1
|
Súnico V, Piunti I, Bhattacharjee M, Mezzetti B, Caballero JL, Muñoz-Blanco J, Ricci A, Sabbadini S. Overview on Current Selectable Marker Systems and Novel Marker Free Approaches in Fruit Tree Genetic Engineering. Int J Mol Sci 2024; 25:11902. [PMID: 39595971 PMCID: PMC11594270 DOI: 10.3390/ijms252211902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Selectable marker genes are useful for recognizing which cells have integrated specific sequences in their genome after genetic transformation processes. They are especially important for fruit trees genetic transformation to individuate putatively genetically modified events, because most of the protocols used to genetic engineer these species are often unsuccessful or with low efficiency. Traditional selectable marker genes, mainly of bacterial origin, confer antibiotics/herbicides-resistance or metabolic advantages to transformed cells. Genes that allow the visual recognition of engineered tissues without using any selective agent, such as morphogenic regulators and reporter genes, are also used as selection tools to in vitro identify genetically modified regenerated lines. As final step, genetic engineered plants should be tested in field conditions, where selectable marker genes are no longer necessary, and strongly unpopular especially for the commercial development of the new products. Thus, different approaches, mainly based on the use of site-specific recombinases and/or editing nucleases, are being now used to recover marker-free fruit crops. This review describes and comments the most used and suitable selection tools of interest, particularly for fruit tree genetic engineering. Lastly, a spotlight highlights the biosafety aspects related to the use of selectable marker genes exploited for fruit species genetic engineering.
Collapse
Affiliation(s)
- Victoria Súnico
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
- Plant Biotechnology and Pharmacognosy Research Group (BIO-278), Department of Biochemistry and Molecular Biology, Severo Ochoa Building-C6, University of Cordoba, UCO-CeiA3, 14071 Cordoba, Spain; (J.L.C.); (J.M.-B.)
| | - Irene Piunti
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| | - Mamta Bhattacharjee
- DBT-NECAB, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, Assam, India;
| | - Bruno Mezzetti
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| | - José L. Caballero
- Plant Biotechnology and Pharmacognosy Research Group (BIO-278), Department of Biochemistry and Molecular Biology, Severo Ochoa Building-C6, University of Cordoba, UCO-CeiA3, 14071 Cordoba, Spain; (J.L.C.); (J.M.-B.)
| | - Juan Muñoz-Blanco
- Plant Biotechnology and Pharmacognosy Research Group (BIO-278), Department of Biochemistry and Molecular Biology, Severo Ochoa Building-C6, University of Cordoba, UCO-CeiA3, 14071 Cordoba, Spain; (J.L.C.); (J.M.-B.)
| | - Angela Ricci
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| | - Silvia Sabbadini
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| |
Collapse
|
2
|
Jin L, Sullivan HA, Zhu M, Lavin TK, Matsuyama M, Fu X, Lea NE, Xu R, Hou Y, Rutigliani L, Pruner M, Babcock KR, Ip JPK, Hu M, Daigle TL, Zeng H, Sur M, Feng G, Wickersham IR. Long-term labeling and imaging of synaptically connected neuronal networks in vivo using double-deletion-mutant rabies viruses. Nat Neurosci 2024; 27:373-383. [PMID: 38212587 PMCID: PMC10849964 DOI: 10.1038/s41593-023-01545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Rabies-virus-based monosynaptic tracing is a widely used technique for mapping neural circuitry, but its cytotoxicity has confined it primarily to anatomical applications. Here we present a second-generation system for labeling direct inputs to targeted neuronal populations with minimal toxicity, using double-deletion-mutant rabies viruses. Viral spread requires expression of both deleted viral genes in trans in postsynaptic source cells. Suppressing this expression with doxycycline following an initial period of viral replication reduces toxicity to postsynaptic cells. Longitudinal two-photon imaging in vivo indicated that over 90% of both presynaptic and source cells survived for the full 12-week course of imaging. Ex vivo whole-cell recordings at 5 weeks postinfection showed that the second-generation system perturbs input and source cells much less than the first-generation system. Finally, two-photon calcium imaging of labeled networks of visual cortex neurons showed that their visual response properties appeared normal for 10 weeks, the longest we followed them.
Collapse
Affiliation(s)
- Lei Jin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Lingang Laboratory, Shanghai, China
| | - Heather A Sullivan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mulangma Zhu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas K Lavin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Makoto Matsuyama
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xin Fu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas E Lea
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ran Xu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - YuanYuan Hou
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luca Rutigliani
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maxwell Pruner
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kelsey R Babcock
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacque Pak Kan Ip
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming Hu
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Yoshiki A, Ballard G, Perez AV. Genetic quality: a complex issue for experimental study reproducibility. Transgenic Res 2022; 31:413-430. [PMID: 35751794 PMCID: PMC9489590 DOI: 10.1007/s11248-022-00314-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Laboratory animal research involving mice, requires consideration of many factors to be controlled. Genetic quality is one factor that is often overlooked but is essential for the generation of reproducible experimental results. Whether experimental research involves inbred mice, spontaneous mutant, or genetically modified strains, exercising genetic quality through careful breeding, good recordkeeping, and prudent quality control steps such as validation of the presence of mutations and verification of the genetic background, will help ensure that experimental results are accurate and that reference controls are representative for the particular experiment. In this review paper, we will discuss various techniques used for the generation of genetically altered mice, and the different aspects to be considered regarding genetic quality, including inbred strains and substrains used, quality check controls during and after genetic manipulation and breeding. We also provide examples for when to use the different techniques and considerations on genetic quality checks. Further, we emphasize on the importance of establishing an in-house genetic quality program.
Collapse
Affiliation(s)
- Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, 3050074, Japan.
| | - Gregory Ballard
- Comparative Medicine and Quality, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
4
|
In utero electroporation and cranial window implantation for in vivo wide-field two-photon calcium imaging using G-CaMP9a transgenic mice. STAR Protoc 2022; 3:101421. [PMID: 35693213 PMCID: PMC9185017 DOI: 10.1016/j.xpro.2022.101421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We present a protocol to prepare mouse cranial window implantation for in vivo two-photon wide-field calcium imaging. This protocol uses G-CaMP9a transgenic mice, which express a genetically encoded calcium indicator with high signal-to-noise ratio. We describe in utero electroporation, followed by headplate fixation and cranial window implantation. This protocol can be used for measuring neural activity and is suitable for long-term imaging in large populations. Moreover, this protocol does not require preparation of Flp-expressing transgenic mice. For complete details on the use and execution of this protocol, please refer to Sakamoto et al. (2022). Preparation of G-CaMP9a knock-in mice for in vivo calcium imaging In utero electroporation to introduce Flp recombinase in G-CaMP9a mice Implantation of cranial window for in vivo two-photon calcium imaging
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
5
|
Drumm BT, Cobine CA, Baker SA. Insights on gastrointestinal motility through the use of optogenetic sensors and actuators. J Physiol 2022; 600:3031-3052. [PMID: 35596741 DOI: 10.1113/jp281930] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022] Open
Abstract
The muscularis of the gastrointestinal (GI) tract consists of smooth muscle cells (SMCs) and various populations of interstitial cells of Cajal (ICC), platelet-derived growth factor receptor α+ (PDGFRα+ ) cells, as well as excitatory and inhibitory enteric motor nerves. SMCs, ICC and PDGFRα+ cells form an electrically coupled syncytium, which together with inputs from the enteric nervous system (ENS) regulate GI motility. Early studies evaluating Ca2+ signalling behaviours in the GI tract relied upon indiscriminate loading of tissues with Ca2+ dyes. These methods lacked the means to study activity in specific cells of interest without encountering contamination from other cells within the preparation. Development of mice expressing optogenetic sensors (GCaMP, RCaMP) has allowed visualization of Ca2+ signalling behaviours in a cell specific manner. Additionally, availability of mice expressing optogenetic modulators (channelrhodopsins or halorhodospins) has allowed manipulation of specific signalling pathways using light. GCaMP expressing animals have been used to characterize Ca2+ signalling behaviours of distinct classes of ICC and SMCs throughout the GI musculature. These findings illustrate how Ca2+ signalling in ICC is fundamental in GI muscles, contributing to tone in sphincters, pacemaker activity in rhythmic muscles and relaying enteric signals to SMCs. Animals that express channelrhodopsin in specific neuronal populations have been used to map neural circuitry and to examine post junctional neural effects on GI motility. Thus, optogenetic approaches provide a novel means to examine the contribution of specific cell types to the regulation of motility patterns within complex multi-cellular systems. Abstract Figure Legends Optogenetic activators and sensors can be used to investigate the complex multi-cellular nature of the gastrointestinal (GI tract). Optogenetic activators that are activated by light such as channelrhodopsins (ChR2), OptoXR and halorhodopsinss (HR) proteins can be genetically encoded into specific cell types. This can be used to directly activate or silence specific GI cells such as various classes of enteric neurons, smooth muscle cells (SMC) or interstitial cells, such as interstitial cells of Cajal (ICC). Optogenetic sensors that are activated by different wavelengths of light such as green calmodulin fusion protein (GCaMP) and red CaMP (RCaMP) make high resolution of sub-cellular Ca2+ signalling possible within intact tissues of specific cell types. These tools can provide unparalleled insight into mechanisms underlying GI motility and innervation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland.,Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Caroline A Cobine
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
6
|
Gómez-González B, Ortega P, Aguilera A. Analysis of repair of replication-born double-strand breaks by sister chromatid recombination in yeast. Methods Enzymol 2021; 661:121-138. [PMID: 34776209 DOI: 10.1016/bs.mie.2021.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The repair of DNA double-strand breaks is crucial for cell viability and the maintenance of genome integrity. When present, the intact sister chromatid is used as the preferred repair template to restore the genetic information by homologous recombination. Although the study of the factors involved in sister chromatid recombination is hampered by the fact that both sister chromatids are indistinguishable, genetic and molecular systems based on DNA repeats have been developed to overcome this problem. In particular, the use of site-specific nucleases capable of inducing DNA nicks that replication converts into double-strand breaks has enabled the specific study of the repair of such replication-born double strand breaks by sister chromatid recombination. In this chapter, we describe detailed protocols for determining the efficiency and kinetics of this recombination reaction as well as for the genetic quantification of recombination products.
Collapse
Affiliation(s)
- Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Pedro Ortega
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
7
|
Yang J, Tian Y, Liu H, Kan Y, Zhou Y, Wang Y, Luo Y. Harnessing the Endogenous 2μ Plasmid of Saccharomyces cerevisiae for Pathway Construction. Front Microbiol 2021; 12:679665. [PMID: 34220765 PMCID: PMC8249740 DOI: 10.3389/fmicb.2021.679665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
pRS episomal plasmids are widely used in Saccharomyces cerevisiae, owing to their easy genetic manipulations and high plasmid copy numbers (PCNs). Nevertheless, their broader application is hampered by the instability of the pRS plasmids. In this study, we designed an episomal plasmid based on the endogenous 2μ plasmid with both improved stability and increased PCN, naming it p2μM, a 2μ-modified plasmid. In the p2μM plasmid, an insertion site between the REP1 promoter and RAF1 promoter was identified, where the replication (ori) of Escherichia coli and a selection marker gene of S. cerevisiae were inserted. As a proof of concept, the tyrosol biosynthetic pathway was constructed in the p2μM plasmid and in a pRS plasmid (pRS423). As a result, the p2μM plasmid presented lower plasmid loss rate than that of pRS423. Furthermore, higher tyrosol titers were achieved in S. cerevisiae harboring p2μM plasmid carrying the tyrosol pathway-related genes. Our study provided an improved genetic manipulation tool in S. cerevisiae for metabolic engineering applications, which may be widely applied for valuable product biosynthesis in yeast.
Collapse
Affiliation(s)
- Jing Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Yujuan Tian
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huayi Liu
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yeyi Kan
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhou
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Yunzi Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China.,Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Ducrot C, Trudeau LÉ. The challenging diversity of neurons in the ventral tegmental area: A commentary of Miranda-Barrientos, J. et al., Eur J Neurosci 2021. Eur J Neurosci 2021; 54:4085-4087. [PMID: 33942393 DOI: 10.1111/ejn.15268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/10/2021] [Accepted: 04/29/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Charles Ducrot
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, CNS Research Group (GRSNC), Université de Montréal, Montréal, QC, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, CNS Research Group (GRSNC), Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
9
|
Bi X, Beck C, Gong Y. Genetically Encoded Fluorescent Indicators for Imaging Brain Chemistry. BIOSENSORS 2021; 11:116. [PMID: 33920418 PMCID: PMC8069469 DOI: 10.3390/bios11040116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Genetically encoded fluorescent indicators, combined with optical imaging, enable the detection of physiologically or behaviorally relevant neural activity with high spatiotemporal resolution. Recent developments in protein engineering and screening strategies have improved the dynamic range, kinetics, and spectral properties of genetically encoded fluorescence indicators of brain chemistry. Such indicators have detected neurotransmitter and calcium dynamics with high signal-to-noise ratio at multiple temporal and spatial scales in vitro and in vivo. This review summarizes the current trends in these genetically encoded fluorescent indicators of neurotransmitters and calcium, focusing on their key metrics and in vivo applications.
Collapse
Affiliation(s)
| | | | - Yiyang Gong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (X.B.); (C.B.)
| |
Collapse
|
10
|
Hunker AC, Soden ME, Krayushkina D, Heymann G, Awatramani R, Zweifel LS. Conditional Single Vector CRISPR/SaCas9 Viruses for Efficient Mutagenesis in the Adult Mouse Nervous System. Cell Rep 2021; 30:4303-4316.e6. [PMID: 32209486 PMCID: PMC7212805 DOI: 10.1016/j.celrep.2020.02.092] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 01/27/2020] [Accepted: 02/25/2020] [Indexed: 11/22/2022] Open
Abstract
Mice engineered for conditional, cell type-specific gene inactivation have dominated the field of mouse genetics because of the high efficiency of Cre-loxP-mediated recombination. Recent advances in CRISPR/Cas9 technologies have provided alternatives for rapid gene mutagenesis for loss-of-function (LOF) analysis. Whether these strategies can be streamlined for rapid genetic analysis with the efficiencies comparable with those of conventional genetic approaches has yet to be established. We show that a single adeno-associated viral (AAV) vector containing a recombinase-dependent Staphylococcus aureus Cas9 (SaCas9) and a single guide RNA (sgRNA) are as efficient as conventional conditional gene knockout and can be adapted for use in either Cre- or Flp-driver mouse lines. The efficacy of this approach is demonstrated for the analysis of GABAergic, glutamatergic, and monoaminergic neurotransmission. Using this strategy, we reveal insight into the role of GABAergic regulation of midbrain GABA-producing neurons in psychomotor activation. Hunker et al. generate single adeno-associated viral vectors for conditional gene mutagenesis in the adult mouse nervous system with efficiencies equivalent to those of conventional gene inactivation strategies. On the basis of this efficacy, they provide a resource of Cre- and Flp-dependent constructs for targeting catecholamine, glutamate, and GABA neurotransmission.
Collapse
Affiliation(s)
- Avery C Hunker
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Marta E Soden
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Dasha Krayushkina
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Gabriel Heymann
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
11
|
Nakata H, Hashimoto T, Yoshiki A. Quick validation of genetic quality for conditional alleles in mice. Genes Cells 2021; 26:240-245. [PMID: 33540482 PMCID: PMC8247991 DOI: 10.1111/gtc.12834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
Site-specific conditional inactivation technologies using Cre-loxP or Flp-FRT systems are becoming increasingly important for the elucidation of gene function and disease mechanism in vivo. A large number of gene knockout mouse models carrying complex conditional alleles have been generated by global community efforts and made available for biomedical researchers. The structures of conditional alleles in these mice are becoming increasingly complex and sophisticated, and so the validation of the genetic quality of these alleles is likewise becoming a laborious task for individual researchers. To ensure the reproducibility of conditional experiments, the researcher should confirm that loxP or FRT is integrated at the correct positions in the genome prior to start of the experiments. We report the successful design of universal PCR primers specific to loxP and FRT for the quick validation of conditional floxed and Flrted alleles. The primer set consists of forward and reverse primers complimentary to the loxP or FRT sequences with partial modifications at the 5' end containing 6-base restriction endonuclease recognition sites. The universal primer set was tested to detect genomic intervals between a pair of cis-integrated loxP or FRT and was useful for quickly validating various floxed or Flrted alleles in conditional mice.
Collapse
Affiliation(s)
- Hatsumi Nakata
- Experimental Animal DivisionRIKEN BioResource Research CenterTsukubaJapan
| | - Tomomi Hashimoto
- Experimental Animal DivisionRIKEN BioResource Research CenterTsukubaJapan
| | - Atsushi Yoshiki
- Experimental Animal DivisionRIKEN BioResource Research CenterTsukubaJapan
| |
Collapse
|
12
|
Karigo T, Kennedy A, Yang B, Liu M, Tai D, Wahle IA, Anderson DJ. Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice. Nature 2021; 589:258-263. [PMID: 33268894 PMCID: PMC7899581 DOI: 10.1038/s41586-020-2995-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/22/2020] [Indexed: 01/29/2023]
Abstract
Animal behaviours that are superficially similar can express different intents in different contexts, but how this flexibility is achieved at the level of neural circuits is not understood. For example, males of many species can exhibit mounting behaviour towards same- or opposite-sex conspecifics1, but it is unclear whether the intent and neural encoding of these behaviours are similar or different. Here we show that female- and male-directed mounting in male laboratory mice are distinguishable by the presence or absence of ultrasonic vocalizations (USVs)2-4, respectively. These and additional behavioural data suggest that most male-directed mounting is aggressive, although in rare cases it can be sexual. We investigated whether USV+ and USV- mounting use the same or distinct hypothalamic neural substrates. Micro-endoscopic imaging of neurons positive for oestrogen receptor 1 (ESR1) in either the medial preoptic area (MPOA) or the ventromedial hypothalamus, ventrolateral subdivision (VMHvl) revealed distinct patterns of neuronal activity during USV+ and USV- mounting, and the type of mounting could be decoded from population activity in either region. Intersectional optogenetic stimulation of MPOA neurons that express ESR1 and vesicular GABA transporter (VGAT) (MPOAESR1∩VGAT neurons) robustly promoted USV+ mounting, and converted male-directed attack to mounting with USVs. By contrast, stimulation of VMHvl neurons that express ESR1 (VMHvlESR1 neurons) promoted USV- mounting, and inhibited the USVs evoked by female urine. Terminal stimulation experiments suggest that these complementary inhibitory effects are mediated by reciprocal projections between the MPOA and VMHvl. Together, these data identify a hypothalamic subpopulation that is genetically enriched for neurons that causally induce a male reproductive behavioural state, and indicate that reproductive and aggressive states are represented by distinct population codes distributed between MPOAESR1 and VMHvlESR1 neurons, respectively. Thus, similar behaviours that express different internal states are encoded by distinct hypothalamic neuronal populations.
Collapse
Affiliation(s)
- Tomomi Karigo
- Division of Biology and Biological Engineering, TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Ann Kennedy
- Division of Biology and Biological Engineering, TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
- Department of Physiology, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Bin Yang
- Division of Biology and Biological Engineering, TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Mengyu Liu
- Division of Biology and Biological Engineering, TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Derek Tai
- Division of Biology and Biological Engineering, TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Iman A Wahle
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
13
|
Thorsen AS, Khamis D, Kemp R, Colombé M, Lourenço FC, Morrissey E, Winton D. Heterogeneity in clone dynamics within and adjacent to intestinal tumours identified by Dre-mediated lineage tracing. Dis Model Mech 2021; 14:dmm046706. [PMID: 33093165 PMCID: PMC7823168 DOI: 10.1242/dmm.046706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
Somatic models of tissue pathology commonly use induction of gene-specific mutations in mice mediated by spatiotemporal regulation of Cre recombinase. Subsequent investigation of the onset and development of disease can be limited by the inability to track changing cellular behaviours over time. Here, a lineage-tracing approach based on ligand-dependent activation of Dre recombinase that can be employed independently of Cre is described. The clonal biology of the intestinal epithelium following Cre-mediated stabilisation of β-catenin reveals that, within tumours, many new clones rapidly become extinct. Surviving clones show accelerated population of tumour glands compared to normal intestinal crypts but in a non-uniform manner, indicating that intra-tumour glands follow heterogeneous dynamics. In tumour-adjacent epithelia, clone sizes are smaller than in the background epithelia, as a whole. This suggests a zone of ∼seven crypt diameters within which clone expansion is inhibited by tumours and that may facilitate their growth.
Collapse
Affiliation(s)
- Ann-Sofie Thorsen
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Doran Khamis
- University of Oxford, Center for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Richard Kemp
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Mathilde Colombé
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Filipe C. Lourenço
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Edward Morrissey
- University of Oxford, Center for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Douglas Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
14
|
Chen Y, Zheng J, Li X, Zhu L, Shao Z, Yan X, Zhu X. Wdr47 Controls Neuronal Polarization through the Camsap Family Microtubule Minus-End-Binding Proteins. Cell Rep 2020; 31:107526. [DOI: 10.1016/j.celrep.2020.107526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/15/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
|
15
|
DYNLRB1 is essential for dynein mediated transport and neuronal survival. Neurobiol Dis 2020; 140:104816. [PMID: 32088381 PMCID: PMC7273200 DOI: 10.1016/j.nbd.2020.104816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/08/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
The cytoplasmic dynein motor complex transports essential signals and organelles from the cell periphery to the perinuclear region, hence is critical for the survival and function of highly polarized cells such as neurons. Dynein Light Chain Roadblock-Type 1 (DYNLRB1) is thought to be an accessory subunit required for specific cargos, but here we show that it is essential for general dynein-mediated transport and sensory neuron survival. Homozygous Dynlrb1 null mice are not viable and die during early embryonic development. Furthermore, heterozygous or adult knockdown animals display reduced neuronal growth, and selective depletion of Dynlrb1 in proprioceptive neurons compromises their survival. Conditional depletion of Dynlrb1 in sensory neurons causes deficits in several signaling pathways, including β-catenin subcellular localization, and a severe impairment in the axonal transport of both lysosomes and retrograde signaling endosomes. Hence, DYNLRB1 is an essential component of the dynein complex, and given dynein's critical functions in neuronal physiology, DYNLRB1 could have a prominent role in the etiology of human neurodegenerative diseases.
Collapse
|
16
|
Schmitz L, Kronstad JW, Heimel K. Conditional gene expression reveals stage-specific functions of the unfolded protein response in the Ustilago maydis-maize pathosystem. MOLECULAR PLANT PATHOLOGY 2020; 21:258-271. [PMID: 31802604 PMCID: PMC6988420 DOI: 10.1111/mpp.12893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ustilago maydis is a model organism for the study of biotrophic plant-pathogen interactions. The sexual and pathogenic development of the fungus are tightly connected since fusion of compatible haploid sporidia is prerequisite for infection of the host plant, maize (Zea mays). After plant penetration, the unfolded protein response (UPR) is activated and required for biotrophic growth. The UPR is continuously active throughout all stages of pathogenic development in planta. However, since development of UPR deletion mutants stops directly after plant penetration, the role of an active UPR at later stages of development remained to be determined. Here, we established a gene expression system for U. maydis that uses endogenous, conditionally active promoters to either induce or repress expression of a gene of interest during different stages of plant infection. Integration of the expression constructs into the native genomic locus and removal of resistance cassettes were required to obtain a wild-type-like expression pattern. This indicates that genomic localization and chromatin structure are important for correct promoter activity and gene expression. By conditional expression of the central UPR regulator, Cib1, in U. maydis, we show that a functional UPR is required for continuous plant defence suppression after host infection and that U. maydis relies on a robust control system to prevent deleterious UPR hyperactivation.
Collapse
Affiliation(s)
- Lara Schmitz
- Institute for Microbiology and GeneticsDepartment of Molecular Microbiology and GeneticsGöttingen Center for Molecular Biosciences (GZMB)University of GöttingenGrisebachstr. 8D‐37077GöttingenGermany
- International Research Training Group 2172 PRoTECTGöttingen, VancouverGermany
| | - James W. Kronstad
- International Research Training Group 2172 PRoTECTGöttingen, VancouverGermany
- Michael Smith LaboratoriesDepartment of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Kai Heimel
- Institute for Microbiology and GeneticsDepartment of Molecular Microbiology and GeneticsGöttingen Center for Molecular Biosciences (GZMB)University of GöttingenGrisebachstr. 8D‐37077GöttingenGermany
- International Research Training Group 2172 PRoTECTGöttingen, VancouverGermany
| |
Collapse
|
17
|
Fan Y, Jiang W, Ran F, Luo R, An L, Hang H. An Efficient Exogenous Gene Insertion Site in CHO Cells with High Transcription Level to Enhance AID-Induced Mutation. Biotechnol J 2020; 15:e1900313. [PMID: 31975519 DOI: 10.1002/biot.201900313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/18/2019] [Indexed: 11/10/2022]
Abstract
Antibodies have been extensively used for the purpose of scientific research, clinical diagnosis, and therapy. Combination of in vitro somatic hypermutation and mammalian cell surface display has been an efficient technology for antibody or other proteins optimization, in which the efficiency of activation-induced cytidine deaminase (AID) mutations in genes is one of the most important key factors. Gene transcriptional level has been found to be positively proportional to AID-induced mutation frequency. Thus, construction of the cell clone bearing a gene of interest (GOI) with high transcription level can increase AID-induced mutations. In this study, a retargetable gene cassette is inserted onto predetermined chromosome site (ywhae gene site) which is among the genes with the highest as well as stable transcription, and is found that one subsite is suitable to be retargeted for efficient protein display in Chinese hamster ovary (CHO) cells. The resultant cell clone (T31) has higher and more stable transcription/expression than CHO-puro clone which was previously established through the strategy of random insertion followed by a high-throughput selection. It also possesses a significantly higher mutation frequency to GOI than CHO-puro cells; thus, it is a better clone for the in vitro improvement of antibody affinity, and probably other properties.
Collapse
Affiliation(s)
- Yingjun Fan
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Jiang
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fanlei Ran
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruiqi Luo
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili An
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haiying Hang
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
18
|
Drake KA, Fessler AR, Carroll TJ. Methods for renal lineage tracing: In vivo and beyond. Methods Cell Biol 2019; 154:121-143. [PMID: 31493814 DOI: 10.1016/bs.mcb.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lineage tracing has resulted in fundamental discoveries in kidney development and disease and remains a powerful technique to study mechanisms of organogenesis, homeostasis, and repair/regeneration. Following decades of research on the cellular and molecular regulation of renal organogenesis, the kidney has become one of the most well-characterized organs, resulting in exciting advancements in pluripotent stem cell differentiation, tissue bioengineering, and the potential for developing novel regenerative therapies for kidney disease. Lineage tracing, or the labeling of progeny cells arising from a single cell or group of cells, allows for spatial and temporal analyses of dynamic in vivo and in vitro processes. As lineage tracing techniques expand across disciplines of developmental biology, stem cell biology, and regenerative medicine, careful experimental design and interpretation, along with an understanding of the basic principles and technical limitations, are essential for utilizing genetically complex lineage tracing models to further understand kidney development and disease.
Collapse
Affiliation(s)
- Keri A Drake
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Alicia R Fessler
- Department of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Thomas J Carroll
- Department of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
19
|
Blondelle J, Marrocco V, Clark M, Desmond P, Myers S, Nguyen J, Wright M, Bremner S, Pierantozzi E, Ward S, Estève E, Sorrentino V, Ghassemian M, Lange S. Murine obscurin and Obsl1 have functionally redundant roles in sarcolemmal integrity, sarcoplasmic reticulum organization, and muscle metabolism. Commun Biol 2019; 2:178. [PMID: 31098411 PMCID: PMC6509138 DOI: 10.1038/s42003-019-0405-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Biological roles of obscurin and its close homolog Obsl1 (obscurin-like 1) have been enigmatic. While obscurin is highly expressed in striated muscles, Obsl1 is found ubiquitously. Accordingly, obscurin mutations have been linked to myopathies, whereas mutations in Obsl1 result in 3M-growth syndrome. To further study unique and redundant functions of these closely related proteins, we generated and characterized Obsl1 knockouts. Global Obsl1 knockouts are embryonically lethal. In contrast, skeletal muscle-specific Obsl1 knockouts show a benign phenotype similar to obscurin knockouts. Only deletion of both proteins and removal of their functional redundancy revealed their roles for sarcolemmal stability and sarcoplasmic reticulum organization. To gain unbiased insights into changes to the muscle proteome, we analyzed tibialis anterior and soleus muscles by mass spectrometry, uncovering additional changes to the muscle metabolism. Our analyses suggest that all obscurin protein family members play functions for muscle membrane systems.
Collapse
Affiliation(s)
- Jordan Blondelle
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Madison Clark
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Patrick Desmond
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Stephanie Myers
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Jim Nguyen
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Matthew Wright
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Shannon Bremner
- Department of Orthopedic Surgery, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, 53100 Italy
| | - Samuel Ward
- Department of Orthopedic Surgery, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Eric Estève
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
- Université Grenoble Alpes, HP2, Grenoble, 38706 France
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, 53100 Italy
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, 92093 CA USA
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, 413 45 Sweden
| |
Collapse
|
20
|
Abstract
Since the founding of Drosophila genetics by Thomas Hunt Morgan and his colleagues over 100 years ago, the experimental induction of mosaicism has featured prominently in its recognition as an unsurpassed genetic model organism. The use of genetic mosaics has facilitated the discovery of a wide variety of developmental processes, identified specific cell lineages, allowed the study of recessive embryonic lethal mutations, and demonstrated the existence of cell competition. Here, we discuss how genetic mosaicism in Drosophila became an invaluable research tool that revolutionized developmental biology. We describe the prevailing methods used to produce mosaic animals, and highlight advantages and disadvantages of each genetic system. We cover methods ranging from simple "twin-spot" analysis to more sophisticated systems of multicolor labeling.
Collapse
|
21
|
Development of the renal vasculature. Semin Cell Dev Biol 2018; 91:132-146. [PMID: 29879472 DOI: 10.1016/j.semcdb.2018.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
The kidney vasculature has a unique and complex architecture that is central for the kidney to exert its multiple and essential physiological functions with the ultimate goal of maintaining homeostasis. An appropriate development and coordinated assembly of the different vascular cell types and their association with the corresponding nephrons is crucial for the generation of a functioning kidney. In this review we provide an overview of the renal vascular anatomy, histology, and current knowledge of the embryological origin and molecular pathways involved in its development. Understanding the cellular and molecular mechanisms involved in renal vascular development is the first step to advance the field of regenerative medicine.
Collapse
|
22
|
Chatterjee S, Sullivan HA, MacLennan BJ, Xu R, Hou Y, Lavin TK, Lea NE, Michalski JE, Babcock KR, Dietrich S, Matthews GA, Beyeler A, Calhoon GG, Glober G, Whitesell JD, Yao S, Cetin A, Harris JA, Zeng H, Tye KM, Reid RC, Wickersham IR. Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons. Nat Neurosci 2018; 21:638-646. [PMID: 29507411 PMCID: PMC6503322 DOI: 10.1038/s41593-018-0091-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 01/14/2018] [Indexed: 12/25/2022]
Abstract
Recombinant rabies viral vectors have proven useful for applications including retrograde targeting of projection neurons and monosynaptic tracing, but their cytotoxicity has limited their use to short-term experiments. Here we introduce a new class of double-deletion-mutant rabies viral vectors that left transduced cells alive and healthy indefinitely. Deletion of the viral polymerase gene abolished cytotoxicity and reduced transgene expression to trace levels but left vectors still able to retrogradely infect projection neurons and express recombinases, allowing downstream expression of other transgene products such as fluorophores and calcium indicators. The morphology of retrogradely targeted cells appeared unperturbed at 1 year postinjection. Whole-cell patch-clamp recordings showed no physiological abnormalities at 8 weeks. Longitudinal two-photon structural and functional imaging in vivo, tracking thousands of individual neurons for up to 4 months, showed that transduced neurons did not die but retained stable visual response properties even at the longest time points imaged.
Collapse
Affiliation(s)
| | - Heather A Sullivan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ran Xu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - YuanYuan Hou
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas K Lavin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas E Lea
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob E Michalski
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kelsey R Babcock
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stephan Dietrich
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gillian A Matthews
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Beyeler
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gwendolyn G Calhoon
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gordon Glober
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Shenqin Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ali Cetin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Kay M Tye
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - R Clay Reid
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
23
|
Horii T, Morita S, Kimura M, Terawaki N, Shibutani M, Hatada I. Efficient generation of conditional knockout mice via sequential introduction of lox sites. Sci Rep 2017; 7:7891. [PMID: 28801621 PMCID: PMC5554182 DOI: 10.1038/s41598-017-08496-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/12/2017] [Indexed: 01/17/2023] Open
Abstract
Conditional knockout using Cre/lox is essential for functional analysis of genes. CRISPR/Cas in combination with two sets of guide RNAs and a single-stranded oligonucleotide enables simultaneous insertion of two lox sequences. However, this method induces double-strand breaks at two sites on the same chromosome, which causes an undesirable chromosomal deletion and reduces the flanked lox (flox) rate. To solve this problem, we investigated a method that sequentially introduces each lox sequence at the 1-cell and 2-cell embryonic stages, respectively. The sequential method was applied to both microinjection and electroporation systems. Sequential electroporation improved the flox efficiency compared with ordinary simultaneous microinjection, leading to a high yield of offspring with floxed alleles. Finally, we directly produced Cre/lox mice containing both the Cre transgene and floxed allele via sequential electroporation using Cre zygotes, which accelerated the generation of conditional knockout mice compared with the ordinary method.
Collapse
Affiliation(s)
- Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Mika Kimura
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Naomi Terawaki
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Mihiro Shibutani
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan.
| |
Collapse
|
24
|
Rizvi SMA, Prajapati HK, Ghosh SK. The 2 micron plasmid: a selfish genetic element with an optimized survival strategy within Saccharomyces cerevisiae. Curr Genet 2017; 64:25-42. [PMID: 28597305 DOI: 10.1007/s00294-017-0719-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/27/2022]
Abstract
Since its discovery in the early 70s, the 2 micron plasmid of Saccharomyces cerevisiae continues to intrigue researchers with its high protein-coding capacity and a selfish nature yet high stability, earning it the title of a 'miniaturized selfish genetic element'. It codes for four proteins (Rep1, Rep2, Raf1, and Flp) vital for its own survival and recruits several host factors (RSC2, Cohesin, Cse4, Kip1, Bik1, Bim1, and microtubules) for its faithful segregation during cell division. The plasmid maintains a high-copy number with the help of Flp-mediated recombination. The plasmids organize in the form of clusters that hitch-hike the host chromosomes presumably with the help of the plasmid-encoded Rep proteins and host factors such as microtubules, Kip1 motor, and microtubule-associated proteins Bik1 and Bim1. Although there is no known yeast cell phenotype associated with the 2 micron plasmid, excessive copies of the plasmid are lethal for the cells, warranting a tight control over the plasmid copy number. This control is achieved through a combination of feedback loops involving the 2 micron encoded proteins. Thus, faithful segregation and a concomitant tightly controlled plasmid copy number ensure an optimized benign parasitism of the 2 micron plasmid within budding yeast.
Collapse
Affiliation(s)
- Syed Meraj Azhar Rizvi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Hemant Kumar Prajapati
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
25
|
Alexandrov A, Shu MD, Steitz JA. Fluorescence Amplification Method for Forward Genetic Discovery of Factors in Human mRNA Degradation. Mol Cell 2017; 65:191-201. [PMID: 28017590 PMCID: PMC5301997 DOI: 10.1016/j.molcel.2016.11.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/05/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022]
Abstract
Nonsense-mediated decay (NMD) degrades mRNAs containing a premature termination codon (PTC). PTCs are a frequent cause of human genetic diseases, and the NMD pathway is known to modulate disease severity. Since partial NMD attenuation can potentially enhance nonsense suppression therapies, better definition of human-specific NMD is required. However, the majority of NMD factors were first discovered in model organisms and then subsequently identified by homology in human. Sensitivity and throughput limitations of existing approaches have hindered systematic forward genetic screening for NMD factors in human cells. We developed a method of in vivo amplification of NMD reporter fluorescence (Fireworks) that enables CRISPR-based forward genetic screening for NMD pathway defects in human cells. The Fireworks genetic screen identifies multiple known NMD factors and numerous human candidate genes, providing a platform for discovery of additional key factors in human mRNA degradation.
Collapse
Affiliation(s)
- Andrei Alexandrov
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| | - Mei-Di Shu
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| |
Collapse
|
26
|
Abstract
Dermatophytes are a group of closely related fungi that nourish on keratinized materials for their survival. They infect stratum corneum, nails, and hair of human and animals, accounting the largest portion of fungi causing superficial mycoses. Huge populations are suffering from dermatophytoses, though the biology of these fungi is largely unknown yet. Reasons are partially attributed to the poor amenability of dermatophytes to genetic manipulation. However, advancements in this field over the last decade made it possible to conduct genetic studies to satisfying extents. These included genetic transformation methods, indispensable molecular tools, i.e., dominant selectable markers, inducible promoter, and marker recycling system, along with improving homologous recombination frequency and gene silencing. Furthermore, annotated genome sequences of several dermatophytic species have recently been available, ensuring an optimal recruitment of the molecular tools to expand our knowledge on these fungi. In conclusion, the establishment of basic molecular tools and the availability of genomic data will open a new era that might change our understanding on the biology and pathogenicity of this fungal group.
Collapse
|
27
|
Abstract
Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.
Collapse
Affiliation(s)
- Hong Geun Park
- Burke Medical Research Institute, White Plains, NY, USA.
| | - Jason B Carmel
- Burke Medical Research Institute, White Plains, NY, USA
- Brain and Mind Research Institute and Departments of Neurology and Pediatrics, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
28
|
Park CY, Sung JJ, Kim DW. Genome Editing of Structural Variations: Modeling and Gene Correction. Trends Biotechnol 2016; 34:548-561. [PMID: 27016031 DOI: 10.1016/j.tibtech.2016.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 12/26/2022]
Abstract
The analysis of chromosomal structural variations (SVs), such as inversions and translocations, was made possible by the completion of the human genome project and the development of genome-wide sequencing technologies. SVs contribute to genetic diversity and evolution, although some SVs can cause diseases such as hemophilia A in humans. Genome engineering technology using programmable nucleases (e.g., ZFNs, TALENs, and CRISPR/Cas9) has been rapidly developed, enabling precise and efficient genome editing for SV research. Here, we review advances in modeling and gene correction of SVs, focusing on inversion, translocation, and nucleotide repeat expansion.
Collapse
Affiliation(s)
- Chul-Yong Park
- Department of Physiology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jin Jea Sung
- Department of Physiology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Dong-Wook Kim
- Department of Physiology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
29
|
Jungke P, Hammer J, Hans S, Brand M. Isolation of Novel CreERT2-Driver Lines in Zebrafish Using an Unbiased Gene Trap Approach. PLoS One 2015; 10:e0129072. [PMID: 26083735 PMCID: PMC4471347 DOI: 10.1371/journal.pone.0129072] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/04/2015] [Indexed: 01/01/2023] Open
Abstract
Gene manipulation using the Cre/loxP-recombinase system has been successfully employed in zebrafish to study gene functions and lineage relationships. Recently, gene trapping approaches have been applied to produce large collections of transgenic fish expressing conditional alleles in various tissues. However, the limited number of available cell- and tissue-specific Cre/CreERT2-driver lines still constrains widespread application in this model organism. To enlarge the pool of existing CreERT2-driver lines, we performed a genome-wide gene trap screen using a Tol2-based mCherry-T2a-CreERT2 (mCT2aC) gene trap vector. This cassette consists of a splice acceptor and a mCherry-tagged variant of CreERT2 which enables simultaneous labeling of the trapping event, as well as CreERT2 expression from the endogenous promoter. Using this strategy, we generated 27 novel functional CreERT2-driver lines expressing in a cell- and tissue-specific manner during development and adulthood. This study summarizes the analysis of the generated CreERT2-driver lines with respect to functionality, expression, integration, as well as associated phenotypes. Our results significantly enlarge the existing pool of CreERT2-driver lines in zebrafish and combined with Cre-dependent effector lines, the new CreERT2-driver lines will be important tools to manipulate the zebrafish genome.
Collapse
Affiliation(s)
- Peggy Jungke
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Juliane Hammer
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Stefan Hans
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Michael Brand
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| |
Collapse
|
30
|
DeCant BT, Principe DR, Guerra C, Pasca di Magliano M, Grippo PJ. Utilizing past and present mouse systems to engineer more relevant pancreatic cancer models. Front Physiol 2014; 5:464. [PMID: 25538623 PMCID: PMC4255505 DOI: 10.3389/fphys.2014.00464] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/11/2014] [Indexed: 12/14/2022] Open
Abstract
The study of pancreatic cancer has prompted the development of numerous mouse models that aim to recapitulate the phenotypic and mechanistic features of this deadly malignancy. This review accomplishes two tasks. First, it provides an overview of the models that have been used as representations of both the neoplastic and carcinoma phenotypes. Second, it presents new modeling schemes that ultimately will serve to more faithfully capture the temporal and spatial progression of the human disease, providing platforms for improved understanding of the role of non-epithelial compartments in disease etiology as well as evaluating therapeutic approaches.
Collapse
Affiliation(s)
- Brian T DeCant
- Department of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | - Daniel R Principe
- Department of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | - Carmen Guerra
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas Madrid, Spain
| | | | - Paul J Grippo
- Department of Medicine, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
31
|
Yamada Y, Maeda M, Alshahni MM, Monod M, Staib P, Yamada T. Flippase (FLP) recombinase-mediated marker recycling in the dermatophyte Arthroderma vanbreuseghemii. MICROBIOLOGY-SGM 2014; 160:2122-2135. [PMID: 24996827 DOI: 10.1099/mic.0.076562-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological processes can be elucidated by investigating complex networks of relevant factors and genes. However, this is not possible in species for which dominant selectable markers for genetic studies are unavailable. To overcome the limitation in selectable markers for the dermatophyte Arthroderma vanbreuseghemii (anamorph: Trichophyton mentagrophytes), we adapted the flippase (FLP) recombinase-recombination target (FRT) site-specific recombination system from the yeast Saccharomyces cerevisiae as a selectable marker recycling system for this fungus. Taking into account practical applicability, we designed FLP/FRT modules carrying two FRT sequences as well as the flp gene adapted to the pathogenic yeast Candida albicans (caflp) or a synthetic codon-optimized flp (avflp) gene with neomycin resistance (nptII) cassette for one-step marker excision. Both flp genes were under control of the Trichophyton rubrum copper-repressible promoter (PCTR4). Molecular analyses of resultant transformants showed that only the avflp-harbouring module was functional in A. vanbreuseghemii. Applying this system, we successfully produced the Ku80 recessive mutant strain devoid of any selectable markers. This strain was subsequently used as the recipient for sequential multiple disruptions of secreted metalloprotease (fungalysin) (MEP) or serine protease (SUB) genes, producing mutant strains with double MEP or triple SUB gene deletions. These results confirmed the feasibility of this system for broad-scale genetic manipulation of dermatophytes, advancing our understanding of functions and networks of individual genes in these fungi.
Collapse
Affiliation(s)
- Yohko Yamada
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1, Mejirodai, Bunkyo, Tokyo 112-8681, Japan
| | - Mari Maeda
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo 192-0395, Japan
| | - Mohamed Mahdi Alshahni
- Laboratory of Space and Environmental Medicine, Graduate School of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Michel Monod
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Av. de Beaumont 29, 1011 Lausanne, Switzerland
| | - Peter Staib
- Research and Development, Kneipp GmbH, Winterhäuser Str. 85, 97084 Würzburg, Germany
| | - Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo 192-0395, Japan
| |
Collapse
|
32
|
Gierut JJ, Jacks TE, Haigis KM. Strategies to achieve conditional gene mutation in mice. Cold Spring Harb Protoc 2014; 2014:339-49. [PMID: 24692485 DOI: 10.1101/pdb.top069807] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The laboratory mouse is an ideal model organism for studying disease because it is physiologically similar to human and also because its genome is readily manipulated. Genetic engineering allows researchers to introduce specific loss-of-function or gain-of-function mutations into genes and then to study the resulting phenotypes in an in vivo context. One drawback of using traditional transgenic and knockout mice to study human diseases is that many mutations passed through the germline can profoundly affect development, thus impeding the study of disease phenotypes in adults. New technology has made it possible to generate conditional mutations that can be introduced in a spatially and/or temporally restricted manner. Mouse strains carrying conditional mutations represent valuable experimental models for the study of human diseases and they can be used to develop strategies for prevention and treatment of these diseases. In this article, we will describe the most widely used DNA recombinase systems used to achieve conditional gene mutation in mouse models and discuss how these systems can be employed in vivo.
Collapse
Affiliation(s)
- Jessica J Gierut
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Charlestown, Massachusetts 02129
| | | | | |
Collapse
|
33
|
Marecki JC, Parajuli N, Crow JP, MacMillan-Crow LA. The use of the Cre/loxP system to study oxidative stress in tissue-specific manganese superoxide dismutase knockout models. Antioxid Redox Signal 2014; 20:1655-70. [PMID: 23641945 PMCID: PMC3942694 DOI: 10.1089/ars.2013.5293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Respiring mitochondria are a significant site for reactions involving reactive oxygen and nitrogen species that contribute to irreversible cellular, structural, and functional damage leading to multiple pathological conditions. Manganese superoxide dismutase (MnSOD) is a critical component of the antioxidant system tasked with protecting the oxidant-sensitive mitochondrial compartment from oxidative stress. Since global knockout of MnSOD results in significant cardiac and neuronal damage leading to early postnatal lethality, this approach has limited use for studying the mechanisms of oxidant stress and the development of disease in specific tissues lacking MnSOD. To circumvent this problem, a number of investigators have employed the Cre/loxP system to precisely knockout MnSOD in individual tissues. RECENT ADVANCES Multiple tissue and organ-specific Cre-expressing mice have been generated, which greatly enhance the specificity of MnSOD knockout in tissues and organ systems that were once difficult, if not impossible to study. CRITICAL ISSUES Evaluating the contribution of MnSOD deficiency to oxidant-mediated mitochondrial damage requires careful consideration of the promoter system used for creating the tissue-specific knockout animal, in addition to the collection and interpretation of multiple indices of oxidative stress and damage. FUTURE DIRECTIONS Expanded use of well-characterized tissue-specific promoter elements and inducible systems to drive the Cre/loxP recombinational events will lead to a spectrum of MnSOD tissue knockout models, and a clearer understanding of the role of MnSOD in preventing mitochondrial dysfunction in human disease.
Collapse
Affiliation(s)
- John C Marecki
- 1 Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | | | | | | |
Collapse
|
34
|
Inactivation of an integrated antibiotic resistance gene in mammalian cells to re-enable antibiotic selection. Biotechniques 2014; 56:198-201. [PMID: 24724846 DOI: 10.2144/000114160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/06/2014] [Indexed: 11/23/2022] Open
Abstract
Removing an antibiotic resistance gene allows the same antibiotic to be re-used in the next round of genetic manipulation. Here we applied the CRISPR/Cas system to disrupt the puromycin resistance gene in an engineered mouse embryonic stem cell line and then re-used puromycin selection in the resulting cells to establish stable reporter cell lines. With the CRISPR/Cas system, pre-engineered sequences, such as loxP or FRT, are not required. Thus, this technique can be used to disrupt antibiotic resistance genes that cannot be removed by the Cre-loxP and Flp-FRT systems.
Collapse
|
35
|
Beedle AM, Turner AJ, Saito Y, Lueck JD, Foltz SJ, Fortunato MJ, Nienaber PM, Campbell KP. Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy. J Clin Invest 2012; 122:3330-42. [PMID: 22922256 DOI: 10.1172/jci63004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/21/2012] [Indexed: 11/17/2022] Open
Abstract
Dystroglycan is a transmembrane glycoprotein that links the extracellular basement membrane to cytoplasmic dystrophin. Disruption of the extensive carbohydrate structure normally present on α-dystroglycan causes an array of congenital and limb girdle muscular dystrophies known as dystroglycanopathies. The essential role of dystroglycan in development has hampered elucidation of the mechanisms underlying dystroglycanopathies. Here, we developed a dystroglycanopathy mouse model using inducible or muscle-specific promoters to conditionally disrupt fukutin (Fktn), a gene required for dystroglycan processing. In conditional Fktn-KO mice, we observed a near absence of functionally glycosylated dystroglycan within 18 days of gene deletion. Twenty-week-old KO mice showed clear dystrophic histopathology and a defect in glycosylation near the dystroglycan O-mannose phosphate, whether onset of Fktn excision driven by muscle-specific promoters occurred at E8 or E17. However, the earlier gene deletion resulted in more severe phenotypes, with a faster onset of damage and weakness, reduced weight and viability, and regenerating fibers of smaller size. The dependence of phenotype severity on the developmental timing of muscle Fktn deletion supports a role for dystroglycan in muscle development or differentiation. Moreover, given that this conditional Fktn-KO mouse allows the generation of tissue- and timing-specific defects in dystroglycan glycosylation, avoids embryonic lethality, and produces a phenotype resembling patient pathology, it is a promising new model for the study of secondary dystroglycanopathy.
Collapse
Affiliation(s)
- Aaron M Beedle
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Shoura MJ, Vetcher AA, Giovan SM, Bardai F, Bharadwaj A, Kesinger MR, Levene SD. Measurements of DNA-loop formation via Cre-mediated recombination. Nucleic Acids Res 2012; 40:7452-64. [PMID: 22589415 PMCID: PMC3424569 DOI: 10.1093/nar/gks430] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Cre-recombination system has become an important tool for genetic manipulation of higher organisms and a model for site-specific DNA-recombination mechanisms employed by the λ-Int superfamily of recombinases. We report a novel quantitative approach for characterizing the probability of DNA-loop formation in solution using time-dependent ensemble Förster resonance energy transfer measurements of intra- and inter-molecular Cre-recombination kinetics. Our method uses an innovative technique for incorporating multiple covalent modifications at specific sites in covalently closed DNA. Because the mechanism of Cre recombinase does not conform to a simple kinetic scheme, we employ numerical methods to extract rate constants for fundamental steps that pertain to Cre-mediated loop closure. Cre recombination does not require accessory proteins, DNA supercoiling or particular metal-ion cofactors and is thus a highly flexible system for quantitatively analyzing DNA-loop formation in vitro and in vivo.
Collapse
Affiliation(s)
- Massa J Shoura
- Department of Molecular and Cell Biology, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Leprince A, Janus D, de Lorenzo V, Santos VMD. Streamlining of a Pseudomonas putida genome using a combinatorial deletion method based on minitransposon insertion and the Flp-FRT recombination system. Methods Mol Biol 2012; 813:249-266. [PMID: 22083747 DOI: 10.1007/978-1-61779-412-4_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Here, we document a technique to reduce the size of the genome of Pseudomonas putida by using a combinatorial mini-Tn5-targeted Flp-FRT recombination system. This method combines random insertions with the site-specific Flp-FRT recombination system to generate successive random deletions in a single strain in which parts of the genome are excised via the action of the cognate flippase. For this purpose, we have generated two mini-Tn5 transposon mutant libraries with single and double integrations of either mini-Tn5 KpF alone or mini-Tn5 KpF in parallel with mini-Tn5 TF, respectively. These mini-Tn5 transposons carry different selectable markers and each has an FRT (Flippase Recognition Target) site. Mapping of the position of both mini-Tn5 transposons in the chromosome of P. putida was conducted by Arbitrary Primed-PCR (AP-PCR). Subsequent sequencing of the PCR fragments led to the identification of the coordinates of the transposons and the orientation of both FRT sites. Under specific laboratory conditions, both FRT sites were recognized by the flippase, and the deletion of a nonessential intervening genomic segment along with the transposon backbones occurred without inheritance of any marker genes.
Collapse
Affiliation(s)
- Audrey Leprince
- Division of Molecular Biotechnology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | |
Collapse
|
38
|
Rawlins EL, Perl AK. The a"MAZE"ing world of lung-specific transgenic mice. Am J Respir Cell Mol Biol 2011; 46:269-82. [PMID: 22180870 DOI: 10.1165/rcmb.2011-0372ps] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The purpose of this review is to give a comprehensive overview of transgenic mouse lines suitable for studying gene function and cellular lineage relationships in lung development, homeostasis, injury, and repair. Many of the mouse strains reviewed in this Perspective have been widely shared within the lung research community, and new strains are continuously being developed. There are many transgenic lines that target subsets of lung cells, but it remains a challenge for investigators to select the correct transgenic modules for their experiment. This review covers the tetracycline- and tamoxifen-inducible systems and focuses on conditional lines that target the epithelial cells. We point out the limitations of each strain so investigators can choose the system that will work best for their scientific question. Current mesenchymal and endothelial lines are limited by the fact that they are not lung specific. These lines are summarized in a brief overview. In addition, useful transgenic reporter mice for studying lineage relationships, promoter activity, and signaling pathways will complete our lung-specific conditional transgenic mouse shopping list.
Collapse
Affiliation(s)
- Emma L Rawlins
- Children's Hospital Medical Center, Divisions of Neonatology and Pulmonary Biology, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
39
|
Pfrieger FW, Slezak M. Genetic approaches to study glial cells in the rodent brain. Glia 2011; 60:681-701. [PMID: 22162024 DOI: 10.1002/glia.22283] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/18/2011] [Indexed: 01/02/2023]
Abstract
The development, function, and pathology of the brain depend on interactions of neurons and different types of glial cells, namely astrocytes, oligodendrocytes, microglia, and ependymal cells. Understanding neuron-glia interactions in vivo requires dedicated experimental approaches to manipulate each cell type independently. In this review, we first summarize techniques that allow for cell-specific gene modification including targeted mutagenesis and viral transduction. In the second part, we describe the genetic models that allow to target the main glial cell types in the central nervous system. The existing arsenal of approaches to study glial cells in vivo and its expansion in the future are key to understand neuron-glia interactions under normal and pathologic conditions.
Collapse
Affiliation(s)
- Frank W Pfrieger
- CNRS UPR 3212, University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI), 67084 Strasbourg, France.
| | | |
Collapse
|
40
|
Hohn MJ, Palioura S, Su D, Yuan J, Söll D. Genetic analysis of selenocysteine biosynthesis in the archaeon Methanococcus maripaludis. Mol Microbiol 2011; 81:249-58. [PMID: 21564332 DOI: 10.1111/j.1365-2958.2011.07690.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In Archaea selenocysteine (Sec) is synthesized in three steps. First seryl-tRNA synthetase acylates tRNA(Sec) with serine to generate Ser-tRNA(Sec). Then phosphoseryl-tRNA(Sec) kinase (PSTK) forms Sep-tRNA(Sec) , which is converted to Sec-tRNA(Sec) by Sep-tRNA:Sec-tRNA synthase (SepSecS) in the presence of selenophosphate produced by selenophosphate synthetase (SelD). A complete in vivo analysis of the archaeal Sec biosynthesis pathway is still unavailable, and the existence of a redundant pathway or of a rescue mechanism based on the conversion of Sep-tRNA(Sec) to Cys-tRNA(Sec) during selenium starvation, cannot be excluded. Here we present a mutational analysis of Sec biosynthesis in Methanococcus maripaludis strain Mm900. Sec formation is abolished upon individually deleting the genes encoding SelD, PSTK or SepSecS; the resulting mutant strains could no longer grow on formate while growth with H(2) + CO(2) remained unaffected. However, deletion of the PSTK and SepSecS genes was not possible unless the selenium-free [NiFe]-hydrogenases Frc and Vhc were expressed. This required the prior deletion of either the gene encoding SelD or that of HrsM, a LysR-type regulator suppressing transcription of the frc and vhc operons in the presence of selenium. These results show that M. maripaludis Mm900 is facultatively selenium-dependent with a single pathway of Sec-tRNA(Sec) formation.
Collapse
Affiliation(s)
- Michael J Hohn
- Departments of Molecular Biophysics and Biochemistry Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
41
|
Jaschke PR, Saer RG, Noll S, Beatty JT. Modification of the genome of Rhodobacter sphaeroides and construction of synthetic operons. Methods Enzymol 2011; 497:519-38. [PMID: 21601102 DOI: 10.1016/b978-0-12-385075-1.00023-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The α-proteobacterium Rhodobacter sphaeroides is an exemplary model organism for the creation and study of novel protein expression systems, especially membrane protein complexes that harvest light energy to yield electrical energy. Advantages of this organism include a sequenced genome, tools for genetic engineering, a well-characterized metabolism, and a large membrane surface area when grown under hypoxic or anoxic conditions. This chapter provides a framework for the utilization of R. sphaeroides as a model organism for membrane protein expression, highlighting key advantages and shortcomings. Procedures covered in this chapter include the creation of chromosomal gene deletions, disruptions, and replacements, as well as the construction of a synthetic operon using a model promoter to induce expression of modified photosynthetic reaction center proteins for structural and functional analysis.
Collapse
Affiliation(s)
- Paul R Jaschke
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
42
|
Modeling Human Prostate Cancer in Genetically Engineered Mice. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:1-49. [DOI: 10.1016/b978-0-12-384878-9.00001-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Ostash B. Site-specific recombinases in genetic engineering: Modern in vivo technologies. CYTOL GENET+ 2010. [DOI: 10.3103/s0095452710040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Activation of sterol regulatory element binding proteins in the absence of Scap in Drosophila melanogaster. Genetics 2010; 185:189-98. [PMID: 20176975 DOI: 10.1534/genetics.110.114975] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The escort factor Scap is essential in mammalian cells for regulated activation of sterol regulatory element binding proteins (SREBPs). SREBPs are membrane-bound transcription factors. Cells lacking Scap cannot activate SREBP. They are therefore deficient in the transcription of numerous genes involved in lipid synthesis and uptake; they cannot survive in the absence of exogenous lipid. Here we report that, in contrast to mammalian cells, Drosophila completely lacking dscap are viable. Flies lacking dscap emerge at approximately 70% of the expected rate and readily survive as homozygous stocks. These animals continue to cleave dSREBP in some tissues. Transcription of dSREBP target genes in dscap mutant larvae is reduced compared to wild type. It is greater than in mutants lacking dSREBP and remains responsive to dietary lipids in dscap mutants. Flies lacking dscap do not require the caspase Drice to activate dSREBP. This contrasts with ds2p mutants. ds2p encodes a protease that releases the transcription factor domain of dSREBP from the membrane. Larvae doubly mutant for dscap and ds2p exhibit phenotypes similar to those of ds2p single mutants. Thus, dScap and dS2P, essential components of the SREBP activation machinery in mammalian cells, are dispensable in Drosophila owing to different compensatory mechanisms.
Collapse
|
45
|
Genetically modified mice-successes and failures of a widely used technology. Pflugers Arch 2010; 459:557-67. [PMID: 20140450 DOI: 10.1007/s00424-009-0770-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/28/2009] [Accepted: 11/30/2009] [Indexed: 12/31/2022]
Abstract
Genetically modified mice, created by random integration of a transgene into the genome or by targeted mutation of a specific gene, have proven to be extremely powerful tools for studying gene function in vivo. In this article, we give (1) a short overview of the traditional methods in mouse transgenesis and (2) a discussion of the problems with these methods, (3) more recent methods that were developed to overcome these problems, and (4) an outlook on future directions in gene targeting.
Collapse
|
46
|
Nichols M, Steinman RA. A recombinase-based palindrome generator capable of producing randomized shRNA libraries. J Biotechnol 2009; 143:79-84. [PMID: 19539675 DOI: 10.1016/j.jbiotec.2009.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 01/05/2023]
|
47
|
de las Heras A, Carreño CA, de Lorenzo V. Stable implantation of orthogonal sensor circuits in Gram-negative bacteria for environmental release. Environ Microbiol 2008; 10:3305-16. [DOI: 10.1111/j.1462-2920.2008.01722.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Bacterial genetics: past achievements, present state of the field, and future challenges. Biotechniques 2008; 44:633-4, 636-41. [PMID: 18474038 DOI: 10.2144/000112807] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Genetic tools are required to take full advantage of the wealth of information generated by genome sequencing efforts and ensuing global gene and protein expression analyses. Bacterial genetics was originally developed and refined in Escherichia coli. As a consequence, elegant plasmid, cloning, expression, and mutagenesis systems were developed over the years and a good number of them are commercially available. This is not true for other bacteria. Although the development of genetic tools has generally not kept up with the sequencing pace, substantial progress has been made in this arena with many bacterial species. This short review highlights selected topics and achievements in the field over the past 25 years and presents some strategies that may help address future challenges. BioTechniques has played an integral part in the publication of important technological advances in the field over the first 25 years of its existence and it can be anticipated that it will continue to do so in the future.
Collapse
|
49
|
Abstract
Hepatocellular carcinoma (HCC) is a common and deadly cancer whose pathogenesis is incompletely understood. Comparative genomic studies from human HCC samples have classified HCCs into different molecular subgroups; yet, the unifying feature of this tumor is its propensity to arise upon a background of inflammation and fibrosis. This review seeks to analyze the available experimental models in HCC research and to correlate data from human populations with them in order to consolidate our efforts to date, as it is increasingly clear that different models will be required to mimic different subclasses of the neoplasm. These models will be instrumental in the evaluation of compounds targeting specific molecular pathways in future preclinical studies.
Collapse
|
50
|
Kohan DE. Progress in gene targeting: using mutant mice to study renal function and disease. Kidney Int 2008; 74:427-37. [PMID: 18418351 DOI: 10.1038/ki.2008.146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic engineering in mice has provided much information about gene function in renal health and disease. This knowledge has largely come from conventional transgenic approaches. Recently, methods have been developed to control the cell type, timing and reversibility of target gene expression. Advances in identifying promoters conferring renal cell-specific gene regulation in vivo have greatly facilitated interpretation of gene targeting studies. Site-specific recombinases have permitted cell-specific knockout of genes; Cre is the preeminent recombinase, but recent progress with other recombinases, include Flp and PhiC31, will likely increase the usefulness of this class of enzymes. Temporally regulated gene expression, particularly using doxycycline- and tamoxifen-inducible systems, holds great promise for avoiding developmental effects of gene mutations as well as facilitating comparison of the same animal's phenotype before and after gene modification. RNA interference is undergoing tremendous growth and has great potential for achieving gene knockdown quickly and reversibly. To date, however, the utility of these systems in modifying renal function in transgenic mice remains unproven. Finally, new gene targeting tools are in development that may substantially simplify generation of transgenic animals. This review discusses the state-of-the-art in gene targeting in the kidney, reviewing function, indications and limitations of the molecular biologic tools.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| |
Collapse
|