1
|
Wang C, Wang C, Xiao C, Zhang W, Guo Y, Qu M, Song Q, Qi X, Zou B. Tumor-Selective Gene Therapy: Using Hairpin DNA Oligonucleotides to Trigger Cleavage of Target RNA by Endogenous flap endonuclease 1 (FEN 1) Highly Expressed in Tumor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410146. [PMID: 40156152 DOI: 10.1002/smll.202410146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/27/2025] [Indexed: 04/01/2025]
Abstract
Nucleic acid drugs, which trigger gene silencing by hybridizing with target genes, have shown great potential in targeting those undruggable targets. However, most of the existing nucleic acid drugs are only sequence specific for target genes and lack cellular or tissue selectivity, which challenges their therapeutic safety. Here, the study proposes a tumor cell-specific gene silencing strategy by using hairpin DNA oligonucleotides to trigger target RNA degrading by highly expressed endogenous flap endonuclease 1 (FEN1) in tumor cells, for selective tumor therapy. Using Kirsten rat sarcoma viral oncogene homolog (KRASG12S) and B-cell lymphoma 2 (Bcl-2) genes as targets, it is verified that the hairpin DNA oligonucleotides show cytotoxicity only to tumor cells but very low effects on normal cells. In addition, hairpin DNA oligonucleotides designed for KRAS inhibition, which are encapsulated in lipid nanoparticles, inhibit tumor growth in mice and demonstrate excellent antitumor efficacy in combination with gefitinib, but has little effect on normal tissues, suggesting that the proposed strategy enables highly selective tumor therapy and has the potential to give rise to a new class of nucleic acid drugs.
Collapse
Affiliation(s)
- Chunlu Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chenxin Xiao
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Weijie Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Guo
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Muqing Qu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qinxin Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaole Qi
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
2
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
3
|
Abstract
Deregulation of transcription factors is critical to hallmarks of cancer. Genetic mutations, gene fusions, amplifications or deletions, epigenetic alternations, and aberrant post-transcriptional modification of transcription factors are involved in the regulation of various stages of carcinogenesis, including cancer initiation, progression, and metastasis. Thus, targeting the dysfunctional transcription factors may lead to new cancer therapeutic strategies. However, transcription factors are conventionally considered as "undruggable." Here, we summarize the recent progresses in understanding the regulation of transcription factors in cancers and strategies to target transcription factors and co-factors for preclinical and clinical drug development, particularly focusing on c-Myc, YAP/TAZ, and β-catenin due to their significance and interplays in cancer.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
4
|
Dhanasekaran R, Park J, Yevtodiyenko A, Bellovin DI, Adam SJ, Kd AR, Gabay M, Fernando H, Arzeno J, Arjunan V, Gryanzov S, Felsher DW. MYC ASO Impedes Tumorigenesis and Elicits Oncogene Addiction in Autochthonous Transgenic Mouse Models of HCC and RCC. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:850-859. [PMID: 32805488 PMCID: PMC7452286 DOI: 10.1016/j.omtn.2020.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 12/27/2022]
Abstract
The MYC oncogene is dysregulated in most human cancers and hence is an attractive target for cancer therapy. We and others have shown experimentally in conditional transgenic mouse models that suppression of the MYC oncogene is sufficient to induce rapid and sustained tumor regression, a phenomenon known as oncogene addiction. However, it is unclear whether a therapy that targets the MYC oncogene could similarly elicit oncogene addiction. In this study, we report that using antisense oligonucleotides (ASOs) to target and reduce the expression of MYC impedes tumor progression and phenotypically elicits oncogene addiction in transgenic mouse models of MYC-driven primary hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC). Quantitative image analysis of MRI was used to demonstrate the inhibition of HCC and RCC progression. After 4 weeks of drug treatment, tumors had regressed histologically. ASOs depleted MYC mRNA and protein expression in primary tumors in vivo, as demonstrated by real-time PCR and immunohistochemistry. Treatment with MYC ASO in vivo, but not with a control ASO, decreased proliferation, induced apoptosis, increased senescence, and remodeled the tumor microenvironment by recruitment of CD4+ T cells. Importantly, although MYC ASO reduced both mouse Myc and transgenic human MYC, the ASO was not associated with significant toxicity. Lastly, we demonstrate that MYC ASO inhibits the growth of human liver cancer xenografts in vivo. Our results illustrate that targeting MYC expression in vivo using ASO can suppress tumorigenesis by phenotypically eliciting both tumor-intrinsic and microenvironment hallmarks of oncogene addiction. Hence, MYC ASO therapy is a promising strategy to treat MYC-driven human cancers.
Collapse
Affiliation(s)
| | - Jangho Park
- Division of Oncology, Department of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alekesey Yevtodiyenko
- Division of Oncology, Department of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - David I Bellovin
- Division of Oncology, Department of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stacey J Adam
- Division of Oncology, Department of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anand Rajan Kd
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Meital Gabay
- Division of Oncology, Department of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hanan Fernando
- Division of Oncology, Department of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia Arzeno
- Division of Oncology, Department of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vinodhini Arjunan
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | | | - Dean W Felsher
- Division of Oncology, Department of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Filip D, Mraz M. The role of MYC in the transformation and aggressiveness of ‘indolent’ B-cell malignancies. Leuk Lymphoma 2019; 61:510-524. [DOI: 10.1080/10428194.2019.1675877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Daniel Filip
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Song W, Gregory DA, Al-Janabi H, Muthana M, Cai Z, Zhao X. Magnetic-silk/polyethyleneimine core-shell nanoparticles for targeted gene delivery into human breast cancer cells. Int J Pharm 2019; 555:322-336. [PMID: 30448314 DOI: 10.1016/j.ijpharm.2018.11.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
The lack of efficient and cost-effective methods for gene delivery has significantly hindered the applications of gene therapy. In this paper, a simple one step and cost effective salting-out method has been explored to fabricate silk-PEI nanoparticles (SPPs) and magnetic-silk/PEI core-shell nanoparticles (MSPPs) for targeted delivery of c-myc antisense oligodeoxynucleotides (ODNs) into MDA-MB-231 breast cancer cells. The size and zeta potential of the particles were controlled by adjusting the amount of silk fibroin in particle synthesis. Lower surface charges and reduced cytotoxicity were achieved for MSPPs compared with PEI coated magnetic nanoparticles (MPPs). Both SPPs and MSPPs were capable of delivering the ODNs into MDA-MB-231 cells and significantly inhibited the cell growth. Through magnetofection, high ODN uptake efficiencies (over 70%) were achieved within 20 min using MSPPs as carriers, exhibiting a significantly enhanced uptake effect compared to the same carriers via non-magnetofection. Both SPPs and MSPPs exhibited a significantly higher inhibition effect against MDA-MB-231 breast cancer cells compared to human dermal fibroblast (HDF) cells. Targeted ODN delivery was achieved using MSPPs with the help of a magnet, making them promising candidates for targeted gene therapy applications.
Collapse
Affiliation(s)
- Wenxing Song
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China
| | - David A Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Haider Al-Janabi
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, UK
| | - Munitta Muthana
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, UK
| | - Zhiqiang Cai
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
7
|
Costunolide and dehydrocostuslactone combination treatment inhibit breast cancer by inducing cell cycle arrest and apoptosis through c-Myc/p53 and AKT/14-3-3 pathway. Sci Rep 2017; 7:41254. [PMID: 28117370 PMCID: PMC5259746 DOI: 10.1038/srep41254] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/19/2016] [Indexed: 11/10/2022] Open
Abstract
Our previous studies demonstrated that volatile oil from saussurea lappa root (VOSL), rich in two natural sesquiterpene lactones, costunolide (Cos) and dehydrocostuslactone (Dehy), exerts better anti-breast cancer efficacy and lower side effects than Cos or Dehy alone in vivo, however, their anti-cancer molecular mechanisms were still unknown. In this study, we investigated the underlying mechanisms of Cos and Dehy combination treatment (CD) on breast cancer cells through proteomics technology coupled with Western blot validation. Ingenuity Pathways Analysis (IPA) results based on the differentially expressed proteins revealed that both VOSL and CD affect the 14-3-3-mediated signaling, c-Myc mediated apoptosis signaling and protein kinase A (PKA) signaling. Western blot coupled with cell cycle and apoptosis analysis validated the results of proteomics analysis. Cell cycle arrest and apoptosis were induced in a dose-dependent manner, and the expressions of p53 and p-14-3-3 were significantly up-regulated, whereas the expressions of c-Myc, p-AKT, p-BID were significantly down-regulated, furthermore, the ratio of BAX/BCL-2 were significantly increased in breast cancer cells after CD and VOSL treatment. The findings indicated that VOSL and CD could induce breast cancer cell cycle arrest and apoptosis through c-Myc/p53 and AKT/14-3-3 signaling pathways and may be novel effective candidates for breast cancer treatment.
Collapse
|
8
|
Abstract
MYC is a transcription factor, which not only directly modulates multiple aspects of transcription and co‐transcriptional processing (e.g. RNA‐Polymerase II initiation, elongation, and mRNA capping), but also indirectly influences several steps of RNA metabolism, including both constitutive and alternative splicing, mRNA stability, and translation efficiency. As MYC is an oncoprotein whose expression is deregulated in multiple human cancers, identifying its critical downstream activities in tumors is of key importance for designing effective therapeutic strategies. With this knowledge and recent technological advances, we now have multiple angles to reach the goal of targeting MYC in tumors, ranging from the direct reduction of MYC levels, to the dampening of selected house‐keeping functions in MYC‐overexpressing cells, to more targeted approaches based on MYC‐induced secondary effects.
Collapse
Affiliation(s)
- Cheryl M Koh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Arianna Sabò
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,National Cancer Centre Singapore, Singapore
| |
Collapse
|
9
|
KOH RHUNYIAN, SIM YICHI, TOH HWEEJIN, LIAM LIANGKUAN, LYNN ONG RACHAELSZE, YEW MEIYENG, TIONG YEELIAN, LING ANNAPICKKIONG, CHYE SOIMOI, NG KHUENYEN. Cytotoxic and apoptogenic effects of Strobilanthes crispa Blume extracts on nasopharyngeal cancer cells. Mol Med Rep 2015; 12:6293-9. [DOI: 10.3892/mmr.2015.4152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/03/2015] [Indexed: 11/06/2022] Open
|
10
|
Dasgupta S, Srinidhi S, Vishwanatha JK. Oncogenic activation in prostate cancer progression and metastasis: Molecular insights and future challenges. J Carcinog 2012; 11:4. [PMID: 22438770 PMCID: PMC3307249 DOI: 10.4103/1477-3163.93001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/01/2011] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is a leading cause of death among men in the United States, and currently early diagnosis and appropriate treatment remain key approaches for patient care. Molecularly prostate cancer cells carry multiple perturbations that generate malignant phenotype capable of uncontrolled growth, survival, and invasion-metastasis to other organs. These alterations are acquired both by genetic and epigenetic changes in tumor cells resulting in the activation of growth factor receptors, signaling proteins, kinases, transcription factors and coregulators, and multiple proteases required for the progression of the disease. Recent advances provide novel insights into the molecular functions of these oncogenic activators, implicating potential therapeutic targeting opportunities for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Subhamoy Dasgupta
- Department of Molecular Biology and Immunology, and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | | |
Collapse
|
11
|
Follis AV, Galea CA, Kriwacki RW. Intrinsic Protein Flexibility in Regulation of Cell Proliferation: Advantages for Signaling and Opportunities for Novel Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:27-49. [DOI: 10.1007/978-1-4614-0659-4_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
12
|
Koh CM, Bieberich CJ, Dang CV, Nelson WG, Yegnasubramanian S, De Marzo AM. MYC and Prostate Cancer. Genes Cancer 2011; 1:617-28. [PMID: 21779461 DOI: 10.1177/1947601910379132] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer, the majority of which is adenocarcinoma, is the most common epithelial cancer affecting a majority of elderly men in Western nations. Its manifestation, however, varies from clinically asymptomatic insidious neoplasms that progress slowly and do not threaten life to one that is highly aggressive with a propensity for metastatic spread and lethality if not treated in time. A number of somatic genetic and epigenetic alterations occur in prostate cancer cells. Some of these changes, such as loss of the tumor suppressors PTEN and p53, are linked to disease progression. Others, such as ETS gene fusions, appear to be linked more with early phases of the disease, such as invasion. Alterations in chromosome 8q24 in the region of MYC have also been linked to disease aggressiveness for many years. However, a number of recent studies in human tissues have indicated that MYC appears to be activated at the earliest phases of prostate cancer (e.g., in tumor-initiating cells) in prostatic intraepithelial neoplasia, a key precursor lesion to invasive prostatic adenocarcinoma. The initiation and early progression of prostate cancer can be recapitulated in genetically engineered mouse models, permitting a richer understanding of the cause and effects of loss of tumor suppressors and activation of MYC. The combination of studies using human tissues and mouse models paints an emerging molecular picture of prostate cancer development and early progression. This picture reveals that MYC contributes to disease initiation and progression by stimulating an embryonic stem cell-like signature characterized by an enrichment of genes involved in ribosome biogenesis and by repressing differentiation. These insights pave the way to potential novel therapeutic concepts based on MYC biology.
Collapse
|
13
|
Rohan JNP, Weigel NL. 1Alpha,25-dihydroxyvitamin D3 reduces c-Myc expression, inhibiting proliferation and causing G1 accumulation in C4-2 prostate cancer cells. Endocrinology 2009; 150:2046-54. [PMID: 19164469 PMCID: PMC2671895 DOI: 10.1210/en.2008-1395] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is an inverse correlation between exposure to sunlight (the major source of vitamin D) and the risk for prostate cancer, the most common noncutaneous cancer and second most common cause of death from cancer in American men. The active metabolite of vitamin D, 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] acting through the vitamin D receptor decreases prostate cancer cell growth and invasiveness. The precise mechanisms by which 1,25(OH)(2)D(3) inhibits growth in prostate cancer have not been fully elucidated. Treatment with 1,25(OH)(2)D(3) causes an accumulation in the G(0)/G(1) phase of the cell cycle in several prostate cancer cell lines. One potential target known to regulate the G(0)/G(1) to S phase transition is c-Myc, a transcription factor whose overexpression is associated with a number of cancers including prostate cancer. We find that 1,25(OH)(2)D(3) reduces c-Myc expression in multiple prostate epithelial cell lines, including C4-2 cells, an androgen-independent prostate cancer cell line. Reducing c-Myc expression to the levels observed after 1,25(OH)(2)D(3) treatment resulted in a comparable decrease in proliferation and G(1) accumulation demonstrating that down-regulation of c-Myc is a major component in the growth-inhibitory actions of 1,25(OH)2D(3). Treatment with 1,25(OH)(2)D(3) resulted in a 50% decrease in c-Myc mRNA but a much more extensive reduction in c-Myc protein. Treatment with 1,25(OH)(2)D(3) decreased c-Myc stability by increasing the proportion of c-Myc phosphorylated on T58, a glycogen synthase kinase-3beta site that serves as a signal for ubiquitin-mediated proteolysis. Thus, 1,25(OH)(2)D(3) reduces both c-Myc mRNA levels and c-Myc protein stability to inhibit growth of prostate cancer cells.
Collapse
Affiliation(s)
- JoyAnn N Phillips Rohan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
14
|
Agrawal S, Patil KP, Dunsmuir WD. Molecular markers in prostate cancer. Part II: potential roles in management. Asian J Androl 2008; 11:22-7. [PMID: 19050689 DOI: 10.1038/aja.2008.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Predicting treatment responses in advanced prostate cancer (PCa) currently centres on prostate-specific antigen (PSA) kinetics and on being able to visualize measurable changes in imaging modalities. New molecular markers have emerged as potential diagnostic and prognostic indicators; these were summarized in Part I of this review in the Asian Journal of Andrology. A number of molecular markers are now being used to enhance PCa imaging and staging. However, management options for advanced and hormone-resistant PCa (HRPC) are limited and additional therapeutic options are needed. Molecular markers have been proposed as potential therapeutic targets using gene therapy and immunomodulation. Additionally, markers identified in early PCa and precursor lesions may offer novel targets for chemoprevention and vaccine development. This review summarizes the current advances regarding the roles of these markers in the management of PCa.
Collapse
Affiliation(s)
- Sachin Agrawal
- Department of Urology, St Peters Hospital, Chertsey, UK.
| | | | | |
Collapse
|
15
|
Endrini S, . AR, . PI, . YTY. Comparing of the Cytotoxicity Properties and Mechanism of Lawsonia inermis and Strobilanthes crispus Extract Against Several Cancer Cell Lines. JOURNAL OF MEDICAL SCIENCES 2007. [DOI: 10.3923/jms.2007.1098.1102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
Abstract
Surgery, radiation or hormonal therapy are not adequate to control prostate cancer. Clearly, other novel treatment approaches, such as gene therapy, for advanced/recurrent disease are desperately needed to achieve long-term local control and particularly to develop effective systemic therapy for metastatic prostate cancer. In the last decade, significant progress in gene therapy for the treatment of localised prostate cancer has been demonstrated. A broad range of different gene therapy approaches, including cytolytic, immunological and corrective gene therapy, have been successfully applied for prostate cancer treatment in animal models, with translation into early clinical trials. In addition, a wide variety of viral and nonbiological gene delivery systems are available for basic and clinical research. Gene therapy approaches that have been developed for the treatment of prostate cancer are summarised.
Collapse
Affiliation(s)
- Sergey A Kaliberov
- Division of Radiation Biology, Department of Radiation Oncology, University of Alabama at Birmingham, 1824 6th Avenue South, WTI 674, Birmingham, AL 35294-6832, USA
| | | |
Collapse
|
17
|
Stewart LV, Lyles B, Lin MF, Weigel NL. Vitamin D receptor agonists induce prostatic acid phosphatase to reduce cell growth and HER-2 signaling in LNCaP-derived human prostate cancer cells. J Steroid Biochem Mol Biol 2005; 97:37-46. [PMID: 16076555 DOI: 10.1016/j.jsbmb.2005.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have previously shown that concentrations of 1alpha,25-dihydroxyvitamin D(3) (1,25D) that induce G(0)/G(1) cell cycle arrest in androgen-dependent LNCaP prostate cancer cells also decrease expression of c-Myc, a proto-oncogene that stimulates progression from G(1) to S phase of the cell cycle. Since both c-Myc expression and cell cycle progression are regulated by tyrosine kinase activation, we examined the ability of 1,25D to alter tyrosine kinase signaling in LNCaP cells and the androgen-independent LNCaP C81 (C81 LN) cell line. 1,25D selectively reduced protein tyrosine phosphorylation within both the LNCaP and C81 LN cells. This reduction in tyrosine kinase signaling appears to result from elevated levels of cellular prostatic acid phosphatase (PAcP). Western blots and biochemical assays revealed 1,25D increases the level of active PAcP in both cell lines. In addition, 1,25D decreased tyrosine phosphorylation of HER-2, an EGFR family member inactivated by PAcP, and the HER-2 downstream adaptor protein p52 Shc in C81 LN cells. Inhibition of HER-2 signaling by AG825 reduces growth of C81 LN cells and the parental LNCaP cells. These data therefore suggest that 1,25D-mediated decreases in LNCaP and C81 LN cell growth are in part due to decreases in tyrosine kinase signaling that result from up-regulation of PAcP.
Collapse
Affiliation(s)
- LaMonica V Stewart
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Prostate cancer is the most common nondermatologic malignancy in men. Prostate cancer is characterized by clinical and biologic heterogeneity that has complicated molecular and epidemiologic studies. Like other epithelial malignancies, prostate tumors exhibit complex karyotypic abnormalities and harbor many specific genetic alterations. Although recent work has begun to elucidate many of the specific mutations associated with prostate cancer, we still lack a clear understanding of the complement of genetic changes that suffice to program the malignant state. Here, we review our current understanding of the genetic changes found in prostate cancer and explore the connections between specific genetic alterations and malignant phenotypes including cell growth, survival, invasion, and metastasis.
Collapse
Affiliation(s)
- Evan Y Yu
- Seattle Cancer Care Alliance, University of Washington School of Medicine, Seattle, WA, USA
| | | |
Collapse
|
19
|
Wang YH, Liu S, Zhang G, Zhou CQ, Zhu HX, Zhou XB, Quan LP, Bai JF, Xu NZ. Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo. Breast Cancer Res 2004; 7:R220-R228. [PMID: 15743499 PMCID: PMC1064129 DOI: 10.1186/bcr975] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 09/26/2004] [Accepted: 11/24/2004] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Breast cancer is the leading cause of cancer death in women worldwide. Elevated expression of c-Myc is a frequent genetic abnormality seen in this malignancy. For a better understanding of its role in maintaining the malignant phenotype, we used RNA interference (RNAi) directed against c-Myc in our study. RNAi provides a new, reliable method to investigate gene function and has the potential for gene therapy. The aim of the study was to examine the anti-tumor effects elicited by a decrease in the protein level of c-Myc by RNAi and its possible mechanism of effects in MCF-7 cells. METHOD A plasmid-based polymerase III promoter system was used to deliver and express short interfering RNA (siRNA) targeting c-myc to reduce its expression in MCF-7 cells. Western blot analysis was used to measure the protein level of c-Myc. We assessed the effects of c-Myc silencing on tumor growth by a growth curve, by soft agar assay and by nude mice experiments in vivo. Standard fluorescence-activated cell sorter analysis and TdT-mediated dUTP nick end labelling assay were used to determine apoptosis of the cells. RESULTS Our data showed that plasmids expressing siRNA against c-myc markedly and durably reduced its expression in MCF-7 cells by up to 80%, decreased the growth rate of MCF-7 cells, inhibited colony formation in soft agar and significantly reduced tumor growth in nude mice. We also found that depletion of c-Myc in this manner promoted apoptosis of MCF-7 cells upon serum withdrawal. CONCLUSION c-Myc has a pivotal function in the development of breast cancer. Our data show that decreasing the c-Myc protein level in MCF-7 cells by RNAi could significantly inhibit tumor growth both in vitro and in vivo, and imply the therapeutic potential of RNAi on the treatment of breast cancer by targeting overexpression oncogenes such as c-myc, and c-myc might be a potential therapeutic target for human breast cancer.
Collapse
Affiliation(s)
- Yi-hua Wang
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shuang Liu
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Guo Zhang
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Cui-qi Zhou
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hong-xia Zhu
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiao-bo Zhou
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Lan-ping Quan
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jin-feng Bai
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ning-zhi Xu
- Laboratory of Cell and Molecular Biology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
20
|
Beer TM, Myrthue A, Garzotto M, O'Hara MF, Chin R, Lowe BA, Montalto MA, Corless CL, Henner WD. Randomized Study of High-Dose Pulse Calcitriol or Placebo prior to Radical Prostatectomy. Cancer Epidemiol Biomarkers Prev 2004. [DOI: 10.1158/1055-9965.2225.13.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background: Cancer chemoprevention trials require enormous resources due to the large numbers of patients and the years of follow-up needed to achieve sufficient statistical power. Examination of candidate prevention agents using biomarkers as surrogate end points has been proposed as a method to rapidly identify promising agents for prevention trials. Treatment of patients with candidate agents prior to scheduled biopsy or surgical resection of malignancy allows for direct examination of the treatment effects on tumor tissue. In this study, we selected this approach to test several hypotheses about the effect of calcitriol (1,25-dihydroxycholecalciferol), the active form of vitamin D, on early-stage human prostate cancer.
Methods: After selection of surgical treatment for histologically confirmed adenocarcinoma of the prostate, patients were randomized to either calcitriol 0.5 μg/kg or placebo weekly for 4 weeks. The expression levels of the vitamin D receptor (VDR), proliferating cell nuclear antigen, PTEN (MMAC1/TEP1), c-Myc, transforming growth factor (TGF) β receptor type II (TGFβ RII), and Bcl-2 were quantified using immunohistochemistry in the patients' prostate specimens post surgery.
Results: Thirty-seven of 39 prostate tumors were evaluable for molecular end points. VDR expression was reduced in patients treated with calcitriol (mean, 75.3% of cells) compared with those that received placebo (mean, 98.6%; P = 0.005). Calcitriol treatment did not result in a statistically significant change in the fraction of cells expressing TGFβ RII, PTEN, or proliferating cell nuclear antigen. Bcl-2 and c-Myc expression was at the lower limits of detection in both the calcitriol group and the placebo group; therefore, we were unable to determine whether drug treatment induced a significant change in these biomarkers.
Conclusions: High-dose calcitriol down-regulates VDR expression in human prostate cancer. Further study is needed to determine the biological consequences of VDR down-regulation in prostate cancer. This study shows that the use of the preprostatectomy model is feasible and can be used to test the effect of candidate chemopreventive agents on prostate cancer.
Collapse
Affiliation(s)
| | | | - Mark Garzotto
- 3Division of Urology, Oregon Health & Science University and Portland VA Medical Center, Portland, Oregon
| | | | | | - Bruce A. Lowe
- 3Division of Urology, Oregon Health & Science University and Portland VA Medical Center, Portland, Oregon
| | | | | | | |
Collapse
|
21
|
Wang L, Lin HK, Hu YC, Xie S, Yang L, Chang C. Suppression of androgen receptor-mediated transactivation and cell growth by the glycogen synthase kinase 3 beta in prostate cells. J Biol Chem 2004; 279:32444-52. [PMID: 15178691 DOI: 10.1074/jbc.m313963200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Androgens play important roles in the growth of normal prostate and prostate cancer via binding to the androgen receptor (AR). In addition to androgens, AR activity can also be modulated by selective growth factors and/or kinases. Here we report a new kinase signaling pathway by showing that AR transactivation was repressed by wild type glycogen synthase kinase 3beta (GSK3 beta) or constitutively active S9A-GSK3 beta in a dose-dependent manner. In contrast, the catalytically inactive kinase mutant GSK3 beta showed little effect on the AR transactivation. The suppression of AR transactivation by GSK3 beta was abolished by the GSK3 beta inhibitor lithium chloride. The in vitro kinase assay showed that GSK3 beta prefers to phosphorylate the amino terminus of AR that may lead to the suppression of activation function 1 activity located in the NH(2)-terminal region of AR. GSK3 beta interrupted the interaction between the NH(2) and COOH termini of AR, and overexpression of the constitutively active form of GSK3 beta, S9A-GSK3 beta, reduced the androgen-induced prostate cancer cell growth in stably transfected CWR22R cells. Together, our data demonstrated that GSK3 beta may function as a repressor to suppress AR-mediated transactivation and cell growth, which may provide a new strategy to modulate the AR-mediated prostate cancer growth.
Collapse
Affiliation(s)
- Liang Wang
- George Whipple Laboratory for Cancer Research, Department of Pathology, University of Rochester Medical Center, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
22
|
Bostwick DG, Burke HB, Djakiew D, Euling S, Ho SM, Landolph J, Morrison H, Sonawane B, Shifflett T, Waters DJ, Timms B. Human prostate cancer risk factors. Cancer 2004; 101:2371-490. [PMID: 15495199 DOI: 10.1002/cncr.20408] [Citation(s) in RCA: 403] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostate cancer has the highest prevalence of any nonskin cancer in the human body, with similar likelihood of neoplastic foci found within the prostates of men around the world regardless of diet, occupation, lifestyle, or other factors. Essentially all men with circulating androgens will develop microscopic prostate cancer if they live long enough. This review is a contemporary and comprehensive, literature-based analysis of the putative risk factors for human prostate cancer, and the results were presented at a multidisciplinary consensus conference held in Crystal City, Virginia, in the fall of 2002. The objectives were to evaluate known environmental factors and mechanisms of prostatic carcinogenesis and to identify existing data gaps and future research needs. The review is divided into four sections, including 1) epidemiology (endogenous factors [family history, hormones, race, aging and oxidative stress] and exogenous factors [diet, environmental agents, occupation and other factors, including lifestyle factors]); 2) animal and cell culture models for prediction of human risk (rodent models, transgenic models, mouse reconstitution models, severe combined immunodeficiency syndrome mouse models, canine models, xenograft models, and cell culture models); 3) biomarkers in prostate cancer, most of which have been tested only as predictive factors for patient outcome after treatment rather than as risk factors; and 4) genotoxic and nongenotoxic mechanisms of carcinogenesis. The authors conclude that most of the data regarding risk relies, of necessity, on epidemiologic studies, but animal and cell culture models offer promise in confirming some important findings. The current understanding of biomarkers of disease and risk factors is limited. An understanding of the risk factors for prostate cancer has practical importance for public health research and policy, genetic and nutritional education and chemoprevention, and prevention strategies.
Collapse
|
23
|
Biroccio A, Leonetti C, Zupi G. The future of antisense therapy: combination with anticancer treatments. Oncogene 2003; 22:6579-88. [PMID: 14528283 DOI: 10.1038/sj.onc.1206812] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The current direction in cancer research is rational drug design, which is based on the evidence that transformed cells are characterized by alterations of genes devoted to the regulation of both cell proliferation and apoptosis. A variety of approaches have been carried out to develop new agents selective for cancer cells. Among these, antisense oligonucleotides (ASOs) are one of such class of new agents able to inhibit specifically the synthesis of a particular cancer-associated protein by binding to protein-encoding RNA, thereby preventing RNA function. In the past decade, several ASOs have been developed and tested in preclinical and clinical studies. Many have shown convincing in vitro reduction in target gene expression and promising activity against a wide variety of tumors. However, because of the multigenic alterations of tumors, the use of ASOs as single agents does not seem to be effective in the treatment of malignancies. Antisense therapy that interferes with signaling pathways involved in cell proliferation and apoptosis are particularly promising in combination with conventional anticancer treatment. An overview of the progress of ASOs used in combination therapy is provided.
Collapse
Affiliation(s)
- Annamaria Biroccio
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Rome, Italy
| | | | | |
Collapse
|
24
|
Abstract
Modulation of gene expression using antisense oligonucleotides has advanced from the laboratory to the clinic. Numerous companies can, at least partially, attribute their success to the development of antisense techniques, and one antisense drug is currently on the market. Antisense compounds have been used in clinical trials that included patients with urologic tumors, mostly directed at proliferation- or apoptosis-related targets. Furthermore, therapeutic inhibition of many new identified genes is being investigated in preclinical tests. This review provides a contemporary overview of current preclinical and clinical antisense oligonucleotide concepts for the treatment of urologic tumors.
Collapse
Affiliation(s)
- Ingo Kausch
- Department of Urology, Medical University of Lübeck, Ratzeburger Allee 160, Germany
| | | |
Collapse
|
25
|
Polek TC, Stewart LV, Ryu EJ, Cohen MB, Allegretto EA, Weigel NL. p53 Is required for 1,25-dihydroxyvitamin D3-induced G0 arrest but is not required for G1 accumulation or apoptosis of LNCaP prostate cancer cells. Endocrinology 2003; 144:50-60. [PMID: 12488329 DOI: 10.1210/en.2001-210109] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
1,25-Dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] is an effective agent for inhibiting the growth of prostate cancer cells including LNCaP and PC-3 cell lines. However, the extent of growth inhibition in these cell lines differs because LNCaP cells are much more responsive than PC-3 cells. Previous studies in LNCaP cells have shown that 1,25-(OH)(2)D(3) treatment results in G(0)/G(1) cell cycle accumulation, loss of Ki67 expression, and induction of apoptosis. One difference between the two cell lines is that PC-3 cells lack functional p53, a protein that plays roles both in cell cycle regulation and induction of apoptosis. In this study, the role of p53 in 1,25-(OH)(2)D(3) action was examined using the p53-negative PC-3 cells and a line of LNCaP cells, called LN-56, in which p53 function was shut off using a dominant negative p53 fragment. We found that treatment with 1,25-(OH)(2)D(3) extensively inhibits growth of LN-56 prostate cancer cells lacking p53, but in contrast to the parental LNCaP cells, the LN-56 cells recover rapidly. Moreover, in prostate cancer cells, the synergism between 1,25-(OH)(2)D(3) and 9-cis retinoic acid appears to be dependent on the presence of functional p53; however, 1,25-(OH)(2)D(3)-mediated induction of G(1) cell cycle accumulation and induction of apoptosis is not.
Collapse
Affiliation(s)
- Tara C Polek
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
26
|
Devi GR, Oldenkamp JR, London CA, Iversen PL. Inhibition of human chorionic gonadotropin beta-subunit modulates the mitogenic effect of c-myc in human prostate cancer cells. Prostate 2002; 53:200-10. [PMID: 12386920 DOI: 10.1002/pros.10151] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Amplification of the proto-oncogene c-myc has been identified as one of the most common genetic alterations in prostate cancer, thus making it an attractive therapeutic target. However, certain prostate cancer cells are unresponsive to c-Myc inhibition. The purpose of this study was to test the hypothesis that effective growth inhibition in the refractory cancer cells can be achieved by blocking c-myc along with a growth factor using a novel phosphorodiamidate morpholino antisense oligomer-based approach. Human chorionic gonadotropin, a growth factor implicated in neoplasm, causes activation of c-myc through a G-protein-coupled pathway of signal transduction. METHODS In this study, the effect of inhibition of beta-hCG and c-myc singly or in combination was evaluated in DU145 (RB -/-, p53-/-, androgen-independent) and LNCaP (Rb+/+, p53 +/+, androgen-sensitive) human prostate cancer cell lines and in a DU145 subcutaneous xenograft murine model. RESULTS Antisense phosphorodiamidate morpholino oligomers directed against beta-hCG and c-myc caused a specific decrease of the target protein levels. Unlike LNCaP cells, DU145 cell growth was refractory to c-Myc inhibition. Unresponsiveness to c-myc inhibition in DU145 cells was overcome by targeting both beta-hCG and c-myc genes, resulting in potentiation of the antiproliferative effect seen with inhibition of beta-hCG alone. CONCLUSIONS The inhibition of beta-hCG sensitizes prostate cancer cells to the antiproliferative effects of c-Myc inhibition, including tumors that are refractory to c-Myc decrease alone.
Collapse
|
27
|
Wu D, Terrian DM. Regulation of caveolin-1 expression and secretion by a protein kinase cepsilon signaling pathway in human prostate cancer cells. J Biol Chem 2002; 277:40449-55. [PMID: 12185081 DOI: 10.1074/jbc.m206270200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Caveolin-1, androgen receptor, c-Myc, and protein kinase Cepsilon (PKCepsilon) proteins are overrepresented in most advanced prostate cancer tumors. Previously, we demonstrated that PKCepsilon has the capacity to enhance the expression of both caveolin-1 and c-Myc in cultured prostate cancer cells and is sufficient to induce the growth of androgen-independent tumors. In this study, we have uncovered further evidence of a functional interplay among these proteins in the CWR22 model of human prostate cancer. The results demonstrated that PKCepsilon expression was naturally up-regulated in recurrent CWR22 tumors and that this oncoprotein was required to sustain the androgen-independent proliferation of CWR-R1 cells in culture. Gene transfer experiments demonstrated that PKCepsilon had the potential to augment the expression and secretion of a biologically active caveolin-1 protein that supports the growth of the CWR-R1 cell line. Antisense and pharmacological experiments provided additional evidence that the sequential activation of PKCepsilon, mitogen-activated protein kinases, c-Myc, and androgen receptor signaling drove the downstream expression of caveolin-1 in CWR-R1 cells. Finally, we demonstrate that mitogen-activated protein kinases were required downstream of PKCepsilon to derepress the transcriptional elongation of the c-myc gene. Our findings support the hypothesis that PKCepsilon may advance the recurrence of human prostate cancer by promoting the expression of several important downstream effectors of disease progression.
Collapse
Affiliation(s)
- Daqing Wu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA.
| | | |
Collapse
|
28
|
|
29
|
|
30
|
Gdor Y, Timme TL, Miles BJ, Kadmon D, Thompson TC. Gene therapy for prostate cancer. Expert Rev Anticancer Ther 2002; 2:309-21. [PMID: 12113054 DOI: 10.1586/14737140.2.3.309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prostate cancer is the most common noncutaneous cancer in man. When confined to the prostate it can be cured by radical prostatectomy or irradiation therapy. However, there are no curative therapies for locally advanced, recurrent or metastatic disease. Prostate cancer gene therapy has recently transition from preclinical studies to clinical trials with the goal of developing novel treatments for prostate cancer. The greatest challenge in treating advanced prostate cancer is therapeutic access to and the elimination of metastases. This review details two aspects of prostate cancer gene therapy, the types of delivery systems under development and specific categories of therapeutic genes available with an emphasis on the mechanism of action of specific gene therapy strategies.
Collapse
Affiliation(s)
- Yehoshua Gdor
- Scott Department of Urology, Baylor College of Medicine, 6560 Fannin, Suite 2100, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
31
|
Harrington KJ, Melcher AA, Bateman AR, Ahmed A, Vile RG. Cancer gene therapy: Part 2. Candidate transgenes and their clinical development. Clin Oncol (R Coll Radiol) 2002; 14:148-69. [PMID: 12069125 DOI: 10.1053/clon.2001.0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kevin J Harrington
- CRC Centre for Cell and Molecular Biology, Institute for Cancer Research, London, UK.
| | | | | | | | | |
Collapse
|
32
|
Harrington KJ, Spitzweg C, Bateman AR, Morris JC, Vile RG. Gene therapy for prostate cancer: current status and future prospects. J Urol 2001; 166:1220-33. [PMID: 11547047 DOI: 10.1016/s0022-5347(05)65742-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Locally advanced, relapsed and metastatic prostate cancer has a dismal prognosis with conventional therapies offering no more than palliation. In recent years advances achieved in understanding the molecular biology of cancer have afforded clinicians and scientists the opportunity to develop a range of novel genetic therapies for this disease. MATERIALS AND METHODS We performed a detailed review of published reports of gene therapy for prostate cancer. Particular emphasis was placed on recent developments in the arena of nonviral (plasmid DNA, DNA coated gold particles, liposomes and polymer DNA complexes) and viral (adenovirus, retrovirus, adeno-associated virus, herpes virus and pox virus) vectors. Therapeutic strategies were categorized as corrective, cytoreductive and immunomodulatory gene therapy for the purpose of data analysis and comparison. RESULTS Locoregional administration of nonviral and viral vectors can yield impressive local gene expression and therapeutic effects but to our knowledge no efficient systemically delivered vector is available to date. Corrective gene therapy to restore normal patterns of tumor suppressor gene (p53, Rb, p21 and p16) expression or negate the effect of mutated tumor promoting oncogenes (ras, myc, erbB2 and bcl-2) have efficacy in animal models but this approach suffers from the fact that each cancer cell must be targeted. A wide variety of cytoreductive strategies are under development, including suicide, anti-angiogenic, radioisotopic and pro-apoptotic gene therapies. Each approach has strengths and weaknesses, and may best be suited for use in combination. Immunomodulatory gene therapy seeks to generate an effective local immune response that translates to systemic antitumor activity. Currently most studies involve immunostimulatory cytokine genes, such as granulocyte-macrophage colony-stimulating factor, or interleukin-2 or 12. CONCLUSIONS Various therapeutic genes have proved activity against prostate cancer in vitro and in vivo. However, the chief challenge facing clinical gene therapy strategies is the lack of efficient gene delivery by local and systemic routes. For the foreseeable future vector development may remain a major focus of ongoing research. Despite this caveat it is anticipated that gene therapy approaches may significantly contribute to the management of prostate cancer in the future.
Collapse
Affiliation(s)
- K J Harrington
- Molecular Medicine Program and Department of Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
33
|
Zhang YM, Rusckowski M, Liu N, Liu C, Hnatowich DJ. Cationic liposomes enhance cellular/nuclear localization of 99mTc-antisense oligonucleotides in target tumor cells. Cancer Biother Radiopharm 2001; 16:411-9. [PMID: 11776758 DOI: 10.1089/108497801753354311] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Efforts are underway to apply strategies developed in connection with antisense chemotherapy to antisense imaging in nuclear medicine. One such strategy is the use of cationic liposome to enhance the cellular uptake of antisense oligonucleotides. METHODS Using a 99mTc-labeled 18-mer uniformly phosphorothioate DNA antisense to the mRNA of the RI alpha subunit of PKA, the effects of a cationic liposome as carrier on cell uptake and efflux kinetics in tissue culture was evaluated in a RI alpha mRNA positive ACHN cell line. The sense DNA was used as control. RESULTS Cell uptake was increased 4-5 fold using the liposome carrier compared to the same dosage of naked DNA. Whether naked or liposome-bound, the antisense DNA showed slower efflux from cells compared to the control, resulting in statistically higher accumulation of the antisense compared to the control DNA and suggesting an antisense effect. The internalization and increased cellular accumulation for both antisense and control DNAs with liposomes were demonstrated by microautoradiography and by subcellular fractionation. Finally, using 99mTc-labeled 15-mer antisense DNA against the c-myc oncogene mRNA in MDA-MB-231 cells, significantly more radiolabel was found in total mRNA for the antisense compared to the sense control DNA, both with and without liposome carrier. In conclusion, in tissue culture, the use of a cationic liposome carrier greatly increased cellular uptake and target mRNA binding of 99mTc-labeled antisense DNA.
Collapse
Affiliation(s)
- Y M Zhang
- Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 0165, USA
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Ebinuma H, Saito H, Kosuga M, Wakabayashi K, Saito Y, Takagi T, Nakamoto N, Okuyama T, Ishii H. Reduction of c-myc expression by an antisense approach under Cre/loxP switching induces apoptosis in human liver cancer cells. J Cell Physiol 2001; 188:56-66. [PMID: 11382922 DOI: 10.1002/jcp.1195] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
c-Myc has been documented to be both a positive and a negative signal for the induction of apoptosis. It is well known that overexpression of the c-myc gene induces apoptosis of normal cells, but the result of a reduction in its expression is not fully understood. We examined whether a reduction in c-myc expression would induce apoptosis in human liver cancer cells. Specifically, antisense and sense oligodeoxynucleotides (oligos) against the human c-myc mRNA were synthesized, mixed with a liposome reagent at various ratios, and were applied to the liver cancer-derived cell lines, HCC-T, HepG2, and PLC/PRF/5. To exclude effects resulting from using oligos, plasmid vectors expressing the full-length c-myc cDNA in both sense and antisense orientations under the control of the Cre/loxP system were generated. Monoclonal cell lines including these plasmid vectors were produced and Cre was supplied by adenovirus infection. Apoptosis was determined morphologically and c-Myc and Bcl-2 expression was examined by Western blotting. The antisense myc significantly inhibited the proliferation of the cells within two days, while neither the liposome reagent alone nor sense myc did so. Most of the cells were rounded up by the antisense-treatment and nuclear fragmentation and DNA ladder formation were detected after two days in antisense c-myc-treated cells. Antisense c-myc largely reduced c-Myc and partially Bcl-2 expression; overexpression of Bcl-2 partially rescued from apoptosis in HCC-T and HepG2 cells. These results suggest that the massive reduction in c-myc mRNA induces apoptosis in liver cancer cell lines and consequent decrease in Bcl-2 enhances the cell death. c-Myc reduction under the Cre/loxP switching system may be a useful tool for the clarification of c-myc-related cellular mechanisms in differentiation and proliferation.
Collapse
Affiliation(s)
- H Ebinuma
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Taj MM, Tawil RJ, Engstrom LD, Zeng Z, Hwang C, Sanda MG, Wechsler DS. Mxi1, a Myc antagonist, suppresses proliferation of DU145 human prostate cells. Prostate 2001; 47:194-204. [PMID: 11351349 DOI: 10.1002/pros.1063] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Mxi1, an antagonist of c-Myc, maps to human chromosome 10q24-q25, a region altered in a substantial fraction of prostate tumors. Mice deficient for Mxi1 exhibit significant prostate hyperplasia. We studied the ability of Mxi1 to act as a growth suppressor in prostate tumor cells. METHODS We infected DU145 prostate carcinoma cells with an Mxi1-expressing adenovirus (AdMxi1) in vitro, and measured Mxi1 expression, cell proliferation, soft agar colony formation, and cell cycle distribution. To explore mechanisms of Mxi1-induced growth arrest, we performed gene expression analysis. RESULTS AdMxi1 infection resulted in reduced cell proliferation, reduced soft agar colony formation, and a higher proportion of cells in the G(2)/M phase of the cell cycle. This G(2)/M growth arrest was associated with elevated levels of cyclin B, and reduced levels of c-MYC and MDM2. CONCLUSIONS The ability of AdMxi1 to suppress prostate tumor cell proliferation supports a role for Mxi1 loss in the pathogenesis of a subset of human prostate cancers. Prostate 47:194-204, 2001.
Collapse
Affiliation(s)
- M M Taj
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Communicable Diseases, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Hiller KM, Mayben JP, Bendt KM, Manousos GA, Senger K, Cameron HS, Weston BW. Transfection of ?(1,3)fucosyltransferase antisense sequences impairs the proliferative and tumorigenic ability of human colon carcinoma cells. Mol Carcinog 2000. [DOI: 10.1002/(sici)1098-2744(200004)27:4<280::aid-mc6>3.0.co;2-l] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Latil A, Vidaud D, Valéri A, Fournier G, Vidaud M, Lidereau R, Cussenot O, Biàche I. htert expression correlates withMYC over-expression in human prostate cancer. Int J Cancer 2000. [DOI: 10.1002/(sici)1097-0215(20000320)89:2<172::aid-ijc12>3.0.co;2-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Affiliation(s)
- J B Smith
- Department of Microbiology, Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
40
|
Palapattu GS, Naitoh J, Belldegrun AS. Gene therapy for prostate cancer. New perspectives on an old problem. Urol Clin North Am 1999; 26:353-63, ix. [PMID: 10361558 DOI: 10.1016/s0094-0143(05)70075-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent advances in molecular biology have made the prospect of gene therapy for prostate cancer a reality. A wide variety of genetic strategies, vector designs, and delivery modalities are currently in use. This article examines the state of the art prostate cancer gene therapy and details the various options available to clinicians.
Collapse
Affiliation(s)
- G S Palapattu
- Department of Urology, University of California, Los Angeles, School of Medicine, USA
| | | | | |
Collapse
|
41
|
Pro-drug Gene Therapy for Prostate Cancer. Gene Ther 1998. [DOI: 10.1007/978-3-662-03577-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|