase II, casein kinase II, or cyclin-dependent kinase 5, at concentrations 50 or more times higher than their reported IC(50) or K(i) values. It was inhibited by the protein kinase C inhibitor bisindolylmaleimide I and by lowering Ca(2+) to nanomolar levels with EGTA; however, it was not stimulated by the addition of phorbol ester, under conditions that significantly enhanced rhodopsin phosphorylation. A monoclonal antibody specific for the Ser(475)-phosphorylated form of RGS9-1 recognized RGS9-1 in immunoblots of dark-adapted mouse retina. Retinas from light-adapted mice had much lower levels of RGS9-1 phosphorylation. Thus, RGS9-1 is phosphorylated on Ser(475) in vivo, and the phosphorylation level is regulated by light and by [Ca(2+)], suggesting the importance of the modification in light adaptation.
Collapse
Affiliation(s)
- G Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
38
|
He W, Lu L, Zhang X, El-Hodiri HM, Chen CK, Slep KC, Simon MI, Jamrich M, Wensel TG. Modules in the photoreceptor RGS9-1.Gbeta 5L GTPase-accelerating protein complex control effector coupling, GTPase acceleration, protein folding, and stability. J Biol Chem 2000; 275:37093-100. [PMID: 10978345 DOI: 10.1074/jbc.m006982200] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS (regulators of G protein signaling) proteins regulate G protein signaling by accelerating GTP hydrolysis, but little is known about regulation of GTPase-accelerating protein (GAP) activities or roles of domains and subunits outside the catalytic cores. RGS9-1 is the GAP required for rapid recovery of light responses in vertebrate photoreceptors and the only mammalian RGS protein with a defined physiological function. It belongs to an RGS subfamily whose members have multiple domains, including G(gamma)-like domains that bind G(beta)(5) proteins. Members of this subfamily play important roles in neuronal signaling. Within the GAP complex organized around the RGS domain of RGS9-1, we have identified a functional role for the G(gamma)-like-G(beta)(5L) complex in regulation of GAP activity by an effector subunit, cGMP phosphodiesterase gamma and in protein folding and stability of RGS9-1. The C-terminal domain of RGS9-1 also plays a major role in conferring effector stimulation. The sequence of the RGS domain determines whether the sign of the effector effect will be positive or negative. These roles were observed in vitro using full-length proteins or fragments for RGS9-1, RGS7, G(beta)(5S), and G(beta)(5L). The dependence of RGS9-1 on G(beta)(5) co-expression for folding, stability, and function has been confirmed in vivo using transgenic Xenopus laevis. These results reveal how multiple domains and regulatory polypeptides work together to fine tune G(talpha) inactivation.
Collapse
Affiliation(s)
- W He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|