1
|
Niu M, Wang YZ, Deng XM, Wu X, Hua ZY, Lv TT. Tryptanthrin alleviate lung fibrosis via suppression of MAPK/NF-κB and TGF-β1/SMAD signaling pathways in vitro and in vivo. Toxicol Appl Pharmacol 2025; 498:117285. [PMID: 40089192 DOI: 10.1016/j.taap.2025.117285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF), a progressive interstitial lung disease of unknown etiology, remains a therapeutic challenge with limited treatment options. This study investigates the therapeutic potential and molecular mechanisms of Tryptanthrin, a bioactive indole quinazoline alkaloid derived from Isatis tinctoria L., in pulmonary fibrosis. In a bleomycin-induced murine IPF model, Tryptanthrin administration (5 and 10 mg/kg/day for 28 days) significantly improved pulmonary function parameters and attenuated histological evidence of fibrosis. Mechanistic analysis revealed dual pathway modulation: Tryptanthrin suppressed MAPK/NF-κB signaling through inhibition of phosphorylation events, subsequently reducing pulmonary levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6). Concurrently, it attenuated TGF-β1/Smad pathway activation by decreasing TGF-β1 expression and Smad2/3 phosphorylation, thereby downregulating fibrotic markers including COL1A1, α-smooth muscle actin (α-SMA), and fibronectin in lung tissues. Complementary in vitro studies using Lipopolysaccharide (LPS) or TGF-β1-stimulated NIH3T3 fibroblasts confirmed these anti-inflammatory and anti-fibrotic effects through analogous pathway inhibition. Our findings demonstrate that Tryptanthrin exerts therapeutic effects against pulmonary fibrosis via coordinated modulation of both inflammatory (MAPK/NF-κB) and fibrotic (TGF-β1/Smad) signaling cascades, suggesting its potential as a novel multi-target therapeutic agent for IPF management.
Collapse
Affiliation(s)
- Min Niu
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China.
| | | | - Xiang-Min Deng
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China
| | - Xin Wu
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China
| | - Zheng-Ying Hua
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China
| | - Ting-Ting Lv
- College of Pharmacy & Traditional Chinese Medicine, Jiangsu College of Nursing, Jiangsu, China
| |
Collapse
|
2
|
Mao Q, Liu J, Yan Y, Wang G, Zhang M, Wang Z, Wen X, Jiang Z, Li H, Li J, Xu M, Zhang R, Yang B. 13-Methylpalmatine alleviates bleomycin-induced pulmonary fibrosis by suppressing the ITGA5/TGF-β/Smad signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156545. [PMID: 40023972 DOI: 10.1016/j.phymed.2025.156545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an irreversible lung disease for which there is a lack of effective and safe therapeutic drugs. 13-Methylpalmatine (13-Me-PLT) is an active compound from Coptis chinensis, and no study has yet been reported on its pharmacological effects in pulmonary fibrotic diseases. The group has previously demonstrated the antimyocardial fibrosis efficacy of 13-Me-PLT but its effect on pulmonary fibrosis and its potential mechanism has not yet been investigated. PURPOSE The present research is designed to clarify the therapeutic potential and mechanism of action of 13-Me-PLT in IPF using a bleomycin (BLM)-induced mouse model of IPF. METHODS In vivo, mice were administrated with BLM to establish the IPF model, and IPF mice were treated with 13-Me-PLT (5, 10, and 20 mg/kg) and pirfenidone (PFD, 300 mg/kg) by gavage. In vitro, we employed TGF-β1 (10 ng/ml)-induced MRC5 cells, which were then treated with 13-Me-PLT (5, 10, 20 μM) and PFD (500 μM). High-throughput transcriptome sequencing, molecular dynamics simulations, molecular docking and Surface plasmon resonance (SPR) were employed to elucidate the underlying mechanisms of 13-Me-PLT in mitigating IPF. RESULT In vivo experiments showed that 13-Me-PLT significantly ameliorated BLM-induced lung fibrosis in mice. In vitro studies, 13-Me-PLT showed good antifibrotic potential by inhibiting fibroblast differentiation. Transcriptomic analysis of mouse lung tissues identified ITGA5 and TGF-β/Smad signaling pathways as key targets for the antifibrotic effects of 13-Me-PLT. Molecular docking and kinetic analyses further supported these findings. Functional studies involving ITGA5 silencing and overexpression confirmed that 13-Me-PLT down-regulated ITGA5 expression and inhibited the activation of the TGF-β/Smad signaling pathway, confirming its mechanism of action. CONCLUSION To our best knowledge, these results provide the first insight that 13-Me-PLT is protective against BLM-induced IPF in mice. Unlike existing antifibrotic drugs, 13-Me-PLT specifically targets the ITGA5/TGF-β/Smad signaling pathway, offering a novel and potentially more effective therapeutic approach. This study not only validates the antifibrotic efficacy of 13-Me-PLT but also elucidates its unique mechanism of action, these findings may provide an opportunity to develop new drugs to treat IPF.
Collapse
Affiliation(s)
- Qin Mao
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jiajing Liu
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yu Yan
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Gang Wang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Miao Zhang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zhuo Wang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xiaowei Wen
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zefeng Jiang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Haijing Li
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Mingyang Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Rong Zhang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Baofeng Yang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, PR China.
| |
Collapse
|
3
|
Wei Y, Jia Z, Ma J, Zhang W, Li H, Wu J, Wang X, Yu X, Shi Y, Kong X, Pang M. Proteomics and Metabolomics Analyses Reveal a Dynamic Landscape of Coal Workers' Pneumoconiosis: An Insight into Disease Progression. J Proteome Res 2025; 24:1715-1731. [PMID: 40036136 PMCID: PMC11976863 DOI: 10.1021/acs.jproteome.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/06/2025]
Abstract
Coal worker's pneumoconiosis (CWP) is characterized by chronic inflammation and pulmonary fibrosis. The key factor contributing to the incurability of CWP is the unclear pathogenesis. This study explored the characteristic changes in proteomics and metabolomics of early and advanced CWP patients through proteomics and metabolomics techniques. Proteomics identified proteins that change with the progression of CWP, with significant enrichment in the TGF-β signaling pathway and autoimmune disease pathways. Metabolomics revealed the metabolic characteristics of CWP at different stages. These metabolites mainly include changes in amino acid metabolism, unsaturated fatty acid synthesis, and related metabolites. Integrated analysis found that ABC transporters are a shared pathway among the three groups, and ABCD2 is involved in the ABC transporter pathway. In the subsequent independent sample verification analysis, consistent with proteomics experiments, compared to the CM group, FMOD expression level was upregulated in the NIC group. TFR expression level was consistently downregulated in both the IC and NIC groups. Additionally, ABCD2 increased in the IC group but decreased in the NIC group. In summary, this study revealed the metabolic characteristics of CWP at different stages. These findings may provide valuable insights for the early prediction, diagnosis, and treatment of CWP.
Collapse
Affiliation(s)
- Yangyang Wei
- Department
of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- NHC
Key Laboratory of Pneumoconiosis, Taiyuan 030001, China
| | - Zhenzhen Jia
- Academy
of Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- NHC
Key Laboratory of Pneumoconiosis, Taiyuan 030001, China
| | - Jing Ma
- Shanxi
Cardiovascular Hospital, Taiyuan, Shanxi 030001, China
| | - Wei Zhang
- Department
of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- NHC
Key Laboratory of Pneumoconiosis, Taiyuan 030001, China
| | - Hui Li
- Department
of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- NHC
Key Laboratory of Pneumoconiosis, Taiyuan 030001, China
| | - Juan Wu
- Department
of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- NHC
Key Laboratory of Pneumoconiosis, Taiyuan 030001, China
| | - Xiaojing Wang
- Department
of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- NHC
Key Laboratory of Pneumoconiosis, Taiyuan 030001, China
| | - Xiao Yu
- Department
of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- NHC
Key Laboratory of Pneumoconiosis, Taiyuan 030001, China
| | - Yiwei Shi
- Department
of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- NHC
Key Laboratory of Pneumoconiosis, Taiyuan 030001, China
| | - Xiaomei Kong
- Department
of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- NHC
Key Laboratory of Pneumoconiosis, Taiyuan 030001, China
| | - Min Pang
- Department
of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- NHC
Key Laboratory of Pneumoconiosis, Taiyuan 030001, China
| |
Collapse
|
4
|
Liu Z, Zhang X, Ben T, Li M, Jin Y, Wang T, Song Y. Focal adhesion in the tumour metastasis: from molecular mechanisms to therapeutic targets. Biomark Res 2025; 13:38. [PMID: 40045379 PMCID: PMC11884212 DOI: 10.1186/s40364-025-00745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
The tumour microenvironment is the "hotbed" of tumour cells, providing abundant extracellular support for growth and metastasis. However, the tumour microenvironment is not static and is constantly remodelled by a variety of cellular components, including tumour cells, through mechanical, biological and chemical means to promote metastasis. Focal adhesion plays an important role in cell-extracellular matrix adhesion. An in-depth exploration of the role of focal adhesion in tumour metastasis, especially their contribution at the biomechanical level, is an important direction of current research. In this review, we first summarize the assembly of focal adhesions and explore their kinetics in tumour cells. Then, we describe in detail the role of focal adhesion in various stages of tumour metastasis, especially its key functions in cell migration, invasion, and matrix remodelling. Finally, we describe the anti-tumour strategies targeting focal adhesion and the current progress in the development of some inhibitors against focal adhesion proteins. In this paper, we summarize for the first time that focal adhesion play a positive feedback role in pro-tumour metastatic matrix remodelling by summarizing the five processes of focal adhesion assembly in a multidimensional way. It is beneficial for researchers to have a deeper understanding of the role of focal adhesion in the biological behaviour of tumour metastasis and the potential of focal adhesion as a therapeutic target, providing new ideas for the prevention and treatment of metastases.
Collapse
Affiliation(s)
- Zonghao Liu
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaofang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Tianru Ben
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Mo Li
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Yi Jin
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning Province, 110042, People's Republic of China.
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, 116024, P. R. China.
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
| |
Collapse
|
5
|
Liu H, Shen J, He C. Advances in idiopathic pulmonary fibrosis diagnosis and treatment. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2025; 3:12-21. [PMID: 40226606 PMCID: PMC11993042 DOI: 10.1016/j.pccm.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Indexed: 04/15/2025]
Abstract
Significant advances have been made in diagnosing and treating idiopathic pulmonary fibrosis (IPF) in the last decade. The incidence and prevalence of IPF are increasing, and morbidity and mortality remain high despite the two Food and Drug Administration (FDA)-approved medications, pirfenidone and nintedanib. Hence, there is an urgent need to develop new diagnostic tools and effective therapeutics to improve early, accurate diagnosis of IPF and halt or reverse the progression of fibrosis with a better safety profile. New diagnostic tools such as transbronchial cryobiopsy and genomic classifier require less tissue and generally have good safety profiles, and they have been increasingly utilized in clinical practice. Advances in artificial intelligence-aided diagnostic software are promising, but challenges remain. Both pirfenidone and nintedanib focus on growth factor-activated pathways to inhibit fibroblast activation. Novel therapies targeting different pathways and cell types (immune and epithelial cells) are being investigated. Biomarker-based personalized medicine approaches are also in clinical trials. This review aims to summarize recent diagnostic and therapeutic development in IPF.
Collapse
Affiliation(s)
- Hongli Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jiaxi Shen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX 77024, USA
| |
Collapse
|
6
|
Mooney JJ, Jacobs S, Lefebvre ÉA, Cosgrove GP, Clark A, Turner SM, Decaris M, Barnes CN, Jurek M, Williams B, Duan H, Kimura R, Rizzo G, Searle G, Wardak M, Guo HH. Bexotegrast Shows Dose-Dependent Integrin α vβ 6 Receptor Occupancy in Lungs of Participants with Idiopathic Pulmonary Fibrosis: A Phase 2, Open-Label Clinical Trial. Ann Am Thorac Soc 2025; 22:350-358. [PMID: 39499805 PMCID: PMC11892667 DOI: 10.1513/annalsats.202409-969oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/05/2024] [Indexed: 11/07/2024] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease characterized by dyspnea and loss of lung function. Transforming growth factor-β (TGF-β) activation mediated by αv integrins is central to the pathogenesis of IPF. Bexotegrast (PLN-74809) is an oral, once-daily, dual-selective inhibitor of αvβ6 and αvβ1 integrins under investigation for the treatment of IPF. Positron emission tomography (PET) using an αvβ6-specific PET tracer could confirm target engagement of bexotegrast in the lungs of participants with IPF. Objectives: This Phase 2 study evaluated αvβ6 receptor occupancy in the lung as assessed by changes from baseline in αvβ6 PET tracer uptake, after single-dose administration of bexotegrast to participants with IPF. Methods: In this open-label, single-center study, adults with IPF received up to two single doses of bexotegrast, ranging from 60 to 320 mg with or without background IPF therapy (pirfenidone or nintedanib). At baseline and approximately 4 hours after each orally administered bexotegrast dose, a 60-minute dynamic PET-computed tomography scan was conducted after administration of an αvβ6-specific PET probe ([18F]FP-R01-MG-F2). αvβ6 receptor occupancy by bexotegrast was estimated from the changes in PET tracer uptake after bexotegrast administration. Pharmacokinetics, safety, and tolerability of bexotegrast were also assessed. Results: Eight participants completed the study. Total and unbound plasma bexotegrast concentrations increased in a dose-dependent manner, and regional PET volume of distribution values decreased in a dose- and concentration-dependent manner. The data for volume of distribution fit a simple saturation model, producing an unbound bexotegrast half maximal effective concentration estimate of 3.32 ng/ml. Estimated maximum receptor occupancy was 35%, 53%, 71%, 88%, and 92% after single 60-, 80-, 120-, 240-, and 320-mg doses of bexotegrast, respectively. No treatment-emergent adverse events related to bexotegrast were reported. Conclusions: Dose and concentration-dependent αvβ6 receptor occupancy by bexotegrast was observed by PET imaging, supporting once-daily 160- to 320-mg dosing to evaluate efficacy in clinical trials of IPF. Clinical trial registered with www.clinicaltrials.gov (NCT04072315).
Collapse
Affiliation(s)
- Joshua J. Mooney
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, and
| | - Susan Jacobs
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, and
| | | | | | - Annie Clark
- Pliant Therapeutics, Inc., South San Francisco, California; and
| | - Scott M. Turner
- Pliant Therapeutics, Inc., South San Francisco, California; and
| | - Martin Decaris
- Pliant Therapeutics, Inc., South San Francisco, California; and
| | - Chris N. Barnes
- Pliant Therapeutics, Inc., South San Francisco, California; and
| | - Marzena Jurek
- Pliant Therapeutics, Inc., South San Francisco, California; and
| | - Brittney Williams
- Nuclear Medicine and Molecular Imaging Division, Department of Radiology, Stanford University, Stanford, California
| | - Heying Duan
- Nuclear Medicine and Molecular Imaging Division, Department of Radiology, Stanford University, Stanford, California
| | - Richard Kimura
- Nuclear Medicine and Molecular Imaging Division, Department of Radiology, Stanford University, Stanford, California
| | | | | | - Mirwais Wardak
- Nuclear Medicine and Molecular Imaging Division, Department of Radiology, Stanford University, Stanford, California
| | - H. Henry Guo
- Nuclear Medicine and Molecular Imaging Division, Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
7
|
Bock F, Li S, Pozzi A, Zent R. Integrins in the kidney - beyond the matrix. Nat Rev Nephrol 2025; 21:157-174. [PMID: 39643697 DOI: 10.1038/s41581-024-00906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 12/09/2024]
Abstract
The development and proper functioning of the kidney is dependent on the interaction of kidney cells with the surrounding extracellular matrix (ECM). These interactions are mediated by heterodimeric membrane-bound receptors called integrins, which bind to the ECM via their extracellular domain and via their cytoplasmic tail to intracellular adaptor proteins, to assemble large macromolecular adhesion complexes. These interactions enable integrins to control cellular functions such as intracellular signalling and organization of the actin cytoskeleton and are therefore crucial to organ function. The different nephron segments and the collecting duct system have unique morphologies, functions and ECM environments and are thus equipped with unique sets of integrins with distinct specificities for the ECM with which they interact. These cell-type-specific functions are facilitated by specific intracellular integrin binding proteins, which are critical in determining the integrin activation status, ligand-binding affinity and the type of ECM signals that are relayed to the intracellular structures. The spatiotemporal expression of integrins and their specific interactions with binding partners underlie the proper development, function and repair processes of the kidney. This Review summarizes our current understanding of how integrins, their binding partners and the actin cytoskeleton regulate kidney development, physiology and pathology.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
8
|
Biziorek L, Dériot M, Bonniaud P, Goirand F, Burgy O. [Targeting the TGF-β pathway in pulmonary fibrosis: Is it still a relevant strategy?]. Rev Mal Respir 2025; 42:125-129. [PMID: 40023715 DOI: 10.1016/j.rmr.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare, progressive and fatal disease without pharmacologic curative treatments for the patients. TGF-β is a crucial cytokine in the fibrotic process, and its intracellular signaling pathways are complex and rely on the activation of its receptor. This review summarizes our knowledge on the regulatory checkpoints of the TGF-β signaling. In addition, the main strategies and key potential therapeutic targets identified over recent years are presented, with particular emphasis laid on how they can be used to develop new treatments for pulmonary fibrosis.
Collapse
Affiliation(s)
- L Biziorek
- Université Bourgogne Europe, INSERM U1231 Center for Translational and Molecular Medicine (CTM), UFR des Sciences de Santé, Dijon, France.
| | - M Dériot
- Université Bourgogne Europe, INSERM U1231 Center for Translational and Molecular Medicine (CTM), UFR des Sciences de Santé, Dijon, France
| | - P Bonniaud
- Université Bourgogne Europe, INSERM U1231 Center for Translational and Molecular Medicine (CTM), UFR des Sciences de Santé, Dijon, France; Institut universitaire du Poumon Dijon-Bourgogne, centre hospitalier universitaire, 21000 Dijon France; Centre de référence constitutif des maladies pulmonaires rares de l'adultes de Dijon, réseau OrphaLung, filière RespiFil, centre hospitalier universitaire Dijon-Bourgogne, Dijon, France
| | - F Goirand
- Université Bourgogne Europe, INSERM U1231 Center for Translational and Molecular Medicine (CTM), UFR des Sciences de Santé, Dijon, France; Centre de référence constitutif des maladies pulmonaires rares de l'adultes de Dijon, réseau OrphaLung, filière RespiFil, centre hospitalier universitaire Dijon-Bourgogne, Dijon, France; Laboratoire de pharmacologie et toxicologie, centre hospitalier universitaire Dijon-Bourgogne, Dijon, France
| | - O Burgy
- Université Bourgogne Europe, INSERM U1231 Center for Translational and Molecular Medicine (CTM), UFR des Sciences de Santé, Dijon, France; Centre de référence constitutif des maladies pulmonaires rares de l'adultes de Dijon, réseau OrphaLung, filière RespiFil, centre hospitalier universitaire Dijon-Bourgogne, Dijon, France
| |
Collapse
|
9
|
Ladner YD, Menzel U, Thompson K, Armiento AR, Stoddart MJ. Phenotypic alterations in articulating joint cells: Role of mechanically loaded MSC secretome. Heliyon 2025; 11:e42234. [PMID: 39975836 PMCID: PMC11835575 DOI: 10.1016/j.heliyon.2025.e42234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
Improvements in the treatment of cartilage require insights into the secretory profile of mesenchymal stem cells (MSCs). Apart from their differentiation potential, MSCs secrete a multitude of molecules with therapeutic properties that benefit chondrogenesis and immunomodulation. Previously, we employed a small-panel microarray to demonstrate differences within conditioned medium (CM) of MSCs that were mechanically stimulated within a joint-mimicking bioreactor and their unloaded controls. This study analyzed the proteomic content within CM from 4 week mechanically loaded MSCs with a larger protein microarray. We examined the chondrogenic effect of CM by administration to MSC and chondrocyte pellet cultures, as well as functional changes in T cell proliferation. CM from mechanically loaded samples shows a promising push towards chondrogenic phenotypes within both pellet cultures. Inhibition of T cell proliferation was also observed. This in vitro model could enhance our understanding how mechanical load induces changes in MSC secretome benefitting cartilage healing.
Collapse
Affiliation(s)
- Yann D. Ladner
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zurich, Lengghalde 5, CH-8008, Zurich, Switzerland
| | - Ursula Menzel
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | | | | | - Martin J. Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106, Freiburg, Germany
| |
Collapse
|
10
|
Zhu H, Ren J, Wang X, Qin W, Xie Y. Targeting skeletal interoception: a novel mechanistic insight into intervertebral disc degeneration and pain management. J Orthop Surg Res 2025; 20:159. [PMID: 39940003 PMCID: PMC11823264 DOI: 10.1186/s13018-025-05577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Despite being a leading cause of chronic pain and disability, the underlying mechanisms of intervertebral disc (IVD) degeneration (IVDD) remain unclear. Emerging evidence suggests that mechanosensation (the ability of the skeletal system to perceive mechanical and biochemical signals) mediated by abnormal mechanical loading plays a critical role in the regulation of IVD health. This review examines the complex interactions amongIVDs, intraosseous sensory mechanisms, and the central nervous system (CNS), with a particular focus on the roles of pathways such as PGE2/EP4, Wnt/β-catenin, and NF-κB. This review elucidates the manner in which mechanical stress and aberrant signaling disrupt the homeostasis of the nucleus pulposus (NP), cartilaginous endplate (CEP) and annulus fibrosus (AF), thereby driving degeneration and exacerbating pain. Furthermore, targeted therapeutic strategies, including the modulation of skeletal interoception and dynamic mechanical loading, present novel avenues for reversing IVDD progression. By integrating skeletal biology with spinal pathology, this work offers a novel perspective on the pathogenesis of IVDD and identifies promising strategies for clinical intervention. These findings highlight the potential of targeting skeletal interoception to mitigate IVDD and associated pain, paving the way for innovative, mechanism-driven therapies.
Collapse
Affiliation(s)
- Houcheng Zhu
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - JianHang Ren
- Affiliated Yongchuan Hospital of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 402160, China
| | - Xiangjin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Wenjing Qin
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Yong Xie
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China.
| |
Collapse
|
11
|
Meurer SK, Bronneberg G, Penners C, Kauffmann M, Braunschweig T, Liedtke C, Huber M, Weiskirchen R. TGF-β1 Induces Mucosal Mast Cell Genes and is Negatively Regulated by the IL-3/ERK1/2 Axis. Cell Commun Signal 2025; 23:76. [PMID: 39934802 DOI: 10.1186/s12964-025-02048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Mast cells develop from the myeloid lineage and are released from the bone marrow as immature cells, which then differentiate at the destination tissue based on cues from the local environment. In the liver, mast cells are recruited in diseased states to fibrogenic surroundings rich in TGF-β1. The aim of this study was to investigate TGF-β1 signaling in primary and permanent mast cells to identify common and unique mechanisms. The TGF-β receptor repertoire is similar among mast cells, with high expression of type I and type II receptors and very low expression of type III receptors (Betaglycan and Endoglin). Downstream, TGF-β1 activates the SMAD2/3 signaling axis and also SMAD1/5 with target genes Smad6 and Id1 in a transient manner. Initially, TGF-β1 upregulates the transcription of mucosal mast cell effectors Mcpt1 and Mcpt2 in all analyzed mast cells. This upregulation is reduced in the presence of IL-3, which promotes proliferation. Inhibition of ERK1/2 activation reduces proliferation and mitigates the negative effect of IL-3 on Mcpt1 mRNA and protein expression in the immortalized mast cell line PMC-306 but not in bone marrow-derived mast cells. Therefore, extracellular signal-regulated kinases ERK1/2 are identified as a mutual switch between IL-3-driven proliferation and TGF-β1-promoted mucosal mast cell differentiation in PMC-306. In conclusion, TGF-β1 promotes a mucosal gene signature and inhibits proliferation in mast cells, with these effects being counter-regulated by IL-3/ERK1/2.
Collapse
Affiliation(s)
- Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
| | - Gina Bronneberg
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christian Penners
- Department of Internal Medicine III, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Marlies Kauffmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Till Braunschweig
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Liedtke
- Department of Internal Medicine III, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
12
|
Roth D, Düll MM, Horst LJ, Lindemann A, Malzer X, Koop K, Zundler S, Vetter M, Jefremow A, Atreya R, Geppert C, Weidemann S, Waldner MJ, Dietrich P, Günther C, Munoz LE, Herrmann M, Scheffold A, Neurath MF, Siebler J, Schramm C, Kremer AE, Leppkes M. Integrin αVβ6: Autoantigen and Driver of Epithelial Remodeling in Colon and Bile Ducts in Primary Sclerosing Cholangitis and Inflammatory Bowel Disease. J Crohns Colitis 2025; 19:jjae131. [PMID: 39212221 DOI: 10.1093/ecco-jcc/jjae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Recently, autoantibodies directed against the epithelial adhesion protein integrin αVβ6 have been identified that are strongly associated with ulcerative colitis (UC). We aimed to elucidate whether anti-integrin αVβ6 (anti-αVβ6) is present in primary sclerosing cholangitis (PSC), its associated inflammatory bowel disease, or other cholestatic liver diseases and their persistence after proctocolectomy. METHODS We detected anti-αVβ6 by an enzyme-linked immunosorbent assay in sera collected at 2 German tertiary centers, including healthy controls (N = 62), UC (N = 36), Crohn's disease (CD, N = 65), PSC-inflammatory bowel diseases (IBD) (78 samples from N = 41 patients), PSC without IBD (PSC, 41 samples from N = 18 patients), primary biliary cholangitis (PBC, N = 24), autoimmune hepatitis (AIH, N = 32), secondary sclerosing cholangitis (SSC, N = 12), and metabolic dysfunction-associated steatotic liver disease (MASLD, N = 24). In addition, sera after proctocolectomy were studied (44 samples/N = 10 patients). Immunofluorescent analyses were performed in tissue samples from liver, large bile duct from surgical resections, and colon of PSC patients. RESULTS Anti-αVβ6 occurred in 91% of UC, 17% of CD, 73% of PSC-IBD, 39% of PSC, 4% of PBC, 14% of AIH, and 0% of healthy controls, SSC, or MASLD. Integrin αVβ6 is selectively expressed in disease-associated epithelia of both bile duct and colon. Anti-αVβ6 levels correlate moderately with intestinal disease activity in PSC-IBD, but only weakly with biliary disease. CONCLUSIONS Anti-αVβ6 frequently occurs in patients suffering from PSC, especially in PSC-IBD. Anti-αVβ6 levels positively correlate to IBD activity in PSC-IBD, but may also occur in the absence of clinically manifest IBD in PSC.
Collapse
Affiliation(s)
- Dominik Roth
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miriam M Düll
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ludwig J Horst
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Aylin Lindemann
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xenia Malzer
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kristina Koop
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Marcel Vetter
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - André Jefremow
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Carol Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Peter Dietrich
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Claudia Günther
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis E Munoz
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts-Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Markus F Neurath
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jürgen Siebler
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christoph Schramm
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas E Kremer
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Hepatology and Gastroenterology, University Hospital Zürich and University Zürich, Zürich, Switzerland
| | - Moritz Leppkes
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
13
|
Lo WCY, Boas CWV, Huynh TT, Klaas A, Grogan F, Strong L, Samson P, Robinson CG, Rogers BE, Bergom C. Using Integrin α vβ 6-Targeted Positron Emission Tomography Imaging to Longitudinally Monitor Radiation-Induced Pulmonary Fibrosis In Vivo. Int J Radiat Oncol Biol Phys 2025; 121:484-492. [PMID: 39284532 DOI: 10.1016/j.ijrobp.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/28/2024] [Accepted: 08/08/2024] [Indexed: 10/11/2024]
Abstract
PURPOSE Radiation-induced pulmonary fibrosis (RIPF) is a potentially serious and disabling late complication of radiation therapy. Monitoring RIPF progression is challenging due to the absence of early detection tools and the difficulty in distinguishing RIPF from other lung diseases using standard imaging methods. In the lungs, integrin αvβ6 is crucial in the development of RIPF, acting as a significant activator of transforming growth factor β after radiation injury. This study aimed to investigate integrin αvβ6-targeted positron emission tomography (PET) imaging ([64Cu]Cu-αvβ6-BP) to study RIPF development in vivo. METHODS AND MATERIALS We used a focal RIPF model (70 Gy delivered focally to a 3 mm spot in the lung) and a whole lung RIPF model (14 Gy delivered to the whole lung) in adult C57BL/6J mice. Small animal PET/computed tomography images were acquired 1 hour postinjection of 11.1 MBq of [64Cu]Cu-αvβ6-BP. Animals were imaged for 8 weeks in the focal RIPF model and 6 months in the whole lung RIPF model. Immunohistochemistry for integrin αvβ6 and trichrome staining were performed. RESULTS In the focal RIPF model, there was focal uptake of [64Cu]Cu-αvβ6-BP in the irradiated region at week 4 that progressively increased at weeks 6 and 8. In the whole lung RIPF model, minimal uptake of the probe was observed at 4 months post-radiation therapy, which significantly increased at months 5 and 6. Expression of integrin αvβ6 was validated histologically by immunohistochemistry in both models. CONCLUSIONS Integrin αvβ6-targeted PET imaging using [64Cu]Cu-αvβ6-BP can serve as a useful tool to identify RIPF in vivo.
Collapse
Affiliation(s)
- William C Y Lo
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Cristian W Villas Boas
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Truc T Huynh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri; Department of Chemistry, Washington University in St Louis, St Louis, Missouri
| | - Amanda Klaas
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Felicia Grogan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Lori Strong
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Pamela Samson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Clifford G Robinson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri.
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
14
|
Aubert A, Goeres J, Liu A, Kao M, Richardson KC, Jung K, Hinz B, Crawford RI, Granville DJ. Potential implications of granzyme B in keloids and hypertrophic scars through extracellular matrix remodeling and latent TGF-β activation. Front Immunol 2025; 15:1484462. [PMID: 39885984 PMCID: PMC11779620 DOI: 10.3389/fimmu.2024.1484462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
Keloid scars (KS) and hypertrophic scars (HS) are fibroproliferative wound healing defects characterized by excessive accumulation of extracellular matrix (ECM) in the dermis of affected individuals. Although transforming growth factor (TGF)-β is known to be involved in the formation of KS and HS, the molecular mechanisms responsible for its activation remain unclear. In this study we investigated Granzyme B (GzmB), a serine protease with established roles in fibrosis and scarring through the cleavage of ECM proteins, as a potential new mediator of TGF-β activation in KS and HS. Increased GzmB-positive mast cells were identified in the dermis of KS and HS but not healthy skin controls. Elevated levels of substance P, a neuropeptide involved in mast cell degranulation, suggest that GzmB is released extracellularly, as confirmed by the significant reduction of the established extracellular GzmB substrate decorin in KS and HS. Similarly, presence of latent TGF-β binding protein 1 (LTBP1), a protein involved in the extracellular tethering of latent TGF-β, was disrupted proximal to the dermal-epidermal junction (DEJ) of GzmBhigh KS and HS lesions. Using LTBP1-enriched medium as well as purified LTBP1, its cleavage by GzmB was confirmed in vitro. Increased TGF-β/Smad signaling pathway was observed in keratinocytes treated with GzmB-digested LTBP1 and was abolished by the addition of a pan-TGF-β inhibitor, suggesting that GzmB cleavage of LTBP1 contributes to TGF-β activation. In dermal fibroblasts, GzmB also cleaved cell-derived LTBP1 and induced TGF-β activation through the cleavage of one or more unidentified fibroblast-secreted proteins. Altogether, the present results suggest that GzmB contributes to KS and HS through ECM remodeling and TGF-β activation.
Collapse
Affiliation(s)
- Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
| | - Jenna Goeres
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
| | - Amy Liu
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
| | - Martin Kao
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
| | - Katlyn C. Richardson
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Keenan Research Institute for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Richard I. Crawford
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Dermatology and Skin Science, University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
| |
Collapse
|
15
|
Pöpperl P, Stoff M, Beineke A. Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense. Int J Mol Sci 2025; 26:407. [PMID: 39796262 PMCID: PMC11721917 DOI: 10.3390/ijms26010407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections. Here, detection of viral pathogens causes diverse antiviral and proinflammatory reactions. This fact not only makes them promising research targets, but also suggests them as potential targets for therapeutic and prophylactic approaches. This review aims to give a comprehensive overview of the current knowledge about the role of AlvMϕ in respiratory viral infections of humans and animals.
Collapse
Affiliation(s)
- Pauline Pöpperl
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| |
Collapse
|
16
|
Tomos I, Kanellopoulou P, Nastos D, Aidinis V. Pharmacological targeting of ECM homeostasis, fibroblast activation and invasion for the treatment of pulmonary fibrosis. Expert Opin Ther Targets 2025; 29:43-57. [PMID: 39985559 DOI: 10.1080/14728222.2025.2471579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/24/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with a dismal prognosis. While the standard-of-care (SOC) drugs approved for IPF represent a significant advancement in antifibrotic therapies, they primarily slow disease progression and have limited overall efficacy and many side effects. Consequently, IPF remains a condition with high unmet medical and pharmacological needs. AREAS COVERED A wide variety of molecules and mechanisms have been implicated in the pathogenesis of IPF, many of which have been targeted in clinical trials. In this review, we discuss the latest therapeutic targets that affect extracellular matrix (ECM) homeostasis and the activation of lung fibroblasts, with a specific focus on ECM invasion. EXPERT OPINION A promising new approach involves targeting ECM invasion by fibroblasts, a process that parallels cancer cell behavior. Several cancer drugs are now being tested in IPF for their ability to inhibit ECM invasion, offering significant potential for future treatments. The delivery of these therapies by inhalation is a promising development, as it may enhance local effectiveness and minimize systemic side effects, thereby improving patient safety and treatment efficacy.
Collapse
Affiliation(s)
- Ioannis Tomos
- 5th Department of Respiratory Medicine, 'SOTIRIA' Chest Diseases Hospital of Athens, Athens, Greece
| | - Paraskevi Kanellopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Dimitris Nastos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| |
Collapse
|
17
|
Khan IS, Molina C, Ren X, Auyeung VC, Cohen M, Tsukui T, Atakilit A, Sheppard D. Impaired myofibroblast proliferation is a central feature of pathologic post-natal alveolar simplification. eLife 2024; 13:RP94425. [PMID: 39660606 PMCID: PMC11634066 DOI: 10.7554/elife.94425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFβ signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.
Collapse
Affiliation(s)
- Imran S Khan
- Division of Neonatology, Department of Pediatrics, UCSFSan FranciscoUnited States
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
| | - Christopher Molina
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| | - Xin Ren
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| | - Vincent C Auyeung
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
| | - Max Cohen
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| | - Tatsuya Tsukui
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| | - Amha Atakilit
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| | - Dean Sheppard
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| |
Collapse
|
18
|
Maldonado H, Dreger M, Bedgood LD, Kyriakou T, Wolanska KI, Rigby ME, Marotta VE, Webster JM, Wang J, Rusilowicz-Jones EV, Marshall JF, Coulson JM, Macpherson IR, Hurlstone A, Morgan MR. A trafficking regulatory subnetwork governs α Vβ 6 integrin-HER2 cross-talk to control breast cancer invasion and drug resistance. SCIENCE ADVANCES 2024; 10:eadk9944. [PMID: 39630893 PMCID: PMC11616693 DOI: 10.1126/sciadv.adk9944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
HER2 and αVβ6 integrin are independent predictors of breast cancer survival and metastasis. We identify an αVβ6/HER2 cross-talk mechanism driving invasion, which is dysregulated in drug-resistant HER2+ breast cancer cells. Proteomic analyses reveal ligand-bound αVβ6 recruits HER2 and a trafficking subnetwork, comprising guanosine triphosphatases RAB5 and RAB7A and the Rab regulator guanine nucleotide dissociation inhibitor 2 (GDI2). The RAB5/RAB7A/GDI2 functional module mediates direct cross-talk between αVβ6 and HER2, affecting receptor trafficking and signaling. Acute exposure to trastuzumab increases recruitment of the subnetwork to αVβ6, but trastuzumab resistance decouples GDI2 recruitment. GDI2, RAB5, and RAB7A cooperate to regulate migration and transforming growth factor-β activation to promote invasion. However, these mechanisms are dysregulated in trastuzumab-resistant cells. In patients, RAB5A, RAB7A, and GDI2 expression correlates with patient survival and αVβ6 expression predicts relapse following trastuzumab treatment. Thus, the RAB5/RAB7A/GDI2 subnetwork regulates αVβ6-HER2 cross-talk to drive breast cancer invasion but is subverted in trastuzumab-resistant cells to drive αVβ6-independent and HER2-independent tumor progression.
Collapse
Affiliation(s)
- Horacio Maldonado
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Marcel Dreger
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Lara D. Bedgood
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Theano Kyriakou
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Katarzyna I. Wolanska
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Megan E. Rigby
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Valeria E. Marotta
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Justine M. Webster
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Jun Wang
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Emma V. Rusilowicz-Jones
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - John F. Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Judy M. Coulson
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Iain R. Macpherson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Adam Hurlstone
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Mark R. Morgan
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| |
Collapse
|
19
|
Jing R, Xie X, Liao X, He S, Mo J, Dai H, Hu Z, Pan L. Transforming growth factor-β1 is associated with inflammatory resolution via regulating macrophage polarization in lung injury model mice. Int Immunopharmacol 2024; 142:112997. [PMID: 39217883 DOI: 10.1016/j.intimp.2024.112997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/21/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Ventilation is the main respiratory support therapy for acute respiratory distress syndrome, which triggers acute lung injury (ALI). Macrophage polarization is vital for the resolution of inflammation and tissue injury. We hypothesized that transforming growth factor (TGF)-β1 may attenuate inflammation and ventilator-induced ALI by promoting M2 macrophage polarization. METHODS C57BL/6 mice received 4-hour ventilation and extubation to observe the resolution of lung injury and inflammation. Lung vascular permeability, inflammation, and histological changes in the lungs were evaluated by bronchoalveolar lavage analysis, enzyme linked immunosorbent assay, hematoxylin and eosin staining, as well as transmission electron microscope. TGF-β1 cellular production and macrophage subsets were analyzed by flow cytometry. The relative expressions of targeted proteins and genes were measured by immunofuorescence staining, Western blot, and quantitative polymerase chain reaction. RESULTS High tidal volume-induced injury and inflammation were resolved at 3 days of post-ventilation (PV3d) to PV10d, with increased elastic fibers, proteoglycans, and collagen content, as well as higher TGF-β1 levels. M1 macrophages were increased in the acute phase, whereas M2a macrophages began to increase from PV1d to PV3d, as well as increased M2c macrophages from PV3d to PV7d. A single dose of rTGF-β1 attenuated lung injury and inflammation at end of ventilation with polymorphonuclear leukocyte apoptosis, while nTAb pretreatment induced the abnormal elevation of TGF-β1 that aggravated lung injury and inflammation due to the significant inhibition of M1 macrophages polarized to M2a, M2b, and M2c macrophages. CONCLUSIONS Precise secretion of TGF-β1-mediated macrophage polarization plays a crucial role in the resolution of ventilator-induced inflammatory lung injury.
Collapse
Affiliation(s)
- Ren Jing
- Guangxi Clinical Research Center for Anesthesiology, Nanning 530021, PR China; Department of Breast and Thyroid Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, PR China
| | - Xianlong Xie
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning 530021, PR China; Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning 530021, PR China; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China; Department of Critical Medicine, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China
| | - Xiaoting Liao
- Guangxi Clinical Research Center for Anesthesiology, Nanning 530021, PR China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning 530021, PR China; Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning 530021, PR China; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China
| | - Sheng He
- Guangxi Clinical Research Center for Anesthesiology, Nanning 530021, PR China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning 530021, PR China; Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning 530021, PR China; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China
| | - Jianlan Mo
- Guangxi Clinical Research Center for Anesthesiology, Nanning 530021, PR China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning 530021, PR China; Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning 530021, PR China; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China
| | - Huijun Dai
- Guangxi Clinical Research Center for Anesthesiology, Nanning 530021, PR China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning 530021, PR China; Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning 530021, PR China; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China
| | - Zhaokun Hu
- Guangxi Clinical Research Center for Anesthesiology, Nanning 530021, PR China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning 530021, PR China; Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning 530021, PR China; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China
| | - Linghui Pan
- Guangxi Clinical Research Center for Anesthesiology, Nanning 530021, PR China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning 530021, PR China; Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning 530021, PR China; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, PR China.
| |
Collapse
|
20
|
Nagalingam RS, Jayousi F, Hamledari H, Dababneh S, Hosseini D, Lindsay C, Klein Geltink R, Lange PF, Dixon IM, Rose RA, Czubryt MP, Tibbits GF. Molecular and metabolomic characterization of hiPSC-derived cardiac fibroblasts transitioning to myofibroblasts. Front Cell Dev Biol 2024; 12:1496884. [PMID: 39698493 PMCID: PMC11653212 DOI: 10.3389/fcell.2024.1496884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Background Mechanical stress and pathological signaling trigger the activation of fibroblasts to myofibroblasts, which impacts extracellular matrix composition, disrupts normal wound healing, and can generate deleterious fibrosis. Myocardial fibrosis independently promotes cardiac arrhythmias, sudden cardiac arrest, and contributes to the severity of heart failure. Fibrosis can also alter cell-to-cell communication and increase myocardial stiffness which eventually may lead to lusitropic and inotropic cardiac dysfunction. Human induced pluripotent stem cell derived cardiac fibroblasts (hiPSC-CFs) have the potential to enhance clinical relevance in precision disease modeling by facilitating the study of patient-specific phenotypes. However, it is unclear whether hiPSC-CFs can be activated to become myofibroblasts akin to primary cells, and the key signaling mechanisms in this process remain unidentified. Objective We aim to explore the notable changes in fibroblast phenotype upon passage-mediated activation of hiPSC-CFs with increased mitochondrial metabolism, like primary cardiac fibroblasts. Methods We activated the hiPSC-CFs with serial passaging from passage 0 to 3 (P0 to P3) and treatment of P0 with TGFβ1. Results Passage-mediated activation of hiPSC-CFs was associated with a gradual induction of genes to initiate the activation of these cells to myofibroblasts, including collagen, periostin, fibronectin, and collagen fiber processing enzymes with concomitant downregulation of cellular proliferation markers. Most importantly, canonical TGFβ1 and Hippo signaling component genes including TAZ were influenced by passaging hiPSC-CFs. Seahorse assay revealed that passaging and TGFβ1 treatment increased mitochondrial respiration, consistent with fibroblast activation requiring increased energy production, whereas treatment with the glutaminolysis inhibitor BPTES completely attenuated this process. Conclusion Our study highlights that the hiPSC-CF passaging enhanced fibroblast activation, activated fibrotic signaling pathways, and enhanced mitochondrial metabolism approximating what has been reported in primary cardiac fibroblasts. Thus, hiPSC-CFs may provide an accurate in vitro preclinical model for the cardiac fibrotic condition, which may facilitate the identification of putative anti-fibrotic therapies, including patient-specific approaches.
Collapse
Affiliation(s)
- Raghu Sundaresan Nagalingam
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Farah Jayousi
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Homa Hamledari
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Dina Hosseini
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Chloe Lindsay
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Ramon Klein Geltink
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Philipp F. Lange
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Ian Michael Dixon
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Robert Alan Rose
- Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Michael Paul Czubryt
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Glen Findlay Tibbits
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Tarcsai KR, Bányai K, Bali K, Abbas AA, Kövesdi V, Ongrádi J. Feline Adenovirus Isolate Shows Silent Nucleotide Alterations, Alternative Receptor/Coreceptor Binding, High Resistance to Disinfectants and Antiviral Drugs, as Well as Immunomodulation. Animals (Basel) 2024; 14:3502. [PMID: 39682467 DOI: 10.3390/ani14233502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Adenovirus (AdV) infection has been rarely documented in cats and other felids. Partial sequences of the hexon and fiber genes of a Hungarian feline adenovirus isolate (FeAdV isolate) showed a close relationship to human AdV (HAdV) type C1. Further molecular and biological characterization is reported here. Whole-genome sequencing revealed two silent mutations in the genome of the FeAdV isolate compared to a HAdV-C1 reference strain (at positions 14,096 and 15,082). Competitive antibody binding to the Coxsackie-adenovirus receptor and αvβ3 and αvβ5 integrin coreceptors inhibited the binding of the FeAdV isolate in different cell lines, but residual infections suggested alternative entry routes. The FeAdV isolate was found to be more sensitive to heat, low pH and detergents, but more resistant to alkaline and free chlorine treatments, as well as to ribavirin, stavudine and cidofovir treatments, than other human AdV types. We observed a suppression of IL-10 and TGF-β1 production during the entire course of viral replication. This immunomodulation may restore intratumoral immunity; thus, the FeAdV isolate could serve as an alternative oncolytic vector. Collectively, our results support that the Hungarian FeAdV isolate is a variant of common HAdV-C1. The cohabitation of cats with humans might result in reverse zoonotic infection. Felids appear to be susceptible to persistent and productive adenovirus infection, but further studies are needed to better understand the clinical and epidemiological implications.
Collapse
Affiliation(s)
| | - Krisztián Bányai
- Pathogen Discovery Group, HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
- Szentágothai Research Centre, University of Pécs, 7622 Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, 7622 Pécs, Hungary
| | - Krisztina Bali
- Pathogen Discovery Group, HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, 1078 Budapest, Hungary
| | | | - Valéria Kövesdi
- Department of Preventive Medicine and Public Health, Semmelweis University, 1085 Budapest, Hungary
| | - József Ongrádi
- Department of Preventive Medicine and Public Health, Semmelweis University, 1085 Budapest, Hungary
- Department of Transfusion Medicine, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
22
|
Longmate WM. The epidermal integrin-mediated secretome regulates the skin microenvironment during tumorigenesis and repair. Matrix Biol 2024; 134:175-183. [PMID: 39491760 PMCID: PMC11585437 DOI: 10.1016/j.matbio.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Integrins are cellular transmembrane receptors that physically connect the cytoskeleton with the extracellular matrix. As such, they are positioned to mediate cellular responses to microenvironmental cues. Importantly, integrins also regulate their own microenvironment through secreted factors, also known as the integrin-mediated secretome. Epidermal integrins, or integrins expressed by keratinocytes of the skin epidermis, regulate the cutaneous microenvironment through the contribution of matrix components, via proteolytic matrix remodeling, or by mediating factors like cytokines and growth factors that can promote support for nearby but distinct cells of the stroma, such as immune cells, endothelial cells, and fibroblasts. This role for integrins is enhanced during both pathological and repair tissue remodeling processes, such as tumor growth and progression and wound healing. This review will discuss examples of how the epithelial integrin-mediated secretome can regulate the tissue microenvironment. Although different epithelial integrins in various contexts will be explored, emphasis will be given to epidermal integrins that regulate the secretome during wound healing and cutaneous tumor progression. Epidermal integrin α3β1 is of particular focus as well, since this integrin has been revealed as a key regulator of the keratinocyte secretome.
Collapse
Affiliation(s)
- Whitney M Longmate
- Department of Surgery, Albany Medical College, Albany, NY 12208, USA; Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
23
|
Yao C, Li Z, Su H, Sun K, Liu Q, Zhang Y, Zhu L, Jiang F, Fan Y, Shou S, Wu H, Jin H. Integrin subunit beta 6 is a potential diagnostic marker for acute kidney injury in patients with diabetic kidney disease: a single cell sequencing data analysis. Ren Fail 2024; 46:2409348. [PMID: 39356055 PMCID: PMC11448326 DOI: 10.1080/0886022x.2024.2409348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD), a prevalent complication of diabetes mellitus, is often associated with acute kidney injury (AKI). Thus, the development of preventive and therapeutic strategies is crucial for delaying the progression of AKI and DKD. METHODS The GSE183276 dataset, comprising the data of 20 healthy controls and 12 patients with AKI, was downloaded from the Gene Expression Omnibus (GEO) database to analyze the AKI group. For analyzing the DKD group, the GSE131822 dataset, comprising the data of 3 healthy controls and 3 patients with DKD, was downloaded from the GEO database. The common differentially expressed genes (DEGs) in renal tubular epithelial cells (TECs) were subjected to enrichment analyses. Next, a protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes database to analyze gene-related regulatory networks. Finally, the AKI animal models and the DKD and AKI cell models were established, and the reliability of the identified genes was validated using quantitative real-time polymerase chain reaction analysis. RESULTS Functional analysis was performed with 40 common DEGs in TECs. Eight hub genes were identified using the PPI and gene-related networks. Finally, validation experiments with the in vivo animal model and the in vitro cellular model revealed the four common DEGs. Four DEGs that share molecular mechanisms in the pathogenesis of DKD and AKI were identified. In particular, the expression of Integrin Subunit Beta 6(ITGB6), a hub and commonly upregulated gene, was upregulated in the in vitro models. CONCLUSION ITGB6 may serve as a biomarker for early AKI diagnosis in patients with DKD and as a target for early intervention therapies.
Collapse
Affiliation(s)
- Congcong Yao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ziwei Li
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongshuang Su
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Keke Sun
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Qihui Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Lishuang Zhu
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Jiang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
24
|
Harrison BA, Dowling JE, Bursavich MG, Troast DM, Chong KM, Hahn KN, Zhong C, Mulvihill KM, Nguyen H, Monroy MF, Qiao Q, Sosa B, Mostafavi S, Smukste I, Lee D, Cappellucci L, Konopka EH, Nowakowski P, Stawski L, Senices M, Nguyen MH, Kapoor PS, Luus L, Sullivan A, Bortolato A, Svensson M, Hickey ER, Konze KD, Day T, Kim B, Negri A, Gerasyuto AI, Moy TI, Lu M, Ray AS, Wang L, Cui D, Lin FY, Lippa B, Rogers BN. The Discovery of MORF-627, a Highly Selective Conformationally-Biased Zwitterionic Integrin αvβ6 Inhibitor for Fibrosis. J Med Chem 2024; 67:18656-18681. [PMID: 39446989 DOI: 10.1021/acs.jmedchem.4c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Inhibition of integrin αvβ6 is a promising approach to the treatment of fibrotic disease such as idiopathic pulmonary fibrosis. Screening a small library combining head groups that stabilize the bent-closed conformation of integrin αIIbβ3 with αv integrin binding motifs resulted in the identification of hit compounds that bind the bent-closed conformation of αvβ6. Crystal structures of these compounds bound to αvβ6 and related integrins revealed opportunities to increase potency and selectivity, and these efforts were accelerated using accurate free energy perturbation (FEP+) calculations. Optimization of PK parameters including permeability, bioavailability, clearance, and half-life resulted in the discovery of development candidate MORF-627, a highly selective inhibitor of αvβ6 that stabilizes the bent-closed conformation and has good oral PK. Unfortunately, the compound showed toxicity in a 28-day NHP safety study, precluding further development. Nevertheless, MORF-627 is a useful tool compound for studying the biology of integrin αvβ6.
Collapse
Affiliation(s)
- Bryce A Harrison
- Chemistry, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - James E Dowling
- Chemistry, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | | | - Dawn M Troast
- Chemistry, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Katherine M Chong
- Chemistry, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Kristopher N Hahn
- Chemistry, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Cheng Zhong
- Chemistry, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | | | - Hanh Nguyen
- CMC, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Meghan F Monroy
- Molecular and Cellular Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Qi Qiao
- Molecular and Cellular Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Brian Sosa
- Molecular and Cellular Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Siavash Mostafavi
- Molecular and Cellular Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Inese Smukste
- DMPK, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Dooyoung Lee
- DMPK, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Laura Cappellucci
- Screening Biology, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Elizabeth H Konopka
- Screening Biology, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Patrycja Nowakowski
- Screening Biology, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Lukasz Stawski
- Fibrosis, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Mayra Senices
- Fibrosis, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Minh Hai Nguyen
- Fibrosis, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Parmita S Kapoor
- Fibrosis, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Lia Luus
- Translational Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Andrew Sullivan
- Translational Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Andrea Bortolato
- Computational Chemistry, Therapeutics Group, Schrödinger, New York, New York 10036, United States
| | - Mats Svensson
- Computational Chemistry, Therapeutics Group, Schrödinger, New York, New York 10036, United States
| | - Eugene R Hickey
- Medicinal Chemistry, Therapeutics Group, Schrödinger, New York, New York 10036, United States
| | - Kyle D Konze
- Medicinal Chemistry, Therapeutics Group, Schrödinger, New York, New York 10036, United States
| | - Tyler Day
- Computational Chemistry, Therapeutics Group, Schrödinger, New York, New York 10036, United States
| | - Byungchan Kim
- Computational Chemistry, Therapeutics Group, Schrödinger, New York, New York 10036, United States
| | - Ana Negri
- Computational Chemistry, Therapeutics Group, Schrödinger, New York, New York 10036, United States
| | - Aleksey I Gerasyuto
- Medicinal Chemistry, Therapeutics Group, Schrödinger, New York, New York 10036, United States
| | - Terence I Moy
- Screening Biology, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Min Lu
- Fibrosis, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Adrian S Ray
- Biology and Translational Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Liangsu Wang
- Biology and Translational Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Dan Cui
- DMPK, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Fu-Yang Lin
- Molecular and Cellular Sciences, Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Blaise Lippa
- Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| | - Bruce N Rogers
- Morphic Therapeutic, Waltham, Massachusetts 02451, United States
| |
Collapse
|
25
|
Hryczanek HF, Barrett J, Barrett TN, Burley GA, Cookson RE, Hatley RJD, Measom ND, Roper JA, Rowedder JE, Slack RJ, Śmieja CB, Macdonald SJF. Core Modifications of GSK3335103 toward Orally Bioavailable α vβ 6 Inhibitors with Improved Synthetic Tractability. J Med Chem 2024; 67:19689-19715. [PMID: 39417301 DOI: 10.1021/acs.jmedchem.4c02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The αvβ6 integrin has been identified as a target for the treatment of fibrotic diseases, based on the role it has in activating TGF-β1, a protein implicated in the pathogenesis of fibrosis. However, the development of orally bioavailable αvβ6 inhibitors has proven challenging due to the zwitterionic pharmacophore required to bind to the RGD binding site. This work describes the design and development of a novel, orally bioavailable series of αvβ6 inhibitors, developing on two previously published αvβ6 inhibitors, GSK3008348 and GSK3335103. Strategies to reduce the basicity of the central ring nitrogen present in GSK3008348 were employed, while avoiding the synthetic complexity of the chiral, fluorine-containing quaternary carbon center contained in GSK3335103. Following initial PK studies, this series was optimized, aided by analysis of the physicochemical and in vitro PK properties, to deliver lead molecules (S)-20 and 28 as potent and orally bioavailable αvβ6 inhibitors with improved synthetic tractability.
Collapse
Affiliation(s)
| | - John Barrett
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Tim N Barrett
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Glenn A Burley
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Rosa E Cookson
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Richard J D Hatley
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Nicholas D Measom
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - James A Roper
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - James E Rowedder
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Robert J Slack
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Connor B Śmieja
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | | |
Collapse
|
26
|
Wang T, Kim SY, Peng Y, Zheng J, Layne MD, Murphy-Ullrich JE, Albro MB. Autoinduction-Based Quantification of In Situ TGF-β Activity in Native and Engineered Cartilage. Tissue Eng Part C Methods 2024; 30:522-532. [PMID: 39311474 DOI: 10.1089/ten.tec.2024.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Transforming growth factor beta (TGF-β) is a potent growth factor that regulates the homeostasis of native cartilage and is administered as an anabolic supplement for engineered cartilage growth. The quantification of TGF-β activity in live tissues in situ remains a significant challenge, as conventional activity assessments (e.g., Western blotting of intracellular signaling molecules or reporter cell assays) are unable to measure absolute levels of TGF-β activity in three-dimensional tissues. In this study, we develop a quantification platform established on TGF-β's autoinduction response, whereby active TGF-β (aTGF-β) signaling in cells induces their biosynthesis and secretion of new TGF-β in its latent form (LTGF-β). As such, cell-secreted LTGF-β can serve as a robust, non-destructive, label-free biomarker for quantifying in situ activity of TGF-β in live cartilage tissues. Here, we detect LTGF-β1 secretion levels for bovine native tissue explants and engineered tissue constructs treated with varying doses of media-supplemented aTGF-β3 using an isoform-specific ELISA. We demonstrate that: 1) LTGF-β secretion levels increase proportionally to aTGF-β exposure, reaching 7.4- and 6.6-fold increases in native and engineered cartilage, respectively; 2) synthesized LTGF-β exhibits low retention in both native and engineered cartilage tissue; and 3) secreted LTGF-β is stable in conditioned media for 2 weeks, thus enabling a reliable biological standard curve between LTGF-β secretion and exposed TGF-β activity. Accordingly, we perform quantifications of TGF-β activity in bovine native cartilage, demonstrating up to 0.59 ng/mL in response to physiological dynamic loading. We further quantify the in situ TGF-β activity in aTGF-β-conjugated scaffolds for engineered tissue, which exhibits 1.81 ng/mL of TGF-β activity as a result of a nominal 3 μg/mL loading dose. Overall, cell-secreted LTGF-β can serve as a robust biomarker to quantify in situ activity of TGF-β in live cartilage tissue and can be potentially applied for a wide range of applications, including multiple tissue types and tissue engineering platforms with different cell populations and scaffolds.
Collapse
Affiliation(s)
- Tianbai Wang
- Division of Materials Science & Engineering, Boston University, Boston, Massachusetts, USA
| | - Sung Yeon Kim
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | - Yifan Peng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Jane Zheng
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Matthew D Layne
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | | | - Michael B Albro
- Division of Materials Science & Engineering, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Xiao Y, Martinez L, Zigmond Z, Woltmann D, Singer DV, Singer HA, Vazquez-Padron RI, Salman LH. Functions for platelet factor 4 (PF4/CXCL4) and its receptors in fibroblast-myofibroblast transition and fibrotic failure of arteriovenous fistulas (AVFs). J Vasc Access 2024; 25:1911-1924. [PMID: 37589266 PMCID: PMC10998683 DOI: 10.1177/11297298231192386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Over 60% of End Stage Renal Disease (ESRD) patients are relying on hemodialysis (HD) to survive, and the arteriovenous fistula (AVF) is the preferred vascular access method for HD. However approximately half of all newly created AVF fail to mature and cannot be used without a salvage procedure. We have recently demonstrated an association between AVF maturation failure and post-operative fibrosis, while our RNA-seq study also revealed that veins that ultimately failed during AVF maturation had elevated levels of platelet factor 4 (PF4/CXCL4). However, a link between these two findings was yet to be established. METHODS In this study, we investigated potential mechanisms between PF4 levels and fibrotic remodeling in veins. We compared the local expression of PF4 and fibrosis marker integrin β6 (ITGB6) in veins that successfully underwent maturation with that in veins that ultimately failed to mature. We also measured the changes of expression level of α-smooth muscle actin (αSMA/ACTA2) and collagen (Col1/COL1A1) in venous fibroblasts upon various treatments, such as PF4 pharmacological treatment, alteration of PF4 expression, and blocking of PF4 receptors. RESULTS We found that PF4 is expressed in veins and co-localizes with αSMA. In venous fibroblasts, PF4 stimulates expression of αSMA and Col1 via different pathways. The former requires integrins αvβ5 and α5β1, while chemokine receptor CXCR3 is needed for the latter. Interestingly, we also discovered that the expression of PF4 is associated with that of ITGB6, the β subunit of integrin αvβ6. This integrin is critical for the activation of the major fibrosis factor TGFβ, and overexpression of PF4 promotes activation of the TGFβ pathway. CONCLUSIONS These results indicate that upregulation of PF4 may cause venous fibrosis both directly by stimulating fibroblast differentiation and expression of extracellular matrix (ECM) molecules and indirectly by facilitating the activation of the TGFβ pathway.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Zachary Zigmond
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Daniel Woltmann
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Diane V Singer
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Harold A Singer
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Loay H Salman
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
- Division of Nephrology & Hypertension, Albany Medical College, Albany, NY, USA
| |
Collapse
|
28
|
Jin M, Seed RI, Cai G, Shing T, Wang L, Ito S, Cormier A, Wankowicz SA, Jespersen JM, Baron JL, Carey ND, Campbell MG, Yu Z, Tang PK, Cossio P, Wen W, Lou J, Marks J, Nishimura SL, Cheng Y. Dynamic allostery drives autocrine and paracrine TGF-β signaling. Cell 2024; 187:6200-6219.e23. [PMID: 39288764 PMCID: PMC11531391 DOI: 10.1016/j.cell.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
TGF-β, essential for development and immunity, is expressed as a latent complex (L-TGF-β) non-covalently associated with its prodomain and presented on immune cell surfaces by covalent association with GARP. Binding to integrin αvβ8 activates L-TGF-β1/GARP. The dogma is that mature TGF-β must physically dissociate from L-TGF-β1 for signaling to occur. Our previous studies discovered that αvβ8-mediated TGF-β autocrine signaling can occur without TGF-β1 release from its latent form. Here, we show that mice engineered to express TGF-β1 that cannot release from L-TGF-β1 survive without early lethal tissue inflammation, unlike those with TGF-β1 deficiency. Combining cryogenic electron microscopy with cell-based assays, we reveal a dynamic allosteric mechanism of autocrine TGF-β1 signaling without release where αvβ8 binding redistributes the intrinsic flexibility of L-TGF-β1 to expose TGF-β1 to its receptors. Dynamic allostery explains the TGF-β3 latency/activation mechanism and why TGF-β3 functions distinctly from TGF-β1, suggesting that it broadly applies to other flexible cell surface receptor/ligand systems.
Collapse
Affiliation(s)
- Mingliang Jin
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Robert I Seed
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Guoqing Cai
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Tiffany Shing
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Li Wang
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Saburo Ito
- Department of Pathology, UCSF, San Francisco, CA, USA
| | | | | | | | - Jody L Baron
- Department of Medicine and UCSF Liver Center, UCSF, San Francisco, CA, USA
| | - Nicholas D Carey
- Department of Medicine and UCSF Liver Center, UCSF, San Francisco, CA, USA
| | - Melody G Campbell
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Phu K Tang
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA
| | - Pilar Cossio
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA; Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Weihua Wen
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | - Jianlong Lou
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | - James Marks
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | | | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA; Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA.
| |
Collapse
|
29
|
Gnanagurusamy J, Krishnamoorthy S, Muthusami S. Transforming growth factor-β micro-environment mediated immune cell functions in cervical cancer. Int Immunopharmacol 2024; 140:112837. [PMID: 39111147 DOI: 10.1016/j.intimp.2024.112837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024]
Abstract
Propensity to develop cervical cancer (CC) in human papilloma virus (HPV) infected individual could potentially involve the impaired immune functioning. Several stages of HPV surveillance by immune cells in tumor micro-environment (TME) is regulated mainly by transforming growth factor-beta (TGF-β) and is crucial for the establishment of CC. The role of TGF-β in the initiation and progression of CC is very complex and involve different suppressor of mothers against decapentaplegic homolog (SMAD) dependent and SMAD independent signaling mechanism(s). This review summarizes the handling of HPV by immune cells such as T lymphocytes, B lymphocytes, natural killer cells (NK), dendritic cells (DC), monocytes, macrophages, myeloid derived suppressor cells (MDSC) and their regulation by TGF-β. The hijack mechanisms adapted by HPV to evade this surveillance process is discussed. Biomarkers indicating the stages of CC and immune checkpoints that can be targeted for improved outcome are included for immune-based theragnostics. This review also addresses the direct actions of TGF-β on CC cells and tumor/immune cell interactions. Therapies focused on targeting TGF-β using small molecule inhibitors, monoclonal antibodies and TGF-β chimeric antigen receptor (CAR)T cells are collated to understand the current strategies related to TGF-β in the management of CC.
Collapse
Affiliation(s)
- Jayapradha Gnanagurusamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India; Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India.
| |
Collapse
|
30
|
Bloemen H, Livanos AE, Martins A, Dean R, Bravo AC, Bourgonje AR, Tankelevich M, Herb J, Cho J, Santos AA, Rodrigues CMP, Petralia F, Colombel JF, Bowlus CL, Schiano T, Torres J, Levy C, Mehandru S. Anti-integrin αvβ6 Autoantibodies are Increased in Primary Sclerosing Cholangitis Patients With Concomitant Inflammatory Bowel Disease and Correlate With Liver Disease Severity. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00969-8. [PMID: 39490950 PMCID: PMC12022142 DOI: 10.1016/j.cgh.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND & AIMS Anti-integrin αvβ6 autoantibodies (anti-αvβ6) are found in more than 50% of individuals with ulcerative colitis (UC). We aimed to determine the prevalence of anti-αvβ6 in patients with primary sclerosing cholangitis (PSC) and their association with liver disease severity. METHODS Four cohorts of pre-liver transplant patients with PSC were recruited. Patients with inflammatory bowel disease (IBD) and healthy controls (HCs) served as comparators. Total IgG and anti-αvβ6 levels were measured using enzyme-linked immunosorbent assay. Olink inflammation panel was run on a subset of samples. Multivariable linear regression analysis was performed to assess the association between anti-αvβ6 and indices of liver disease severity. RESULTS A total of 137 patients with PSC (including 76 with PSC-UC, 33 with PSC-Crohn's disease (CD), and 28 with PSC alone) and 160 controls (including 91 with IBD and 69 HCs) were enrolled. Anti-αvβ6 levels were significantly higher in PSC-UC and PSC-CD compared with PSC alone (P < .0001 and P < .003) and HCs (P < .0001 and P < .0001). However, anti-αvβ6 levels in PSC alone were not increased compared with HCs. In patients with PSC-IBD, anti-αvβ6 levels correlated with markers of liver disease severity, including alkaline phosphatase level (r = 0.32; P = .004), the revised Mayo PSC risk score (r = 0.25; P = .02), and liver stiffness measurement (r = 0.43; P = .008) after adjusting for age, gender, race/ethnicity, and IBD subtype. Additionally, anti-αvβ6 levels were associated with markers of systemic inflammation and tissue remodeling. CONCLUSION Anti-αvβ6 autoantibodies identify a subset of patients with PSC with concomitant IBD.
Collapse
Affiliation(s)
- Hannah Bloemen
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alexandra E Livanos
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Adrielly Martins
- Schiff Center for Liver Diseases, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Richard Dean
- Division of Gastroenterology and Hepatology, University of California Davis School of Medicine, Sacramento, California
| | | | - Arno R Bourgonje
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michael Tankelevich
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jake Herb
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Judy Cho
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - André Anastácio Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, University of California Davis School of Medicine, Sacramento, California
| | - Thomas Schiano
- Recanati/Miller Transplantation Institute, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joana Torres
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal; Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal; Division of Gastroenterology, Hospital da Luz, Lisbon, Portugal
| | - Cynthia Levy
- Schiff Center for Liver Diseases, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Division of Digestive Health and Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida.
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
31
|
Pinjusic K, Bulliard M, Rothé B, Ansaryan S, Liu YC, Ginefra P, Schmuziger C, Altug H, Constam DB. Stepwise release of Activin-A from its inhibitory prodomain is modulated by cysteines and requires furin coexpression to promote melanoma growth. Commun Biol 2024; 7:1383. [PMID: 39448726 PMCID: PMC11502825 DOI: 10.1038/s42003-024-07053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The Activin-A precursor dimer can be cleaved by furin, but how this proteolytic maturation is regulated in vivo and how it facilitates access to signaling receptors is unclear. Here, analysis in a syngeneic melanoma grafting model shows that without furin coexpression, Activin-A failed to accelerate tumor growth, correlating with failure of one or both subunits to undergo cleavage in signal-sending cells, even though compensatory processing by host cells nonetheless sustained elevated circulating Activin-A levels. In reporter assays, furin-independent cleavage of one subunit enabled juxtacrine Activin-A signaling, whereas completion of proteolytic maturation by coexpressed furin or by recipient cells stimulated contact-independent activity, crosstalk with BMP receptors, and signal inhibition by follistatin. Mechanistically, Activin-A processing was modulated by allosteric disulfide bonds flanking the furin site. Disruption of these disulfide linkages with the prodomain enabled Activin-A binding to cognate type II receptors independently of proteolytic maturation. Stepwise proteolytic maturation is a novel mechanism to control Activin-A protein interactions and signaling.
Collapse
Affiliation(s)
- Katarina Pinjusic
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Manon Bulliard
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
| | - Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
| | - Saeid Ansaryan
- Ecole Polytechnique Fédérale de Lausanne (EPFL) STI IBI-STI BIOS BM, Station 17, Lausanne, Switzerland
| | - Yeng-Cheng Liu
- Ecole Polytechnique Fédérale de Lausanne (EPFL) STI IBI-STI BIOS BM, Station 17, Lausanne, Switzerland
| | - Pierpaolo Ginefra
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
- University of Lausanne, Department of Oncology, Ludwig Cancer Institute, Epalinges, Switzerland
| | - Céline Schmuziger
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
| | - Hatice Altug
- Ecole Polytechnique Fédérale de Lausanne (EPFL) STI IBI-STI BIOS BM, Station 17, Lausanne, Switzerland
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland.
| |
Collapse
|
32
|
Procopiou PA, Barrett J, Crawford MHJ, Hatley RJD, Hancock AP, Pritchard JM, Rowedder JE, Copley RCB, Slack RJ, Sollis SL, Thorp LR, Lippa RA, Macdonald SJF, Barrett TN. Discovery and Development of Highly Potent and Orally Bioavailable Nonpeptidic α vβ 6 Integrin Inhibitors. J Med Chem 2024; 67:17497-17519. [PMID: 39269712 DOI: 10.1021/acs.jmedchem.4c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
A series of 3-aryl((S)-3-fluoropyrrolidin-1-yl)butanoic acids were developed as potent orally bioavailable αvβ6 integrin inhibitors. Starting from a zwitterionic peptidomimetic series optimized for inhaled administration, the balancing of potency and passive permeability to achieve suitable oral agents through modification and exploration of aryl substituents and pKa of the central cyclic amine is described. (S)-4-((S)-3-Fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-(2-methoxyethoxy)phenyl)butanoic acid was found to have highly desirable oral pharmacokinetic profiles in rat, dog, and minipig, with low to moderate clearance (26%, 7%, and 18% liver blood flow, respectively), moderate volumes of distribution (3.6, 1.4, and 0.9 L/kg, respectively), high to complete oral bioavailabilities, high αvβ6 integrin potency of pIC50 of 8.0, and high solubility in physiological media (>2 mg/mL). Equating to the estimated human dose range of 10-75 mg b.i.d. to achieve 90% αvβ6 target engagement at Cmin, it was selected for further investigation as a potential therapeutic agent for the treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
| | - John Barrett
- Discovery Drug Metabolism & Pharmacokinetics, In Vitro In Vivo Translation, Stevenage SG1 2NY, United Kingdom
| | - Matthew H J Crawford
- Medicinal Science & Technology, Medicine Design, Stevenage SG1 2NY, United Kingdom
| | - Richard J D Hatley
- Medicinal Science & Technology, Medicine Design, Stevenage SG1 2NY, United Kingdom
| | - Ashley P Hancock
- Medicinal Science & Technology, Medicine Design, Stevenage SG1 2NY, United Kingdom
| | - John M Pritchard
- Medicinal Science & Technology, Medicine Design, Stevenage SG1 2NY, United Kingdom
| | - James E Rowedder
- Translational Biology, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Royston C B Copley
- Medicine Development & Supply, Drug Substance Development, Materials Science, Stevenage SG1 2NY, United Kingdom
| | - Robert J Slack
- Translational Biology, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Steven L Sollis
- Medicinal Science & Technology, Medicine Design, Stevenage SG1 2NY, United Kingdom
| | - Lee R Thorp
- Medicinal Science & Technology, Medicine Design, Stevenage SG1 2NY, United Kingdom
| | - Rhys A Lippa
- Medicinal Science & Technology, Medicine Design, Stevenage SG1 2NY, United Kingdom
| | - Simon J F Macdonald
- Medicinal Science & Technology, Medicine Design, Stevenage SG1 2NY, United Kingdom
| | - Tim N Barrett
- Medicinal Science & Technology, Medicine Design, Stevenage SG1 2NY, United Kingdom
| |
Collapse
|
33
|
Gao L, Zhang R, Zhang W, Lan Y, Li X, Cai Q, Liu J. Integrated bioinformatics analysis and experimental validation on malignant progression and immune cell infiltration of LTBP2 in gliomas. BMC Cancer 2024; 24:1252. [PMID: 39390437 PMCID: PMC11466037 DOI: 10.1186/s12885-024-12976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Gliomas are the highly aggressive brain tumor and also the most devastating human tumors. The latent TGF binding proteins (LTBP) had been found to be involved in malignant biological process and could be used as potent biomarkers in several solid tumors. While the role of LTBP family in human glioma remain to be elucidated. METHODS Normalized gene expression and corresponding clinical data of 2407 gliomas samples in public datasets were downloaded from Gliovis. Kaplan-Meier methods and Cox regression analysis was used for survival analyses.Western blot (WB) and Immunohistochemical (IHC) testing were employed to test LTBPs protein level in 154 gliomas samples. Correlation between LTBP2 expression and immune infiltration was evaluated by immunofluorescence (IF) and IHC in glioma tissues. CCK8 and flow cytometric analysis were used to detect the effect of LTBP2 on glioma cells. Orthotopic glioma- mouse models were utilized to evaluate effects in vivo. RESULTS LTBP2 mRNA level was dramatically higher in glioma samples compared with non-tumor brain tissues in XENA-TCGA_GTEx, Gill and Gravendeel datasets (all P < 0.01), and its expression positively correlated with glioma WHO grade, IDH1/2 wildtype and mesenchymal subtypes. These results were confirmed by In-house cohort which was detected by WB and IHC. We found that gliomas patients with high LTBP2 level had shorter OS than those with low LTBP2 level. LTBP2 expression significantly associated with glioma immune score (Spearman r = 0.68, P < 0.01)) and strongly correlated with infiltration degreee of macrophages both in lower grade gliomas (LGG) and GBM. Knocking down LTBP2 obviously reduced proliferation and enhanced sensitivity to temozolomide in U87 and U251 cells. Nude mice with lower expression of LTBP2 had slower tumor growth, and accompanied by less tumor-associated macrophages (TAMs) infiltration detected by IHC staining in vivo. Finally, low LTBP2 expression glioma patients who received chemotherapy survived longer than patients with high LTBP2 expression. CONCLUSION LTBP2 could be used as a prognostic marker, and high LTBP2 expression related to abundant TAMs infiltration and with a worse response to chemotherapy.
Collapse
Affiliation(s)
- Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenbin Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanfang Lan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
34
|
Lu M, Xu Z, Xu F, Yin C, Guo H, Cheng B. Mechanical network motifs as targets for mechanomedicine. Drug Discov Today 2024; 29:104145. [PMID: 39182599 DOI: 10.1016/j.drudis.2024.104145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/26/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The identification and analysis of network motifs has been widely used in the functional analysis of signaling components, disease discovery and other fields. The positive feedback loop (PFL) is a simple but important network motif. The formation of a PFL is regulated by mechanical cues such as substrate stiffness, fiber stretching and cell compression in the cell microenvironment. Here, we propose a new term, 'mechanical PFL', and analyze the mechanisms of mechanical PFLs at molecular, subcellular and cellular scales. More and more therapies are being targeted against mechanosignaling pathways at the experimental and preclinical stages, and exploring mechanical PFLs as potential mechanomedicine targets could be a new direction for disease treatment.
Collapse
Affiliation(s)
- Mengnan Lu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710054, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710054, PR China.
| | - Hui Guo
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710054, PR China.
| | - Bo Cheng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
35
|
Burgess JK, Gosens R. Mechanotransduction and the extracellular matrix: Key drivers of lung pathologies and drug responsiveness. Biochem Pharmacol 2024; 228:116255. [PMID: 38705536 DOI: 10.1016/j.bcp.2024.116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
The lung is a biomechanically active organ, with multiscale mechanical forces impacting the organ, tissue and cellular responses within this microenvironment. In chronic lung diseases, such as chronic obstructive pulmonary disease, pulmonary fibrosis and others, the structure of the lung is drastically altered impeding gas exchange. These changes are, in part, reflected in alterations in the composition, amount and organization of the extracellular matrix within the different lung compartments. The transmission of mechanical forces within lung tissue are broadcast by this complex mix of extracellular matrix components, in particular the collagens, elastin and proteoglycans and the crosslinking of these components. At both a macro and a micro level, the mechanical properties of the microenvironment have a key regulatory role in ascertaining cellular responses and the function of the lung. Cells adhere to, and receive signals from, the extracellular matrix through a number of different surface receptors and complexes which are important for mechanotransduction. This review summarizes the multiscale mechanics in the lung and how the mechanical environment changes in lung disease and aging. We then examine the role of mechanotransduction in driving cell signaling events in lung diseases and finish with a future perspective of the need to consider how such forces may impact pharmacological responsiveness in lung diseases.
Collapse
Affiliation(s)
- Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands.
| | - Reinoud Gosens
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
36
|
Kim D, Sung M, Park M, Sun E, Yoon S, Yoo KH, Radhakrishnan K, Jung SY, Bae W, Cho S, Chung I. Galectin 3-binding protein (LGALS3BP) depletion attenuates hepatic fibrosis by reducing transforming growth factor-β1 (TGF-β1) availability and inhibits hepatocarcinogenesis. Cancer Commun (Lond) 2024; 44:1106-1129. [PMID: 39073023 PMCID: PMC11483554 DOI: 10.1002/cac2.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/04/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Increased Galectin 3-binding protein (LGALS3BP) serum levels have been used to assess hepatic fibrosis stages and the severity of hepatocellular carcinoma (HCC). Considering the crucial role of transforming growth factor-β1 (TGF-β1) in the emergence of these diseases, the present study tested the hypothesis that LGALS3BP regulates the TGF-β1 signaling pathway. METHODS The expression levels of LGALS3BP and TGFB1 were analyzed in patients with metabolic dysfunction-associated steatohepatitis (MASH) and HCC. Multiple omics techniques, such as RNA-sequencing, transposase-accessible chromatin-sequencing assay, and liquid chromatography-tandem mass spectrometry proteomics, were used to identify the regulatory mechanisms for the LGALS3BP-TGF-β1 axis. The effects of altered TGF-β1 signaling by LGALS3BP were investigated in conditional LGALS3BP-knockin and LGALS3BP-knockout mice. RESULTS In patients with MASH and HCC, the levels of LGALS3BP and TGFB1 exhibited positive correlations. Stimulation of LGALS3BP by the inflammatory cytokine interferon α in HCC cells or ectopic overexpression of LGALS3BP in hepatocytes promoted the expression levels of TGFB1. Aggravated fibrosis was observed in the livers of hepatocyte-specific LGALS3BP-knockin mice, with increased TGFB1 levels. LGALS3BP directly bound to and assembled integrin αV, an integral mediator required for releasing active TGF-β1 from extracellular latent complex with the rearranged F-actin cytoskeleton. The released TGF-β1 activated JunB transcription factor, which in turn promoted the TGF-β1 positive feedback loop. LGALS3BP deletion in the hepatocytes downregulated TGF-β1 signaling and CCl4 induced fibrosis. Moreover, LGALS3BP depletion hindered hepatocarcinogenesis by limiting the availability of fibrogenic TGF-β1. CONCLUSION LGALS3BP plays a crucial role in hepatic fibrosis and carcinogenesis by controlling the TGF-β1 signaling pathway, making it a promising therapeutic target in TGF-β1-related diseases.
Collapse
Affiliation(s)
- Dae‐Hwan Kim
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| | - Minjeong Sung
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
- BioMedical Sciences Graduate ProgramChonnam National UniversityHwasunSouth Korea
| | - Myong‐Suk Park
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| | - Eun‐Gene Sun
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| | - Sumin Yoon
- Department of Biological ScienceSookmyung Women's UniversitySeoulSouth Korea
| | - Kyung Hyun Yoo
- Department of Biological ScienceSookmyung Women's UniversitySeoulSouth Korea
| | | | - Sung Yun Jung
- Department of Biochemistry and Molecular PharmacologyBaylor College of MedicineHoustonTexasUSA
| | - Woo‐Kyun Bae
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
- BioMedical Sciences Graduate ProgramChonnam National UniversityHwasunSouth Korea
| | - Sang‐Hee Cho
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| | - Ik‐Joo Chung
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| |
Collapse
|
37
|
Khan IS, Molina C, Ren X, Auyeung VC, Cohen M, Tsukui T, Atakilit A, Sheppard D. Impaired Myofibroblast Proliferation is a Central Feature of Pathologic Post-Natal Alveolar Simplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572766. [PMID: 38187712 PMCID: PMC10769348 DOI: 10.1101/2023.12.21.572766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFb signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.
Collapse
Affiliation(s)
- Imran S. Khan
- Division of Neonatology, Department of Pediatrics, UCSF
- Cardiovascular Research Institute, UCSF
| | - Christopher Molina
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Xin Ren
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Vincent C. Auyeung
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Max Cohen
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Tatsuya Tsukui
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Amha Atakilit
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Dean Sheppard
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| |
Collapse
|
38
|
Sankhe CS, Sacco JL, Lawton J, Fair RA, Soares DVR, Aldahdooh MKR, Gomez ED, Gomez EW. Breast Cancer Cells Exhibit Mesenchymal-Epithelial Plasticity Following Dynamic Modulation of Matrix Stiffness. Adv Biol (Weinh) 2024; 8:e2400087. [PMID: 38977422 DOI: 10.1002/adbi.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/31/2024] [Indexed: 07/10/2024]
Abstract
Mesenchymal-epithelial transition (MET) is essential for tissue and organ development and is thought to contribute to cancer by enabling the establishment of metastatic lesions. Despite its importance in both health and disease, there is a lack of in vitro platforms to study MET and little is known about the regulation of MET by mechanical cues. Here, hyaluronic acid-based hydrogels with dynamic and tunable stiffnesses mimicking that of normal and tumorigenic mammary tissue are synthesized. The platform is then utilized to examine the response of mammary epithelial cells and breast cancer cells to dynamic modulation of matrix stiffness. Gradual softening of the hydrogels reduces proliferation and increases apoptosis of breast cancer cells. Moreover, breast cancer cells exhibit temporal changes in cell morphology, cytoskeletal organization, and gene expression that are consistent with mesenchymal-epithelial plasticity as the stiffness of the matrix is reduced. A reduction in matrix stiffness attenuates the expression of integrin-linked kinase, and inhibition of integrin-linked kinase impacts proliferation, apoptosis, and gene expression in cells cultured on stiff and dynamic hydrogels. Overall, these findings reveal intermediate epithelial/mesenchymal states as cells move along a matrix stiffness-mediated MET trajectory and suggest an important role for matrix mechanics in regulating mesenchymal-epithelial plasticity.
Collapse
Affiliation(s)
- Chinmay S Sankhe
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jessica L Sacco
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jacob Lawton
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ryan A Fair
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Mohammed K R Aldahdooh
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Enrique D Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
39
|
Munchel JK, Misra AK, Collins SA, DiGregorio R, Palmisciano A, Heidari P, Noto RB, Montesi SB, Caravan P, Shea BS. Fibrin-Positron Emission Tomography Imaging Reveals Ongoing Lung Injury in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2024; 210:514-517. [PMID: 38843499 PMCID: PMC11351804 DOI: 10.1164/rccm.202312-2357le] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Affiliation(s)
- Julia K. Munchel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Division of Pulmonary, Critical Care, and Sleep Medicine and
- Harvard Medical School, Boston, Massachusetts; and
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | | | - Scott A. Collins
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, Rhode Island
| | - Ryan DiGregorio
- Division of Pulmonary, Critical Care, and Sleep Medicine and
| | - Amy Palmisciano
- Division of Pulmonary, Critical Care, and Sleep Medicine and
| | - Pedram Heidari
- Department of Radiology, and
- Harvard Medical School, Boston, Massachusetts; and
| | - Richard B. Noto
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, Rhode Island
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Sydney B. Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Peter Caravan
- Institute for Innovation in Imaging, Athinoula A. Martinos Center for Biomedical Imaging
- Harvard Medical School, Boston, Massachusetts; and
| | - Barry S. Shea
- Division of Pulmonary, Critical Care, and Sleep Medicine and
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
40
|
Zhang H, Tsui CK, Garcia G, Joe LK, Wu H, Maruichi A, Fan W, Pandovski S, Yoon PH, Webster BM, Durieux J, Frankino PA, Higuchi-Sanabria R, Dillin A. The extracellular matrix integrates mitochondrial homeostasis. Cell 2024; 187:4289-4304.e26. [PMID: 38942015 DOI: 10.1016/j.cell.2024.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024]
Abstract
Cellular homeostasis is intricately influenced by stimuli from the microenvironment, including signaling molecules, metabolites, and pathogens. Functioning as a signaling hub within the cell, mitochondria integrate information from various intracellular compartments to regulate cellular signaling and metabolism. Multiple studies have shown that mitochondria may respond to various extracellular signaling events. However, it is less clear how changes in the extracellular matrix (ECM) can impact mitochondrial homeostasis to regulate animal physiology. We find that ECM remodeling alters mitochondrial homeostasis in an evolutionarily conserved manner. Mechanistically, ECM remodeling triggers a TGF-β response to induce mitochondrial fission and the unfolded protein response of the mitochondria (UPRMT). At the organismal level, ECM remodeling promotes defense of animals against pathogens through enhanced mitochondrial stress responses. We postulate that this ECM-mitochondria crosstalk represents an ancient immune pathway, which detects infection- or mechanical-stress-induced ECM damage, thereby initiating adaptive mitochondria-based immune and metabolic responses.
Collapse
Affiliation(s)
- Hanlin Zhang
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - C Kimberly Tsui
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gilberto Garcia
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Larry K Joe
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Haolun Wu
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ayane Maruichi
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wudi Fan
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sentibel Pandovski
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter H Yoon
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brant M Webster
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jenni Durieux
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Phillip A Frankino
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryo Higuchi-Sanabria
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular & Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
41
|
Libra A, Sciacca E, Muscato G, Sambataro G, Spicuzza L, Vancheri C. Highlights on Future Treatments of IPF: Clues and Pitfalls. Int J Mol Sci 2024; 25:8392. [PMID: 39125962 PMCID: PMC11313529 DOI: 10.3390/ijms25158392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by irreversible scarring of lung tissue, leading to death. Despite recent advancements in understanding its pathophysiology, IPF remains elusive, and therapeutic options are limited and non-curative. This review aims to synthesize the latest research developments, focusing on the molecular mechanisms driving the disease and on the related emerging treatments. Unfortunately, several phase 2 studies showing promising preliminary results did not meet the primary endpoints in the subsequent phase 3, underlying the complexity of the disease and the need for new integrated endpoints. IPF remains a challenging condition with a complex interplay of genetic, epigenetic, and pathophysiological factors. Ongoing research into the molecular keystones of IPF is critical for the development of targeted therapies that could potentially stop the progression of the disease. Future directions include personalized medicine approaches, artificial intelligence integration, growth in genetic insights, and novel drug targets.
Collapse
Affiliation(s)
- Alessandro Libra
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Enrico Sciacca
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Giuseppe Muscato
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Gianluca Sambataro
- Artroreuma s.r.l., Rheumatology Outpatient Clinic, 95030 Mascalucia, CT, Italy;
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| |
Collapse
|
42
|
Wu ML, Wheeler K, Silasi R, Lupu F, Griffin CT. Endothelial Chromatin-Remodeling Enzymes Regulate the Production of Critical ECM Components During Murine Lung Development. Arterioscler Thromb Vasc Biol 2024; 44:1784-1798. [PMID: 38868942 PMCID: PMC11624602 DOI: 10.1161/atvbaha.124.320881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND The chromatin-remodeling enzymes BRG1 (brahma-related gene 1) and CHD4 (chromodomain helicase DNA-binding protein 4) independently regulate the transcription of genes critical for vascular development, but their coordinated impact on vessels in late-stage embryos has not been explored. METHODS In this study, we genetically deleted endothelial Brg1 and Chd4 in mixed background mice (Brg1fl/fl;Chd4fl/fl;VE-Cadherin-Cre), and littermates that were negative for Cre recombinase were used as controls. Tissues were analyzed by immunostaining, immunoblot, and flow cytometry. Quantitative reverse transcription polymerase chain reaction was used to determine gene expression, and chromatin immunoprecipitation revealed gene targets of BRG1 and CHD4 in cultured endothelial cells. RESULTS We found Brg1/Chd4 double mutants grew normally but died soon after birth with small and compact lungs. Despite having normal cellular composition, distal air sacs of the mutant lungs displayed diminished ECM (extracellular matrix) components and TGFβ (transforming growth factor-β) signaling, which typically promotes ECM synthesis. Transcripts for collagen- and elastin-related genes and the TGFβ ligand Tgfb1 were decreased in mutant lung endothelial cells, but genetic deletion of endothelial Tgfb1 failed to recapitulate the small lungs and ECM defects seen in Brg1/Chd4 mutants. We instead found several ECM genes to be direct targets of BRG1 and CHD4 in cultured endothelial cells. CONCLUSIONS Collectively, our data highlight essential roles for endothelial chromatin-remodeling enzymes in promoting ECM deposition in the distal lung tissue during the saccular stage of embryonic lung development.
Collapse
Affiliation(s)
- Meng-Ling Wu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Kate Wheeler
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Courtney T. Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
43
|
Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol 2024; 25:617-638. [PMID: 38589640 DOI: 10.1038/s41580-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew E Miller
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
44
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
45
|
Hinz B. More Velcro for the TGF-β1 straitjacket: A new antibody straps latent TGF-β1 to the matrix. Sci Signal 2024; 17:eado5279. [PMID: 38980923 DOI: 10.1126/scisignal.ado5279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
In this issue of Science Signaling, Jackson et al. present a new antibody strategy to-quite literally-strap transforming growth factor-β1 (TGF-β1) to latent complexes in the extracellular matrix. The antibody has no effect on latent TGF-β1 presented on the surface of immune cells and thus allows targeting of the detrimental effects of TGF-β1 in fibrosis without affecting its beneficial immune-suppressing activities.
Collapse
Affiliation(s)
- Boris Hinz
- Keenan Research Institute for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Bellani S, Molyneaux PL, Maher TM, Spagnolo P. Potential of αvβ6 and αvβ1 integrin inhibition for treatment of idiopathic pulmonary fibrosis. Expert Opin Ther Targets 2024; 28:575-585. [PMID: 38949181 DOI: 10.1080/14728222.2024.2375375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease of unknown cause with a dismal prognosis. Nintedanib and Pirfenidone are approved worldwide for the treatment of IPF, but they only slow the rate of functional decline and disease progression. Therefore, there is an urgent need for more efficacious and better tolerated drugs. AREAS COVERED αvβ6 and αvβ1 are two integrins overexpressed in fibrotic tissue, which play a critical role in the development of lung fibrosis. They act by converting transforming growth factor (TGF)-β, one of the most important profibrotic cytokine, in its active form. Here, we summarize and critically discuss the potential of a dual αvβ6/αvβ1 integrin inhibitor for the treatment of IPF. EXPERT OPINION Bexotegrast, a dual αvβ6/αvβ1 integrin inhibitor, has the potential to slow or even halt disease progression in IPF. Indeed, the strong pre-clinical rationale and promising early phase clinical trial data have raised expectations.
Collapse
Affiliation(s)
- Serena Bellani
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Philip L Molyneaux
- National Heart and Lung Institute, Imperial College, London, UK
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospitals, London, UK
| | - Toby M Maher
- Hastings Centre for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
47
|
Chia ZJ, Cao YN, Little PJ, Kamato D. Transforming growth factor-β receptors: versatile mechanisms of ligand activation. Acta Pharmacol Sin 2024; 45:1337-1348. [PMID: 38351317 PMCID: PMC11192764 DOI: 10.1038/s41401-024-01235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
Transforming growth factor-β (TGF-β) signaling is initiated by activation of transmembrane TGF-β receptors (TGFBR), which deploys Smad2/3 transcription factors to control cellular responses. Failure or dysregulation in the TGF-β signaling pathways leads to pathological conditions. TGF-β signaling is regulated at different levels along the pathways and begins with the liberation of TGF-β ligand from its latent form. The mechanisms of TGFBR activation display selectivity to cell types, agonists, and TGF-β isoforms, enabling precise control of TGF-β signals. In addition, the cell surface compartments used to release active TGF-β are surprisingly vibrant, using thrombospondins, integrins, matrix metalloproteinases and reactive oxygen species. The scope of TGFBR activation is further unfolded with the discovery of TGFBR activation initiated by other signaling pathways. The unique combination of mechanisms works in series to trigger TGFBR activation, which can be explored as therapeutic targets. This comprehensive review provides valuable insights into the diverse mechanisms underpinning TGFBR activation, shedding light on potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Ying-Nan Cao
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
48
|
Miron-Mendoza M, Poole K, DiCesare S, Nakahara E, Bhatt MP, Hulleman JD, Petroll WM. The Role of Vimentin in Human Corneal Fibroblast Spreading and Myofibroblast Transformation. Cells 2024; 13:1094. [PMID: 38994947 PMCID: PMC11240817 DOI: 10.3390/cells13131094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
Vimentin has been reported to play diverse roles in cell processes such as spreading, migration, cell-matrix adhesion, and fibrotic transformation. Here, we assess how vimentin impacts cell spreading, morphology, and myofibroblast transformation of human corneal fibroblasts. Overall, although knockout (KO) of vimentin did not dramatically impact corneal fibroblast spreading and mechanical activity (traction force), cell elongation in response to PDGF was reduced in vimentin KO cells as compared to controls. Blocking vimentin polymerization using Withaferin had even more pronounced effects on cell spreading and also inhibited cell-induced matrix contraction. Furthermore, although absence of vimentin did not completely block TGFβ-induced myofibroblast transformation, the degree of transformation and amount of αSMA protein expression was reduced. Proteomics showed that vimentin KO cells cultured in TGFβ had a similar pattern of protein expression as controls. One exception included periostin, an ECM protein associated with wound healing and fibrosis in other cell types, which was highly expressed only in Vim KO cells. We also demonstrate for the first time that LRRC15, a protein previously associated with myofibroblast transformation of cancer-associated fibroblasts, is also expressed by corneal myofibroblasts. Interestingly, proteins associated with LRRC15 in other cell types, such as collagen, fibronectin, β1 integrin and α11 integrin, were also upregulated. Overall, our data show that vimentin impacts both corneal fibroblast spreading and myofibroblast transformation. We also identified novel proteins that may regulate corneal myofibroblast transformation in the presence and/or absence of vimentin.
Collapse
Affiliation(s)
- Miguel Miron-Mendoza
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kara Poole
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sophie DiCesare
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Emi Nakahara
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meet Paresh Bhatt
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D. Hulleman
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Walter Matthew Petroll
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
49
|
Geyer M, Geyer F, Reuning U, Klapproth S, Wolff KD, Nieberler M. CRISPR/Cas9-mediated knock out of ITGB6 in human OSCC cells reduced migration and proliferation ability. Head Face Med 2024; 20:37. [PMID: 38890650 PMCID: PMC11184753 DOI: 10.1186/s13005-024-00437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The treatment of oral squamous cell carcinoma (OSCC) remains challenging and survival rates have not been improved significantly over the past decades. Integrins have been recognized driving the cancer progression and high expression levels cause poor outcomes in patients afflicted with OSCC. Integrin αvβ6 and its subunit integrin beta 6 (ITGB6) were discovered to enhance the invasiveness by providing beneficial effects on downstream pathways promoting the cancer progression. The objective of this study was to establish a CRISPR/Cas9-mediated knock out of ITGB6 in the human OSCC cell line HN and investigate the effects on the migration and proliferation ability. METHODS ITGB6 knock out was performed using the CRISPR/Cas9-system, RNPs, and lipofection. Monoclonal cell clones were achieved by limiting dilution and knock out verification was carried out by sanger sequencing and FACS on protein level. The effects of the knock out on the proliferation and migration ability were evaluated by using MTT and scratch assays. In addition, in silico TCGA analysis was utilized regarding the effects of ITGB6 on overall survival and perineural invasion. RESULTS In silico analysis revealed a significant impact of ITGB6 mRNA expression levels on the overall survival of patients afflicted with OSCC. Additionally, a significantly higher rate of perineural invasion was discovered. CRISPR/Cas9-mediated knock out of ITGB6 was performed in the OSCC cell line HN, resulting in the generation of a monoclonal knock out clone. The knock out clone exhibited a significantly reduced migration and proliferation ability when compared to the wildtype. CONCLUSIONS ITGB6 is a relevant factor in the progression of OSCC and can be used for the development of novel treatment strategies. The present study is the first to establish a monoclonal CRISPR/Cas9-mediated ITGB6 knockout cell clone derived from an OSCC cell line. It suggests that ITGB6 has a significant impact on the proliferative and migratory capacity in vitro.
Collapse
Affiliation(s)
- Maximilian Geyer
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, D-81675, Munich, Germany.
| | - Fabian Geyer
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, D-81675, Munich, Germany
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, D-81675, Munich, Germany
| | - Sarah Klapproth
- Institute of Experimental Hematology, School of Medicine, Technische Universität München, D-81675, Munich, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, D-81675, Munich, Germany
| | - Markus Nieberler
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar der Technischen Universität München, D-81675, Munich, Germany
| |
Collapse
|
50
|
Zhu C, Zheng R, Han X, Tang Z, Li F, Hu X, Lin R, Shen J, Pei Q, Wang R, Wei G, Peng Z, Chen W, Liang Z, Zhou Y. Knockout of integrin αvβ6 protects against renal inflammation in chronic kidney disease by reduction of pro-inflammatory macrophages. Cell Death Dis 2024; 15:397. [PMID: 38844455 PMCID: PMC11156928 DOI: 10.1038/s41419-024-06785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
Integrin αvβ6 holds promise as a therapeutic target for organ fibrosis, yet targeted therapies are hampered by concerns over inflammatory-related side effects. The role of αvβ6 in renal inflammation remains unknown, and clarifying this issue is crucial for αvβ6-targeted treatment of chronic kidney disease (CKD). Here, we revealed a remarkable positive correlation between overexpressed αvβ6 in proximal tubule cells (PTCs) and renal inflammation in CKD patients and mouse models. Notably, knockout of αvβ6 not only significantly alleviated renal fibrosis but also reduced inflammatory responses in mice, especially the infiltration of pro-inflammatory macrophages. Furthermore, conditional knockout of αvβ6 in PTCs in vivo and co-culture of PTCs with macrophages in vitro showed that depleting αvβ6 in PTCs suppressed the migration and pro-inflammatory differentiation of macrophages. Screening of macrophage activators showed that αvβ6 in PTCs activates macrophages via secreting IL-34. IL-34 produced by PTCs was significantly diminished by αvβ6 silencing, and reintroduction of IL-34 restored macrophage activities, while anti-IL-34 antibody restrained macrophage activities enhanced by αvβ6 overexpression. Moreover, RNA-sequencing of PTCs and verification experiments demonstrated that silencing αvβ6 in PTCs blocked hypoxia-stimulated IL-34 upregulation and secretion by inhibiting YAP expression, dephosphorylation, and nuclear translocation, which resulted in the activation of Hippo signaling. While application of a YAP agonist effectively recurred IL-34 production by PTCs, enhancing the subsequent macrophage migration and activation. Besides, reduced IL-34 expression and YAP activation were also observed in global or PTCs-specific αvβ6-deficient injured kidneys. Collectively, our research elucidates the pro-inflammatory function and YAP/IL-34/macrophage axis-mediated mechanism of αvβ6 in renal inflammation, providing a solid rationale for the use of αvβ6 inhibition to treat kidney inflammation and fibrosis.
Collapse
Affiliation(s)
- Changjian Zhu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Ruilin Zheng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Xu Han
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Ziwen Tang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Feng Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Xinrong Hu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Ruoni Lin
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Jiani Shen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Qiaoqiao Pei
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Rong Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Guangyan Wei
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhenwei Peng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.
| | - Zhou Liang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.
| |
Collapse
|