1
|
Potter H, Chial HJ, Caneus J, Elos M, Elder N, Borysov S, Granic A. Chromosome Instability and Mosaic Aneuploidy in Neurodegenerative and Neurodevelopmental Disorders. Front Genet 2019; 10:1092. [PMID: 31788001 PMCID: PMC6855267 DOI: 10.3389/fgene.2019.01092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Evidence from multiple laboratories has accumulated to show that mosaic neuronal aneuploidy and consequent apoptosis characterizes and may underlie neuronal loss in many neurodegenerative diseases, particularly Alzheimer’s disease and frontotemporal dementia. Furthermore, several neurodevelopmental disorders, including Seckel syndrome, ataxia telangiectasia, Nijmegen breakage syndrome, Niemann–Pick type C, and Down syndrome, have been shown to also exhibit mosaic aneuploidy in neurons in the brain and in other cells throughout the body. Together, these results indicate that both neurodegenerative and neurodevelopmental disorders with apparently different pathogenic causes share a cell cycle defect that leads to mosaic aneuploidy in many cell types. When such mosaic aneuploidy arises in neurons in the brain, it promotes apoptosis and may at least partly underlie the cognitive deficits that characterize the neurological symptoms of these disorders. These findings have implications for both diagnosis and treatment/prevention.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Heidi J Chial
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Julbert Caneus
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
| | - Mihret Elos
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Nina Elder
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Sergiy Borysov
- Department of Math and Science, Saint Leo University, Saint Leo, FL, United States
| | - Antoneta Granic
- AGE Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle University Institute for Ageing, NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom.,Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
2
|
Iles RK. Normal Cell. UROLOGICAL ONCOLOGY 2015:1-38. [DOI: 10.1007/978-0-85729-482-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
The ATM-mediated DNA-damage response. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
4
|
Bioinformatic identification of genes suppressing genome instability. Proc Natl Acad Sci U S A 2012; 109:E3251-9. [PMID: 23129647 DOI: 10.1073/pnas.1216733109] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unbiased forward genetic screens for mutations causing increased gross chromosomal rearrangement (GCR) rates in Saccharomyces cerevisiae are hampered by the difficulty in reliably using qualitative GCR assays to detect mutants with small but significantly increased GCR rates. We therefore developed a bioinformatic procedure using genome-wide functional genomics screens to identify and prioritize candidate GCR-suppressing genes on the basis of the shared drug sensitivity suppression and similar genetic interactions as known GCR suppressors. The number of known suppressors was increased from 75 to 110 by testing 87 predicted genes, which identified unanticipated pathways in this process. This analysis explicitly dealt with the lack of concordance among high-throughput datasets to increase the reliability of phenotypic predictions. Additionally, shared phenotypes in one assay were imperfect predictors for shared phenotypes in other assays, indicating that although genome-wide datasets can be useful in aggregate, caution and validation methods are required when deciphering biological functions via surrogate measures, including growth-based genetic interactions.
Collapse
|
5
|
Preserving Yeast Genetic Heritage through DNA Damage Checkpoint Regulation and Telomere Maintenance. Biomolecules 2012; 2:505-23. [PMID: 24970147 PMCID: PMC4030855 DOI: 10.3390/biom2040505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/10/2012] [Accepted: 10/22/2012] [Indexed: 01/07/2023] Open
Abstract
In order to preserve genome integrity, extrinsic or intrinsic DNA damages must be repaired before they accumulate in cells and trigger other mutations and genome rearrangements. Eukaryotic cells are able to respond to different genotoxic stresses as well as to single DNA double strand breaks (DSBs), suggesting highly sensitive and robust mechanisms to detect lesions that trigger a signal transduction cascade which, in turn, controls the DNA damage response (DDR). Furthermore, cells must be able to distinguish natural chromosomal ends from DNA DSBs in order to prevent inappropriate checkpoint activation, DDR and chromosomal rearrangements. Since the original discovery of RAD9, the first DNA damage checkpoint gene identified in Saccharomyces cerevisiae, many genes that have a role in this pathway have been identified, including MRC1, MEC3, RAD24, RAD53, DUN1, MEC1 and TEL1. Extensive studies have established most of the genetic basis of the DNA damage checkpoint and uncovered its different functions in cell cycle regulation, DNA replication and repair, and telomere maintenance. However, major questions concerning the regulation and functions of the DNA damage checkpoint remain to be answered. First, how is the checkpoint activity coupled to DNA replication and repair? Second, how do cells distinguish natural chromosome ends from deleterious DNA DSBs? In this review we will examine primarily studies performed using Saccharomyces cerevisiae as a model system.
Collapse
|
6
|
Carra C, Cucinotta FA. Binding selectivity of RecA to a single stranded DNA, a computational approach. J Mol Model 2010; 17:133-50. [PMID: 20386943 DOI: 10.1007/s00894-010-0694-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 02/23/2010] [Indexed: 11/29/2022]
Abstract
Homologous recombination (HR) is the major DNA double strand break repair pathway which maintains the genomic integrity. It is fundamental for the survivability and functionality of all organisms. One of the initial steps in HR is the formation of the nucleoprotein filament composed by a single stranded DNA chain surrounded by the recombinases protein. The filament orchestrates the search for an undamaged homologue, as a template for the repair process. Our theoretical study was aimed at elucidating the selectivity of the interaction between a monomer of the recombinases enzyme in the Escherichia coli, EcRecA, the bacterial homologue of human Rad51, with a series of oligonucleotides of nine bases length. The complex, equilibrated for 20 ns with Langevian dynamics, was inserted in a periodic box with a 8 Å buffer of water molecules explicitly described by the TIP3P model. The absolute binding free energies are calculated in an implicit solvent using the Poisson-Boltzmann (PB) and the generalized Born (GB) solvent accessible surface area, using the MM-PB(GB)SA model. The solute entropic contribution is also calculated by normal mode analysis. The results underline how a significant contribution of the binding free energy is due to the interaction with the Arg196, a critical amino acid for the activity of the enzyme. The study revealed how the binding affinity of EcRecA is significantly higher toward dT₉ rather than dA₉, as expected from the experimental results.
Collapse
Affiliation(s)
- Claudio Carra
- Universities Space Research Association, 2101 NASA Parkway, Houston, TX 77058, USA.
| | | |
Collapse
|
7
|
Carra C, Cucinotta FA. Binding Sites of theE. ColiDNA Recombinase Protein to the ssDNA: A Computational Study. J Biomol Struct Dyn 2010; 27:407-28. [DOI: 10.1080/07391102.2010.10507327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Abstract
Ultrasound-mediated gene transfection (sonotransfection) has been shown to be a promising physical method for gene therapy, especially for cancer gene therapy. The procedure being done in vitro uses several ultrasound exposure (sonication) setups. Although high transfection rates have been attained in some of these setups in vitro, replicating similar levels of transfection in vivo has been difficult. In vivo-simulated setups offer hope for a more consistent outcome in vivo. Presented in this chapter are typical methods of sonotransfection in vitro, methods when using a novel in vivo-simulated in vitro sonication setup and also sonotransfection methods when doing in vivo experiments. Factors that could potentially influence the outcome of an ultrasound experiment are cited. Several advantages of sonotransfection are recognized, although a low transfection rate is still considered a disadvantage of this method. To improve the transfection rate and the efficiency of sonotransfection, several studies are currently being undertaken. Particularly promising are studies using engineered microbubbles to carry the therapeutic genes into a particular target tissue in the body, then using ultrasound to release or deliver the genes directly into target cells, e.g., cancer cells.
Collapse
Affiliation(s)
- Loreto B Feril
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka City, Fukuoka, Japan
| |
Collapse
|
9
|
Ashkenazi R, Gentry SN, Jackson TL. Pathways to tumorigenesis--modeling mutation acquisition in stem cells and their progeny. Neoplasia 2008; 10:1170-82. [PMID: 18953426 PMCID: PMC2570593 DOI: 10.1593/neo.08572] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 01/06/2023]
Abstract
Most adult tissues consist of stem cells, progenitors, and mature cells, and this hierarchical architecture may play an important role in the multistep process of carcinogenesis. Here, we develop and discuss the important predictions of a simple mathematical model of cancer initiation and early progression within a hierarchically structured tissue. This work presents a model that incorporates both the sequential acquisition of phenotype altering mutations and tissue hierarchy. The model simulates the progressive effect of accumulating mutations that lead to an increase in fitness or the induction of genetic instability. A novel aspect of the model is that symmetric self-renewal, asymmetric division, and differentiation are all incorporated, and this enables the quantitative study of the effect of mutations that deregulate the normal, homeostatic stem cell division pattern. The model is also capable of predicting changes in both tissue composition and in the progression of cells along their lineage at any given time and for various sequences of mutations. Simulations predict that the specific order in which mutations are acquired is crucial for determining the pace of cancer development. Interestingly, we find that the importance of genetic stability differs significantly depending on the physiological expression of mutations related to symmetric self-renewal and differentiation of stem and progenitor cells. In particular, mutations that lead to the alteration of the stem cell division pattern or the acquisition of some degree of immortality in committed progenitors lead to an early onset of cancer and diminish the impact of genetic instability.
Collapse
Affiliation(s)
- Rina Ashkenazi
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
10
|
Iles RK. The Cell. UROLOGICAL ONCOLOGY 2008:3-35. [DOI: 10.1007/978-1-84628-738-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Bakács T, Mehrishi JN, Szabados T, Varga L, Szabó M, Tusnády G. T Cells Survey the Stability of the Self: A Testable Hypothesis on the Homeostatic Role of TCR-MHC Interactions. Int Arch Allergy Immunol 2007; 144:171-82. [PMID: 17541288 DOI: 10.1159/000103282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 04/11/2007] [Indexed: 01/20/2023] Open
Abstract
In the lifetime of an individual, every single gene will have undergone mutation on about 10(10) separate occasions. Nevertheless, cancer occurs mainly with advancing age. Here, we hypothesize that the evolutionary pressure driving the creation of the T cell receptor (TCR) repertoire was primarily the homeostatic surveillance of the genome. The subtly variable T cells may in fact constitute an evolutionary link between the invariable innate and hypervariable B cell systems. The new model is based on the homeostatic role of T cells, suggesting that molecular complementarity between the positively selected TCR and the self peptide-presenting major histocompatibility complex molecules establishes and regulates homeostasis, strictly limiting variations of its components. Notwithstanding, the 'homeostatic role of T cells' model offers a more realistic explanation as to how a naïve clonal immune system can cope with the much faster replicating pathogens, despite a limited repertoire that is capable of facing only a small fraction of the vast antigenic universe at a time.
Collapse
Affiliation(s)
- Tibor Bakács
- Department of Probability, Alfred Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
12
|
Hicks MJ, Roth JR, Kozinetz CA, Wang LL. Clinicopathologic Features of Osteosarcoma in Patients With Rothmund-Thomson Syndrome. J Clin Oncol 2007; 25:370-5. [PMID: 17264332 DOI: 10.1200/jco.2006.08.4558] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose Patients with Rothmund-Thomson syndrome (RTS) and RECQL4 gene mutations have an increased risk of developing osteosarcoma (OS). Because RTS is considered a genomic instability syndrome, patients may experience increased toxicity with chemotherapy. The purpose of this study was to summarize the clinical features and response to therapy of OS in patients with RTS. The results of this analysis will help to define treatment guidelines for this complex and rare condition. Patients and Methods An international cohort of patients with RTS and OS was enrolled in an institutional review board–approved study at Baylor College of Medicine (Houston, TX). Medical records were reviewed, and the following information was extracted: clinical features, treatment, pathologic findings, and clinical outcome. Results The median age at diagnosis of OS for the 12 patients was 10 years. The most common primary tumor sites were the long bones (femur, tibia); the most frequent histologic subtype was conventional OS. Histologic response to chemotherapy and outcome were similar to other published large series of sporadic OS. Eight patients are alive and disease free; four died as a result of cancer. Five patients required chemotherapy dose modifications, most commonly due to mucositis from doxorubicin. Conclusion Our results indicate that patients with RTS and OS are younger, but that their clinical behavior is similar to patients with sporadic OS. Our report suggests that these patients should initially be treated with conventional doses of chemotherapy as prescribed by current protocols; however, cautious and careful clinical observation is warranted to monitor for enhanced doxorubicin sensitivity in patients with RTS.
Collapse
Affiliation(s)
- M John Hicks
- Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
13
|
Greenberg RA, Sobhian B, Pathania S, Cantor SB, Nakatani Y, Livingston DM. Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev 2006; 20:34-46. [PMID: 16391231 PMCID: PMC1356099 DOI: 10.1101/gad.1381306] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 11/02/2005] [Indexed: 01/28/2023]
Abstract
The BRCA1 gene product and its stoichiometric binding partner, BARD1, play a vital role in the cellular response to DNA damage. However, how they acquire specific biochemical functions after DNA damage is poorly understood. Following exposure to genotoxic stress, DNA damage-specific interactions were observed between BRCA1/BARD1 and the DNA damage-response proteins, TopBP1 and Mre11/Rad50/NBS1. Two distinct DNA damage-dependent super complexes emerged; their activation was dependent, in part, on the actions of specific checkpoint kinases, and each super complex contributed to a distinctive aspect of the DNA damage response. The results support a new, multifactorial model that describes how genotoxic stress enables BRCA1 to execute a diverse set of DNA damage-response functions.
Collapse
Affiliation(s)
- Roger A Greenberg
- Department of Genetics, Harvard Medical School and The Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
14
|
Aroya SB, Kupiec M. The Elg1 replication factor C-like complex: a novel guardian of genome stability. DNA Repair (Amst) 2005; 4:409-17. [PMID: 15725622 DOI: 10.1016/j.dnarep.2004.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 08/17/2004] [Indexed: 02/07/2023]
Abstract
The remarkable stability of the eukaryotic genome is achieved by the activity of many overlapping surveillance and repair mechanism. Two protein complexes with resemblance to replication factor C (RFC) have been recently described, that play important roles in maintaining the stability of the genome. These RFC-like complexes (RLCs) share four common subunits (Rfc2-5) and each carry a unique large subunit (Rad24 or Ctf18) replacing the Rfc1 subunit of the replication complex. Work in several laboratories has recently uncovered a novel yeast gene, ELG1, which seems to play a central role in keeping the genome stable. elg1 mutants exhibit increased rates of spontaneous recombination and gross chromosomal rearrangements during vegetative growth. In addition, they lose chromosomes at an enhanced rate, show hyper-transposition of natural repeated elements and exhibit elongated telomeres. The Elg1 protein also associates with the Rfc2-5 subunits of replication factor C (RFC) to form a third RFC-like complex (RLC). Genetic and biochemical data indicate that the Elg1, Ctf18 and Rad24 RLCs work in three separate pathways important for maintaining the integrity of the genome and for coping with various genomic stresses. ELG1 is evolutionarily conserved and may play an important role in preventing the onset of cancer in humans. The Elg1 function is thus clearly required for maintaining genome stability during normal growth, and its absence has severe genetic consequences.
Collapse
Affiliation(s)
- Shay Ben Aroya
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
15
|
Smith S, Gupta A, Kolodner RD, Myung K. Suppression of gross chromosomal rearrangements by the multiple functions of the Mre11-Rad50-Xrs2 complex in Saccharomyces cerevisiae. DNA Repair (Amst) 2005; 4:606-17. [PMID: 15811632 DOI: 10.1016/j.dnarep.2005.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Indexed: 11/19/2022]
Abstract
The Mre11-Rad50-Xrs2 complex in Saccharomyces cerevisiae has roles in the intra-S checkpoint, homologous recombination, non-homologous end joining, meiotic recombination, telomere maintenance and the suppression of gross chromosomal rearrangements (GCRs). The discovery of mutations in the genes encoding the human homologues of two MRX subunits that underlie the chromosome fragility syndromes, Ataxia telangiectasia-like disorder and Nijmegen breakage syndrome suggest that the MRX complex also functions in suppression of GCRs in human cells. Previously, we demonstrated that the deletion mutations in each of the MRX genes increased the rate of GCRs up to 1000-fold compared to wild-type rates. However, it has not been clear which molecular function of the MRX complex is important for suppression of GCRs. Here, we present evidence that at least three different activities of the MRX complex are important for suppression of GCRs. These include the nuclease activity of Mre11, an activity related to MRX complex formation and another activity that has a close link with the telomere maintenance function of the MRX complex. An activity related to MRX complex formation is especially important for the suppression of translocation type of GCRs. However, the non-homologous end joining function of MRX complex does not appear to participate in the suppression of GCRs.
Collapse
Affiliation(s)
- Stephanie Smith
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
16
|
Banerjee S, Myung K. Increased genome instability and telomere length in the elg1-deficient Saccharomyces cerevisiae mutant are regulated by S-phase checkpoints. EUKARYOTIC CELL 2005; 3:1557-66. [PMID: 15590829 PMCID: PMC539025 DOI: 10.1128/ec.3.6.1557-1566.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gross chromosomal rearrangements (GCRs) are frequently observed in cancer cells. Abnormalities in different DNA metabolism including DNA replication, cell cycle checkpoints, chromatin remodeling, telomere maintenance, and DNA recombination and repair cause GCRs in Saccharomyces cerevisiae. Recently, we used genome-wide screening to identify several genes the deletion of which increases GCRs in S. cerevisiae. Elg1, which was discovered during this screening, functions in DNA replication by participating in an alternative replication factor complex. Here we further characterize the GCR suppression mechanisms observed in the elg1Delta mutant strain in conjunction with the telomere maintenance role of Elg1. The elg1Delta mutation enhanced spontaneous DNA damage and resulted in GCR formation. However, DNA damage due to inactivation of Elg1 activates the intra-S checkpoints, which suppress further GCR formation. The intra-S checkpoints activated by the elg1Delta mutation also suppress GCR formation in strains defective in the DNA replication checkpoint. Lastly, the elg1Delta mutation increases telomere size independently of other previously known telomere maintenance proteins such as the telomerase inhibitor Pif1 or the telomere size regulator Rif1. The increase in telomere length caused by the elg1Delta mutation was suppressed by a defect in the DNA replication checkpoint, which suggests that DNA replication surveillance by Dpb11-Mec1/Tel1-Dun1 also has an important role in telomere length regulation.
Collapse
Affiliation(s)
- Soma Banerjee
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Building 49, Room 4A22, Bethesda, MD 20892, USA
| | | |
Collapse
|
17
|
Hwang JY, Smith S, Myung K. The Rad1-Rad10 complex promotes the production of gross chromosomal rearrangements from spontaneous DNA damage in Saccharomyces cerevisiae. Genetics 2005; 169:1927-37. [PMID: 15687264 PMCID: PMC1449617 DOI: 10.1534/genetics.104.039768] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gross chromosomal rearrangements (GCRs) have been observed in many cancers. Previously, we have demonstrated many mechanisms for suppression of GCR formation in yeast. However, pathways that promote the formation of GCRs are not as well understood. Here, we present evidence that the Rad1-Rad10 endonuclease, which plays an important role in nucleotide excision and recombination repairs, has a novel role to produce GCRs. A mutation of either the RAD1 or the RAD10 gene reduced GCR rates in many GCR mutator strains. The inactivation of Rad1 or Rad10 in GCR mutator strains also slightly enhanced methyl methanesulfonate sensitivity. Although the GCRs induced by treatment with DNA-damaging agents were not reduced by rad1 or rad10 mutations, the translocation- and deletion-type GCRs created by a single double-strand break are mostly replaced by de novo telomere-addition-type GCR. Results presented here suggest that Rad1-Rad10 functions at different stages of GCR formation and that there is an alternative pathway for the GCR formation that is independent of Rad1-Rad10.
Collapse
Affiliation(s)
- Ji-Young Hwang
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
18
|
Mirsalis JC, Shimon JA, Johnson A, Fairchild D, Kanazawa N, Nguyen T, de Boer J, Glickman B, Winegar RA. Evaluation of mutant frequencies of chemically induced tumors and normal tissues in lambda/cII transgenic mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:17-35. [PMID: 15605353 DOI: 10.1002/em.20084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Genomic instability has been implicated as an important component in tumor progression. Evaluation of mutant frequencies (MFs) in tumors of transgenic mice containing nontranscribed marker genes should be useful for quantitating mutation rates in tumors as the physiologically inactive transgene provides neither a positive nor a negative selective pressure on the tumor. We have conducted long-term carcinogenicity studies in lambda/cII transgenic B6C3F1 mice using a variety of genotoxic and nongenotoxic test agents and have evaluated the mutant frequencies in both tumors and normal tissues from these animals. Mice were administered diethylnitrosamine (DEN) as three intraperitoneal injections of 15 mg/kg; phenobarbital (PB) or oxazepam (OXP) provided ad libitum at 0.1% or 0.25% in the diet, respectively; DEN initiation plus PB in the diet; or urethane (UTH) provided ad libitum at 0.2% in the drinking water. Normal tissues and tumors were isolated at various times over a 2-year period and half of each tissue/tumor was evaluated histopathologically and the other half was evaluated for MF in the cII transgene. Approximately 20 mutants from each of 166 individual tissues (tumor and nontumor) were sequenced to determine whether increases in MF represented unique mutations or were due to clonal expansion. UTH produced significant increases in MF in normal liver and lung. DEN either with or without PB promotion produced significant increases in MF in liver and correction of MF for clonality produced little change in the overall MF in these groups. PB produced a twofold increase in liver MF over controls after 27 weeks of treatment, but a similar increase was not observed with longer dosing times; at later time points, the MF in the PB groups was lower than that of the control group, suggesting that PB is not producing direct DNA damage in the liver. OXP failed to produce an increase in MF over controls, even after 78 weeks of treatment. Selected cases of genomic instability were observed in tumors from all treatments except OXP, with individual liver tumors showing very high MF values even after clonal correction. One rare and interesting finding was noted in a single mouse treated with UTH, where a mammary metastasis had an MF approximately 10-fold greater than the parent tumor, with 75% of the mutations independent, providing strong evidence of genomic instability. There was no clear correlation between tumor phenotype and MF except that pulmonary adenomas generally had higher MFs than normal lung in both genotoxic and nongenotoxic treatment groups. Likewise, there was no correlation between tumor size and MF after correction for clonality. The results presented here demonstrate that individual tumors can show significant genomic instability, with very significant increases in MF that are not attributed to clonal expansion of a single mutant cell.
Collapse
Affiliation(s)
- Jon C Mirsalis
- Biopharmaceutical Division, SRI International, Menlo Park, California 94025, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Amiel A, Drori G, Weinstein G, Fejgin MD. Molecular cytogenetic parameters in fibroblasts of ataxia telangiectasia carrier. ACTA ACUST UNITED AC 2004; 153:102-7. [PMID: 15350298 DOI: 10.1016/j.cancergencyto.2003.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 12/11/2003] [Accepted: 12/12/2003] [Indexed: 10/26/2022]
Abstract
Ataxia telangiectasia (AT) is a pleiotropic and rare (1:40,000 to 1:100,000) recessive disease. Laboratory investigations have failed to detect any consistent anomaly in cells from AT heterozygotes. To estimate random aneuploidy, we applied a fluorescence in situ hybridization technique with alpha-satellite probes for chromosomes 8 and 9 and replication pattern for RB-1, HER-2/neu, and the imprinted SNRPN loci on primary AT carrier fibroblasts. Higher random aneuploidy was not found in the carrier fibroblasts compared to control amniocytic cells. The asynchrony pattern was higher in the AT carrier cells with the RB-1 locus (P=0.057) and significantly higher with the HER-2/neu locus (P < 0.001) compared to control cells. As for the imprinted locus SNRPN, there was a significantly lower asynchrony rate in the AT carriers (P < 10(-5)) compared to the control group. Molecular cytogenetic parameters of random aneuploidy and replication pattern may reflect predisposition for the development of cancer. It is possible that in some AT carriers the genetic instability phenomena associated with the abnormal replication pattern may represent their potential for developing malignancies.
Collapse
Affiliation(s)
- A Amiel
- Genetic Institute, Meir Hospital, Kfar-Saba 44281, Israel.
| | | | | | | |
Collapse
|
20
|
Smith S, Hwang JY, Banerjee S, Majeed A, Gupta A, Myung K. Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2004; 101:9039-44. [PMID: 15184655 PMCID: PMC428469 DOI: 10.1073/pnas.0403093101] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Different types of gross chromosomal rearrangements (GCRs), including translocations, interstitial deletions, terminal deletions with de novo telomere additions, and chromosome fusions, are observed in many cancers. Multiple pathways, such as S-phase checkpoints, DNA replication, recombination, chromatin remodeling, and telomere maintenance that suppress GCRs have been identified. To experimentally expand our knowledge of other pathway(s) that suppress GCRs, we developed a generally applicable genome-wide screening method. In this screen, we identified 10 genes (ALO1, CDC50, CSM2, ELG1, ESC1, MMS4, RAD5, RAD18, TSA1, and UFO1) that encode proteins functioning in the suppression of GCRs. Moreover, the breakpoint junctions of GCRs from these GCR mutator mutants were determined with modified breakpoint-mapping methods. We also identified nine genes (AKR1, BFR1, HTZ1, IES6, NPL6, RPL13B, RPL27A, RPL35A, and SHU2) whose mutations generated growth defects with the pif1Delta mutation. In addition, we found that some of these mutations changed the telomere size.
Collapse
Affiliation(s)
- Stephanie Smith
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
21
|
Amiel A, Peretz G, Slor H, Weinstein G, Fejgin MD. Molecular cytogenetic parameters in fibroblasts from patients and carriers of xeroderma pigmentosum. ACTA ACUST UNITED AC 2004; 149:154-60. [PMID: 15036891 DOI: 10.1016/j.cancergencyto.2003.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2003] [Revised: 07/25/2003] [Accepted: 07/30/2003] [Indexed: 11/22/2022]
Abstract
Xeroderma pigmentosum (XP) is a rare autosomal recessive syndrome. Laboratory investigations have failed to detect any consistent anomaly in cells from XP heterozygotic subjects, although examples of behavior intermediate between normal and XP cells have been reported. To estimate random aneuploidy we applied fluorescence in situ hybridization (FISH) with alpha-satellite probes for chromosomes 8 and 9 and replication pattern for TP53 (p53), ERBB2 (HER-2/neu), and MYCN (N-MYC) loci and for the imprinted SNRPN locus. A significantly higher rate of aneuploidy rate was observed in XP patients and carriers than in controls. The asynchrony pattern was significantly higher in XP carriers and patients with all three coding loci analyzed and significantly lower in XP patients and carriers with the imprinted locus SNRPN than in the control group. Molecular cytogenetic parameters such as random aneuploidy and replication pattern, which are known to reflect chromosomal instability, may be part of the tumorigenesis process. In XP patients and carriers, this genetic instability may represent a potential for developing malignancies.
Collapse
Affiliation(s)
- A Amiel
- Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Genomic instability is effectively induced by ionizing radiation. Recently, evidence has accumulated supporting a relationship between genetic background and the radiation-induced genomic instability phenotype. This is possibly due to alterations in proteins responsible for maintenance of genomic integrity or altered oxidative metabolism. Studies in human cell lines, human primary cells, and mouse models have been performed predominantly using high linear energy transfer (LET) radiation, or high doses of low LET radiation. The interplay between genetics, radiation response, and genomic instability has not been fully determined at low doses of low LET radiation. However, recent studies using low doses of low LET radiation suggest that the relationship between genetic background and radiation-induced genomic instability may be more complicated than these same relationships at high LET or high doses of low LET radiation. The complexity of this relationship at low doses of low LET radiation suggests that more of the population may be at risk than previously recognized and may have implications for radiation risk assessment.
Collapse
Affiliation(s)
- Munira A Kadhim
- Radiation and Genome Stability Unit, Medical Research Council, Harwell, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
23
|
Huang ME, Rio AG, Nicolas A, Kolodner RD. A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc Natl Acad Sci U S A 2003; 100:11529-34. [PMID: 12972632 PMCID: PMC208792 DOI: 10.1073/pnas.2035018100] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A genomewide screen of a collection of 4,847 yeast gene deletion mutants was carried out to identify the genes required for suppressing mutations in the CAN1 forward-mutation assay. The primary screens and subsequent analysis allowed (i) identification of 18 known mutator mutants, providing a solid means for checking the efficiency of the screen, and (ii) identification of a number of genes not known previously to be involved in suppressing mutations. Among the previously uncharacterized mutation-suppressing genes were six genes of unknown function including four (CSM2, SHU2, SHU1, and YLR376c) encoding proteins that interact with each other and promote resistance to killing by methyl methanesulfonate, one gene (EGL1) previously identified as suppressing Ty1 mobility and recombination between repeated sequences, and one gene (YLR154c) that was not associated with any known processes. In addition, five genes (TSA1, SOD1, LYS7, SKN7, and YAP1) implicated in the oxidative-stress responses were found to play a significant role in mutation suppression. Furthermore, TSA1, which encodes thioredoxin peroxidase, was found to strongly suppress gross chromosomal rearrangements. These results provide a global view of the nonessential genes involved in preventing mutagenesis. Study of such genes should provide useful clues in identification of human genes potentially involved in cancer predisposition and in understanding their mechanisms of action.
Collapse
Affiliation(s)
- Meng-Er Huang
- Ludwig Institute for Cancer Research, Department of Medicine and Cancer Center, University of California at San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
24
|
Abstract
The proliferative capacity of human cells is regulated by telomerase, an enzyme uniquely specialised for telomeric DNA synthesis. The critical role of telomerase activation in tumour progression and tumour maintenance has been well established in studies of cancer and of oncogenic transformation in cell culture. New evidence suggests that telomerase activation has an important role in normal somatic cells, and that failure to activate sufficient telomerase also promotes disease. We review the evidence for premature telomere attrition in proliferative deficiencies of the human haemopoietic system, and discuss the potential use of telomerase activation in telomere-restorative gene therapy.
Collapse
Affiliation(s)
- Judy M Y Wong
- Department of Molecular and Cell Biology, University of California at Berkeley, 401 Barker Hall, Berkeley, CA 94720-3204, USA
| | | |
Collapse
|
25
|
Myung K, Pennaneach V, Kats ES, Kolodner RD. Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc Natl Acad Sci U S A 2003; 100:6640-5. [PMID: 12750463 PMCID: PMC164500 DOI: 10.1073/pnas.1232239100] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Some spontaneous gross chromosomal rearrangements (GCRs) seem to result from DNA-replication errors. The chromatin-assembly factor I (CAF-I) and replication-coupling assembly factor (RCAF) complexes function in chromatin assembly during DNA replication and repair and could play a role in maintaining genome stability. Inactivation of CAF-I or RCAF increased the rate of accumulating different types of GCRs including translocations and deletion of chromosome arms with associated de novo telomere addition. Inactivation of CAF-I seems to cause damage that activates the DNA-damage checkpoints, whereas inactivation of RCAF seems to cause damage that activates the DNA-damage and replication checkpoints. Both defects result in increased genome instability that is normally suppressed by these checkpoints, RAD52-dependent recombination, and PIF1-dependent inhibition of de novo telomere addition. Treatment of CAF-I- or RCAF-defective cells with methyl methanesulfonate increased the induction of GCRs compared with that seen for a wild-type strain. These results indicate that coupling of chromatin assembly to DNA replication and DNA repair is critical to maintaining genome stability.
Collapse
Affiliation(s)
- Kyungjae Myung
- Ludwig Institute for Cancer Research, Cancer Center and Department of Medicine, University of California at San Diego School of Medicine, La Jolla 92093, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Cancer develops when cells no longer follow their normal pattern of controlled growth. In the absence or disregard of such regulation, resulting from changes in their genetic makeup, these errant cells acquire a growth advantage, expanding into precancerous clones. Over the past decade many studies have revealed the relevance of genomic mutation in this process, be it by misreplication, environmental damage, or a deficiency in repairing endogenous and exogenous damage. Here we discuss the possibility of homologous recombination as an errant DNA repair mechanism that can result in loss of heterozygosity or genetic rearrangements. Some of these genetic alterations may play a primary role in carcinogenesis, but they are more likely to be involved in secondary and subsequent steps of carcinogenesis by which recessive oncogenic mutations are revealed. Patients, whose cells display an increased frequency of recombination, also have an elevated frequency of cancer, further supporting the link between recombination and carcinogenesis.
Collapse
|
27
|
Abstract
Maintenance of genome stability is essential for avoiding the passage to neoplasia. The DNA-damage response--a cornerstone of genome stability--occurs by a swift transduction of the DNA-damage signal to many cellular pathways. A prime example is the cellular response to DNA double-strand breaks, which activate the ATM protein kinase that, in turn, modulates numerous signalling pathways. ATM mutations lead to the cancer-predisposing genetic disorder ataxia-telangiectasia (A-T). Understanding ATM's mode of action provides new insights into the association between defective responses to DNA damage and cancer, and brings us closer to resolving the issue of cancer predisposition in some A-T carriers.
Collapse
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Genetic Research, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
28
|
Masuda A, Takahashi T. Chromosome instability in human lung cancers: possible underlying mechanisms and potential consequences in the pathogenesis. Oncogene 2002; 21:6884-97. [PMID: 12362271 DOI: 10.1038/sj.onc.1205566] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chromosomal abnormality is one of the hallmarks of neoplastic cells, and the persistent presence of chromosome instability (CIN) has been demonstrated in human cancers, including lung cancer. Recent progress in molecular and cellular biology as well as cytogenetics has shed light on the underlying mechanisms and the biological and clinical significance of chromosome abnormalities and the CIN phenotype. Chromosome abnormalities can be classified broadly into numerical (i.e., aneuploidy) and structural alterations (e.g., deletion, translocation, homogenously staining region (HSR), double minutes (DMs)). However, both alterations usually occur in the same cells, suggesting some overlap in their underlying mechanisms. Missegregation of chromosomes may result from various causes, including defects of mitotic spindle checkpoint, abnormal centrosome formation and failure of cytokinesis, while structural alterations of chromosomes may be caused especially by failure in the repair of DNA double-strand breaks (DSBs) due to the impairment of DNA damage checkpoints and/or DSB repair systems. Recent studies also suggest that telomere erosion may be involved. The consequential acquisition of the CIN phenotype would give lung cancer cells an excellent opportunity to efficiently alter their characteristics so as to be more malignant and suitable to their microenvironment, thereby gaining a selective growth advantage.
Collapse
Affiliation(s)
- Akira Masuda
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | |
Collapse
|
29
|
Abstract
Most human cancer cells show signs of genome instability, ranging from elevated mutation rates to gross chromosomal rearrangements and alterations in chromosome number. Little is known about the molecular mechanisms that generate this instability or how it is suppressed in normal cells. Recent studies of the yeast Saccharomyces cerevisiae have begun to uncover the extensive and redundant pathways that keep the rate of genome rearrangements at very low levels. These studies, which we review here, have implicated more than 50 genes in the suppression of genome instability, including genes that function in S-phase checkpoints, recombination pathways, and telomere maintenance. Human homologs of several of these genes have well-established roles as tumor suppressors, consistent with the hypothesis that the mechanisms preserving genome stability in yeast are the same mechanisms that go awry in cancer.
Collapse
Affiliation(s)
- Richard D Kolodner
- Ludwig Institute for Cancer Research, Cancer Center and Department of Medicine, CMME3058, 9500 Gilman Drive, University of California-San Diego School of Medicine, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
30
|
Crompton NEA, Shi YQ, Wuergler F, Blattmann H. A single low dose of X-rays induces high frequencies of genetic instability (aneuploidy) and heritable damage (apoptosis), dependent on cell type and p53 status. Mutat Res 2002; 517:173-86. [PMID: 12034319 DOI: 10.1016/s1383-5718(02)00068-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We harvested and analyzed cells from four different non-transformed cell lines surviving a single X-ray exposure. Evidence of radiation-induced karyotype instability was observed in 100% of C3H 10T1/2 fibroblast clones and 11.3% of V79 fibroblast clones. Heritable damage: predisposition to apoptosis, but not karyotype instability, was induced in TK6 (p53(wt/wt)) and WTK1 (p53(mut/mut)) human B-lymphoblastoid cell clones. The studies indicate: (1) genetic instability and/or heritable damage are induced in cells exposed to radiation at a high frequency, and induction of genetic instability is not limited to morphologically transformed cells [Radiat. Res. 138 (1994) S105; Radiat. Environ. Biophys. 36 (1998) 255]; (2) sensitivity to genetic instability and heritable damage depend on cell type; (3) checkpoint stringency and p53 status significantly influence the frequency of radiation-induced genetic instability and heritable damage; (4) in some cell lines, damage induced by low doses of radiation (below 2 Gy) leads to heritable cytotoxic and genotoxic effects in 100% of cells exposed. The data suggest that mammalian cells misinterpret damage induced by ionizing radiation as if it were a physiological cell signal. This contrasts strongly with the response of mammalian cells to damage induced by other types of DNA-toxic agents where damage-specific repair mechanisms are activated.
Collapse
Affiliation(s)
- Nigel E A Crompton
- Division of Radiation Medicine, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland.
| | | | | | | |
Collapse
|
31
|
Myung K, Kolodner RD. Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2002; 99:4500-7. [PMID: 11917116 PMCID: PMC123677 DOI: 10.1073/pnas.062702199] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cancer cells show increased genome rearrangements, although it is unclear what defects cause these rearrangements. Previous studies have implicated the Saccharomyces cerevisiae replication checkpoint in the suppression of spontaneous genome rearrangements. In the present study, low doses of methyl methane sulfonate that activate the intra-S checkpoint but not the G1 or G2 DNA damage checkpoints were found to cause increased accumulation of genome rearrangements in both wild-type strains and to an even greater extent in strains containing mutations causing defects in the intra-S checkpoint. The rearrangements were primarily translocations or events resulting in deletion of a portion of a chromosome arm along with the addition of a new telomere. Combinations of mutations causing individual defects in the RAD24 or SGS1 branches of the intra-S checkpoint or the replication checkpoint showed synergistic interactions with regard to the spontaneous genome instability rate. PDS1 and the RAD50-MRE11-XRS2 complex were found to be important members of all the S-phase checkpoints in suppressing genome instability, whereas RAD53 only seemed to play a role in the intra-S checkpoints. Combinations of mutations that seem to result in inactivation of the S-phase checkpoints and critical effectors resulted in as much as 12,000-14,000-fold increases in the genome instability rate. These data support the view that spontaneous genome rearrangements result from DNA replication errors and indicate that there is a high degree of redundancy among the checkpoints that act in S phase to suppress such genome instability.
Collapse
Affiliation(s)
- Kyungjae Myung
- Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA
| | | |
Collapse
|
32
|
Abstract
Cancer develops when cells no longer follow their normal pattern of controlled growth. In the absence or disregard of such regulation, resulting from changes in their genetic makeup, these errant cells acquire a growth advantage, expanding into precancerous clones. Over the last decade, many studies have revealed the relevance of genomic mutation in this process, be it by misreplication, environmental damage, or a deficiency in repairing endogenous and exogenous damage. Here, we discuss homologous recombination as another mechanism that can result in a loss of heterozygosity or genetic rearrangements. Some of these genetic alterations may play a primary role in carcinogenesis, but they are more likely to be involved in secondary and subsequent steps of carcinogenesis by which recessive oncogenic mutations are revealed. Patients, whose cells display an increased frequency of recombination, also have an elevated frequency of cancer, further supporting the link between recombination and carcinogenesis.
Collapse
Affiliation(s)
| | - Robert H. Schiestl
- Department of Pathology, UCLA Medical School, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M, Jasin M. Double-strand breaks and tumorigenesis. Trends Cell Biol 2001. [DOI: 10.1016/s0962-8924(01)82296-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M, Jasin M. Double-strand breaks and tumorigenesis. Trends Cell Biol 2001; 11:S52-9. [PMID: 11684443 DOI: 10.1016/s0962-8924(01)02149-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The establishment of connections between biochemical defects and clinical disease is a major goal of modern molecular genetics. In this review, we examine the current literature that relates defects in the two major DNA double-strand-break repair pathways--homologous recombination and nonhomologous end-joining--with the development of human tumors. Although definitive proof has yet to be obtained, the current literature is highly suggestive of such a link.
Collapse
Affiliation(s)
- A J Pierce
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
35
|
Yamashita T, Nakahata T. Current knowledge on the pathophysiology of Fanconi anemia: from genes to phenotypes. Int J Hematol 2001; 74:33-41. [PMID: 11530803 DOI: 10.1007/bf02982547] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fanconi anemia (FA) is an autosomal recessive disease characterized by congenital anomalies, bone marrow failure, and leukemia susceptibility. FA cells show chromosome instability and hypersensitivity to DNA cross-linking agents such as mitomycin C. Recent studies indicate that there are at least 8 genetically distinct FA groups (A, B, C, D1, D2, E, F, G). To date, 6 genes (for A, C, D2, E, F, and G) have been cloned. In this review, we describe the structures and functions of FA proteins. Increasing evidence indicates that the multiple FA proteins cooperate in a biochemical pathway and/or a multimer complex. FANCD2, a downstream component of the FA pathway, has recently been shown to be ubiquitinated in response to DNA damage and to translocate to nuclear foci containing BRCA1, a breast cancer susceptibility gene product, suggesting a role for this protein in DNA repair functions. We also describe 2 emerging issues: genotype-phenotype relationships and mosaicism. The FA pathway is likely to play a critical role as a caretaker of genomic integrity in hematopoietic stem cells. Clarifying the molecular basis of this disease may provide new insights into the pathogenesis of bone marrow failure syndromes and myeloid malignancies.
Collapse
Affiliation(s)
- T Yamashita
- Division of Genetic Diagnosis, Institute of Medical Science, University of Tokyo, Japan.
| | | |
Collapse
|
36
|
Myung K, Chen C, Kolodner RD. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 2001; 411:1073-6. [PMID: 11429610 DOI: 10.1038/35082608] [Citation(s) in RCA: 293] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gross chromosome rearrangements (GCRs), such as translocations, deletion of a chromosome arm, interstitial deletions and inversions, are often observed in cancer cells. Spontaneous GCRs are rare in Saccharomyces cerevisiae; however, the existence of mutator mutants with increased genome instability suggests that GCRs are actively suppressed. Here we show by genetic analysis that these genome rearrangements probably result from DNA replication errors and are suppressed by at least three interacting pathways or groups of proteins: S-phase checkpoint functions, recombination proteins and proteins that prevent de novo addition of telomeres at double-strand breaks (DSBs). Mutations that inactivate these pathways cause high rates of GCRs and show synergistic interactions, indicating that the pathways that suppress GCRs all compete for the same DNA substrates.
Collapse
Affiliation(s)
- K Myung
- Ludwig Institute for Cancer Research, University of California San Diego, 92093, USA
| | | | | |
Collapse
|
37
|
Ciciarello M, Mangiacasale R, Casenghi M, Zaira Limongi M, D'Angelo M, Soddu S, Lavia P, Cundari E. p53 Displacement from Centrosomes and p53-mediated G1 Arrest following Transient Inhibition of the Mitotic Spindle. J Biol Chem 2001; 276:19205-13. [PMID: 11376010 DOI: 10.1074/jbc.m009528200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growing evidence indicates a central role for p53 in mediating cell cycle arrest in response to mitotic spindle defects so as to prevent rereplication in cells in which the mitotic division has failed. Here we report that a transient inhibition of spindle assembly induced by nocodazole, a tubulin-depolymerizing drug, triggers a stable activation of p53, which can transduce a cell cycle inhibitory signal even when the spindle-damaging agent is removed and the spindle is allowed to reassemble. Cells transiently exposed to nocodazole continue to express high levels of p53 and p21 in the cell cycle that follows the transient exposure to nocodazole and become arrested in G(1), regardless of whether they carry a diploid or polyploid genome after mitotic exit. We also show that p53 normally associates with centrosomes in mitotic cells, whereas nocodazole disrupts this association. Together these results suggest that the induction of spindle damage, albeit transient, interferes with the subcellular localization of p53 at specific mitotic locations, which in turn dictates cell cycle arrest in the offspring of such defective mitoses.
Collapse
Affiliation(s)
- M Ciciarello
- Consiglio Nazionale delle Ricerche Centre of Evolutionary Genetics, Department of Genetics and Molecular Biology, University of Rome "La Sapienza," Via degli Apuli 4, Rome 00185, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu Z, Hall JD, Mount DW. Arabidopsis UVH3 gene is a homolog of the Saccharomyces cerevisiae RAD2 and human XPG DNA repair genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 26:329-338. [PMID: 11439121 DOI: 10.1046/j.1365-313x.2001.01031.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To identify mechanisms of DNA repair in Arabidopsis thaliana, we have analyzed a mutant (uvh3) which exhibits increased sensitivity to ultraviolet (UV) light, H2O2 and ionizing radiation and displays a premature senescence phenotype. The uvh3 locus was mapped within chromosome III to the GL1 locus. A cosmid contig of the GL1 region was constructed, and individual cosmids were used to transform uvh3 mutant plants. Cosmid N9 was found to confer UV-resistance, H2O2-resistance and a normal senescence phenotype following transformation, indicating that the UVH3 gene is located on this cosmid and that all three phenotypes are due to the same mutation. Analysis of cosmid N9 sequences identified a gene showing strong similarity to two homologous repair genes, RAD2 (Saccharomyces cerevisiae) and XPG (human), which encode an endonuclease required for nucleotide excision repair of UV-damage. The uvh3 mutant was shown to carry a nonsense mutation in the coding region of the AtRAD2/XPG gene, thus revealing that the UVH3 gene encodes the AtRAD2/XPG gene product. In humans, the homologous XPG protein is also involved in removal of oxygen-damaged nucleotides by base excision repair. We discuss the possibility that the increased sensitivity of the uvh3 mutant to H2O2 and the premature senescence phenotype might result from failure to repair oxygen damage in plant tissues. Finally, we show that the AtRAD2/XPG gene is expressed at moderate levels in all plant tissues.
Collapse
Affiliation(s)
- Z Liu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
39
|
Bishop AJ, Schiestl RH. Homologous recombination as a mechanism of carcinogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1471:M109-21. [PMID: 11250067 DOI: 10.1016/s0304-419x(01)00018-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cancer develops when cells no longer follow their normal pattern of controlled growth. In the absence or disregard of such regulation, resulting from changes in their genetic makeup, these errant cells acquire a growth advantage, expanding into pre-cancerous clones. Over the last decade many studies have revealed the relevance of genomic mutation in this process, be it by misreplication, environmental damage or a deficiency in repairing endogenous and exogenous damage. Here we discuss homologous recombination as another mechanism that can result in loss of heterozygosity or genetic rearrangements. Some of these genetic alterations may play a primary role in carcinogenesis, but they are more likely to be involved in secondary and subsequent steps of carcinogenesis by which recessive oncogenic mutations are revealed. Patients whose cells display an increased frequency of recombination also have an elevated frequency of cancer, further supporting the link between recombination and carcinogenesis. In addition, homologous recombination is induced by a wide variety of carcinogens, many of which are classically considered to be efficiently repaired by other repair pathways. Overall, homologous recombination is a process that has been widely overlooked but may be more central to the process of carcinogenesis than previously described.
Collapse
Affiliation(s)
- A J Bishop
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
40
|
Slebos RJ, Taylor JA. A novel host cell reactivation assay to assess homologous recombination capacity in human cancer cell lines. Biochem Biophys Res Commun 2001; 281:212-9. [PMID: 11178982 DOI: 10.1006/bbrc.2001.4335] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repair of DNA double-strand breaks (DSB) is essential for cell viability and genome stability. Homologous recombination repair plays an important role in DSB repair and impairment of this repair mechanism may lead to loss of genomic integrity, which is one of the hallmarks of cancer. Recent research has shown that the tumor suppressor genes p53 and BRCA1 and -2 are involved in the proper control of homologous recombination, suggesting a role of this type of repair in human cancer. We developed a novel assay based on recombination between two Green Fluorescent Protein (GFP) sequences in transiently transfected plasmid DNA. The plasmid construct contains an intact, emission-shifted, "blue" variant of GFP (BFP), with a 300 nucleotide stretch of homology to a nonfunctional copy of GFP. In the absence of homologous recombination only BFP is present, but homologous recombination can create a functional GFP. The homologous regions in the plasmid were constructed in both the direct and the inverted orientation of transcription to detect possible differences in the recombination mechanisms involved. A panel of human tumor cell lines was chosen on the basis of genetic background and chromosome integrity and tested for homologous recombination using this assay. The panel included cell lines with varying levels of karyotypic abnormalities, isogenic cell lines with normal and mutant p53, isogenic cell lines with or without DNA mismatch repair, BRCA1 and -2 mutant cell lines, and the lymphoma cell line DT40. With this assay, the observed differences between cell lines with the lowest and highest levels of recombination were about 100-fold. Increased levels of recombination were associated with mutant p53, whereas a low level of recombination was found in the BRCA1 mutant cell line. In the cell line HT1080TG, a mutagenized derivative of HT1080 with two mutant alleles of p53, high levels of recombination were found with the direct orientation but not with the inverted orientation plasmid. No difference in recombination was detected between two isogenic cell lines that only differed in DNA mismatch repair capability. We conclude that this assay can detect differences in homologous recombination capacity in cultured cell lines and that these differences follow the patterns that would be expected from the different genotypes of these cell lines. Future application in normal cells may be useful to identify genetic determinants controlling genomic integrity or to detect differences in DNA repair capacity in individuals.
Collapse
Affiliation(s)
- R J Slebos
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
41
|
Myung K, Datta A, Kolodner RD. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 2001; 104:397-408. [PMID: 11239397 DOI: 10.1016/s0092-8674(01)00227-6] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancer cells show increased genome rearrangements, although it is unclear what defects cause these rearrangements. Mutations in Saccharomyces cerevisiae RFC5, DPB11, MEC1, DDC2 MEC3, RAD53, CHK1, PDS1, and DUN1 increased the rate of genome rearrangements up to 200-fold whereas mutations in RAD9, RAD17, RAD24, BUB3, and MAD3 had little effect. The rearrangements were primarily deletion of a portion of a chromosome arm along with TEL1-dependent addition of a new telomere. tel1 mutations increased the proportion of translocations observed, and in some cases showed synergistic interactions when combined with mutations that increased the genome rearrangement rate. These data suggest that one role of S phase checkpoint functions in normal cells is to suppress spontaneous genome rearrangements resulting from DNA replication errors.
Collapse
Affiliation(s)
- K Myung
- Ludwig Institute for Cancer Research, Cancer Center and Department of Medicine, University of California-San Diego School of Medicine, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
42
|
Mangiacasale R, Tritarelli A, Sciamanna I, Cannone M, Lavia P, Barberis MC, Lorenzini R, Cundari E. Normal and cancer-prone human cells respond differently to extremely low frequency magnetic fields. FEBS Lett 2001; 487:397-403. [PMID: 11163365 DOI: 10.1016/s0014-5793(00)02376-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Human lymphoblastoid cells of normal origin and from genetic instability syndromes, i.e. Fanconi anemia (FA) group C and ataxia telangectasia, were continuously exposed to extremely low frequency magnetic field (ELF-MF). We report that ELF-MF, though not perturbing cell cycle progression, increases the rate of cell death in normal cell lines. In contrast, cell death is not affected in cells from genetic instability syndromes; this reflects a specific failure of the apoptotic response. Reintroduction of complementation group C in FA cells re-established the apoptotic response to ELF-MF. Thus, genes implicated in genetic instability syndromes are relevant in modulating the response of cells to ELF-MF.
Collapse
Affiliation(s)
- R Mangiacasale
- CNR Centro di Genetica Evoluzionistica c/o Università La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zimonjic DB, Pollock JL, Westervelt P, Popescu NC, Ley TJ. Acquired, nonrandom chromosomal abnormalities associated with the development of acute promyelocytic leukemia in transgenic mice. Proc Natl Acad Sci U S A 2000; 97:13306-11. [PMID: 11087871 PMCID: PMC27220 DOI: 10.1073/pnas.97.24.13306] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously generated a transgenic mouse model for acute promyelocytic leukemia (APL) by expressing the promyelocytic leukemia (PML)-retinoic acid receptor (RARalpha) cDNA in early myeloid cells. This fusion protein causes a myeloproliferative disease in 100% of animals, but only 15-20% of the animals develop acute leukemia after a long latency period (6-13 months). PML-RARalpha is therefore necessary, but not sufficient, for APL development. The coexpression of a reciprocal form of the fusion, RARalpha-PML, increased the likelihood of APL development (55-60%), but did not shorten latency. Together, these results suggested that additional genetic events are required for the development of APL. We therefore evaluated the splenic tumor cells from 18 transgenic mice with APL for evidence of secondary genetic events, by using spectral karyotyping analysis. Interstitial or terminal deletions of the distal region of one copy of chromosome 2 [del(2)] were found in 1/5 tumors expressing PML-RARalpha, but in 11/13 tumors expressing both PML-RARalpha and RARalpha-PML (P < 0.05). Leukemic cells that contained a deletion on chromosome 2 often contained additional chromosomal gains (especially of 15), chromosomal losses (especially of 11 or X/Y), or were tetraploid (P </= 0.001). These changes did not commonly occur in nontransgenic littermates, nor in aged transgenic mice that did not develop APL. These results suggest that expression of RARalpha-PML increases the likelihood of chromosome 2 deletions in APL cells. Deletion 2 appears to predispose APL cells to further chromosomal instability, which may lead to the acquisition of additional changes that provide an advantage to the transformed cells.
Collapse
Affiliation(s)
- D B Zimonjic
- Molecular Cytogenetics Section, Laboratory of Experimental Carcinogenesis, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|