1
|
Shao Z, Chen CY, Qiao H. How chromatin senses plant hormones. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102592. [PMID: 38941723 PMCID: PMC11790310 DOI: 10.1016/j.pbi.2024.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
Plant hormones activate receptors, initiating intracellular signaling pathways. Eventually, hormone-specific transcription factors become active in the nucleus, facilitating hormone-induced transcriptional regulation. Chromatin plays a fundamental role in the regulation of transcription, the process by which genetic information encoded in DNA is converted into RNA. The structure of chromatin, a complex of DNA and proteins, directly influences the accessibility of genes to the transcriptional machinery. The different signaling pathways and transcription factors involved in the transmission of information from the receptors to the nucleus have been readily explored, but not so much for the specific mechanisms employed by the cell to ultimately instruct the chromatin changes necessary for a fast and robust transcription activation, specifically for plant hormone responses. In this review, we will focus on the advancements in understanding how chromatin receives plant hormones, facilitating the changes necessary for fast, robust, and specific transcriptional regulation.
Collapse
Affiliation(s)
- Zhengyao Shao
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX, 78712, USA; Department of Molecular Biosciences, The University of Texas, Austin, TX, 78712, USA
| | - Chia-Yang Chen
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX, 78712, USA; Department of Molecular Biosciences, The University of Texas, Austin, TX, 78712, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX, 78712, USA; Department of Molecular Biosciences, The University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Wang C, Yang H, Liu Z, Bai L, Wang L, Zhou S. Multiomics Analysis of the Mechanism by Which Gibberellin Alleviates S-Metolachlor Toxicity in Rice Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:2517. [PMID: 39274001 PMCID: PMC11396835 DOI: 10.3390/plants13172517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/10/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
S-metolachlor is a selective pre-emergence herbicide used in dryland. However, it is challenging to employ in paddy fields due to its phytotoxic effects on rice. As a common phytohormone, Gibberellin-3 (GA3) is inferred to have the ability to alleviate herbicide phytotoxicity. This study first quantitatively verified the phytotoxicity of s-metolachlor to rice and then demonstrated the mitigative effect of GA3 on these adverse reactions. Furthermore, a transcriptome of rice seedlings subjected to different treatments was constructed to assemble the reference genes, followed by comparative metabolomics and proteomics analyses. Metabolomics revealed an enrichment of flavonoid metabolites in the group of adding GA3, and these flavonoids can eliminate ROS in plants. Proteomics analysis indicated that differential proteins were enriched in the phenylpropanoid biosynthesis pathway responsible for the synthesis of flavonoids and that the functions of most differential proteins are associated with peroxidase. The proteome, combined with the transcriptome, revealed that the expressions of proteins and genes was related to the POD activity in the group of adding GA3. It was speculated that the elimination of ROS is key to alleviating the stress of s-metolachlor on rice growth. It was inferred that the mechanism of GA3 in alleviating the phytotoxicity of the substance s-metolachlor is by increasing the activity of the POD and influencing the growth of rice seedlings through the restoration of flavonoid synthesis. In this study, we screened GA3 as a safener to alleviate the phytotoxicity of s-metolachlor on rice. On this basis, the mechanism of alleviating phytotoxicity was studied. The application range of s-metolachlor might be expanded, providing a new supplementary method for weed control and herbicide resistance management.
Collapse
Affiliation(s)
- Cong Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haona Yang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhixuan Liu
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lianyang Bai
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lifeng Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shangfeng Zhou
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
3
|
Wu M, Wang Y, Zhang S, Xiang Y. A LBD transcription factor from moso bamboo, PheLBD12, regulates plant height in transgenic rice. PLANT MOLECULAR BIOLOGY 2024; 114:95. [PMID: 39223419 DOI: 10.1007/s11103-024-01487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
The regulation mechanism of bamboo height growth has always been one of the hotspots in developmental biology. In the preliminary work of this project, the function of LBD transcription factor regulating height growth was firstly studied. Here, a gene PheLBD12 regulating height growth was screened. PheLBD12-overexpressing transgenic rice had shorter internodes, less bioactive gibberellic acid (GA3), and were more sensitive to GA3 than wild-type (WT) plants, which implied that PheLBD12 involve in gibberellin (GA) pathway. The transcript levels of OsGA2ox3, that encoding GAs deactivated enzyme, was significantly enhanced in PheLBD12-overexpressing transgenic rice. The transcript levels of OsAP2-39, that directly regulating the expression of EUI1 to reduce GA levels, was also significantly enhanced in PheLBD12-overexpressing transgenic rice. Expectedly, yeast one-hybrid assays, Dual-luciferase reporter assay and EMSAs suggested that PheLBD12 directly interacted with the promoter of OsGA2ox3 and OsAP2-39. Together, our results reveal that PheLBD12 regulates plant height growth by modulating GA catabolism. Through the research of this topic, it enriches the research content of LBD transcription factors and it will theoretically enrich the research content of height growth regulation.
Collapse
Affiliation(s)
- Min Wu
- Anhui Province Key Laboratory of Forest Resource and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Yufang Wang
- Anhui Province Key Laboratory of Forest Resource and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Shunran Zhang
- Anhui Province Key Laboratory of Forest Resource and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Anhui Province Key Laboratory of Forest Resource and Silviculture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
4
|
Jiang P, Han P, He M, Shui G, Guo C, Shah S, Wang Z, Wu H, Li J, Pan Z. Appropriate mowing can promote the growth of Anabasis aphylla through the auxin metabolism pathway. BMC PLANT BIOLOGY 2024; 24:482. [PMID: 38822275 PMCID: PMC11141038 DOI: 10.1186/s12870-024-05204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Anabasis aphylla (A. aphylla), a species of the Amaranthaceae family, is widely distributed in northwestern China and has high pharmacological value and ecological functions. However, the growth characteristics are poorly understood, impeding its industrial development for biopesticide development. Here, we explored the regenerative capacity of A. aphylla. To this end, different lengths of the secondary branches of perennial branches were mowed at the end of March before sprouting. The four treatments were no mowing (M0) and mowing 1/3, 2/3, and the entire length of the secondary branches of perennial branches (M1-M3, respectively). Next, to evaluate the compensatory growth after mowing, new assimilate branches' related traits were recorded every 30 days, and the final biomass was recorded. The mowed plants showed a greater growth rate of assimilation branches than un-mowed plants. Additionally, with the increasing mowing degree, the growth rate and the final biomass of assimilation branches showed a decreasing trend, with the greatest growth rate and final biomass in response to M1. To evaluate the mechanism of the compensatory growth after mowing, a combination of dynamic (0, 1, 5, and 8 days after mowing) plant hormone-targeted metabolomics and transcriptomics was performed for the M0 and M1 treatment. Overall, 26 plant hormone metabolites were detected, 6 of which significantly increased after mowing compared with control: Indole-3-acetyl-L-valine methyl ester, Indole-3-carboxylic acid, Indole-3-carboxaldehyde, Gibberellin A24, Gibberellin A4, and cis (+)-12-oxo-phytodienoic acid. Additionally, 2,402 differentially expressed genes were detected between the mowed plants and controls. By combining clustering analysis based on expression trends after mowing and gene ontology analysis of each cluster, 18 genes related to auxin metabolism were identified, 6 of which were significantly related to auxin synthesis. Our findings suggest that appropriate mowing can promote A. aphylla growth, regulated by the auxin metabolic pathway, and lays the foundation for the development of the industrial value of A. aphylla.
Collapse
Affiliation(s)
- Ping Jiang
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Special Fruit and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003, Xinjiang, China
| | - Peng Han
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Mengyao He
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Special Fruit and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003, Xinjiang, China
| | - Guangling Shui
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Chunping Guo
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Sulaiman Shah
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Special Fruit and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003, Xinjiang, China
| | - Zixuan Wang
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Special Fruit and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003, Xinjiang, China
| | - Haokai Wu
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Special Fruit and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003, Xinjiang, China
| | - Jian Li
- Southern Xinjiang Research Institute, Shihezi University, Tumushuk, 843806, Xinjiang, China.
| | - Zhenyuan Pan
- Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
5
|
Qiao L, Wu Q, Yuan L, Huang X, Yang Y, Li Q, Shahzad N, Li H, Li W. SMALL PLANT AND ORGAN 1 ( SPO1) Encoding a Cellulose Synthase-like Protein D4 (OsCSLD4) Is an Important Regulator for Plant Architecture and Organ Size in Rice. Int J Mol Sci 2023; 24:16974. [PMID: 38069299 PMCID: PMC10707047 DOI: 10.3390/ijms242316974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Plant architecture and organ size are considered as important traits in crop breeding and germplasm improvement. Although several factors affecting plant architecture and organ size have been identified in rice, the genetic and regulatory mechanisms remain to be elucidated. Here, we identified and characterized the small plant and organ 1 (spo1) mutant in rice (Oryza sativa), which exhibits narrow and rolled leaf, reductions in plant height, root length, and grain width, and other morphological defects. Map-based cloning revealed that SPO1 is allelic with OsCSLD4, a gene encoding the cellulose synthase-like protein D4, and is highly expressed in the roots at the seedling and tillering stages. Microscopic observation revealed the spo1 mutant had reduced number and width in leaf veins, smaller size of leaf bulliform cells, reduced cell length and cell area in the culm, and decreased width of epidermal cells in the outer glume of the grain. These results indicate the role of SPO1 in modulating cell division and cell expansion, which modulates plant architecture and organ size. It is showed that the contents of endogenous hormones including auxin, abscisic acid, gibberellin, and zeatin tested in the spo1 mutant were significantly altered, compared to the wild type. Furthermore, the transcriptome analysis revealed that the differentially expressed genes (DEGs) are significantly enriched in the pathways associated with plant hormone signal transduction, cell cycle progression, and cell wall formation. These results indicated that the loss of SPO1/OsCSLD4 function disrupted cell wall cellulose synthase and hormones homeostasis and signaling, thus leading to smaller plant and organ size in spo1. Taken together, we suggest the functional role of SPO1/OsCSLD4 in the control of rice plant and organ size by modulating cell division and expansion, likely through the effects of multiple hormonal pathways on cell wall formation.
Collapse
Affiliation(s)
- Lei Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Qilong Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Liuzhen Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Xudong Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Yutao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Qinying Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Nida Shahzad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Haifeng Li
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| |
Collapse
|
6
|
Loayza AP, García-Guzmán P, Carozzi-Figueroa G, Carvajal DE. Dormancy-break and germination requirements for seeds of the threatened Austral papaya (Carica chilensis). Sci Rep 2023; 13:17358. [PMID: 37833333 PMCID: PMC10576054 DOI: 10.1038/s41598-023-44386-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Seed dormancy is one of the most important adaptive mechanisms in plants, optimizing germination, seedling emergence, and establishment to ensure these processes occur when environmental conditions are favorable for plant survival and growth. Endemic to rocky environments of the southern Atacama Desert, the Austral papaya (Carica chilensis) is the papaya species with the southernmost distribution within the Caricaceae, thriving in the most extreme environmental conditions. This threatened plant exhibits low natural regeneration, primarily attributed to low germination, yet no information regarding seed dormancy release is available. In this study, we investigated the dormancy-break and germination requirements of C. chilensis. We hypothesized that if C. chilensis seeds exhibit physiological dormancy, then seeds with reduced moisture content and those treated with chemicals or growth hormones would exhibit higher germination percentages and faster germination than control seeds akin to other members of Caricacea. Our results confirmed this prediction and revealed that ultra-drying (< 3% moisture content) and treating seeds with sulfuric acid, gibberellic acid, or potassium nitrate are the most effective methods for germinating C. chilensis. Consequently, we suggest using these treatments to propagate this threatened papaya species.
Collapse
Affiliation(s)
- Andrea P Loayza
- Instituto Multidisciplinario de Investigación y Postgrado, Universidad de la Serena, 1720256, La Serena, Chile.
- Instituto de Ecología y Biodiversidad (IEB), 7800003, Santiago, Chile.
| | | | | | - Danny E Carvajal
- Instituto de Ecología y Biodiversidad (IEB), 7800003, Santiago, Chile
- Departamento de Biología, Universidad de la Serena, La Serena, Chile
- Centro de Ciencia del Clima y la Resiliencia, CR2, Santiago, Chile
| |
Collapse
|
7
|
Li H, Lv CT, Li YT, Gao GY, Meng YF, You YL, Tian Q, Liang KQ, Chen Y, Chen H, Xia C, Rui XY, Zheng HL, Wei MY. RNA-sequencing transcriptome analysis of Avicennia marina (Forsk.) Vierh. leaf epidermis defines tissue-specific transcriptional response to salinity treatment. Sci Rep 2023; 13:7614. [PMID: 37165000 PMCID: PMC10172313 DOI: 10.1038/s41598-023-34095-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Avicennia marina (Forsk.) Vierh. is a typical mangrove plant. Its epidermis contains salt glands, which can secrete excess salts onto the leaf surfaces, improving the salt tolerance of the plants. However, knowledge on the epidermis-specific transcriptional responses of A. marina to salinity treatment is lacking. Thus, physiological and transcriptomic techniques were applied to unravel the salt tolerance mechanism of A. marina. Our results showed that 400 mM NaCl significantly reduced the plant height, leaf area, leaf biomass and photosynthesis of A. marina. In addition, 1565 differentially expressed genes were identified, of which 634 and 931 were up- and down-regulated. Based on Kyoto Encyclopedia of Genes and Genomes metabolic pathway enrichment analysis, we demonstrated that decreased gene expression, especially that of OEE1, PQL2, FDX3, ATPC, GAPDH, PRK, FBP and RPE, could explain the inhibited photosynthesis caused by salt treatment. Furthermore, the ability of A. marina to cope with 400 mM NaCl treatment was dependent on appropriate hormone signalling and potential sulfur-containing metabolites, such as hydrogen sulfide and cysteine biosynthesis. Overall, the present study provides a theoretical basis for the adaption of A. marina to saline habitats and a reference for studying the salt tolerance mechanism of other mangrove plants.
Collapse
Affiliation(s)
- Huan Li
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Chao-Tian Lv
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Yun-Tao Li
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Guo-Yv Gao
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Ya-Fei Meng
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Yv-Le You
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Qi Tian
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Kun-Qi Liang
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Yu Chen
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Hao Chen
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Chao Xia
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Xiang-Yun Rui
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China.
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Ming-Yue Wei
- School of Ecology, Resources and Environment, Dezhou University, DeZhou, Shandong, 253000, People's Republic of China.
| |
Collapse
|
8
|
Liu C, Wang K, Yun Z, Liu W, Zhao M, Wang Y, Hu J, Liu T, Wang N, Wang Y, Zhang M. Functional Study of PgGRAS68-01 Gene Involved in the Regulation of Ginsenoside Biosynthesis in Panax ginseng. Int J Mol Sci 2023; 24:ijms24043347. [PMID: 36834759 PMCID: PMC9961673 DOI: 10.3390/ijms24043347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/11/2022] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Ginseng (Panax ginseng C. A. Meyer) is a perennial herb from the genus Panax in the family Araliaceae. It is famous in China and abroad. The biosynthesis of ginsenosides is controlled by structural genes and regulated by transcription factors. GRAS transcription factors are widely found in plants. They can be used as tools to modify plant metabolic pathways by interacting with promoters or regulatory elements of target genes to regulate the expression of target genes, thereby activating the synergistic interaction of multiple genes in metabolic pathways and effectively improving the accumulation of secondary metabolites. However, there are no reports on the involvement of the GRAS gene family in ginsenoside biosynthesis. In this study, the GRAS gene family was located on chromosome 24 pairs in ginseng. Tandem replication and fragment replication also played a key role in the expansion of the GRAS gene family. The PgGRAS68-01 gene closely related to ginsenoside biosynthesis was screened out, and the sequence and expression pattern of the gene were analyzed. The results showed that the expression of PgGRAS68-01 gene was spatio-temporal specific. The full-length sequence of PgGRAS68-01 gene was cloned, and the overexpression vector pBI121-PgGRAS68-01 was constructed. The ginseng seedlings were transformed by Agrobacterium rhifaciens-mediated method. The saponin content in the single root of positive hair root was detected, and the inhibitory role of PgGRAS68-01 in ginsenoside synthesis is reported.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (K.W.); (M.Z.)
| | - Ziyi Yun
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Wenbo Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Yanfang Wang
- Laboratory for Cultivation and Breeding of Medicinal Plants of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Jian Hu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Tao Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Nan Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (K.W.); (M.Z.)
| |
Collapse
|
9
|
Zhang T, Wang J, Luo R, Man J, Long Q, Xu N. OsHLS1 regulates plant height and development by controlling active gibberellin accumulation in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111508. [PMID: 36283578 DOI: 10.1016/j.plantsci.2022.111508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In this study, we identified a gene related to plant height, leaf, and premature senescence in rice, and named it OsHLS1. Through bioinformatics analysis, it was found that this gene belongs to a new gene family-HLS family, and this gene family exists widely in higher plants. Expression of OsHLS1 was significantly brought about by gibberellin (GA). Subcellular localization showed that OsHLS1 was located in the nucleus. oshls1-3 displayed a GA-deficient phenotype, with dwarf plants. In addition, oshls1-3 also showed premature senescence, shorter and narrower leaves, and pollen abortion. Exogenous GA3 can restore the plant height of oshls1-3. Histomorphological analysis showed that the gene affected the progress of internode cells in the first and third nodes under the rice panicle. Through the verification of the homologous gene AT4G25690 in Arabidopsis, it was found that the mutant at4g25690 lines also showed plant dwarfing, premature senescence, and shortening and narrowing of leaves and pollen abortion. OsHLS1 affected the expression levels of genes involved in the GA metabolic pathway and affected the content of active GA, thereby regulating plant height development in rice. In conclusion, we suggest that OsHLS1 regulates plant height and development by controlling the accumulation of active gibberellins in rice.
Collapse
Affiliation(s)
- Tonghua Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Jiafu Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Rui Luo
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Jianmin Man
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qing Long
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ning Xu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
10
|
Jia Y, Yu P, Shao W, An G, Chen J, Yu C, Kuang H. Up-regulation of LsKN1 promotes cytokinin and suppresses gibberellin biosynthesis to generate wavy leaves in lettuce. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6615-6629. [PMID: 35816166 DOI: 10.1093/jxb/erac311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Lettuce (Lactuca sativa) is one of the most popular vegetables worldwide, and diverse leaf shapes, including wavy leaves, are important commercial traits. In this study, we examined the genetics of wavy leaves using an F2 segregating population, and identified a major QTL controlling wavy leaves. The candidate region contained LsKN1, which has previously been shown to be indispensable for leafy heads in lettuce. Complementation tests and knockout experiments verified the function of LsKN1 in producing wavy leaves. The LsKN1∇ allele, which has the insertion of a transposon and has previously been shown to control leafy heads, promoted wavy leaves in our population. Transposition of the CACTA transposon from LsKN1 compromised its function for wavy leaves. High expression of LsKN1 up-regulated several key genes associated with cytokinin (CK) to increase the content in the leaves, whereas it down-regulated the expression of genes in the gibberellin (GA) biosynthesis pathway to decrease the content. Application of CK to leaves enhanced the wavy phenotype, while application of GA dramatically flattened the leaves. We conclude that the changes in CK and GA contents that result from high expression of LsKN1 switch determinate cells to indeterminate, and consequently leads to the development of wavy leaves.
Collapse
Affiliation(s)
- Yue Jia
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Pei Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wei Shao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Guanghui An
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Changchun Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
11
|
Best NB, Dilkes BP. Transcriptional responses to gibberellin in the maize tassel and control by DELLA domain proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:493-517. [PMID: 36050832 PMCID: PMC9826531 DOI: 10.1111/tpj.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The plant hormone gibberellin (GA) impacts plant growth and development differently depending on the developmental context. In the maize (Zea mays) tassel, application of GA alters floral development, resulting in the persistence of pistils. GA signaling is achieved by the GA-dependent turnover of DELLA domain transcription factors, encoded by dwarf8 (d8) and dwarf9 (d9) in maize. The D8-Mpl and D9-1 alleles disrupt GA signaling, resulting in short plants and normal tassel floret development in the presence of excess GA. However, D9-1 mutants are unable to block GA-induced pistil development. Gene expression in developing tassels of D8-Mpl and D9-1 mutants and their wild-type siblings was determined upon excess GA3 and mock treatments. Using GA-sensitive transcripts as reporters of GA signaling, we identified a weak loss of repression under mock conditions in both mutants, with the effect in D9-1 being greater. D9-1 was also less able to repress GA signaling in the presence of excess GA3 . We treated a diverse set of maize inbred lines with excess GA3 and measured the phenotypic consequences on multiple aspects of development (e.g., height and pistil persistence in tassel florets). Genotype affected all GA-regulated phenotypes but there was no correlation between any of the GA-affected phenotypes, indicating that the complexity of the relationship between GA and development extends beyond the two-gene epistasis previously demonstrated for GA and brassinosteroid biosynthetic mutants.
Collapse
Affiliation(s)
- Norman B. Best
- USDAAgriculture Research Service, Plant Genetics Research UnitColumbiaMissouri65211USA
| | - Brian P. Dilkes
- Department of BiochemistryPurdue University; West LafayetteIndiana47907USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndiana47907USA
| |
Collapse
|
12
|
Malik P, Huang M, Neelam K, Bhatia D, Kaur R, Yadav B, Singh J, Sneller C, Singh K. Genotyping-by-Sequencing Based Investigation of Population Structure and Genome Wide Association Studies for Seven Agronomically Important Traits in a Set of 346 Oryza rufipogon Accessions. RICE (NEW YORK, N.Y.) 2022; 15:37. [PMID: 35819660 PMCID: PMC9276952 DOI: 10.1186/s12284-022-00582-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Being one of the most important staple dietary constituents globally, genetic enhancement of cultivated rice for yield, agronomically important traits is of substantial importance. Even though the climatic factors and crop management practices impact complex traits like yield immensely, the contribution of variation by underlying genetic factors surpasses them all. Previous studies have highlighted the importance of utilizing exotic germplasm, landraces in enhancing the diversity of gene pool, leading to better selections and thus superior cultivars. Thus, to fully exploit the potential of progenitor of Asian cultivated rice for productivity related traits, genome wide association study (GWAS) for seven agronomically important traits was conducted on a panel of 346 O. rufipogon accessions using a set of 15,083 high-quality single nucleotide polymorphic markers. The phenotypic data analysis indicated large continuous variation for all the traits under study, with a significant negative correlation observed between grain parameters and agronomic parameters like plant height, culm thickness. The presence of 74.28% admixtures in the panel as revealed by investigating population structure indicated the panel to be very poorly genetically differentiated, with rapid LD decay. The genome-wide association analyses revealed a total of 47 strong MTAs with 19 SNPs located in/close to previously reported QTL/genic regions providing a positive analytic proof for our studies. The allelic differences of significant MTAs were found to be statistically significant at 34 genomic regions. A total of 51 O. rufipogon accessions harboured combination of superior alleles and thus serve as potential candidates for accelerating rice breeding programs. The present study identified 27 novel SNPs to be significantly associated with different traits. Allelic differences between cultivated and wild rice at significant MTAs determined superior alleles to be absent at 12 positions implying substantial scope of improvement by their targeted introgression into cultivars. Introgression of novel significant genomic regions into breeder's pool would broaden the genetic base of cultivated rice, thus making the crop more resilient.
Collapse
Affiliation(s)
- Palvi Malik
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, Wooster, USA
| | - Mao Huang
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, Wooster, USA
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India.
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Ramanjeet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Bharat Yadav
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- Crop Pathology and Genetics Lab, University of British Columbia, Vancouver, Canada
| | - Jasdeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Clay Sneller
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, Wooster, USA
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| |
Collapse
|
13
|
Transcriptome Profiling Provides New Insights into the Molecular Mechanism Underlying the Sensitivity of Cotton Varieties to Mepiquat Chloride. Int J Mol Sci 2022; 23:ijms23095043. [PMID: 35563437 PMCID: PMC9105546 DOI: 10.3390/ijms23095043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Mepiquat chloride (MC) is a plant growth regulator widely used in cotton production to control vegetative overgrowth of cotton plants to achieve ideal plant architecture required for high yielding. Cotton varieties respond differently to MC application, but there is little information about the molecular mechanisms underlying the varietal difference. In this study, comparative transcriptome analysis was conducted by using two Upland cotton varieties with different sensitivity (XLZ74, insensitive; SD1068, sensitive) to MC treatment, aiming to understand the molecular mechanisms responsible for varietal difference of MC sensitivity. RNA-seq data were generated from the two varieties treated with MC or water at three time points, 1, 3 and 6 days post-spray (dps). Genes differentially expressed between the MC and mock treatments of XLZ74 (6252) and SD1068 (6163) were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to compare the enriched GO terms and KEGG pathways between the two varieties. Signal transduction of phytohormones, biosynthesis of gibberellins (GAs) and brassinosteroids (BRs) and profiles of transcription factors (TFs) seemed to be differentially affected by MC in the two varieties. The transcriptomic results were further consolidated with the content changes of phytohormones in young stem. Several GA catabolic genes, GA2ox, were highly induced by MC in both varieties especially in SD1068, consistent with a more significant decrease in GA4 in SD1068. Several AUX/IAA and SAUR genes and CKX genes were induced by MC in both varieties, but with a more profound effect observed in SD1068 that showed a significant reduction in indole-3-acetic acid (IAA) and a significant increase in cytokinin (CTK) at 6 days post-spray (dps). BR biosynthesis-related genes were downregulated in SD1068, but not in XLZ74. Additionally, more downregulated TFs were observed in MC-treated SD1068 than in MC-treated XLZ74, and the two varieties had very different profiles of genes involved in starch and sucrose metabolism, with those of SD1068 and XLZ74 being downregulated and upregulated by MC treatment, respectively. Together, these results indicate that although the same or similar biological pathways are affected by MC treatment in cotton varieties showing different MC sensitivity, the extent of effect is variable, leading to their different phenotypic outcomes. How the quantitative effect of MC on the biological processes associated with growth retardation is regulated is still an open question.
Collapse
|
14
|
Li C, Wang X, Zhang L, Zhang C, Yu C, Zhao T, Liu B, Li H, Liu J. OsBIC1 Directly Interacts with OsCRYs to Regulate Leaf Sheath Length through Mediating GA-Responsive Pathway. Int J Mol Sci 2021; 23:ijms23010287. [PMID: 35008710 PMCID: PMC8745657 DOI: 10.3390/ijms23010287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
Cryptochrome 1 and 2 (CRY1 and CRY2) are blue light receptors involved in the regulation of hypocotyl elongation, cotyledon expansion, and flowering time in Arabidopsisthaliana. Two cryptochrome-interacting proteins, Blue-light Inhibitor of Cryptochrome 1 and 2 (BIC1 and BIC2), have been found in Arabidopsis. BIC1 plays critical roles in suppressing the physiological activities of CRY2, which include the blue light-dependent dimerization, phosphorylation, photobody formation, and degradation process, but the functional characterization of BIC protein in other crops has not yet been performed. To investigate the function of BIC protein in rice (Oryza sativa), two homologous genes of Arabidopsis BIC1 and BIC2, namely OsBIC1 and OsBIC2 (OsBICs), were identified. The overexpression of OsBIC1 and OsBIC2 led to increased leaf sheath length, whereas mutations in OsBIC1 displayed shorter leaf sheath in a blue light intensity-dependent manner. OsBIC1 regulated blue light-induced leaf sheath elongation through direct interaction with OsCRY1a, OsCRY1b, and OsCRY2 (OsCRYs). Longitudinal sections of the second leaf sheath demonstrated that OsBIC1 and OsCRYs controlled leaf sheath length by influencing the ratio of epidermal cells with different lengths. RNA-sequencing (RNA-seq) and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) analysis further proved that OsBIC1 and OsCRYs regulated similar transcriptome changes in regulating Gibberellic Acids (GA)-responsive pathway. Taken together, these results suggested that OsBIC1 and OsCRYs worked together to regulate epidermal cell elongation and control blue light-induced leaf sheath elongation through the GA-responsive pathway.
Collapse
Affiliation(s)
- Cong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Xin Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Liya Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Chunyu Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Chunsheng Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Tao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Hongyu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
- Correspondence: (H.L.); (J.L.)
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
- Correspondence: (H.L.); (J.L.)
| |
Collapse
|
15
|
Yang D, Liu X, Yin X, Dong T, Yu M, Wu Y. Rice Non-Specific Phospholipase C6 Is Involved in Mesocotyl Elongation. PLANT & CELL PHYSIOLOGY 2021; 62:985-1000. [PMID: 34021760 DOI: 10.1093/pcp/pcab069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/11/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Mesocotyl elongation of rice is crucial for seedlings pushing out of deep soil. The underlying mechanisms of phospholipid signaling in mesocotyl growth of rice are elusive. Here we report that the rice non-specific phospholipase C6 (OsNPC6) is involved in mesocotyl elongation. Our results indicated that all five OsNPCs (OsNPC1, OsNPC2, OsNPC3, OsNPC4 and OsNPC6) hydrolyzed the substrate phosphatidylcholine to phosphocholine (PCho), and all of them showed plasma membrane localization. Overexpression (OE) of OsNPC6 produced plants with shorter mesocotyls compared to those of Nipponbare and npc6 mutants. Although the mesocotyl growth of npc6 mutants was not much affected without gibberellic acid (GA)3, it was obviously elongated by treatment with GA. Upon GA3 treatment, SLENDER RICE1 (SLR1), the DELLA protein of GA signaling, was drastically increased in OE plants; by contrast, the level of SLR1 was found decreased in npc6 mutants. The GA-enhanced mesocotyl elongation and the GA-impaired SLR1 level in npc6 mutants were attenuated by the supplementation of PCho. Further analysis indicated that the GA-induced expression of phospho-base N-methyltransferase 1 in npc6 mutants was significantly weakened by the addition of PCho. In summary, our results suggest that OsNPC6 is involved in mesocotyl development via modulation of PCho in rice.
Collapse
Affiliation(s)
- Di Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tian Dong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Min Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Elevated Incidences of Antimicrobial Resistance and Multidrug Resistance in the Maumee River (Ohio, USA), a Major Tributary of Lake Erie. Microorganisms 2021; 9:microorganisms9050911. [PMID: 33923266 PMCID: PMC8146589 DOI: 10.3390/microorganisms9050911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
Maumee River, the major tributary in the western basin of Lake Erie, serves as one of major sources of freshwater in the area, supplying potable, recreational, and industrial water. In this study we collected water samples from four sites in the Maumee River Bay between 2016–2017 and E. coli was isolated, enumerated, and analyzed for antimicrobial resistance (AMR) and multidrug resistance (MDR). Strikingly, 95% of the total isolates were found to be resistant to at least one antibiotic. A very high resistance to the drugs cephalothin (95.3%), ampicillin (38.3%), tetracycline (8.8%), gentamicin (8.2%), ciprofloxacin (4.2%), cefoperazone (4%), and sulfamethoxazole (1.5%) was observed within isolates from all four sampling sites. Percentages of AMR and MDR was consistently very high in the summer and fall months, whereas it was observed to be lowest in the winter. A remarkably high number of the isolates were detected to be MDR—95% resistant to ≥1 antibiotic, 43% resistant to ≥2 antibiotics, 15% resistant to ≥3 antibiotics, 4.9% resistant to ≥4 antibiotic and 1.2% resistant to ≥5 antibiotics. This data will serve in better understanding the environmental occurrence and dissemination of AMR/MDR in the area and assist in improving and establishing control measures.
Collapse
|
17
|
A potential endogenous gibberellin-mediated signaling cascade regulated floral transition in Magnolia × soulangeana 'Changchun'. Mol Genet Genomics 2020; 296:207-222. [PMID: 33146745 DOI: 10.1007/s00438-020-01740-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
The floral transition is a critical developmental switch in plants, and has profound effects on the flower production and yield. Magnolia × soulangeana 'Changchun' is known as a woody ornamental plant, which can bloom in spring and summer, respectively. In this study, anatomical observation, physiological measurement, transcriptome, and small RNA sequencing were performed to investigate potential endogenous regulatory mechanisms underlying floral transition in 'Changchun'. Transition of the shoot apical meristem from vegetative to reproductive growth occurred between late April and early May. During this specific developmental process, a total of 161,645 unigenes were identified, of which 73,257 were significantly differentially expressed, while a number of these two categories of miRNAs were 299 and 148, respectively. Further analysis of differentially expressed genes (DEGs) revealed that gibberellin signaling could regulate floral transition in 'Changchun' in a DELLA-dependent manner. In addition, prediction and analysis of miRNA targeted genes suggested that another potential molecular regulatory module was mediated by the miR172 family and other several novel miRNAs (Ms-novel_miR139, Ms-novel_miR229, and Ms-novel_miR232), with the participation of up- or down-regulating genes, including MsSVP, MsAP2, MsTOE3, MsAP1, MsGATA6, MsE2FA, and MsMDS6. Through the integrated analysis of mRNA and miRNA, our research results will facilitate the understanding of the potential molecular mechanism underlying floral transition in 'Changchun', and also provide basic experimental data for the plant germplasm resources innovation in Magnolia.
Collapse
|
18
|
CRISPR/Cas9 Directed Mutagenesis of OsGA20ox2 in High Yielding Basmati Rice ( Oryza sativa L.) Line and Comparative Proteome Profiling of Unveiled Changes Triggered by Mutations. Int J Mol Sci 2020; 21:ijms21176170. [PMID: 32859098 PMCID: PMC7504442 DOI: 10.3390/ijms21176170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 01/29/2023] Open
Abstract
In rice, semi-dwarfism is among the most required characteristics, as it facilitates better yields and offers lodging resistance. Here, semi-dwarf rice lines lacking any residual transgene-DNA and off-target effects were generated through CRISPR/Cas9-guided mutagenesis of the OsGA20ox2 gene in a high yielding Basmati rice line, and the isobaric tags for relative and absolute quantification (iTRAQ) strategy was utilized to elucidate the proteomic changes in mutants. The results indicated the reduced gibberellins (GA1 and GA4) levels, plant height (28.72%), and flag leaf length, while all the other traits remained unchanged. The OsGA20ox2 expression was highly suppressed, and the mutants exhibited decreased cell length, width, and restored their plant height by exogenous GA3 treatment. Comparative proteomics of the wild-type and homozygous mutant line (GXU43_9) showed an altered level of 588 proteins, 273 upregulated and 315 downregulated, respectively. The identified differentially expressed proteins (DEPs) were mainly enriched in the carbon metabolism and fixation, glycolysis/gluconeogenesis, photosynthesis, and oxidative phosphorylation pathways. The proteins (Q6AWY7, Q6AWY2, Q9FRG8, Q6EPP9, Q6AWX8) associated with growth-regulating factors (GRF2, GRF7, GRF9, GRF10, and GRF11) and GA (Q8RZ73, Q9AS97, Q69VG1, Q8LNJ6, Q0JH50, and Q5MQ85) were downregulated, while the abscisic stress-ripening protein 5 (ASR5) and abscisic acid receptor (PYL5) were upregulated in mutant lines. We integrated CRISPR/Cas9 with proteomic screening as the most reliable strategy for rapid assessment of the CRISPR experiments outcomes.
Collapse
|
19
|
Honi U, Amin MR, Kabir SMT, Bashar KK, Moniruzzaman M, Jahan R, Jahan S, Haque MS, Islam S. Genome-wide identification, characterization and expression profiling of gibberellin metabolism genes in jute. BMC PLANT BIOLOGY 2020; 20:306. [PMID: 32611317 PMCID: PMC7329397 DOI: 10.1186/s12870-020-02512-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/22/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Gibberellin (GA) is one of the most essential phytohormones that modulate plant growth and development. Jute (Corchorus sp.) is the second most important source of bast fiber. Our result has shown that exogenous GA can positively regulate jute height and related characteristics which mean increasing endogenous GA production will help to get a jute variety with improved characteristics. However, genes involved in jute GA biosynthesis have not been analyzed precisely. RESULTS Genome-wide analysis identified twenty-two candidate genes involved in jute GA biosynthesis pathway. Among them, four genes- CoCPS, CoKS, CoKO and CoKAO work in early steps. Seven CoGA20oxs, three CoGA3oxs, and eight GA2oxs genes work in the later steps. These genes were characterized through phylogenetic, motif, gene structure, and promoter region analysis along with chromosomal localization. Spatial gene expression analysis revealed that 11 GA oxidases were actively related to jute GA production and four of them were marked as key regulators based on their expression level. All the biosynthesis genes both early and later steps showed tissue specificity. GA oxidase genes were under feedback regulation whereas early steps genes were not subject to such regulation. CONCLUSION Enriched knowledge about jute GA biosynthesis pathway and genes will help to increase endogenous GA production in jute by changing the expression level of key regulator genes. CoGA20ox7, CoGA3ox2, CoGA2ox3, and CoGA2ox5 may be the most important genes for GA production.
Collapse
Affiliation(s)
- Ummay Honi
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Ruhul Amin
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Shah Md Tamim Kabir
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Kazi Khayrul Bashar
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Moniruzzaman
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Rownak Jahan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Sharmin Jahan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Md Samiul Haque
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
- Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Shahidul Islam
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh.
- Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh.
| |
Collapse
|
20
|
Jung H, Jo SH, Jung WY, Park HJ, Lee A, Moon JS, Seong SY, Kim JK, Kim YS, Cho HS. Gibberellin Promotes Bolting and Flowering via the Floral Integrators RsFT and RsSOC1-1 under Marginal Vernalization in Radish. PLANTS 2020; 9:plants9050594. [PMID: 32392867 PMCID: PMC7284574 DOI: 10.3390/plants9050594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022]
Abstract
Gibberellic acid (GA) is one of the factors that promotes flowering in radish (Raphanus Sativus L.), although the mechanism mediating GA activation of flowering has not been determined. To identify this mechanism in radish, we compared the effects of GA treatment on late-flowering (NH-JS1) and early-flowering (NH-JS2) radish lines. GA treatment promoted flowering in both lines, but not without vernalization. NH-JS2 plants displayed greater bolting and flowering pathway responses to GA treatment than NH-JS1. This variation was not due to differences in GA sensitivity in the two lines. We performed RNA-seq analysis to investigate GA-mediated changes in gene expression profiles in the two radish lines. We identified 313 upregulated, differentially expressed genes (DEGs) and 207 downregulated DEGs in NH-JS2 relative to NH-JS1 in response to GA. Of these, 21 and 8 genes were identified as flowering time and GA-responsive genes, respectively. The results of RNA-seq and quantitative PCR (qPCR) analyses indicated that RsFT and RsSOC1-1 expression levels increased after GA treatment in NH-JS2 plants but not in NH-JS1. These results identified the molecular mechanism underlying differences in the flowering-time genes of NH-JS1 and NH-JS2 after GA treatment under insufficient vernalization conditions.
Collapse
Affiliation(s)
- Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Won Yong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
| | - Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jae Sun Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
| | - So Yoon Seong
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (S.Y.S.); (J.-K.K.)
| | - Ju-Kon Kim
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (S.Y.S.); (J.-K.K.)
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Youn-Sung Kim
- Department of Biotechnology, NongWoo Bio, Anseong 17558, Korea
- Correspondence: (Y.-S.K.); (H.S.C.); Tel.: +82-42-31-4323 (Y.-S.K.); +82-42-860-4469 (H.S.C.)
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (Y.-S.K.); (H.S.C.); Tel.: +82-42-31-4323 (Y.-S.K.); +82-42-860-4469 (H.S.C.)
| |
Collapse
|
21
|
Castorina G, Consonni G. The Role of Brassinosteroids in Controlling Plant Height in Poaceae: A Genetic Perspective. Int J Mol Sci 2020; 21:ijms21041191. [PMID: 32054028 PMCID: PMC7072740 DOI: 10.3390/ijms21041191] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 01/09/2023] Open
Abstract
The most consistent phenotype of the brassinosteroid (BR)-related mutants is the dwarf habit. This observation has been reported in every species in which BR action has been studied through a mutational approach. On this basis, a significant role has been attributed to BRs in promoting plant growth. In this review, we summarize the work conducted in rice, maize, and barley for the genetic dissection of the pathway and the functional analysis of the genes involved. Similarities and differences detected in these species for the BR role in plant development are presented. BR promotes plant cell elongation through a complex signalling cascade that modulates the activities of growth-related genes and through the interaction with gibberellins (GAs), another class of important growth-promoting hormones. Evidence of BR–GA cross-talk in controlling plant height has been collected, and mechanisms of interaction have been studied in detail in Arabidopsis thaliana and in rice (Oryza sativa). The complex picture emerging from the studies has highlighted points of interaction involving both metabolic and signalling pathways. Variations in plant stature influence plant performance in terms of stability and yield. The comprehension of BR’s functional mechanisms will therefore be fundamental for future applications in plant-breeding programs.
Collapse
|
22
|
Yang K, Yang L, Fan W, Long GQ, Xie SQ, Meng ZG, Zhang GH, Yang SC, Chen JW. Illumina-based transcriptomic analysis on recalcitrant seeds of Panax notoginseng for the dormancy release during the after-ripening process. PHYSIOLOGIA PLANTARUM 2019; 167:597-612. [PMID: 30548605 DOI: 10.1111/ppl.12904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/28/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Panax notoginseng (Burk) F.H. Chen is an economically and medicinally important plant of the family Araliacease, with seed dormancy being a key factor limiting the extended cultivation of P. notoginseng. The seeds belong to the morphophysiological dormancy (MPD) group, and it has also been described as the recalcitrant seed. To date, the molecular mechanism of dormancy release in the recalcitrant seed of P. notoginseng is unknown. In the present study, the transcript profiles of seeds from different after-ripening stages (0, 20, 40 and 60 days) were investigated using Illumina Hiseq 2500 technology. 91 979 946 clean reads were generated, and 81 575 unigenes were annotated in at least one database. In addition, the differentially expressed genes (DEGs) were identified by the pairwise comparisons. We screened out 2483 DEGs by the three key groups of 20 days vs 0 d, 40 d vs 0 d and 60 d vs 0 d. The DEGs were analyzed by gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation. Meanwhile, we obtained 78 DEGs related to seeds dormancy release at different after-ripening stages of P. notoginseng, of which 15 DEGs were associated with abscisic acid and gibberellin. 26 DEGs that encode late embryogenesis abundant protein and antioxidant enzyme were correlated with desiccation tolerance in seeds. In summary, the results obtained here showed that PECTINESTERASE-2-LIKE, GA-INSENSITIVE, ENT-KAURENE SYNTHASE, PROTEIN PHOSPHATASE 2C, GIBBERELLIN 2-BETA-DIOXYGENASE, SUPEROXIDE DISMUTASE, L-ASCORBATE PEROXIDASE, CATALASE, LATE EMBRYOGENESIS ABUNDANT PROTEIN DC3 and DEHYDRIN 9 were potentially involved in dormancy release and desiccation sensitivity of P. notoginseng seeds. The data might provide a basis for researches on MPD.
Collapse
Affiliation(s)
- Kai Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Ling Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Wei Fan
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Guang-Qiang Long
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Shi-Qing Xie
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhen-Gui Meng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Guang-Hui Zhang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Sheng-Chao Yang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
23
|
Chu Y, Xu N, Wu Q, Yu B, Li X, Chen R, Huang J. Rice transcription factor OsMADS57 regulates plant height by modulating gibberellin catabolism. RICE (NEW YORK, N.Y.) 2019; 12:38. [PMID: 31139953 PMCID: PMC6538746 DOI: 10.1186/s12284-019-0298-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/16/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND The MADS-box transcription factors mainly function in floral organ organogenesis and identity specification. Few research on their roles in vegetative growth has been reported. RESULTS Here we investigated the functions of OsMADS57 in plant vegetative growth in rice (Oryza sativa). Knockdown of OsMADS57 reduced the plant height, internode elongation and panicle exsertion in rice plants. Further study showed that the cell length was remarkably reduced in the uppermost internode in OsMADS57 knockdown plants at maturity. Moreover, OsMADS57 knockdown plants were more sensitive to gibberellic acid (GA3), and contained less bioactive GA3 than wild-type plants, which implied that OsMADS57 is involved in gibberellin (GA) pathway. Expectedly, the transcript levels of OsGA2ox3, encoding GAs deactivated enzyme, were significantly enhanced in OsMADS57 knockdown plants. The level of EUI1 transcripts involved in GA deactivation was also increased in OsMADS57 knockdown plants. More importantly, dual-luciferase reporter assay and electrophoretic mobility shift assay showed that OsMADS57 directly regulates the transcription of OsGA2ox3 as well as EUI1 through binding to the CArG-box motifs in their promoter regions. In addition, OsMADS57 also modulated the expression of multiple genes involved in GA metabolism or GA signaling pathway, indicating the key and complex regulatory role of OsMADS57 in GA pathway in rice. CONCLUSIONS These results indicated that OsMADS57 acts as an important transcriptional regulator that regulates stem elongation and panicle exsertion in rice via GA-mediated regulatory pathway.
Collapse
Affiliation(s)
- Yanli Chu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Ning Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Bo Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Rongrong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
24
|
Sun L, Yang W, Li Y, Shan Q, Ye X, Wang D, Yu K, Lu W, Xin P, Pei Z, Guo X, Liu D, Sun J, Zhan K, Chu J, Zhang A. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:887-900. [PMID: 30466195 DOI: 10.1111/tpj.14168] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 05/02/2023]
Abstract
Dwarfing and semi-dwarfing are important agronomic traits that have great potential for the improvement of wheat yields. Rht12, a dominant gibberellic acid (GA)-responsive dwarfing gene from the gamma-ray-induced wheat mutant Karcagi 522M7K, is located in the long arm of chromosome 5A, which is closely linked with the locus Xwmc410. Rht12 is likely an ideal gene for GA biosynthesis and deactivation research in common wheat. However, information on the Rht12 locus and sequence is lacking. In this study, Rht12 significantly shortened stem cell length and decreased GA biosynthetic components. Using bulked segregant RNA-Seq, wheat 660k single nucleotide polymorphism chip detection, and newly developed simple sequence repeat markers, Rht12 was mapped to a 11.21-Mb region at the terminal end of chromosome 5AL, and was found to be closely linked with the Xw5ac207SSR marker with a 10.73-Mb fragment deletion in all of the homologous dwarfing plants. Transcriptome analyses of the remaining 483-kb region showed significantly higher expression of the TraesCS5A01G543100 gene encoding the GA metabolic enzyme GA 2-β-dioxygenase in dwarfing plants than in high stalk plants, suggesting that Rht12 reduces plant height by activating TaGA2ox-A14. Taken together, our findings will promote cloning and functional studies of Rht12 in common wheat.
Collapse
Affiliation(s)
- Linhe Sun
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlong Yang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafei Li
- The Collaborative Innovation Center for Grain Crops in Henan, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiangqiang Shan
- The Collaborative Innovation Center for Grain Crops in Henan, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaobin Ye
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongzhi Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Yu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Genomics Institute-Shenzhen, Shenzhen, 518083, China
| | - Weiwen Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peiyong Xin
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhong Pei
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoli Guo
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dongcheng Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiazhu Sun
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kehui Zhan
- The Collaborative Innovation Center for Grain Crops in Henan, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aimin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
25
|
Fan S, Zhang D, Gao C, Wan S, Lei C, Wang J, Zuo X, Dong F, Li Y, Shah K, Han M. Mediation of Flower Induction by Gibberellin and its Inhibitor Paclobutrazol: mRNA and miRNA Integration Comprises Complex Regulatory Cross-Talk in Apple. PLANT & CELL PHYSIOLOGY 2018; 59:2288-2307. [PMID: 30137602 DOI: 10.1093/pcp/pcy154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/27/2018] [Indexed: 05/14/2023]
Abstract
Guaranteeing successful flowering is very important in economic plant species, especially apple (Malus domestica Borkh.), which is difficult to induce to flower. However, the gene expression and networks involved in flowering have not been totally characterized. Here, we employed mRNA and microRNA (miRNA) sequencing to understand the different responses to gibberellin- and its inhibitor paclobutrazol- (PAC) mediated flower induction. Significant opposite cytological and morphological changes were observed in treated terminal buds, which led to a reduced flowering rate under gibberellin and an increased flowering rate under PAC. We also found that the differentially expressed mRNAs, miRNAs and miRNA target genes participated in different biological networks including hormones, photosynthesis, redox state and other metabolic processes, which provided important clues to understand the complex networks involved in apple flower induction. Additionally, we subsequently focused on one important candidate, MdSPL3, which is one of 31 apple SPL gene family members and whose transcription was inhibited by gibberellin but promoted by PAC. Functional investigation showed that MdSPL3 was located in the nucleus, and ectopic MdSPL3 activated floral meristem identity genes, promoted the formation of floral primordia and led to an earlier flowering phenotype in Arabidopsis. Our research identified critical mRNA and miRNA responsive to gibberellin or PAC, and provided a candidate framework for flower induction. This carefully orchestrated regulatory cross-talk highlighted potential targets for developing regulatory techniques and genetic improvement of flower induction in apple.
Collapse
Affiliation(s)
- Sheng Fan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Cai Gao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuyuan Wan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Lei
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jue Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiya Zuo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Feng Dong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Youmei Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Kamran Shah
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
26
|
Gao J, Chen H, Yang H, He Y, Tian Z, Li J. A brassinosteroid responsive miRNA-target module regulates gibberellin biosynthesis and plant development. THE NEW PHYTOLOGIST 2018; 220:488-501. [PMID: 30009574 DOI: 10.1111/nph.15331] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/29/2018] [Indexed: 05/04/2023]
Abstract
Plant growth and development are highly coordinated by hormones, including brassinosteroid (BR) and gibberellin (GA). Although much progress has been made in understanding the fundamental signaling transduction in BR and GA, their relationship remains elusive in rice. Here, we show that BR suppresses the level of OsmiR159d, which cleaves the target OsGAMYBL2 gene. The OsmiR159d-OsGAMYBL2 pair functions as an early BR-responsive module regulating the expression of BU1, a BR-regulated gene involved in BR signaling, and CPS1 and GA3ox2, two genes in GA biosynthesis, by binding to the promoters of these genes. Furthermore, OsGSK2, a key negative player in BR signaling, interacts with OsGAMYBL2 and prevents it from being degraded under 24-epibrassinolide treatment, whereas SLR1, a rice DELLA protein negatively regulating GA signaling, interacts with OsGAMYBL2 and prevents OsGAMYBL2 from binding to the target gene promoter. GA signaling induces degradation of OsGAMYBL2 and, consequently, enhances BR signaling. These results demonstrate that a BR-responsive module acts as a common component functioning in both BR and GA pathways, which connects BR signaling and GA biosynthesis, and thus coordinates the regulation of BR and GA in plant growth and development.
Collapse
Affiliation(s)
- Jing Gao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huifang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong He
- Hubei Collaborative Innovation Center for Grain Industry, College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Zhihong Tian
- Hubei Collaborative Innovation Center for Grain Industry, College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Jianxiong Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Collaborative Innovation Center for Grain Industry, College of Life Science, Yangtze University, Jingzhou, 434025, China
| |
Collapse
|
27
|
Mushtaq S, Amjad M, Ziaf K, Afzal I. Gibberellins application timing modulates growth, physiology, and quality characteristics of two onion (Allium cepa L.) cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25155-25161. [PMID: 29943247 DOI: 10.1007/s11356-018-2542-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Lack of scientific literature exists regarding the effects of gibberellic acid (GA3) application timings on various phenological and physiological aspects of seed crop of locally available onion cultivars. Therefore, current study was planned in Vegetable Research Area, University of Agriculture, Faisalabad to optimize the growth stage for GA3 application on seed production in two local onion cultivars (Phulkara and Dark Red) during 2013 and 2014. Application timings of gibberellins at 100 mg/L of H2O were as (G1) control (no spray), (G2) foliar application at 2-3 leaf stage, (G3) foliar application at 6-7 leaf stage, and (G4) foliar application at the time of flowering. Data on average of both years showed that tallest plants (66.15 cm) and maximum number of leaves per plant (84.56) were noted in cv. Phulkara when GA3 was applied at 2-3 leaf stage. Minimum number of days to initiate flowering (47.92) and maximum number of umbels per plant (15.45) were noted with GA3 application at 6-7 leaf stage in Phulkara and Dark Red, respectively. The highest seed yield per umbel (2.94 g) was recorded in cv. Dark Red when GA3 sprayed at 6-7 leaf stage, while GA3 application at the time of flowering in the cv. Phulkara produced seeds with highest seedling vigor index (586.79). Overall, it appears that seed yield and quality characters were promoted by the application of GA3 at different growth stages and could be valuable for seed production of onion.
Collapse
Affiliation(s)
- Salman Mushtaq
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Amjad
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Khurram Ziaf
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Irfan Afzal
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
28
|
Wang C, Jogaiah S, Zhang W, Abdelrahman M, Fang JG. Spatio-temporal expression of miRNA159 family members and their GAMYB target gene during the modulation of gibberellin-induced grapevine parthenocarpy. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3639-3650. [PMID: 29905866 DOI: 10.1093/jxb/ery172] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/22/2018] [Indexed: 05/18/2023]
Abstract
Grapevine, Vitis vinifera, is an important economic fruit crop that is highly sensitive to gibberellin (GA), and the exogenous application of GA can efficiently induce grapevine parthenocarpy. However, the molecular mechanisms underlying this process remain elusive. In this study, morphological changes during flower development in response to GA treatments were examined in the 'Zuijinxiang' cultivar. To obtain insights into the roles of miRNA159s in GA-induced grapevine parthenocarpy, VvmiR159a, VvmiR159b, VvmiR159c, and their target gene VvGAMYB were isolated, sequenced and characterized. Spatial-temporal expression analyses showed that VvmiR159c exhibited the highest expression levels at 4 d before flowering, followed by a gradual decrease, while VvGAMYB displayed an opposite pattern of expression with the lowest expression at the corresponding stage in response to GA treatment. A cleavage interaction between VvmiR159s and VvGAMYB and variations of their cleavage roles were confirmed in grapevine floral development. In addition, the potential roles of VvmiR159s in GA signaling were investigated through DELLA-protein repressors, indicating that GA-DELLA (SLR1)-VvmiR159c-VvGAMYB is the key signaling regulatory module in grapevine. Our findings provide novel insights into the GA-responsive roles of VvmiR159s in modulating grapevine floral development, which have important implications for the molecular breeding of high-quality seedless grapevine berry.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sudisha Jogaiah
- Plant Healthcare and Diagnostic Center, Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, India
| | - WenYing Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mostafa Abdelrahman
- Department of Botany, Faculty of Sciences, Aswan University, Aswan, Egypt
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Japan
| | - Jing Gui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Lee SC, Kim SJ, Han SK, An G, Kim SR. A gibberellin-stimulated transcript, OsGASR1, controls seedling growth and α-amylase expression in rice. JOURNAL OF PLANT PHYSIOLOGY 2017; 214:116-122. [PMID: 28482332 DOI: 10.1016/j.jplph.2017.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 05/07/2023]
Abstract
From a T-DNA-tagging population in rice, we identified OsGASR1 (LOC_Os03g55290), a member of the GAST (gibberellin (GA)-Stimulated Transcript) family that is induced by salt stress and ABA treatment. This gene was highly expressed in the regions of cell proliferation and panicle development, as revealed by a GUS assay of the mutant line. In the osgasr1 mutants, the second leaf blades were much longer than those of the segregating wild type due to an increase in cell length. In addition, five α-amylase genes were up-regulated in the mutants, implying that OsGASR1 is a negative regulator of those genes. These results suggest that OsGASR1 plays important roles in seedling growth and α-amylase gene expression.
Collapse
Affiliation(s)
- Sang-Choon Lee
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea; Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 151-921 Seoul, Republic of Korea
| | - Soo-Jin Kim
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Soon-Ki Han
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Gynheung An
- Crop Biotech Institute & Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Seong-Ryong Kim
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea.
| |
Collapse
|
30
|
Huang Y, Lin C, He F, Li Z, Guan Y, Hu Q, Hu J. Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions, H 2O 2 and relevant gene expression. BMC PLANT BIOLOGY 2017; 17:1. [PMID: 28049439 PMCID: PMC5209872 DOI: 10.1186/s12870-016-0951-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/13/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND The low seed vigor and poor field emergence are main factors that restricting the extension of sweet corn in China. Spermidine (Spd) plays an important role in plant growth and development, but little is known about the effect of Spd on sweet corn seed germination. Therefore the effect of exogenous Spd on seed germination and physiological and biochemical changes during seed imbibition of Xiantian No.5 were investigated in this study. RESULTS Spd soaking treatment not only improved seed germination percentage but also significantly enhanced seed vigor which was indicated by higher germination index, vigor index, shoot heights and dry weights of shoot and root compared with the control; while exogenous CHA, the biosynthesis inhibitor of Spd, significantly inhibited seed germination and declined seed vigor. Spd application significantly increased endogenous Spd, gibberellins and ethylene contents and simultaneously reduced ABA concentration in embryos during seed imbibition. In addition, the effects of exogenous Spd on H2O2 and MDA productions were also analyzed. Enhanced H2O2 concentration was observed in Spd-treated seed embryo, while no significant difference of MDA level in seed embryo was observed between Spd treatment and control. However, the lower H2O2 and significantly higher MDA contents than control were detected in CHA-treated seed embryos. CONCLUSIONS The results suggested that Spd contributing to fast seed germination and high seed vigor of sweet corn might be closely related with the metabolism of hormones including gibberellins, ABA and ethylene, and with the increase of H2O2 in the radical produced partly from Spd oxidation. In addition, Spd might play an important role in cell membrane integrity maintaining.
Collapse
Affiliation(s)
- Yutao Huang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Cheng Lin
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Fei He
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Zhan Li
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Yajing Guan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Qijuan Hu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Jin Hu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| |
Collapse
|
31
|
Zhang S, Zhang D, Fan S, Du L, Shen Y, Xing L, Li Y, Ma J, Han M. Effect of exogenous GA3 and its inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in 'Fuji' apple (Malus domestica Borkh.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:178-186. [PMID: 27295342 DOI: 10.1016/j.plaphy.2016.06.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 05/18/2023]
Abstract
Gibberellins (GAs) reduce apple (Malus domestica) flowering rates; however, the mechanism of their action is not fully understood. To gain a better insight into gibberellin-regulated flowering, here, 5 year-old 'Fuji' apple trees were used to explore the responses of hormones [GA1+3, GA4+7, indole-3-acetic acid (IAA), zeatin-riboside (ZR), and abscisic acid (ABA)], and gibberellin- and flowering-associated genes, to applications of gibberellin acid (GA3) and paclobutrazol (PAC). Results showed that GA3 relatively stimulated vegetative growth and delayed floral induction. Moreover, GA3 spraying significantly affected contents of all endogenous hormones and all the genes tested in at least one time points: the content of endogenous GAs was increased instantly and that of ZR was reduced at 44 days after fullbloom (DAF), which might constitute an unfavorable factor for flower formation; MdKO (ent-kaurene oxidase gene) and MdGA20ox (GA20 oxidase gene) were significantly repressed by a high level of GAs through the negative feedback regulation of GA; additionally, the MdSPLs (SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE) in this study were all significantly repressed by GA3 but promoted by PAC; the expression of MdFT1/2 (FLOWERING LOCUS T), MdSOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1) and MdAP1 (APETALA1) in GA3-treated buds changed in the same way, and they were repressed at 44 DAF. We suppose that GA3 spraying disrupts the balance between ZR and GAs, and inhibits floral induction, probably by suppressing MdSPLs and the floral integrators in flower induction, which ultimately contributed to inhibiting flower formation.
Collapse
Affiliation(s)
- Songwen Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, China.
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, China.
| | - Sheng Fan
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, China.
| | - Lisha Du
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, China.
| | - Yawen Shen
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, China.
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, China.
| | - Youmei Li
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, China.
| | - Juanjuan Ma
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, China.
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, China.
| |
Collapse
|
32
|
Cheng F, Cheng Z, Meng H, Tang X. The Garlic Allelochemical Diallyl Disulfide Affects Tomato Root Growth by Influencing Cell Division, Phytohormone Balance and Expansin Gene Expression. FRONTIERS IN PLANT SCIENCE 2016; 7:1199. [PMID: 27555862 PMCID: PMC4977361 DOI: 10.3389/fpls.2016.01199] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 07/27/2016] [Indexed: 05/27/2023]
Abstract
Diallyl disulfide (DADS) is a volatile organosulfur compound derived from garlic (Allium sativum L.), and it is known as an allelochemical responsible for the strong allelopathic potential of garlic. The anticancer properties of DADS have been studied in experimental animals and various types of cancer cells, but to date, little is known about its mode of action as an allelochemical at the cytological level. The current research presents further studies on the effects of DADS on tomato (Solanum lycopersicum L.) seed germination, root growth, mitotic index, and cell size in root meristem, as well as the phytohormone levels and expression profile of auxin biosynthesis genes (FZYs), auxin transport genes (SlPINs), and expansin genes (EXPs) in tomato root. The results showed a biphasic, dose-dependent effect on tomato seed germination and root growth under different DADS concentrations. Lower concentrations (0.01-0.62 mM) of DADS significantly promoted root growth, whereas higher levels (6.20-20.67 mM) showed inhibitory effects. Cytological observations showed that the cell length of root meristem was increased and that the mitotic activity of meristematic cells in seedling root tips was enhanced at lower concentrations of DADS. In contrast, DADS at higher concentrations inhibited root growth by affecting both the length and division activity of meristematic cells. However, the cell width of the root meristem was not affected. Additionally, DADS increased the IAA and ZR contents of seedling roots in a dose-dependent manner. The influence on IAA content may be mediated by the up-regulation of FZYs and PINs. Further investigation into the underlying mechanism revealed that the expression levels of tomato EXPs were significantly affected by DADS. The expression levels of EXPB2 and beta-expansin precursor were increased after 3 d, and those of EXP1, EXPB3 and EXLB1 were increased after 5 d of DADS treatment (0.41 mM). This result suggests that tomato root growth may be regulated by multiple expansin genes at different developmental stages. Therefore, we conclude that the effects of DADS on the root growth of tomato seedlings are likely caused by changes associated with cell division, phytohormones, and the expression levels of expansin genes.
Collapse
Affiliation(s)
| | - Zhihui Cheng
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
| | | | | |
Collapse
|
33
|
Wuddineh WA, Mazarei M, Zhang JY, Turner GB, Sykes RW, Decker SR, Davis MF, Udvardi MK, Stewart CN. Identification and Overexpression of a Knotted1-Like Transcription Factor in Switchgrass (Panicum virgatum L.) for Lignocellulosic Feedstock Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:520. [PMID: 27200006 PMCID: PMC4848298 DOI: 10.3389/fpls.2016.00520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/01/2016] [Indexed: 05/18/2023]
Abstract
High biomass production and wide adaptation has made switchgrass (Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Gene expression of the endogenous PvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox) gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox) genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signaling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our results demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics.
Collapse
Affiliation(s)
- Wegi A. Wuddineh
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Ji-Yi Zhang
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- Plant Biology Division, Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Geoffrey B. Turner
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- National Renewable Energy Laboratory, GoldenCO, USA
| | - Robert W. Sykes
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- National Renewable Energy Laboratory, GoldenCO, USA
| | - Stephen R. Decker
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- National Renewable Energy Laboratory, GoldenCO, USA
| | - Mark F. Davis
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- National Renewable Energy Laboratory, GoldenCO, USA
| | - Michael K. Udvardi
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- Plant Biology Division, Samuel Roberts Noble FoundationArdmore, OK, USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- *Correspondence: C. Neal Stewart Jr.,
| |
Collapse
|
34
|
Ribeiro LM, Garcia QS, Müller M, Munné-Bosch S. Tissue-specific hormonal profiling during dormancy release in macaw palm seeds. PHYSIOLOGIA PLANTARUM 2015; 153:627-642. [PMID: 25174374 DOI: 10.1111/ppl.12269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/01/2014] [Accepted: 07/14/2014] [Indexed: 06/03/2023]
Abstract
Little is known about the control exerted by hormones in specific tissues during germination and post-germinative development in monocot seeds, whose embryos have complex structures and can remain dormant for long periods of time. Here the tissue-specific hormonal profile of macaw palm (Acrocomia aculeata) seeds overcoming dormancy and seedling during initial development was examined. Endogenous hormonal concentrations were determined in the cotyledonary petiole, haustorium, operculum, endosperm adjacent to the embryo and peripheral endosperm of dry dormant seeds, imbibed seeds trapped in phase I of germination, and germinating (phase 2 and phase 3) seeds 2, 5, 10 and 15 days after sowing. Evaluations were performed on seeds treated for overcoming dormancy by removal of the operculum and by immersion in a gibberellic acid (GA3 ) solution. Removal of the operculum effectively helped in overcoming dormancy, which was associated with the synthesis of active gibberellins (GAs) and cytokinins (CKs), as well as reductions of abscisic acid (ABA) in the cotyledonary petiole. In imbibed seeds trapped in phase I of germination, exogenous GA3 caused an increase in active GAs in the cotyledonary petiole and operculum and reduction in ABA in the operculum. Initial seedling development was associated with increases in the CK/auxin ratio in the haustorium and GA levels in the endosperm which is possibly related to the mobilization of metabolic reserves. Increases in salicylic acid (SA) and jasmonic acid (JA) concentrations were associated with the development of the vegetative axis. Hormones play a crucial tissue-specific role in the control of dormancy, germination and initial development of seedlings in macaw palm, including a central role not only for GAs and ABA, but also for CKs and other hormones.
Collapse
Affiliation(s)
- Leonardo M Ribeiro
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, 39.401-089, Brazil
| | | | | | | |
Collapse
|
35
|
Yano K, Aya K, Hirano K, Ordonio RL, Ueguchi-Tanaka M, Matsuoka M. Comprehensive gene expression analysis of rice aleurone cells: probing the existence of an alternative gibberellin receptor. PLANT PHYSIOLOGY 2015; 167:531-44. [PMID: 25511432 PMCID: PMC4326742 DOI: 10.1104/pp.114.247940] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/14/2014] [Indexed: 05/21/2023]
Abstract
Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells.
Collapse
Affiliation(s)
- Kenji Yano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Koichiro Aya
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | | | - Miyako Ueguchi-Tanaka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
36
|
Liu Z, Cheng Q, Sun Y, Dai H, Song G, Guo Z, Qu X, Jiang D, Liu C, Wang W, Yang D. A SNP in OsMCA1 responding for a plant architecture defect by deactivation of bioactive GA in rice. PLANT MOLECULAR BIOLOGY 2015; 87:17-30. [PMID: 25307286 DOI: 10.1007/s11103-014-0257-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/08/2014] [Indexed: 05/26/2023]
Abstract
Plant architecture directly affects biomass in higher plants, especially grain yields in agricultural crops. In this study, we characterized a recessive mutant, plant architecture determinant (pad), derived from the Oryza sativa ssp. indica cultivar MH86. The mutant exhibited severe dwarf phenotypes, including shorter and stunted leaves, fewer secondary branches during both the vegetative and reproductive growth stages. Cytological studies revealed that pad mutant growth defects are primarily due to the inhibition of cell expansion. The PAD gene was isolated using a map-based cloning strategy. It encodes a plasma membrane protein OsMCA1 and a SNP responsible for a single amino acid change was found in the mutant. PAD was universally expressed in rice tissues from the vegetative to reproductive growth stages, especially in seedlings, nodes and rachillae. Quantitative real-time PCR analysis revealed that the most of the genes responding to gibberellin (GA) metabolism were up-regulated in pad mutant internodes. The endogenous GA content measurement revealed that the levels of GA1 were significantly decreased in the third internode of pad mutants. Moreover, a GA response assay suggested that OsMCA1/PAD might be involved in the regulation of GA metabolism and signal transduction. Our results revealed the pad is a loss-of-function mutant of the OsMCA1/PAD, leading to upregulation of genes related to GA deactivation, which decreased bioactive GA levels.
Collapse
Affiliation(s)
- Zhenwei Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, 430072, Hubei Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Xu M, Lu Y, Yang H, He J, Hu Z, Hu X, Luan M, Zhang L, Fan Y, Wang L. ZmGRF, a GA regulatory factor from maize, promotes flowering and plant growth in Arabidopsis. PLANT MOLECULAR BIOLOGY 2015; 87:157-67. [PMID: 25477078 DOI: 10.1007/s11103-014-0267-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 11/13/2014] [Indexed: 05/26/2023]
Abstract
Transcription factors that act as positive regulators of gibberellin (GA) biosynthetic genes in plants are not well understood. A nuclear-localized basic leucine zipper transcription factor, ZmGRF, was isolated from maize. The core DNA sequence motif recognized for binding by ZmGRF was CCANNTGGC. ZmGRF overexpression in transgenic Arabidopsis plants promoted flowering, stem elongation, and cell expansion. Chromatin immunoprecipitation assays revealed that ZmGRF bound directly to the cis-element CCANNTGGC in the promoter of the Arabidopsis ent-kaurene oxidase (AtKO1) gene and promoted AtKO1 expression. GA4 content increased by 372-567% in transgenic Arabidopsis plants overexpressing ZmGRF compared to wild-type control plants. The GIBBERELLIN-INSENSITIVE DWARF1 gene, which encodes a GA receptor, was also upregulated and the growth-repressing DELLA protein gene GA INSENSITIVE was downregulated. Our results showed ZmGRF functioned through the GA-signaling pathway.
Collapse
Affiliation(s)
- Miaoyun Xu
- Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Expression and purification of a GRAS domain of SLR1, the rice DELLA protein. Protein Expr Purif 2014; 95:248-58. [PMID: 24463428 DOI: 10.1016/j.pep.2014.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 11/24/2022]
Abstract
GRAS proteins belong to a plant specific protein family that participates in diverse and important functions in growth and development. GRAS proteins are typically composed of a variable N-terminal domain and highly conserved C-terminal GRAS domain. Despite the importance of the GRAS domain, little biochemical or structural analyses have been reported, mainly due to difficulties with purification of sufficient quality and quantity of protein. This study is focused on one of the most extensively studied GRAS proteins, the rice DELLA protein (SLR1), which is known to be involved in gibberellin (GA) signaling. Using a baculovirus-insect cell expression system we have achieved overproduction and purification of full-length SLR1. Limited proteolysis of the full-length SLR1 indicated that a region including the entire GRAS domain (SLR1(206-625)) is protease resistant. Based on those results, we have constructed an expression and purification system of the GRAS domain (SLR1(206-625)) in Escherichia coli. Several physicochemical assays have indicated that the folded structure of the GRAS domain is rich in secondary structural elements and that alanine substitutions for six cysteine residues improves protein folding without impairing function. Furthermore, by NMR spectroscopy we have observed direct interaction between the purified GRAS domain and the GA receptor GID1. Taken together, our purified preparation of the GRAS domain of SLR1 is suitable for further structural and functional studies that will contribute to precise understanding of the plant regulation mechanism through DELLA and GRAS proteins.
Collapse
|
39
|
Roumeliotis E, Kloosterman B, Oortwijn M, Lange T, Visser RGF, Bachem CWB. Down regulation of StGA3ox genes in potato results in altered GA content and affect plant and tuber growth characteristics. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1228-1234. [PMID: 23683509 DOI: 10.1016/j.jplph.2013.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/19/2013] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
GA biosynthesis and catabolism has been shown to play an important role in regulating tuberization in potato. Active GAs are inactivated in the stolon tips shortly after induction to tuberization. Overexpression of a GA inactivation gene results in an earlier tuberization phenotype, while reducing expression of the same gene results in delayed tuberization. In addition, overexpression of genes involved in GA biosynthesis results in delayed tuberization, while decreased expression of those genes results in earlied tuberization. The final step in GA biosynthesis is catalysed by StGA3ox1 and StGA3ox2 activity, that convert inactive forms of GA into active GA1 and GA4. In this study we cloned StGA3ox2 gene in an RNAi construct and used this construct to transform potato plants. The StGA3ox2 silenced plants were smaller and had shorter internodes. In addition, we assayed the concentrations of various GAs in the transgenic plants and showed an altered GA content. No difference was observed on the time point of tuber initiation. However, the transgenic clones had increased number of tubers with the same yield, resulting in smaller average tuber weight. In addition, we cloned the promoter of StGA3ox2 to direct expression of the GUS reporter gene to visualize the sites of GA biosynthesis in the potato plant. Finally, we discuss how changes of several GA levels can have an impact on shoot, stolon and tuber development, as well as the possible mechanisms that mediate feed-forward and feed-back regulation loops in the GA biosynthetic pathway in potato.
Collapse
|
40
|
Wang GK, Zhang M, Gong JF, Guo QF, Feng YN, Wang W. Increased gibberellin contents contribute to accelerated growth and development of transgenic tobacco overexpressing a wheat ubiquitin gene. PLANT CELL REPORTS 2012; 31:2215-27. [PMID: 22926030 DOI: 10.1007/s00299-012-1331-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/28/2012] [Accepted: 08/02/2012] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE Overexpressing TaUb2 promoted stem growth and resulted in early flowering in transgenic tobacco plants. Ubiquitin are involved in the production, metabolism and proper function of gibberellin. The ubiquitin-26S proteasome system (UPS), in which ubiquitin (Ub) functions as a marker, is a post-translational regulatory system that plays a prominent role in various biological processes. To investigate the impact of different Ub levels on plant growth and development, transgenic tobacco (Nicotiana tabacum L.) plants were engineered to express an Ub gene (TaUb2) from wheat (Triticum aestivum L.) under the control of cauliflower mosaic virus 35S promoter. Transgenic tobacco plants overexpressing TaUb2 demonstrated an accelerated growth rate at early stage and an early flowering phenotype in development. The preceding expression of MADS-box genes also corresponded to the accelerated developmental phenotypes of the transgenic tobacco plants compared to that of wild-type (WT). Total gibberellin (GA) and active GA contents in transgenic tobacco plants were higher than those in WT at the corresponding developmental stages, and some GA metabolism genes were upregulated. Treatment with GA(3) conferred a similarly accelerated grown rate in WT plants to that of transgenic tobacco plants, while growth was inhibited when transgenic tobacco plants were treated with a GA biosynthesis inhibitor. Thus, the results suggest that Ub are involved in the production, metabolism and proper function of GA, which is important in the regulation of plant growth and development.
Collapse
Affiliation(s)
- Guo-Kun Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Hirano K, Kouketu E, Katoh H, Aya K, Ueguchi-Tanaka M, Matsuoka M. The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:443-453. [PMID: 22429711 DOI: 10.1111/j.1365-313x.2012.05000.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
When the gibberellin (GA) receptor GIBBERELLIN INSENSITIVE DWARF 1 (GID1) binds to GA, GID1 interacts with DELLA proteins, repressors of GA signaling. This interaction inhibits the suppressive function of DELLA protein and thereby activates the GA response. However, how DELLA proteins exert their suppressive function and how GID1s inhibit suppressive function of DELLA proteins is unclear. By yeast one-hybrid experiments and transient expression of the N-terminal region of rice DELLA protein (SLR1) in rice callus, we established that the N-terminal DELLA/TVHYNP motif of SLR1 possesses transactivation activity. When SLR1 proteins with various deletions were over-expressed in rice, the severity of dwarfism correlated with the transactivation activity observed in yeast, indicating that SLR1 suppresses plant growth through transactivation activity. This activity was suppressed by the GA-dependent GID1-SLR1 interaction, which may explain why GA responses are induced in the presence of GA. The C-terminal GRAS domain of SLR1 also exhibits a suppressive function on plant growth, possibly by directly or indirectly interacting with the promoter region of target genes. Our results indicate that the N-terminal region of SLR1 has two roles in GA signaling: interaction with GID1 and transactivation activity.
Collapse
Affiliation(s)
- Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The GAs (gibberellins) comprise a large group of diterpenoid carboxylic acids that are ubiquitous in higher plants, in which certain members function as endogenous growth regulators, promoting organ expansion and developmental changes. These compounds are also produced by some species of lower plants, fungi and bacteria, although, in contrast to higher plants, the function of GAs in these organisms has only recently been investigated and is still unclear. In higher plants, GAs are synthesized by the action of terpene cyclases, cytochrome P450 mono-oxygenases and 2-oxoglutarate-dependent dioxygenases localized, respectively, in plastids, the endomembrane system and the cytosol. The concentration of biologically active GAs at their sites of action is tightly regulated and is moderated by numerous developmental and environmental cues. Recent research has focused on regulatory mechanisms, acting primarily on expression of the genes that encode the dioxygenases involved in biosynthesis and deactivation. The present review discusses the current state of knowledge on GA metabolism with particular emphasis on regulation, including the complex mechanisms for the maintenance of GA homoeostasis.
Collapse
|
43
|
Osnato M, Castillejo C, Matías-Hernández L, Pelaz S. TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nat Commun 2012; 3:808. [PMID: 22549837 DOI: 10.1038/ncomms1810] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 03/29/2012] [Indexed: 11/09/2022] Open
Abstract
In Arabidopsis, FLOWERING LOCUS T (FT) promotes flowering in response to long days in the photoperiod pathway, while signalling downstream gibberellin (GA) perception is critical for flowering under short days. Previously we have established that the TEMPRANILLO (TEM) genes have a pivotal role in the direct repression of FT. Here we show that TEM genes directly regulate the expression of the GA(4) biosynthetic genes GA 3-oxidase1 and 2 (GA3OX1 and GA3OX2). Plants overexpressing TEM genes resemble GA-deficient mutants, and conversely, TEM downregulation give rise to elongated hypocotyls perhaps as a result of an increase in GA content. We consistently find that TEM1 represses GA3OX1 and GA3OX2 by directly binding a regulatory region positioned in the first exon. Our results indicate that TEM genes seem to link the photoperiod and GA-dependent flowering pathways, controlling floral transition under inductive and non-inductive day lengths through the regulation of the floral integrators.
Collapse
Affiliation(s)
- Michela Osnato
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Molecular Genetics Department, Parc de Recerca UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | | | | | | |
Collapse
|
44
|
Fukazawa J, Nakata M, Ito T, Matsushita A, Yamaguchi S, Takahashi Y. bZIP transcription factor RSG controls the feedback regulation of NtGA20ox1 via intracellular localization and epigenetic mechanism. PLANT SIGNALING & BEHAVIOR 2011; 6:26-8. [PMID: 21248488 PMCID: PMC3122000 DOI: 10.4161/psb.6.1.14114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 11/04/2010] [Indexed: 05/05/2023]
Abstract
Gibberellins (GAs) are phytohormones that regulate growth and development throughout the life cycle of plants. Negative feedback contributes to homeostasis of GA levels. DELLA proteins are involved in this process. Since DELLA proteins do not have apparent DNA binding motifs, other DNA binding proteins might act as a mediator downstream of DELLA proteins in the GA feedback regulation. In this review, we highlight the mechanisms of GA feedback regulation, specifically the differential regulation of GA 20-oxidase (GA20ox) and GA 3-oxidase (GA3ox) by transcription factors. RSG (REPRESSION OF SHOOT GROWTH) is a tobacco (Nicotiana tabacum) transcriptional activator with a basic leucine zipper domain that controls the levels of endogenous GAs through the regulation of GA biosynthesis genes. Recently we reported that RSG not only regulates the expression of ent-kaurene oxidase gene but is also involved in the negative feedback of NtGA20ox1 by GAs. RSG plays a role in the homeostasis of GAs through direct binding to the NtGA20ox1 promoter triggered by a decrease in GA levels in the cell. Furthermore, decreases in GA levels promote modifications of active histone marks on the NtGA20ox1 promoter. We have developed a hypothetical model to explain how RSG regulates dual target genes via epigenetic regulation.
Collapse
|
45
|
Yamamoto Y, Hirai T, Yamamoto E, Kawamura M, Sato T, Kitano H, Matsuoka M, Ueguchi-Tanaka M. A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins. THE PLANT CELL 2010; 22:3589-602. [PMID: 21098733 PMCID: PMC3015124 DOI: 10.1105/tpc.110.074542] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 09/21/2010] [Accepted: 11/01/2010] [Indexed: 05/20/2023]
Abstract
To investigate gibberellin (GA) signaling using the rice (Oryza sativa) GA receptor GIBBERELLIN-INSENSITIVE DWARF1 (GID1) mutant gid1-8, we isolated a suppressor mutant, Suppressor of gid1-1 (Sgd-1). Sgd-1 is an intragenic mutant containing the original gid1-8 mutation (L45F) and an additional amino acid substitution (P99S) in the loop region. GID1(P99S) interacts with the rice DELLA protein SLENDER RICE1 (SLR1), even in the absence of GA. Substitution of the 99th Pro with other amino acids revealed that substitution with Ala (P99A) caused the highest level of GA-independent interaction. Physicochemical analysis using surface plasmon resonance revealed that GID1(P99A) has smaller K(a) (association) and K(d) (dissociation) values for GA(4) than does wild-type GID1. This suggests that the GID1(P99A) lid is at least partially closed, resulting in both GA-independent and GA-hypersensitive interactions with SLR1. One of the three Arabidopsis thaliana GID1s, At GID1b, can also interact with DELLA proteins in the absence of GA, so we investigated whether GA-independent interaction of At GID1b depends on a mechanism similar to that of rice GID1(P99A). Substitution of the loop region or a few amino acids of At GID1b with those of At GID1a diminished its GA-independent interaction with GAI while maintaining the GA-dependent interaction. Soybean (Glycine max) and Brassica napus also have GID1s similar to At GID1b, indicating that these unique GID1s occur in various dicots and may have important functions in these plants.
Collapse
Affiliation(s)
- Yuko Yamamoto
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Takaaki Hirai
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Eiji Yamamoto
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Mayuko Kawamura
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Tomomi Sato
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Miyako Ueguchi-Tanaka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
- Address correspondence to
| |
Collapse
|
46
|
Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, Kitano H, Ueguchi-Tanaka M, Matsuoka M. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. THE PLANT CELL 2010; 22:2680-96. [PMID: 20716699 PMCID: PMC2947161 DOI: 10.1105/tpc.110.075549] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/09/2010] [Accepted: 07/28/2010] [Indexed: 05/18/2023]
Abstract
The DELLA protein SLENDER RICE1 (SLR1) is a repressor of gibberellin (GA) signaling in rice (Oryza sativa), and most of the GA-associated responses are induced upon SLR1 degradation. It is assumed that interaction between GIBBERELLIN INSENSITIVE DWARF1 (GID1) and the N-terminal DELLA/TVHYNP motif of SLR1 triggers F-box protein GID2-mediated SLR1 degradation. We identified a semidominant dwarf mutant, Slr1-d4, which contains a mutation in the region encoding the C-terminal GRAS domain of SLR1 (SLR1(G576V)). The GA-dependent degradation of SLR1(G576V) was reduced in Slr1-d4, and compared with SLR1, SLR1(G576V) showed reduced interaction with GID1 and almost none with GID2 when tested in yeast cells. Surface plasmon resonance of GID1-SLR1 and GID1-SLR1(G576V) interactions revealed that the GRAS domain of SLR1 functions to stabilize the GID1-SLR1 interaction by reducing its dissociation rate and that the G576V substitution in SLR1 diminishes this stability. These results suggest that the stable interaction of GID1-SLR1 through the GRAS domain is essential for the recognition of SLR1 by GID2. We propose that when the DELLA/TVHYNP motif of SLR1 binds with GID1, it enables the GRAS domain of SLR1 to interact with GID1 and that the stable GID1-SLR1 complex is efficiently recognized by GID2.
Collapse
Affiliation(s)
- Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Kenji Asano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroyuki Tsuji
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Mayuko Kawamura
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | | | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
- Address correspondence to
| |
Collapse
|
47
|
Fukazawa J, Nakata M, Ito T, Yamaguchi S, Takahashi Y. The transcription factor RSG regulates negative feedback of NtGA20ox1 encoding GA 20-oxidase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:1035-45. [PMID: 20345601 DOI: 10.1111/j.1365-313x.2010.04215.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gibberellins (GAs) are phytohormones that regulate growth and development throughout the life cycle of plants. RSG (REPRESSION OF SHOOT GROWTH) is a tobacco (Nicotiana tabacum) transcriptional activator with a basic leucine zipper domain that regulates the endogenous amount of GAs by control of GA biosynthetic enzymes. Negative feedback contributes to homeostasis of the GA levels. Previous studies suggested that RSG is directly or indirectly involved in the GA negative feedback of NtGA20ox1 encoding GA 20-oxidase. Using transgenic tobacco plants, we have identified a cis-acting region that is responsible for the feedback regulation of NtGA20ox1. This region contains an RSG-binding sequence. A mutation in the RSG-binding sequence abolished negative feedback of NtGA20ox1 in transgenic plants. Chromatin immunoprecipitation (ChIP) assays showed that RSG binds to the NtGA20ox1 promoter in vivo in response to a decrease in GA levels, and that this binding is abolished within 3 h after GA treatment. Furthermore, decreases in GA levels promote modifications of active histone marks in the promoter of NtGA20ox1. Our results suggest that RSG plays a role in the homeostasis of GAs through direct binding to the NtGA20ox1 promoter.
Collapse
Affiliation(s)
- Jutarou Fukazawa
- RIKEN Plant Science Center, Suehirocho 1-7-22, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | |
Collapse
|
48
|
Bolduc N, Hake S. The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. THE PLANT CELL 2009; 21:1647-58. [PMID: 19567707 PMCID: PMC2714931 DOI: 10.1105/tpc.109.068221] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/31/2009] [Accepted: 06/08/2009] [Indexed: 05/18/2023]
Abstract
KNOTTED1 (KN1)-like homeobox (KNOX) transcription factors are involved in the establishment and maintenance of plant meristems; however, few direct targets of KNOX proteins have been recognized. Using a combination of double mutant analysis and biochemistry, we found that in maize (Zea mays), KN1 negatively modulates the accumulation of gibberellin (GA) through the control of ga2ox1, which codes for an enzyme that inactivates GA. The ga2ox1 mRNA level is elevated in immature leaves of dominant KNOX mutants and downregulated in reproductive meristems of the null allele kn1-e1. KN1 binds in vivo to an intron of ga2ox1 through a cis-regulatory element containing two TGAC motifs. VP16-KN1 activates transcription in planta from a chimeric promoter containing this binding site. The domains of expression of kn1 and ga2ox1 mRNAs overlap at the base of the shoot apical meristem and the base of newly initiated leaves, suggesting that KN1-mediated activation of ga2ox1 maintains a boundary between meristem cell identity and rapidly elongating cells of the shoot. The KN1 binding site is conserved in ga2ox1 genes of different grasses, suggesting that the local regulation of bioactive GA levels through KNOX proteins is a common theme in grasses.
Collapse
Affiliation(s)
- Nathalie Bolduc
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, University of California, Albany, California 94710, USA
| | | |
Collapse
|
49
|
Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice. Mol Genet Genomics 2008; 281:223-31. [PMID: 19066966 DOI: 10.1007/s00438-008-0406-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
Abstract
sd1 is known as the 'green revolution' gene in rice because its application in rice breeding has dramatically increased rice yield. Since the 'green revolution,' sd1 has been extensively used to produce modern semi-dwarf varieties. The extensive use of limited dwarfing sources may, however, cause a bottleneck effect in the genetic background of rice varieties. To circumvent this problem, novel and useful sources of dwarf genes must be identified. In this study, we identified three semi-dominant dwarf mutants. These mutants were categorized as dn-type dwarf mutants according to the elongation pattern of internodes. Gibberellin (GA) response tests showed that the mutants were still responsive to GA, although at a reduced rate. Map-based cloning revealed that the dwarf phenotype in these mutants was caused by gain-of-function mutations in the N-terminal region of SLR1. Degradation of the SLR1 protein in these mutants occurred later than in the wild type. Reduced interaction abilities of the SLR1 protein in these mutants with GID1 were also observed using the yeast two-hybrid system. Crossing experiments indicated that with the use of an appropriate genetic background, the semi-dominant dwarf alleles identified in this study could be used to alleviate the deficiency of dwarfing genes for breeding applications.
Collapse
|
50
|
Ueguchi-Tanaka M, Hirano K, Hasegawa Y, Kitano H, Matsuoka M. Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the gid2 mutant. THE PLANT CELL 2008; 20:2437-46. [PMID: 18827181 PMCID: PMC2570727 DOI: 10.1105/tpc.108.061648] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 08/17/2008] [Accepted: 09/11/2008] [Indexed: 05/20/2023]
Abstract
The rice (Oryza sativa) DELLA protein SLR1 acts as a repressor of gibberellin (GA) signaling. GA perception by GID1 causes SLR1 protein degradation involving the F-box protein GID2; this triggers GA-associated responses such as shoot elongation and seed germination. In GA-insensitive and GA biosynthesis mutants, SLENDER RICE1 (SLR1) accumulates to high levels, and the severity of dwarfism is usually correlated with the level of SLR1 accumulation. An exception is the GA-insensitive F-box mutant gid2, which shows milder dwarfism than mutants such as gid1 and cps even though it accumulates higher levels of SLR1. The level of SLR1 protein in gid2 was decreased by loss of GID1 function or treatment with a GA biosynthesis inhibitor, and dwarfism was enhanced. Conversely, overproduction of GID1 or treatment with GA(3) increased the SLR1 level in gid2 and reduced dwarfism. These results indicate that derepression of SLR1 repressive activity can be accomplished by GA and GID1 alone and does not require F-box (GID2) function. Evidence for GA signaling without GID2 was also provided by the expression behavior of GA-regulated genes such as GA-20oxidase1, GID1, and SLR1 in the gid2 mutant. Based on these observations, we propose a model for the release of GA suppression that does not require DELLA protein degradation.
Collapse
|