1
|
Savy V, Stein P, Delker D, Estermann MA, Papas BN, Xu Z, Radonova L, Williams CJ. Calcium signals shape metabolic control of H3K27ac and H3K18la to regulate EGA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643362. [PMID: 40161793 PMCID: PMC11952514 DOI: 10.1101/2025.03.14.643362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The use of assisted reproductive technologies (ART) has enabled the birth of over 9 million babies; but it is associated with increased risks of negative metabolic outcomes in offspring. Yet, the underlying mechanism remains unknown. Calcium (Ca2+) signals, which initiate embryo development at fertilization, are frequently disrupted in human ART. In mice, abnormal Ca2+ signals at fertilization impair embryo development and adult offspring metabolism. Changes in intracellular Ca2+ drive mitochondrial activity and production of metabolites used by the epigenetic machinery. For example, acetyl-CoA (derived mainly from pyruvate) and lactyl-CoA (derived from lactate) are used for writing H3K27ac and H3K18la marks that orchestrate initiation of development. Using both a genetic mouse model and treatment with ionomycin to raise intracellular Ca2+ of wild-type fertilized eggs, we found that excess Ca2+ at fertilization changes metabolic substrate availability, causing epigenetic changes that impact embryo development and offspring health. Specifically, increased Ca2+ exposure at fertilization led to increased H3K27ac levels and decreased H3K18la levels at the 1-cell (1C) stage, that persisted until the 2-cell (2C) stage. Ultralow input CUT&Tag revealed significant differences in H3K27ac and H3K18la genomic profiles between control and ionomycin groups. In addition, increased Ca2+ exposure resulted in a marked reduction in global transcription at the 1C stage that persisted through the 2C stage due to diminished activity of RNA polymerase I. Excess Ca2+ following fertilization increased pyruvate dehydrogenase activity (enzyme that converts pyruvate to acetyl-CoA) and decreased total lactate levels. Provision of exogenous lactyl-CoA before ionomycin treatment restored H3K18la levels at the 1C and 2C stages and rescued global transcription to control levels. Our findings demonstrate conclusively that Ca2+ dynamics drive metabolic regulation of epigenetic reprogramming at fertilization and alter EGA.
Collapse
Affiliation(s)
- Virginia Savy
- Reproductive Medicine Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Paula Stein
- Reproductive Medicine Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Don Delker
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Martín A. Estermann
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Brian N. Papas
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Zongli Xu
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lenka Radonova
- Reproductive Medicine Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Carmen J. Williams
- Reproductive Medicine Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
2
|
Qadri SW, Shah NM, Muddashetty RS. Epitranscriptome-Mediated Regulation of Neuronal Translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70004. [PMID: 39963903 DOI: 10.1002/wrna.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 12/02/2024] [Accepted: 01/24/2025] [Indexed: 04/10/2025]
Abstract
Epitranscriptomic modification of RNA is an important layer of regulation for gene expression. RNA modifications come in many flavors and generate a complex tapestry of a regulatory network. Here, we focus on two major RNA modifications, one on rRNA (2'O Methylation) and another on mRNA (N6-Methyladenosine [m6A]) and their impact on translation. The 2'O methyl group addition on the ribose sugar of rRNA plays a critical role in RNA folding, ribosome assembly, and its interaction with many RNA binding proteins. Differential methylation of these sites contributes to ribosome heterogeneity and generates potential "specialized ribosomes." Specialized ribosomes are proposed to play a variety of important roles in maintaining pluripotency, lineage specification, and compartmentalized and activity-mediated translation in neurons. The m6A modification, on the other hand, determines the stability, transport, and translation of subclasses of mRNA. The dynamic nature of m6A owing to the localization and activity of its writers, readers, and erasers makes it a powerful tool for spatiotemporal regulation of translation. While substantial information has accumulated on the nature and abundance of these modifications, their functional consequences are still understudied. In this article, we review the literature constructing the body of our understanding of these two modifications and their outcome on the regulation of translation in general and their impact on the nervous system in particular. We also explore the possibility of how these modifications may collaborate in modulating translation and provoke the thought to integrate the functions of multiple epitranscriptome modifications.
Collapse
Affiliation(s)
- Syed Wasifa Qadri
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Nisa Manzoor Shah
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
3
|
Macdonald E, Whibley A, Waters PD, Patel H, Edwards RJ, Ganley ARD. Origin and maintenance of large ribosomal RNA gene repeat size in mammals. Genetics 2024; 228:iyae121. [PMID: 39044674 PMCID: PMC11373518 DOI: 10.1093/genetics/iyae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
The genes encoding ribosomal RNA are highly conserved across life and in almost all eukaryotes are present in large tandem repeat arrays called the rDNA. rDNA repeat unit size is conserved across most eukaryotes but has expanded dramatically in mammals, principally through the expansion of the intergenic spacer region that separates adjacent rRNA coding regions. Here, we used long-read sequence data from representatives of the major amniote lineages to determine where in amniote evolution rDNA unit size increased. We find that amniote rDNA unit sizes fall into two narrow size classes: "normal" (∼11-20 kb) in all amniotes except monotreme, marsupial, and eutherian mammals, which have "large" (∼35-45 kb) sizes. We confirm that increases in intergenic spacer length explain much of this mammalian size increase. However, in stark contrast to the uniformity of mammalian rDNA unit size, mammalian intergenic spacers differ greatly in sequence. These results suggest a large increase in intergenic spacer size occurred in a mammalian ancestor and has been maintained despite substantial sequence changes over the course of mammalian evolution. This points to a previously unrecognized constraint on the length of the intergenic spacer, a region that was thought to be largely neutral. We finish by speculating on possible causes of this constraint.
Collapse
Affiliation(s)
- Emma Macdonald
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Grapevine Improvement, Bragato Research Institute, RFH Building, Engineering Drive, Lincoln University, Lincoln 7647, New Zealand
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Chancellery Walk, Kensington, NSW 2033, Australia
| | - Hardip Patel
- John Curtin School of Medical Research, Australian National University, 131 Garran Rd, Acton, ACT 2601, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Chancellery Walk, Kensington, NSW 2033, Australia
- Minderoo OceanOmics Centre at UWA, UWA Oceans Institute, University of Western Australia, Crawley WA 6009, Australia
| | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Digital Life Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
4
|
Darriere T, Jobet E, Zavala D, Escande ML, Durut N, de Bures A, Blanco-Herrera F, Vidal EA, Rompais M, Carapito C, Gourbiere S, Sáez-Vásquez J. Upon heat stress processing of ribosomal RNA precursors into mature rRNAs is compromised after cleavage at primary P site in Arabidopsis thaliana. RNA Biol 2022; 19:719-734. [PMID: 35522061 PMCID: PMC9090299 DOI: 10.1080/15476286.2022.2071517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transcription and processing of 45S rRNAs in the nucleolus are keystones of ribosome biogenesis. While these processes are severely impacted by stress conditions in multiple species, primarily upon heat exposure, we lack information about the molecular mechanisms allowing sessile organisms without a temperature-control system, like plants, to cope with such circumstances. We show that heat stress disturbs nucleolar structure, inhibits pre-rRNA processing and provokes imbalanced ribosome profiles in Arabidopsis thaliana plants. Notably, the accuracy of transcription initiation and cleavage at the primary P site in the 5’ETS (5’ External Transcribed Spacer) are not affected but the levels of primary 45S and 35S transcripts are, respectively, increased and reduced. In contrast, precursors of 18S, 5.8S and 25S RNAs are rapidly undetectable upon heat stress. Remarkably, nucleolar structure, pre-rRNAs from major ITS1 processing pathway and ribosome profiles are restored after returning to optimal conditions, shedding light on the extreme plasticity of nucleolar functions in plant cells. Further genetic and molecular analysis to identify molecular clues implicated in these nucleolar responses indicate that cleavage rate at P site and nucleolin protein expression can act as a checkpoint control towards a productive pre-rRNA processing pathway.
Collapse
Affiliation(s)
- T Darriere
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - E Jobet
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - D Zavala
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - M L Escande
- CNRS, Observatoire Océanologique de Banyuls s/ mer, Banyuls-sur-mer, France.,BioPIC Platform of the OOB, Banyuls-sur-mer, France
| | - N Durut
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - A de Bures
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - F Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute for Integrative Biology (IBio), Santiago, Chile
| | - E A Vidal
- Millennium Institute for Integrative Biology (IBio), Santiago, Chile.,Bioinformática, Facultad de Ciencias, Universidad MayorCentro de Genómica y , Santiago, Chile
| | - M Rompais
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178 CNRS/Université de Strasbourg, Strasbourg, France
| | - C Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178 CNRS/Université de Strasbourg, Strasbourg, France
| | - S Gourbiere
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - J Sáez-Vásquez
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| |
Collapse
|
5
|
Small nucleolar RNA is potential as a novel player in leukemogenesis and clinical application. BLOOD SCIENCE 2021; 3:122-131. [PMID: 35402848 PMCID: PMC8975097 DOI: 10.1097/bs9.0000000000000091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
Lack of clarity of the mechanisms that underlie leukemogenesis obstructs the diagnosis, prognosis, and treatment of leukemia. Research has found that small nuclear RNA (snoRNA) plays an essential role in leukemia. These small non-coding RNAs are involved in ribosome biogenesis, including the 2′-O-methylation and pseudouridylation of precursor ribosomal RNA (pre-rRNA), and pre-rRNA splicing. Recently, many snoRNAs were found to be orphans that have no predictable RNA modification targets, but these RNAs have always been found to be located in different subcellular organelles, and they play diverse roles. Using high-throughput technology, snoRNA expression profiles have been revealed in leukemia, and some of the deregulated snoRNAs may regulate the cell cycle, differentiation, proliferation, and apoptosis in leukemic cells and confer drug resistance during leukemia treatment. In this review, we discuss the expression profiles and functions of snoRNAs, particularly orphan snoRNAs, in leukemia. It is possible that the dysregulated snoRNAs are promising diagnosis and prognosis markers for leukemia, which may serve as potential therapeutic targets in leukemia treatment.
Collapse
|
6
|
Frequent Germline and Somatic Single Nucleotide Variants in the Promoter Region of the Ribosomal RNA Gene in Japanese Lung Adenocarcinoma Patients. Cells 2020; 9:cells9112409. [PMID: 33153169 PMCID: PMC7692307 DOI: 10.3390/cells9112409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/25/2022] Open
Abstract
Ribosomal RNA (rRNA), the most abundant non-coding RNA species, is a major component of the ribosome. Impaired ribosome biogenesis causes the dysfunction of protein synthesis and diseases called “ribosomopathies,” including genetic disorders with cancer risk. However, the potential role of rRNA gene (rDNA) alterations in cancer is unknown. We investigated germline and somatic single-nucleotide variants (SNVs) in the rDNA promoter region (positions −248 to +100, relative to the transcription start site) in 82 lung adenocarcinomas (LUAC). Twenty-nine tumors (35.4%) carried germline SNVs, and eight tumors (9.8%) harbored somatic SNVs. Interestingly, the presence of germline SNVs between positions +1 and +100 (n = 12; 14.6%) was associated with significantly shorter recurrence-free survival (RFS) and overall survival (OS) by univariate analysis (p < 0.05, respectively), and was an independent prognostic factor for RFS and OS by multivariate analysis. LUAC cell line PC9, carrying rDNA promoter SNV at position +49, showed significantly higher ribosome biogenesis than H1650 cells without SNV. Upon nucleolar stress induced by actinomycin D, PC9 retained significantly higher ribosome biogenesis than H1650. These results highlight the possible functional role of SNVs at specific sites of the rDNA promoter region in ribosome biogenesis, the progression of LUAC, and their potential prognostic value.
Collapse
|
7
|
Petibon C, Malik Ghulam M, Catala M, Abou Elela S. Regulation of ribosomal protein genes: An ordered anarchy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1632. [PMID: 33038057 PMCID: PMC8047918 DOI: 10.1002/wrna.1632] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Ribosomal protein genes are among the most highly expressed genes in most cell types. Their products are generally essential for ribosome synthesis, which is the cornerstone for cell growth and proliferation. Many cellular resources are dedicated to producing ribosomal proteins and thus this process needs to be regulated in ways that carefully balance the supply of nascent ribosomal proteins with the demand for new ribosomes. Ribosomal protein genes have classically been viewed as a uniform interconnected regulon regulated in eukaryotic cells by target of rapamycin and protein kinase A pathway in response to changes in growth conditions and/or cellular status. However, recent literature depicts a more complex picture in which the amount of ribosomal proteins produced varies between genes in response to two overlapping regulatory circuits. The first includes the classical general ribosome‐producing program and the second is a gene‐specific feature responsible for fine‐tuning the amount of ribosomal proteins produced from each individual ribosomal gene. Unlike the general pathway that is mainly controlled at the level of transcription and translation, this specific regulation of ribosomal protein genes is largely achieved through changes in pre‐mRNA splicing efficiency and mRNA stability. By combining general and specific regulation, the cell can coordinate ribosome production, while allowing functional specialization and diversity. Here we review the many ways ribosomal protein genes are regulated, with special focus on the emerging role of posttranscriptional regulatory events in fine‐tuning the expression of ribosomal protein genes and its role in controlling the potential variation in ribosome functions. This article is categorized under:Translation > Ribosome Biogenesis Translation > Ribosome Structure/Function Translation > Translation Regulation
Collapse
Affiliation(s)
- Cyrielle Petibon
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mustafa Malik Ghulam
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mathieu Catala
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| |
Collapse
|
8
|
Gambini A, Stein P, Savy V, Grow EJ, Papas BN, Zhang Y, Kenan AC, Padilla-Banks E, Cairns BR, Williams CJ. Developmentally Programmed Tankyrase Activity Upregulates β-Catenin and Licenses Progression of Embryonic Genome Activation. Dev Cell 2020; 53:545-560.e7. [PMID: 32442396 DOI: 10.1016/j.devcel.2020.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Embryonic genome activation (EGA) is orchestrated by an intrinsic developmental program initiated during oocyte maturation with translation of stored maternal mRNAs. Here, we show that tankyrase, a poly(ADP-ribosyl) polymerase that regulates β-catenin levels, undergoes programmed translation during oocyte maturation and serves an essential role in mouse EGA. Newly translated TNKS triggers proteasomal degradation of axin, reducing targeted destruction of β-catenin and promoting β-catenin-mediated transcription of target genes, including Myc. MYC mediates ribosomal RNA transcription in 2-cell embryos, supporting global protein synthesis. Suppression of tankyrase activity using knockdown or chemical inhibition causes loss of nuclear β-catenin and global reductions in transcription and histone H3 acetylation. Chromatin and transcriptional profiling indicate that development arrests prior to the mid-2-cell stage, mediated in part by reductions in β-catenin and MYC. These findings indicate that post-transcriptional regulation of tankyrase serves as a ligand-independent developmental mechanism for post-translational β-catenin activation and is required to complete EGA.
Collapse
Affiliation(s)
- Andrés Gambini
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Virginia Savy
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Edward J Grow
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Brian N Papas
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yingpei Zhang
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anna C Kenan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Bradley R Cairns
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
9
|
Study of intracellular anabolism of 5-fluorouracil and incorporation in nucleic acids based on an LC-HRMS method. J Pharm Anal 2020; 11:77-87. [PMID: 33717614 PMCID: PMC7930635 DOI: 10.1016/j.jpha.2020.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
5-Fluorouracil (5-FU) is an anticancer drug extensively used for different cancers. Intracellular metabolic activation leads to several nucleoside and nucleotide metabolites essential to exert its cytotoxic activity on multiple cellular targets such as enzymes, DNA and RNA. In this paper, we describe the development of a method based on liquid chromatography coupled with high resolution mass spectrometry suitable for the simultaneous determination of the ten anabolic metabolites (nucleoside, nucleotide and sugar nucleotide) of 5-FU. The chromatographic separation was optimized on a porous graphitic carbon column allowing the analysis of the metabolites of 5-FU as well as endogenous nucleotides. The detection was performed on an Orbitrap® tandem mass spectrometer. Linearity of the method was verified in intracellular content and in RNA extracts. The limit of detection was equal to 12 pg injected on column for nucleoside metabolites of 5-FU and 150 pg injected on column for mono- and tri-phosphate nucleotide metabolites. Matrix effect was evaluated in cellular contents, DNA and RNA extracts for nucleoside and nucleotides metabolites. The method was successfully applied to i) measure the proportion of each anabolic metabolite of 5-FU in cellular contents, ii) follow the consequence of inhibition of enzymes on the endogenous nucleotide pools, iii) study the incorporation of metabolites of 5-FU into RNA and DNA, and iv) to determine the incorporation rate of 5-FUrd into 18 S and 28 S sub-units of rRNA. The LC-MS-HRMS method allows the analysis of the ten anabolic metabolites of 5-FU. The present method is useful to study the incorporation of 5-FU into RNA and DNA. Method to determine the incorporation rate of 5-FU into subunit of rRNA is innovative.
Collapse
|
10
|
Unique Aspects of rRNA Biogenesis in Trypanosomatids. Trends Parasitol 2019; 35:778-794. [DOI: 10.1016/j.pt.2019.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/20/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022]
|
11
|
Life time of some RNA products of rDNA intergenic spacer in HeLa cells. Histochem Cell Biol 2019; 152:271-280. [DOI: 10.1007/s00418-019-01804-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
|
12
|
Pilla SP, Thomas A, Bahadur RP. Dissecting macromolecular recognition sites in ribosome: implication to its self-assembly. RNA Biol 2019; 16:1300-1312. [PMID: 31179876 DOI: 10.1080/15476286.2019.1629767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Interactions between macromolecules play a crucial role in ribosome assembly that follows a highly coordinated process involving RNA folding and binding of ribosomal proteins (r-proteins). Although extensive studies have been carried out to understand macromolecular interactions in ribosomes, most of them are confined to either large or small ribosomal-subunit of few species. A comparative analysis of macromolecular interactions across different domains is still missing. We have analyzed the structural and physicochemical properties of protein-protein (PP), protein-RNA (PR) and RNA-RNA (RR) interfaces in small and large subunits of ribosomes, as well as in between the two subunits. Additionally, we have also developed Random Forest (RF) classifier to catalog the r-proteins. We find significant differences as well as similarities in macromolecular recognition sites between ribosomal assemblies of prokaryotes and eukaryotes. PR interfaces are substantially larger and have more ionic interactions than PP and RR interfaces in both prokaryotes and eukaryotes. PP, PR and RR interfaces in eukaryotes are well packed compared to those in prokaryotes. However, the packing density between the large and the small subunit interfaces in the entire assembly is strikingly low in both prokaryotes and eukaryotes, indicating the periodic association and dissociation of the two subunits during the translation. The structural and physicochemical properties of PR interfaces are used to predict the r-proteins in the assembly pathway into early, intermediate and late binders using RF classifier with an accuracy of 80%. The results provide new insights into the classification of r-proteins in the assembly pathway.
Collapse
Affiliation(s)
- Smita P Pilla
- a Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Amal Thomas
- a Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Ranjit Prasad Bahadur
- a Computational Structural Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur , Kharagpur , India
| |
Collapse
|
13
|
Pfister AS. Emerging Role of the Nucleolar Stress Response in Autophagy. Front Cell Neurosci 2019; 13:156. [PMID: 31114481 PMCID: PMC6503120 DOI: 10.3389/fncel.2019.00156] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy represents a conserved self-digestion program, which allows regulated degradation of cellular material. Autophagy is activated by cellular stress, serum starvation and nutrient deprivation. Several autophagic pathways have been uncovered, which either non-selectively or selectively target the cellular cargo for lysosomal degradation. Autophagy engages the coordinated action of various key regulators involved in the steps of autophagosome formation, cargo targeting and lysosomal fusion. While non-selective (macro)autophagy is required for removal of bulk material or recycling of nutrients, selective autophagy mediates specific targeting of damaged organelles or protein aggregates. By proper action of the autophagic machinery, cellular homeostasis is maintained. In contrast, failure of this fundamental process is accompanied by severe pathophysiological conditions. Hallmarks of neuropathological disorders are for instance accumulated, mis-folded protein aggregates and damaged mitochondria. The nucleolus has been recognized as central hub in the cellular stress response. It represents a sub-nuclear organelle essential for ribosome biogenesis and also functions as stress sensor by mediating cell cycle arrest or apoptosis. Thus, proper nucleolar function is mandatory for cell growth and survival. Here, I highlight the emerging role of nucleolar factors in the regulation of autophagy. Moreover, I discuss the nucleolar stress response as a novel signaling pathway in the context of autophagy, health and disease.
Collapse
Affiliation(s)
- Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
14
|
Doxycycline inhibits pre-rRNA processing and mature rRNA formation in E. coli. J Antibiot (Tokyo) 2019; 72:225-236. [PMID: 30737453 DOI: 10.1038/s41429-019-0149-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 01/06/2023]
Abstract
In bacteria, RNase III cleaves the initial long primary ribosomal RNA transcripts/precursors (pre-rRNAs), thereby releasing the pre-16S and pre-23S rRNAs for maturation. This cleavage is specified by the double-stranded secondary structures flanking the mature rRNAs, and not necessarily by the nucleotide sequences. Inhibition of this cleavage would lead to a build-up of pre-rRNA molecules. Doxycycline has earlier been shown to bind synthetic double-stranded RNAs and inhibit their cleavage by RNase III. Since bacterial rRNA processing is primarily dependent on RNase III cleavage (which is inhibited by doxycycline), doxycycline could therefore inhibit the normal processing of bacterial rRNA. In this study, the effect of doxycycline on bacterial rRNA processing was investigated by analyzing the amounts of various rRNAs in growing Escherichia coli cells treated with doxycycline. The results showed a doxycycline dose-dependent decrease in mature 16S and 23S rRNAs, concurrent with an accumulation of the initial rRNA transcripts and long precursors. Morphologically, treated cells were elongated at low drug concentrations, while nucleoid degeneration indicative of cell death occurred at higher drug concentrations. These observations suggest that doxycycline inhibits the cleavage and processing of bacterial rRNA transcripts/precursors, leading to impaired formation of mature rRNAs, and the consequent inhibition of protein synthesis for which the tetracycline group of antibiotics are renowned. Since rRNA structure and processing pathway is conserved among bacterial species, this mechanism may account for the broad spectrum of antibiotic activity and selective microbial protein synthesis inhibition of doxycycline and the tetracyclines.
Collapse
|
15
|
Shubina MY, Musinova YR, Sheval EV. Nucleolar methyltransferase fibrillarin: Evolution of structure and functions. BIOCHEMISTRY (MOSCOW) 2016; 81:941-50. [DOI: 10.1134/s0006297916090030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Zhao Q, Wu Y, Shan Z, Bai G, Wang Z, Hu J, Liu L, Li T, Shen J, Lei L. Serum starvation-induced cell cycle synchronization stimulated mouse rDNA transcription reactivation during somatic cell reprogramming into iPSCs. Stem Cell Res Ther 2016; 7:112. [PMID: 27515169 PMCID: PMC4981958 DOI: 10.1186/s13287-016-0369-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/18/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND rDNA, the genes encoding ribosomal RNA (rRNA), is highly demanded for ribosome production and protein synthesis in growing cells such as pluripotent stem cells. rDNA transcription activity varies between cell types, metabolism conditions, and specific environmental challenges. Embryonic stem cells (ESCs), partially reprogrammed cells, and somatic cells reveal different epigenetic signatures, including rDNA epigenetic marks. rDNA epigenetic characteristic resetting is not quite clear during induced pluripotent stem cell (iPSC) generation. Little is known that whether the different rDNA epigenetic status in donor cells will result in different rDNA transcription activities, and furthermore affect reprogramming efficiency. METHODS We utilized serum starvation-synchronized mouse embryonic fibroblasts (MEFs) to generate S-iPSCs. Both MEFs and serum-refeeding MEFs (S-MEFs) were reprogrammed to a pluripotent state. rDNA-related genes, UBF proteins, and rDNA methylation levels were detected during the MEF and S-MEF cell reprogramming process. RESULTS We demonstrated that, after transient inhibition, retroviral induced rRNA transcriptional activity was reprogrammed towards a pluripotent state. Serum starvation would stimulate rDNA transcription reactivation during somatic cell reprogramming. Serum starvation improved the methylation status of donor cells at rRNA gene promoter regions. CONCLUSIONS Our results provide insight into regulation of rDNA transcriptional activity during somatic cell reprogramming and allow for comparison of rDNA regulation patterns between iPSCs and S-iPSCs. Eventually, regulation of rDNA transcriptional activity will benefit partially reprogrammed cells to overcome the epigenetic barrier to pluripotency.
Collapse
Affiliation(s)
- Qiaoshi Zhao
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Yanshuang Wu
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Guangyu Bai
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Zhendong Wang
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Jing Hu
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Li Liu
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Tong Li
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Jingling Shen
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China.
| |
Collapse
|
17
|
rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines. Antimicrob Agents Chemother 2016; 60:4433-41. [PMID: 27246781 DOI: 10.1128/aac.00594-16] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tetracycline antibiotics are known to be effective in the treatment of both infectious and noninfectious disease conditions. The 16S rRNA binding mechanism currently held for the antibacterial action of the tetracyclines does not explain their activity against viruses, protozoa that lack mitochondria, and noninfectious conditions. Also, the mechanism by which the tetracyclines selectively inhibit microbial protein synthesis against host eukaryotic protein synthesis despite conservation of ribosome structure and functions is still questionable. Many studies have investigated the binding of the tetracyclines to the 16S rRNA using the small ribosomal subunit of different bacterial species, but there seems to be no agreement between various reports on the exact binding site on the 16S rRNA. The wide range of activity of the tetracyclines against a broad spectrum of bacterial pathogens, viruses, protozoa, and helminths, as well as noninfectious conditions, indicates a more generalized effect on RNA. In the light of recent evidence that the tetracyclines bind to various synthetic double-stranded RNAs (dsRNAs) of random base sequences, suggesting that the double-stranded structures may play a more important role in the binding of the tetracyclines to RNA than the specific base pairs, as earlier speculated, it is imperative to consider possible alternative binding modes or sites that could help explain the mechanisms of action of the tetracyclines against various pathogens and disease conditions.
Collapse
|
18
|
Karahan G, Sayar N, Gozum G, Bozkurt B, Konu O, Yulug IG. Relative expression of rRNA transcripts and 45S rDNA promoter methylation status are dysregulated in tumors in comparison with matched-normal tissues in breast cancer. Oncol Rep 2015; 33:3131-45. [PMID: 25962577 DOI: 10.3892/or.2015.3940] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/14/2015] [Indexed: 11/06/2022] Open
Abstract
Ribosomal RNA (rRNA) expression, one of the most important factors regulating ribosome production, is primarily controlled by a CG-rich 45 S rDNA promoter. However, the DNA methylation state of the 45 S rDNA promoter, as well as its effect on rRNA gene expression in types of human cancers is controversial. In the present study we analyzed the methylation status of the rDNA promoter (-380 to +53 bp) as well as associated rRNA expression levels in breast cancer cell lines and breast tumor-normal tissue pairs. We found that the aforementioned regulatory region was extensively methylated (74-96%) in all cell lines and in 68% (13/19 tumor-normal pairs) of the tumors. Expression levels of rRNA transcripts 18 S, 28 S, 5.8 S and 45 S external transcribed spacer (45 S ETS) greatly varied in the breast cancer cell lines regardless of their methylation status. Analyses of rRNA transcript expression levels in the breast tumor and normal matched tissues showed no significant difference when normalized with TBP. On the other hand, using the geometric mean of the rRNA expression values (GM-rRNA) as reference enabled us to identify significant changes in the relative expression of rRNAs in the tissue samples. We propose GM-rRNA normalization as a novel strategy to analyze expression differences between rRNA transcripts. Accordingly, the 18S rRNA/GM-rRNA ratio was significantly higher whereas the 5.8S rRNA/GM-rRNA ratio was significantly lower in breast tumor samples than this ratio in the matched normal samples. Moreover, the 18S rRNA/GM-rRNA ratio was negatively correlated with the 45 S rDNA promoter methylation level in the normal breast tissue samples, yet not in the breast tumors. Significant correlations observed between the expression levels of rRNA transcripts in the normal samples were lost in the tumor samples. We showed that the expression of rRNA transcripts may not be based solely on promoter methylation. Carcinogenesis may cause dysregulation of the correlation between spliced rRNA expression levels, possibly due to changes in rRNA processing, which requires further investigation.
Collapse
Affiliation(s)
- Gurbet Karahan
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| | - Nilufer Sayar
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| | - Gokcen Gozum
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| | - Betul Bozkurt
- Department of General Surgery, Ankara Numune Research and Teaching Hospital, TR-06100 Ankara, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| | - Isik G Yulug
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| |
Collapse
|
19
|
Spurlock CF, Tossberg JT, Guo Y, Sriram S, Crooke PS, Aune TM. Defective structural RNA processing in relapsing-remitting multiple sclerosis. Genome Biol 2015; 16:58. [PMID: 25885816 PMCID: PMC4403723 DOI: 10.1186/s13059-015-0629-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/11/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Surveillance of integrity of the basic elements of the cell including DNA, RNA, and proteins is a critical element of cellular physiology. Mechanisms of surveillance of DNA and protein integrity are well understood. Surveillance of structural RNAs making up the vast majority of RNA in a cell is less well understood. Here, we sought to explore integrity of processing of structural RNAs in relapsing remitting multiple sclerosis (RRMS) and other inflammatory diseases. RESULTS We employed mononuclear cells obtained from subjects with RRMS and cell lines. We used quantitative-PCR and whole genome RNA sequencing to define defects in structural RNA surveillance and siRNAs to deplete target proteins. We report profound defects in surveillance of structural RNAs in RRMS exemplified by elevated levels of poly(A) + Y1-RNA, poly(A) + 18S rRNA and 28S rRNAs, elevated levels of misprocessed 18S and 28S rRNAs and levels of the U-class of small nuclear RNAs. Multiple sclerosis is also associated with genome-wide defects in mRNA splicing. Ro60 and La proteins, which exist in ribonucleoprotein particles and play different roles in quality control of structural RNAs, are also deficient in RRMS. In cell lines, silencing of the genes encoding Ro60 and La proteins gives rise to these same defects in surveillance of structural RNAs. CONCLUSIONS Our results establish that profound defects in structural RNA surveillance exist in RRMS and establish a causal link between Ro60 and La proteins and integrity of structural RNAs.
Collapse
Affiliation(s)
- Charles F Spurlock
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - John T Tossberg
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Subramaniam Sriram
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. .,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. .,Medical Center North T3113, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, USA.
| |
Collapse
|
20
|
Abstract
The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79-80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type-specific disorders that often transition from hypoproliferative to hyperproliferative growth.
Collapse
Affiliation(s)
- Jesus de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
- Departamento de Genetica, Universidad de Sevilla, E-41013 Sevilla, Spain
| | - Katrin Karbstein
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida 33458
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
21
|
Armistead J, Hemming R, Patel N, Triggs-Raine B. Mutation of EMG1 causing Bowen-Conradi syndrome results in reduced cell proliferation rates concomitant with G2/M arrest and 18S rRNA processing delay. BBA CLINICAL 2014; 1:33-43. [PMID: 26676230 PMCID: PMC4633970 DOI: 10.1016/j.bbacli.2014.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 12/17/2022]
Abstract
Bowen–Conradi syndrome (BCS) is a lethal autosomal recessive disorder caused by a D86G substitution in the protein, Essential for Mitotic Growth 1 (EMG1). EMG1 is essential for 18S rRNA maturation and 40S ribosome biogenesis in yeast, but no studies of its role in ribosome biogenesis have been done in mammals. To assess the effect of the EMG1 mutation on cell growth and ribosomal biogenesis in humans, we employed BCS patient cells. The D86G substitution did not interfere with EMG1 nucleolar localization. In BCS patient lymphoblasts, cells accumulated in G2/M, resulting in reduced proliferation rates; however, patient fibroblasts showed normal proliferation. The rate of 18S rRNA processing was consistently delayed in patient cells, although this did not lead to a difference in the levels of 40S ribosomes, or a change in protein synthesis rates. These results demonstrate that as in yeast, EMG1 in mammals has a role in ribosome biogenesis. The obvious phenotype in lymphoblasts compared to fibroblasts suggests a greater need for EMG1 in rapidly dividing cells. Tissue-specific effects have been seen in other ribosomal biogenesis disorders, and it seems likely that the impact of EMG1 deficiency would be larger in the rapidly proliferating cells of the developing embryo. EMG1 in healthy and BCS cells co-localizes with ribosome biogenesis factors. Cell proliferation rate is reduced in BCS cells. BCS cells accumulate at G2/M. 18S rRNA biogenesis is delayed in BCS cells. We confirm that BCS is a ribosomopathy.
Collapse
Affiliation(s)
- Joy Armistead
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada ; Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Richard Hemming
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nehal Patel
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada ; Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| |
Collapse
|
22
|
Armistead J, Triggs-Raine B. Diverse diseases from a ubiquitous process: the ribosomopathy paradox. FEBS Lett 2014; 588:1491-500. [PMID: 24657617 DOI: 10.1016/j.febslet.2014.03.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 01/03/2023]
Abstract
Collectively, the ribosomopathies are caused by defects in ribosome biogenesis. Although these disorders encompass deficiencies in a ubiquitous and fundamental process, the clinical manifestations are extremely variable and typically display tissue specificity. Research into this paradox has offered fascinating new insights into the role of the ribosome in the regulation of mRNA translation, cell cycle control, and signaling pathways involving TP53, MYC and mTOR. Several common features of ribosomopathies such as small stature, cancer predisposition, and hematological defects, point to how these diverse diseases may be related at a molecular level.
Collapse
Affiliation(s)
- Joy Armistead
- Department of Biochemistry and Medical Genetics, The University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, The University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; The Manitoba Institute of Child Health, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
23
|
Popov A, Smirnov E, Kováčik L, Raška O, Hagen G, Stixová L, Raška I. Duration of the first steps of the human rRNA processing. Nucleus 2013; 4:134-41. [PMID: 23412654 DOI: 10.4161/nucl.23985] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Processing of rRNA in mammalian cells includes a series of cleavages of the primary 47S transcript and results in producing three rRNAs: 18S, 28S and 5.8S. The sequence of the main processing events in human cells has been established, but little is yet known about the dynamics of this process, especially the dynamics of its early stages. In the present study, we used real-time PCR to measure levels of pre-rRNA after inhibition of transcription with actinomycin D. Thus we could estimate the half-life time of rRNA transcripts in two human-derived cell lines, HeLa and LEP (human embryonic fibroblasts), as well as in mouse NIH 3T3 cells. The primary transcripts seemed to be more stable in the human than in the murine cells. Remarkably, the graphs in all cases showed more or less pronounced lag phase, which may reflect preparatory events preceding the first cleavage of the pre-rRNA. Additionally, we followed the dynamics of the decay of the 5'ETS fragment which is degraded only after the formation of 41S rRNA. According to our estimates, the corresponding three (or four) steps of the processing in human cells take five to eight minutes.
Collapse
Affiliation(s)
- Alexey Popov
- First Faculty of Medicine, Institute of Cellular Biology and Pathology, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
24
|
Fernández-Pevida A, Rodríguez-Galán O, Díaz-Quintana A, Kressler D, de la Cruz J. Yeast ribosomal protein L40 assembles late into precursor 60 S ribosomes and is required for their cytoplasmic maturation. J Biol Chem 2012; 287:38390-407. [PMID: 22995916 DOI: 10.1074/jbc.m112.400564] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most ribosomal proteins play important roles in ribosome biogenesis and function. Here, we have examined the contribution of the essential ribosomal protein L40 in these processes in the yeast Saccharomyces cerevisiae. Deletion of either the RPL40A or RPL40B gene and in vivo depletion of L40 impair 60 S ribosomal subunit biogenesis. Polysome profile analyses reveal the accumulation of half-mers and a moderate reduction in free 60 S ribosomal subunits. Pulse-chase, Northern blotting, and primer extension analyses in the L40-depleted strain clearly indicate that L40 is not strictly required for the precursor rRNA (pre-rRNA) processing reactions but contributes to optimal 27 SB pre-rRNA maturation. Moreover, depletion of L40 hinders the nucleo-cytoplasmic export of pre-60 S ribosomal particles. Importantly, all these defects most likely appear as the direct consequence of impaired Nmd3 and Rlp24 release from cytoplasmic pre-60 S ribosomal subunits and their inefficient recycling back into the nucle(ol)us. In agreement, we show that hemagglutinin epitope-tagged L40A assembles in the cytoplasm into almost mature pre-60 S ribosomal particles. Finally, we have identified that the hemagglutinin epitope-tagged L40A confers resistance to sordarin, a translation inhibitor that impairs the function of eukaryotic elongation factor 2, whereas the rpl40a and rpl40b null mutants are hypersensitive to this antibiotic. We conclude that L40 is assembled at a very late stage into pre-60 S ribosomal subunits and that its incorporation into 60 S ribosomal subunits is a prerequisite for subunit joining and may ensure proper functioning of the translocation process.
Collapse
|
25
|
de Silva U, Zhou Z, Brown BA. Structure of Aeropyrum pernix fibrillarin in complex with natively bound S-adenosyl-L-methionine at 1.7 Å resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:854-9. [PMID: 22869109 DOI: 10.1107/s1744309112026528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/12/2012] [Indexed: 11/10/2022]
Abstract
Fibrillarin is the key methyltransferase associated with the C/D class of small nuclear ribonucleoproteins (snRNPs) and participates in the preliminary step of pre-ribosomal rRNA processing. This molecule is found in the fibrillar regions of the eukaryotic nucleolus and is involved in methylation of the 2'-O atom of ribose in rRNA. Human fibrillarin contains an N-terminal GAR domain, a central RNA-binding domain comprising an RNP-2-like superfamily consensus sequence and a catalytic C-terminal helical domain. Here, Aeropyrum pernix fibrillarin is described, which is homologous to the C-terminal domain of human fibrillarin. The protein was crystallized with an S-adenosyl-L-methionine (SAM) ligand bound in the active site. The molecular structure of this complex was solved using X-ray crystallography at a resolution of 1.7 Å using molecular replacement with fibrillarin structural homologs. The structure shows the atomic details of SAM and its active-site interactions; there are a number of conserved residues that interact directly with the cofactor. Notably, the adenine ring of SAM is stabilized by π-π interactions with the conserved residue Phe110 and by electrostatic interactions with the Asp134, Ala135 and Gln157 residues. The π-π interaction appears to play a critical role in stabilizing the association of SAM with fibrillarin. Furthermore, comparison of A. pernix fibrillarin with homologous structures revealed different orientations of Phe110 and changes in α-helix 6 of fibrillarin and suggests key differences in its interactions with the adenine ring of SAM in the active site and with the C/D RNA. These differences may play a key role in orienting the SAM ligand for catalysis as well as in the assembly of other ribonucleoproteins and in the interactions with C/D RNA.
Collapse
Affiliation(s)
- Udesh de Silva
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
26
|
Carron C, Balor S, Delavoie F, Plisson-Chastang C, Faubladier M, Gleizes PE, O'Donohue MF. Post-mitotic dynamics of pre-nucleolar bodies is driven by pre-rRNA processing. J Cell Sci 2012; 125:4532-42. [PMID: 22767511 DOI: 10.1242/jcs.106419] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the relationship between the topological dynamics of nuclear subdomains and their molecular function is a central issue in nucleus biology. Pre-nucleolar bodies (PNBs) are transient nuclear subdomains, which form at telophase and contain nucleolar proteins, snoRNPs and pre-ribosomal RNAs (pre-rRNAs). These structures gradually disappear in early G1 phase and are currently regarded as reservoirs of nucleolar factors that participate to post-mitotic reassembly of the nucleolus. Here, we provide evidence from fluorescence in situ hybridization and loss-of-function experiments in HeLa cells that PNBs are in fact active ribosome factories in which maturation of the pre-rRNAs transiting through mitosis resumes at telophase. We show that the pre-rRNA spacers are sequentially removed in PNBs when cells enter G1 phase, indicating regular pre-rRNA processing as in the nucleolus. Accordingly, blocking pre-rRNA maturation induces accumulation in PNBs of stalled pre-ribosomes characterised by specific pre-rRNAs and pre-ribosomal factors. The presence of pre-ribosomal particles in PNBs is corroborated by observation of these domains by correlative electron tomography. Most importantly, blocking pre-rRNA maturation also prevents the gradual disappearance of PNBs, which persist for several hours in the nucleoplasm. In a revised model, we propose that PNBs are autonomous extra-nucleolar ribosome maturation sites, whose orderly disassembly in G1 phase is driven by the maturation and release of their pre-ribosome content.
Collapse
Affiliation(s)
- Coralie Carron
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote, F-31000 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Mapping the cleavage sites on mammalian pre-rRNAs: Where do we stand? Biochimie 2012; 94:1521-32. [DOI: 10.1016/j.biochi.2012.02.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/01/2012] [Indexed: 11/23/2022]
|
28
|
Gee M, Gu Y, Fields JR, Shiao YH. Stabilization of ribozyme-like cis-noncoding rRNAs induces apoptotic and nonapoptotic death in lung cells. Cell Death Dis 2012; 3:e281. [PMID: 22419110 PMCID: PMC3317346 DOI: 10.1038/cddis.2012.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bidirectional non-protein-coding RNAs are ubiquitously transcribed from the genome. Convergent sense and antisense transcripts may regulate each other. Here, we examined the convergent cis-noncoding rRNAs (nc-rRNAs) in A5 and E9 lung cancer models. Sense nc-rRNAs extending from rDNA intergenic region to internal transcribed spacer of around 10 kb in length were identified. nc-rRNAs in sense direction exhibited in vitro characteristics of ribozymes, namely, degradation upon incubation with MgCl(2) and stabilization by complementary oligonucleotides. Detection of endogenous cleavage-ligation products carrying internal deletion of hundreds to thousands nucleotides by massively parallel sequencing confirmed the catalytic properties. Transfection of oligonucleotides pairing with antisense nc-rRNAs stabilized both target and complementary transcripts, perturbed rRNA biogenesis, and induced massive cell death via apoptotic and/or nonapoptotic mechanisms depending on cell type and treatment. Oligonucleotides targeting cellular sense transcripts are less responsive. Spontaneously detached cells, though rare, also showed accumulation of nc-rRNAs and perturbation of rRNA biogenesis. Direct participation of nc-rRNAs in apoptotic and nonapoptotic death was demonstrated by transfection of synthetic nc-rRNAs encompassing the rDNA promoter. In sum, convergent cis-nc-rRNAs follow a feed-forward mechanism to regulate each other and rRNA biogenesis. This opens an opportunity to disrupt rRNA biogenesis, commonly upregulated in cancers, via inhibition of ribozyme-like activities in nc-rRNAs.
Collapse
Affiliation(s)
- M Gee
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
29
|
Gupta AK, Panigrahi SK, Bhattacharya A, Bhattacharya S. Self-circularizing 5'-ETS RNAs accumulate along with unprocessed pre ribosomal RNAs in growth-stressed Entamoeba histolytica. Sci Rep 2012; 2:303. [PMID: 22396851 PMCID: PMC3294279 DOI: 10.1038/srep00303] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/15/2012] [Indexed: 01/13/2023] Open
Abstract
The primary transcript of rRNA genes is a large pre rRNA which is precisely processed to release the mature rRNAs. The 5'-external transcribed spacer (ETS) of rRNA genes contains important sites for pre rRNA processing. Once the processing is accomplished the ETS is rapidly degraded. We show that in growth-stressed cells of the human parasitic protist Entamoeba histolytica the A'-A(0) sub-fragment of the 5'-ETS accumulates to high levels as a family of RNA molecules of size 666 to 912 nt. These etsRNAs are circular in vivo and can spontaneously self-circularize in vitro. The accumulation of etsRNAs is accompanied by accumulation of unprocessed pre rRNA, indicating a possible role of etsRNAs in inhibition of processing during growth stress. Our data shows for the first time that processed etsRNA is not a mere by-product destined for degradation but is stabilized by circularization and could play a regulatory role as noncoding RNA.
Collapse
|
30
|
Hwang CJ, Fields JR, Shiao YH. Non-coding rRNA-mediated preferential killing in cancer cells is enhanced by suppression of autophagy in non-transformed counterpart. Cell Death Dis 2011; 2:e239. [PMID: 22158478 PMCID: PMC3252735 DOI: 10.1038/cddis.2011.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interest to anticancer agents targeting rRNA biogenesis is growing. Cis-non-coding rRNAs, alternative to primary rRNA, have been shown to regulate rRNA biogenesis. We have recently detected bidirectional non-coding rRNAs that carry ribozyme-like properties. Anti-antisense oligonucleotides complementary to antisense non-coding rRNAs markedly stabilized the bidirectional transcripts and induced cell death in mouse lung cells. Here, we demonstrated that the same oligonucleotide killed mouse lung-cancer cells preferentially, compared with non-cancer sister lines, suggesting its potential utility for cancer treatment. A human version of anti-antisense oligonucleotide, complementary to an rDNA intergenic site, mediated apoptosis primarily in cancer cells. Autophagic activation was largely undifferentiable between the anti-antisense and other oligonucleotides and accounted for the undesired cytotoxicity in non-cancer cells. Co-treatment with chloroquine, an autophagy inhibitor, reduced cytotoxicity in the non-cancer cells, but retained the anti-antisense-mediated killings in cancer cells. Furthermore, the anti-antisense oligonucleotide stabilized bidirectional non-coding rRNAs predominantly in human cancer cells and perturbed rRNA biogenesis. Contributions of non-coding rRNAs to cell death were proven by transfection of in –vitro-synthesized transcripts. Taken together, cancer/non-cancer cells respond differently to stabilization of non-coding rRNAs, and such differential responses provide a window of opportunity to enhance anticancer efficacy.
Collapse
Affiliation(s)
- C J Hwang
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD, USA
| | | | | |
Collapse
|
31
|
Rakitina DV, Taliansky M, Brown JWS, Kalinina NO. Two RNA-binding sites in plant fibrillarin provide interactions with various RNA substrates. Nucleic Acids Res 2011; 39:8869-80. [PMID: 21785141 PMCID: PMC3203579 DOI: 10.1093/nar/gkr594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fibrillarin, one of the major proteins of the nucleolus, plays several essential roles in ribosome biogenesis including pre-rRNA processing and 2′-O-ribose methylation of rRNA and snRNAs. Recently, it has been shown that fibrillarin plays a role in virus infections and is associated with viral RNPs. Here, we demonstrate the ability of recombinant fibrillarin 2 from Arabidopsis thaliana (AtFib2) to interact with RNAs of different lengths and types including rRNA, snoRNA, snRNA, siRNA and viral RNAs in vitro. Our data also indicate that AtFib2 possesses two RNA-binding sites in the central (138–179 amino acids) and C-terminal (225–281 amino acids) parts of the protein, respectively. The conserved GCVYAVEF octamer does not bind RNA directly as suggested earlier, but may assist with the proper folding of the central RNA-binding site.
Collapse
Affiliation(s)
- D. V. Rakitina
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
| | - Michael Taliansky
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
- *To whom correspondence should be addressed. Tel: +44(0)1382562731; Fax: +44 (0)1382 562426;
| | - J. W. S. Brown
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
| | - N. O. Kalinina
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
| |
Collapse
|
32
|
Ciganda M, Williams N. Eukaryotic 5S rRNA biogenesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:523-33. [PMID: 21957041 DOI: 10.1002/wrna.74] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function.
Collapse
Affiliation(s)
- Martin Ciganda
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
33
|
O'Donohue MF, Choesmel V, Faubladier M, Fichant G, Gleizes PE. Functional dichotomy of ribosomal proteins during the synthesis of mammalian 40S ribosomal subunits. ACTA ACUST UNITED AC 2010; 190:853-66. [PMID: 20819938 PMCID: PMC2935573 DOI: 10.1083/jcb.201005117] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Subsets of 40S ribosomal subunits are required for initiating rRNA processing, rRNA maturation, and nuclear export. Our knowledge of the functions of metazoan ribosomal proteins in ribosome synthesis remains fragmentary. Using siRNAs, we show that knockdown of 31 of the 32 ribosomal proteins of the human 40S subunit (ribosomal protein of the small subunit [RPS]) strongly affects pre–ribosomal RNA (rRNA) processing, which often correlates with nucleolar chromatin disorganization. 16 RPSs are strictly required for initiating processing of the sequences flanking the 18S rRNA in the pre-rRNA except at the metazoan-specific early cleavage site. The remaining 16 proteins are necessary for progression of the nuclear and cytoplasmic maturation steps and for nuclear export. Distribution of these two subsets of RPSs in the 40S subunit structure argues for a tight dependence of pre-rRNA processing initiation on the folding of both the body and the head of the forming subunit. Interestingly, the functional dichotomy of RPS proteins reported in this study is correlated with the mutation frequency of RPS genes in Diamond-Blackfan anemia.
Collapse
Affiliation(s)
- Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire des Eucaryotes, Université de Toulouse-UPS and Centre National de La Recherche Scientifique, F-31000 Toulouse, France
| | | | | | | | | |
Collapse
|
34
|
Wang M, Pestov DG. 5'-end surveillance by Xrn2 acts as a shared mechanism for mammalian pre-rRNA maturation and decay. Nucleic Acids Res 2010; 39:1811-22. [PMID: 21036871 PMCID: PMC3061060 DOI: 10.1093/nar/gkq1050] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ribosome biogenesis requires multiple nuclease activities to process pre-rRNA transcripts into mature rRNA species and eliminate defective products of transcription and processing. We find that in mammalian cells, the 5′ exonuclease Xrn2 plays a major role in both maturation of rRNA and degradation of a variety of discarded pre-rRNA species. Precursors of 5.8S and 28S rRNAs containing 5′ extensions accumulate in mouse cells after siRNA-mediated knockdown of Xrn2, indicating similarity in the 5′-end maturation mechanisms between mammals and yeast. Strikingly, degradation of many aberrant pre-rRNA species, attributed mainly to 3′ exonucleases in yeast studies, occurs 5′ to 3′ in mammalian cells and is mediated by Xrn2. Furthermore, depletion of Xrn2 reveals pre-rRNAs derived by cleavage events that deviate from the main processing pathway. We propose that probing of pre-rRNA maturation intermediates by exonucleases serves the dual function of generating mature rRNAs and suppressing suboptimal processing paths during ribosome assembly.
Collapse
Affiliation(s)
- Minshi Wang
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA
| | | |
Collapse
|
35
|
Carron C, O'Donohue MF, Choesmel V, Faubladier M, Gleizes PE. Analysis of two human pre-ribosomal factors, bystin and hTsr1, highlights differences in evolution of ribosome biogenesis between yeast and mammals. Nucleic Acids Res 2010; 39:280-91. [PMID: 20805244 PMCID: PMC3017594 DOI: 10.1093/nar/gkq734] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent studies reveal that maturation of the 40S ribosomal subunit precursors in mammals includes an additional step during processing of the internal transcribed spacer 1 (ITS1), when compared with yeast Saccharomyces cerevisiae, even though the protein content of the pre-40S particle appears to be the same. Here, we examine by depletion with siRNA treatment the function of human orthologs of two essential yeast pre-ribosomal factors, hEnp1/bystin and hTsr1. Like their yeast orthologs, bystin is required for efficient cleavage of the ITS1 and further processing of this domain within the pre-40S particles, whereas hTsr1 is necessary for the final maturation steps. However, bystin depletion leads to accumulation of an unusual 18S rRNA precursor, revealing a new step in ITS1 processing that potentially involves an exonuclease. In addition, pre-40S particles lacking hTsr1 are partially retained in the nucleus, whereas depletion of Tsr1p in yeast results in strong cytoplasmic accumulation of pre-40S particles. These data indicate that ITS1 processing in human cells may be more complex than currently envisioned and that coordination between maturation and nuclear export of pre-40S particles has evolved differently in yeast and mammalian cells.
Collapse
Affiliation(s)
- Coralie Carron
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote and CNRS, LBME, F-31000 Toulouse, France
| | | | | | | | | |
Collapse
|
36
|
Kong R, Han W, Ulrich HW, Ning T, Du X, Ke Y. 1A6/DRIM, the human UTP20 functions in 28S and 5.8S rRNA processing. CHINESE SCIENCE BULLETIN-CHINESE 2010. [DOI: 10.1007/s11434-010-3166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Mammalian DEAD box protein Ddx51 acts in 3' end maturation of 28S rRNA by promoting the release of U8 snoRNA. Mol Cell Biol 2010; 30:2947-56. [PMID: 20404093 DOI: 10.1128/mcb.00226-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biogenesis of eukaryotic ribosomes requires a number of RNA helicases that drive molecular rearrangements at various points of the assembly pathway. While many ribosome synthesis factors are conserved among all eukaryotes, certain features of ribosome maturation, such as U8 snoRNA-assisted processing of the 5.8S and 28S rRNA precursors, are observed only in metazoan cells. Here, we identify the mammalian DEAD box helicase family member Ddx51 as a novel ribosome synthesis factor and an interacting partner of the nucleolar GTP-binding protein Nog1. Unlike any previously studied yeast helicases, Ddx51 is required for the formation of the 3' end of 28S rRNA. Ddx51 binds to pre-60S subunit complexes and promotes displacement of U8 snoRNA from pre-rRNA, which is necessary for the removal of the 3' external transcribed spacer from 28S rRNA and productive downstream processing. These data demonstrate the emergence of a novel factor that facilitates a pre-rRNA processing event specific for higher eukaryotes.
Collapse
|
38
|
Jia MZ, Horita S, Nagata K, Tanokura M. An archaeal Dim2-like protein, aDim2p, forms a ternary complex with a/eIF2 alpha and the 3' end fragment of 16S rRNA. J Mol Biol 2010; 398:774-85. [PMID: 20363226 DOI: 10.1016/j.jmb.2010.03.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 03/23/2010] [Accepted: 03/28/2010] [Indexed: 01/18/2023]
Abstract
Dim2p is a eukaryal small ribosomal subunit RNA processing factor required for the maturation of 18S rRNA. Here we show that an archaeal homolog of Dim2p, aDim2p, forms a ternary complex with the archaeal homolog of eIF2 alpha, a/eIF2 alpha, and the RNA fragment that possesses the 3' end sequence of 16S rRNA both in solution and in crystal. The 2.8-A crystal structure of the ternary complex reveals that two KH domains of aDim2p, KH-1 and -2, are involved in binding the anti-Shine-Dalgarno core sequence (CCUCC-3') and a highly conserved adjacent sequence (5'-GGAUCA), respectively, of the target rRNA fragment. The surface plasmon resonance results show that the interaction of aDim2p with the target rRNA fragment is very strong, with a dissociation constant of 9.8 x 10(-10) M, and that aDim2p has a strong nucleotide sequence preference for the 3' end sequence of 16S rRNA. On the other hand, aDim2p interacts with the isolated alpha subunit and the intact alpha beta gamma complex of a/eIF2, irrespective of the RNA binding. These results suggest that aDim2p is a possible archaeal pre-rRNA processing factor recognizing the 3' end sequence (5'-GAUCACCUCC-3') of 16S rRNA and may have multiple biological roles in vivo by interacting with other proteins such as a/eIF2 and aRio2p.
Collapse
Affiliation(s)
- Min Ze Jia
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
39
|
Samaha H, Delorme V, Pontvianne F, Cooke R, Delalande F, Van Dorsselaer A, Echeverria M, Sáez-Vásquez J. Identification of protein factors and U3 snoRNAs from a Brassica oleracea RNP complex involved in the processing of pre-rRNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:383-398. [PMID: 19891704 DOI: 10.1111/j.1365-313x.2009.04061.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report on the structural characterization of a functional U3 snoRNA ribonucleoprotein complex isolated from Brassica oleracea. The BoU3 snoRNP complex (formerly NF D) binds ribosomal DNA (rDNA), specifically cleaves pre-rRNA at the primary cleavage site in vitro and probably links transcription to early pre-rRNA processing in vivo. Using a proteomic approach we have identified 62 proteins in the purified BoU3 snoRNP fraction, including small RNA associated proteins (Fibrillarin, NOP5/Nop58p, Diskerin/Cbf5p, SUS2/PRP8 and CLO/GFA1/sn114p) and 40S ribosomal associated proteins (22 RPS and four ARCA-like proteins). Another major protein group is composed of chaperones/chaperonins (HSP81/TCP-1) and at least one proteasome subunit (RPN1a). Remarkably, RNA-dependent RNA polymerase (RdRP) and Tudor staphylococcal nuclease (TSN) proteins, which have RNA- and/or DNA-associated activities, were also revealed in the complex. Furthermore, three U3 snoRNA variants were identified in the BoU3 snoRNP fraction, notably an evolutionarily conserved and variable stem loop structure located just downstream from the C-box domain of the U3 sequence structures. We conclude that the BoU3 snoRNP complex is mainly required for 40S pre-ribosome synthesis. It is also expected that U3 snoRNA variants and interacting proteins might play a major role in BoU3 snoRNP complex assembly and/or function. This study provides a basis for further investigation of these novel ribonucleoprotein factors and their role in plant ribosome biogenesis.
Collapse
Affiliation(s)
- Hala Samaha
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS-IRD-UPVD, Perpignan France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Polyadenylation and degradation of incomplete RNA polymerase I transcripts in mammalian cells. EMBO Rep 2010; 11:106-11. [PMID: 20062005 DOI: 10.1038/embor.2009.271] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 01/18/2023] Open
Abstract
Most transcripts in growing cells are ribosomal RNA precursors (pre-rRNA). Here, we show that in mammals, aberrant pre-rRNA transcripts generated by RNA polymerase I (Pol I) are polyadenylated and accumulate markedly after treatment with low concentrations of actinomycin D (ActD), which blocks the synthesis of full-length rRNA. The poly(A) polymerase-associated domain-containing protein 5 is required for polyadenylation, whereas the exosome is partly responsible for the degradation of the short aberrant transcripts. Thus, polyadenylation functions in the quality control of Pol I transcription in metazoan cells. The impact of excessive aberrant RNAs on the degradation machinery is an unrecognized mechanism that might contribute to biological properties of ActD.
Collapse
|
41
|
Jia MZ, Ohtsuka J, Lee WC, Nagata K, Tanokura M. Crystal structure of Dim2p: a preribosomal RNA processing factor, from Pyrococcus horikoshii OT3 at 2.30 A. Proteins 2009; 69:428-32. [PMID: 17654551 DOI: 10.1002/prot.21381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Min Ze Jia
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
42
|
Coleman AW, Maria Preparata R, Mehrotra B, Mai JC. Derivation of the Secondary Structure of the ITS-1 Transcript in Volvocales and its Taxonomic Correlations. Protist 2009. [PMID: 23196163 DOI: 10.1016/s1434-4610(98)70018-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Knowledge of secondary structure, formed by the gene spacer regions of the primary transcript of nuclear rDNA cistrons, is lacking for most phyla of eukaryotes. We have sequenced the first internal transcribed spacer region (ITS-1) of multiple representatives of the Volvocales, and from comparisons of these, derived a secondary structure common to the entire group. The secondary structure model is supported by numerous compensating base pair changes located within the paired regions of the stem-loops. Within the morphological species, such as those of Astrephomene and Gonium, the three basal nucleotide pairs of helices are highly conserved in primary sequence, and the single stranded region rich in CCAA is identical in sequence, even when isolates come from all continents of the earth. In other Volvocacean species known to include many pairs of mating types, this same level of conservation is found to correlate with the mating subgroups of the species. Thus a comparable degree of sequence similarity appears to characterize all isolates of a "biological" species; this is valid for taxonomic species only where the biological and taxonomic species levels coincide. In addition, the ITS-1 contains information useful for population analyses, and spacer secondary structure may have additional phylogenetic utility at the level of class or subclass when that information becomes available for other protistan groups.
Collapse
Affiliation(s)
- A W Coleman
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
43
|
Monti DM, Yu W, Pizzo E, Shima K, Hu MG, Di Malta C, Piccoli R, D'Alessio G, Hu GF. Characterization of the angiogenic activity of zebrafish ribonucleases. FEBS J 2009; 276:4077-90. [PMID: 19549190 DOI: 10.1111/j.1742-4658.2009.07115.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ribonucleases identified from zebrafish possess angiogenic and bactericidal activities. Zebrafish RNases have three intramolecular disulfide bonds, a characteristic structural feature of angiogenin, different from the typical four disulfide bonds of the other members of the RNase A superfamily. They also have a higher degree of sequence homology to angiogenin than to RNase A. It has been proposed that all RNases evolved from these angiogenin-like progenitors. In the present study, we characterize, in detail, the function of zebrafish RNases in various steps in the process of angiogenesis. We report that zebrafish RNase-1, -2 and -3 bind to the cell surface specifically and are able to compete with human angiogenin. Similar to human angiogenin, all three zebrafish RNases are able to induce phosphorylation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase. They also undergo nuclear translocation, accumulate in the nucleolus and stimulate rRNA transcription. However, zebrafish RNase-3 is defective in cleaving rRNA precursor, even though it has been reported to have an open active site and has higher enzymatic activity toward more classic RNase substrates such as yeast tRNA and synthetic oligonucleotides. Taken together with the findings that zebrafish RNase-3 is less angiogenic than zebrafish RNase-1 and -2 as well as human angiogenin, these results suggest that zebrafish RNase-1 is the ortholog of human angiogenin and that the ribonucleolytic activity of zebrafish RNases toward the rRNA precursor substrate is functionally important for their angiogenic activity.
Collapse
Affiliation(s)
- Daria M Monti
- Department of Structural and Functional Biology, University of Naples Federico II, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kent T, Lapik YR, Pestov DG. The 5' external transcribed spacer in mouse ribosomal RNA contains two cleavage sites. RNA (NEW YORK, N.Y.) 2009; 15:14-20. [PMID: 19029311 PMCID: PMC2612764 DOI: 10.1261/rna.1384709] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 10/16/2008] [Indexed: 05/07/2023]
Abstract
The 5' external transcribed spacer (5'ETS) is critical for 18S rRNA formation and is the longest noncoding region in a ribosomal RNA transcript. Here we show that processing in mouse 5'ETS involves two cleavage events. Processing at site A' corresponds to the previously described "primary cleavage," which precedes other processing steps. Processing at the novel site A0 occurs 1 kb downstream from A' yielding two new rRNA precursors: 43S and 29S. The excised 5'-A' and A'-A0 fragments are rapidly degraded under normal conditions. Depletion of the exosome component EXOSC10/PM-Scl100 (ortholog of yeast Rrp6p) results in a strong accumulation of the A'-A0 spacer fragment in mouse cells. We discuss the finding of a second processing site in mammalian 5'ETS in relation to the involvement of the U3 snoRNA in pre-rRNA processing and present a revised map of the mouse 18S rRNA processing pathway.
Collapse
MESH Headings
- Animals
- DNA, Ribosomal Spacer/chemistry
- Exoribonucleases/chemistry
- Exoribonucleases/metabolism
- Exosome Multienzyme Ribonuclease Complex
- Exosomes/metabolism
- Humans
- Mice
- Models, Biological
- Models, Genetic
- Molecular Sequence Data
- NIH 3T3 Cells
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA Splicing/physiology
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nucleolar/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Tatyana Kent
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084, USA
| | | | | |
Collapse
|
45
|
Nucleophosmin serves as a rate-limiting nuclear export chaperone for the Mammalian ribosome. Mol Cell Biol 2008; 28:7050-65. [PMID: 18809582 DOI: 10.1128/mcb.01548-07] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nucleophosmin (NPM) (B23) is an essential protein in mouse development and cell growth; however, it has been assigned numerous roles in very diverse cellular processes. Here, we present a unified mechanism for NPM's role in cell growth; NPM directs the nuclear export of both 40S and 60S ribosomal subunits. NPM interacts with rRNA and large and small ribosomal subunit proteins and also colocalizes with large and small ribosomal subunit proteins in the nucleolus, nucleus, and cytoplasm. The transduction of NPM shuttling-defective mutants or the loss of Npm1 inhibited the nuclear export of both the 40S and 60S ribosomal subunits, reduced the available pool of cytoplasmic polysomes, and diminished overall protein synthesis without affecting rRNA processing or ribosome assembly. While the inhibition of NPM shuttling can block cellular proliferation, the dramatic effects on ribosome export occur prior to cell cycle inhibition. Modest increases in NPM expression amplified the export of newly synthesized rRNAs, resulting in increased rates of protein synthesis and indicating that NPM is rate limiting in this pathway. These results support the idea that NPM-regulated ribosome export is a fundamental process in cell growth.
Collapse
|
46
|
Pestov DG, Lapik YR, Lau LF. Assays for ribosomal RNA processing and ribosome assembly. ACTA ACUST UNITED AC 2008; Chapter 22:Unit 22.11. [PMID: 18551418 DOI: 10.1002/0471143030.cb2211s39] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The synthesis of ribosomes is a major metabolic activity critical for cell growth and homeostasis. Understanding the mechanisms of ribosome biogenesis has important implications for studying both protein synthesis and cell cycle control. This unit describes several techniques for the analysis of rRNA maturation and ribosome assembly adapted for mammalian cells. Metabolic labeling of rRNA and hybridization analysis of precursors can be used to assess changes in rRNA processing that occur under experimental conditions of interest. Separation of preribosomal particles by sucrose gradient centrifugation is suitable for the analysis of proteins associated with preribosomes during their assembly and maturation in the cell nucleus.
Collapse
Affiliation(s)
- Dimitri G Pestov
- University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, Department of Cell Biology, Stratford, New Jersey, USA
| | | | | |
Collapse
|
47
|
Rohrmoser M, Hölzel M, Grimm T, Malamoussi A, Harasim T, Orban M, Pfisterer I, Gruber-Eber A, Kremmer E, Eick D. Interdependence of Pes1, Bop1, and WDR12 controls nucleolar localization and assembly of the PeBoW complex required for maturation of the 60S ribosomal subunit. Mol Cell Biol 2007; 27:3682-94. [PMID: 17353269 PMCID: PMC1899993 DOI: 10.1128/mcb.00172-07] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The PeBoW complex is essential for cell proliferation and maturation of the large ribosomal subunit in mammalian cells. Here we examined the role of PeBoW-specific proteins Pes1, Bop1, and WDR12 in complex assembly and stability, nucleolar transport, and pre-ribosome association. Recombinant expression of the three subunits is sufficient for complex formation. The stability of all three subunits strongly increases upon incorporation into the complex. Only overexpression of Bop1 inhibits cell proliferation and rRNA processing, and its negative effects could be rescued by coexpression of WDR12, but not Pes1. Elevated levels of Bop1 induce Bop1/WDR12 and Bop1/Pes1 subcomplexes. Knockdown of Bop1 abolishes the copurification of Pes1 with WDR12, demonstrating Bop1 as the integral component of the complex. Overexpressed Bop1 substitutes for endogenous Bop1 in PeBoW complex assembly, leading to the instability of endogenous Bop1. Finally, indirect immunofluorescence, cell fractionation, and sucrose gradient centrifugation experiments indicate that transport of Bop1 from the cytoplasm to the nucleolus is Pes1 dependent, while Pes1 can migrate to the nucleolus and bind to preribosomal particles independently of Bop1. We conclude that the assembly and integrity of the PeBoW complex are highly sensitive to changes in Bop1 protein levels.
Collapse
Affiliation(s)
- Michaela Rohrmoser
- Institute of Clinical Molecular Biology and Tumor Genetics, GSF Research Center, Marchioninistrasse 25, D81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Adachi K, Soeta-Saneyoshi C, Sagara H, Iwakura Y. Crucial role of Bysl in mammalian preimplantation development as an integral factor for 40S ribosome biogenesis. Mol Cell Biol 2007; 27:2202-14. [PMID: 17242206 PMCID: PMC1820511 DOI: 10.1128/mcb.01908-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/15/2006] [Accepted: 01/04/2007] [Indexed: 02/03/2023] Open
Abstract
Blastocyst formation during mammalian preimplantation development is a unique developmental process that involves lineage segregation between the inner cell mass and the trophectoderm. To elucidate the molecular mechanisms underlying blastocyst formation, we have functionally screened a subset of preimplantation embryo-associated transcripts by using small interfering RNA (siRNA) and identified Bysl (bystin-like) as an essential gene for this process. The development of embryos injected with Bysl siRNA was arrested just prior to blastocyst formation, resulting in a defect in trophectoderm differentiation. Silencing of Bysl by using an episomal short hairpin RNA expression vector inhibited proliferation of embryonic stem cells. Exogenously expressed Bysl tagged with a fluorescent protein was concentrated in the nucleolus with a diffuse nucleoplasmic distribution. Furthermore, the loss of Bysl function by using RNA interference or dominant negative mutants caused defects in 40S ribosomal subunit biogenesis. These findings provide evidence for a crucial role of Bysl as an integral factor for ribosome biogenesis and suggest a critical dependence of blastocyst formation on active translation machinery.
Collapse
Affiliation(s)
- Kenjiro Adachi
- Institute of Medical Science, University of Tokyo, Minato-ku, Toyko 108-8639, Japan
| | | | | | | |
Collapse
|
49
|
Choesmel V, Bacqueville D, Rouquette J, Noaillac-Depeyre J, Fribourg S, Crétien A, Leblanc T, Tchernia G, Da Costa L, Gleizes PE. Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood 2006; 109:1275-83. [PMID: 17053056 PMCID: PMC1785132 DOI: 10.1182/blood-2006-07-038372] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The gene encoding the ribosomal protein S19 (RPS19) is frequently mutated in Diamond-Blackfan anemia (DBA), a congenital erythroblastopenia. The consequence of these mutations on the onset of the disease remains obscure. Here, we show that RPS19 plays an essential role in biogenesis of the 40S small ribosomal subunit in human cells. Knockdown of RPS19 expression by siRNAs impairs 18S rRNA synthesis and formation of 40S subunits and induces apoptosis in HeLa cells. Pre-rRNA processing is altered, which leads to an arrest in the maturation of precursors to the 18S rRNA. Under these conditions, pre-40S particles are not exported to the cytoplasm and accumulate in the nucleoplasm of the cells in perinuclear dots. Consistently, we find that ribosome biogenesis and nucleolar organization is altered in skin fibroblasts from DBA patients bearing mutations in the RPS19 gene. In addition, maturation of the 18S rRNA is also perturbed in cells from a patient bearing no RPS19-related mutation. These results support the hypothesis that DBA is directly related to a defect in ribosome biogenesis and indicate that yet to be discovered DBA-related genes may be involved in the synthesis of the ribosomal subunits.
Collapse
Affiliation(s)
- Valérie Choesmel
- Laboratoire de Biologie Moléculaire des Eucaryotes, Unite Mixte de Recherche 5099, Institut d'Exploration Fonctionnelle des Génomes, CNRS, and Université Paul Sabatier, Toulouse, and Service d'oncologie-pédiatrie, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Beekman C, Nichane M, De Clercq S, Maetens M, Floss T, Wurst W, Bellefroid E, Marine JC. Evolutionarily conserved role of nucleostemin: controlling proliferation of stem/progenitor cells during early vertebrate development. Mol Cell Biol 2006; 26:9291-301. [PMID: 17000755 PMCID: PMC1698517 DOI: 10.1128/mcb.01183-06] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nucleostemin (NS) is a putative GTPase expressed preferentially in the nucleoli of neuronal and embryonic stem cells and several cancer cell lines. Transfection and knockdown studies indicated that NS controls the proliferation of these cells by interacting with the p53 tumor suppressor protein and regulating its activity. To assess the physiological role of NS in vivo, we generated a mutant mouse line with a specific gene trap event that inactivates the NS allele. The corresponding NS(-/-) embryos died around embryonic day 4. Analyses of NS mutant blastocysts indicated that NS is not required to maintain pluripotency, nucleolar integrity, or survival of the embryonic stem cells. However, the homozygous mutant blastocysts failed to enter S phase even in the absence of functional p53. Haploid insufficiency of NS in mouse embryonic fibroblasts leads to decreased cell proliferation. NS also functions in early amphibian development to control cell proliferation of neural progenitor cells. Our results show that NS has a unique ability, derived from an ancestral function, to control the proliferation rate of stem/progenitor cells in vivo independently of p53.
Collapse
Affiliation(s)
- Chantal Beekman
- Laboratory for Molecular Cancer Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Technologiepark, 927, B-9052 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|