1
|
Gholami-Zanjanbar M, Soleimanian F, Reyhani N, Hajizamani S, Sajadi AE, Ghofrani-Jahromi Z, Vaseghi S. Synaptophysin and GSK-3beta activity in the prefrontal cortex may underlie the effects of REM sleep deprivation and lithium on behavioral functions and memory performance in male rats. Pharmacol Biochem Behav 2024; 245:173894. [PMID: 39413852 DOI: 10.1016/j.pbb.2024.173894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/05/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Rapid-eye movement (REM) stage of sleep serves a critical role in processing cognitive and behavioral functions. Evidence shows that REM sleep deprivation (REM SD) strongly affects the mood state and cognitive abilities. However, there are many inconsistent reports. Although the exact molecular mechanisms underlying REM SD effects have not well been discovered, however, molecular factors including those affected synaptic plasticity and mood state may be involved. There are two important molecular factors that have not been well studied: synaptophysin and glycogen synthase kinase-3 beta (GSK-3beta). The present study aimed to investigate the role of synaptophysin and GSK-3beta in the modulation of memory and behavioral changes induced by REM SD and lithium (as a potent GSK-3beta inhibitor and mood stabilizer). Multiple platform apparatus was used to induce REM SD for 48 h. Lithium was injected at the dose of 50 mg/kg, intraperitoneal (i.p.). Locomotor activity, anxiety-like behavior, pain threshold, novel object recognition memory, and synaptophysin and GSK-3beta level in the prefrontal cortex were evaluated. Results showed REM SD increased locomotor activity, decreased pain threshold, impaired novel object recognition memory, decreased synaptophysin and increased GSK-3beta levels. Lithium reversed these effects. Anxiety-like behavior was unaffected. For the first time, the present study showed that GSK-3beta and synaptophysin may be involved in the modulation of behavior and cognition induced by REM SD and lithium. In conclusion, we suggested that GSK-3beta upregulation and synaptophysin downregulation may underlie the deleterious effects of REM SD, while lithium may counteract REM SD effects via restoring the level of both.
Collapse
Affiliation(s)
| | | | - Niloufar Reyhani
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shadi Hajizamani
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir-Ehsan Sajadi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Zahra Ghofrani-Jahromi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
2
|
Piers TM, Fang K, Namboori SC, Liddle C, Rogers S, Bhinge A, Killick R, Scholpp S. WNT7A-positive dendritic cytonemes control synaptogenesis in cortical neurons. Development 2024; 151:dev202868. [PMID: 39576204 DOI: 10.1242/dev.202868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/07/2024] [Indexed: 12/10/2024]
Abstract
Synaptogenesis involves the transformation of dendritic filopodial contacts into stable connections with the exact apposition of synaptic components. Signalling triggered by Wnt/β-catenin and calcium has been postulated to aid this process. However, it is unclear how such a signalling process orchestrates synapse formation to organise the spatial arrangement of synapses along dendrites. We show that WNT7A is loaded on dynamic dendritic filopodia during spine formation in human cortical neurons. WNT7A is present at the tips of the filopodia and the contact sites with dendrites of neighbouring neurons, triggering spatially restricted localisation of the Wnt co-receptor LRP6. Here, we demonstrate that WNT7A at filopodia tips leads to the induction of calcium transients, the clustering of pre- and postsynaptic proteins, and the subsequent transformation into mature spines. Although soluble WNT7A protein can also support synaptogenesis, it fails to provide this degree of spatial information for spine formation and calcium transients, and synaptic markers are induced ectopically along the dendrites. Our data suggest that dendritic filopodia are WNT7A-bearing cytonemes required for focal calcium signalling and initiation of synapse formation, and provide an elegant mechanism for orchestrating the positioning of synapses along dendrites.
Collapse
Affiliation(s)
- Thomas M Piers
- Living Systems Institute, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, EX4 4QD, UK
| | - Kevin Fang
- Bioimaging Centre, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Seema C Namboori
- Living Systems Institute, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, EX4 4QD, UK
| | - Corin Liddle
- Bioimaging Centre, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sally Rogers
- Living Systems Institute, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, EX4 4QD, UK
| | - Akshay Bhinge
- Living Systems Institute, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, EX4 4QD, UK
| | - Richard Killick
- Living Systems Institute, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, EX4 4QD, UK
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Steffen Scholpp
- Living Systems Institute, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, EX4 4QD, UK
| |
Collapse
|
3
|
Gong M, Li J, Qin Z, Machado Bressan Wilke MV, Liu Y, Li Q, Liu H, Liang C, Morales-Rosado JA, Cohen ASA, Hughes SS, Sullivan BR, Waddell V, van den Boogaard MJH, van Jaarsveld RH, van Binsbergen E, van Gassen KL, Wang T, Hiatt SM, Amaral MD, Kelley WV, Zhao J, Feng W, Ren C, Yu Y, Boczek NJ, Ferber MJ, Lahner C, Elliott S, Ruan Y, Mignot C, Keren B, Xie H, Wang X, Popp B, Zweier C, Piard J, Coubes C, Mau-Them FT, Safraou H, Innes AM, Gauthier J, Michaud JL, Koboldt DC, Sylvie O, Willems M, Tan WH, Cogne B, Rieubland C, Braun D, McLean SD, Platzer K, Zacher P, Oppermann H, Evenepoel L, Blanc P, El Khattabi L, Haque N, Dsouza NR, Zimmermann MT, Urrutia R, Klee EW, Shen Y, Du H, Rappaport L, Liu CM, Chen X. MARK2 variants cause autism spectrum disorder via the downregulation of WNT/β-catenin signaling pathway. Am J Hum Genet 2024; 111:2392-2410. [PMID: 39419027 PMCID: PMC11568763 DOI: 10.1016/j.ajhg.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Microtubule affinity-regulating kinase 2 (MARK2) contributes to establishing neuronal polarity and developing dendritic spines. Although large-scale sequencing studies have associated MARK2 variants with autism spectrum disorder (ASD), the clinical features and variant spectrum in affected individuals with MARK2 variants, early developmental phenotypes in mutant human neurons, and the pathogenic mechanism underlying effects on neuronal development have remained unclear. Here, we report 31 individuals with MARK2 variants and presenting with ASD, other neurodevelopmental disorders, and distinctive facial features. Loss-of-function (LoF) variants predominate (81%) in affected individuals, while computational analysis and in vitro expression assay of missense variants supported the effect of MARK2 loss. Using proband-derived and CRISPR-engineered isogenic induced pluripotent stem cells (iPSCs), we show that MARK2 loss leads to early neuronal developmental and functional deficits, including anomalous polarity and dis-organization in neural rosettes, as well as imbalanced proliferation and differentiation in neural progenitor cells (NPCs). Mark2+/- mice showed abnormal cortical formation and partition and ASD-like behavior. Through the use of RNA sequencing (RNA-seq) and lithium treatment, we link MARK2 loss to downregulation of the WNT/β-catenin signaling pathway and identify lithium as a potential drug for treating MARK2-associated ASD.
Collapse
Affiliation(s)
- Maolei Gong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jiayi Li
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | | | - Yijun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Haoran Liu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Chen Liang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Joel A Morales-Rosado
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ana S A Cohen
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children's Mercy-Kansas City, Kansas City, MO, USA; The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Susan S Hughes
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA; Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Bonnie R Sullivan
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA; Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Valerie Waddell
- Department of Neurology, Children's Mercy Kansas City, Kansas City, MO, USA
| | | | - Richard H van Jaarsveld
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Koen L van Gassen
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Autism Research Center, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | - Jianbo Zhao
- Department of Neurology Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Weixing Feng
- Department of Neurology Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Department of Neurology Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yazhen Yu
- Department of Pediatrics, Beijing Tiantan Hospital affiliated with Capital University of Medical Sciences, Beijing, China
| | - Nicole J Boczek
- Department of Laboratory Medicine and Pathology, Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Matthew J Ferber
- Department of Laboratory Medicine and Pathology, Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Carrie Lahner
- Department of Laboratory Medicine and Pathology, Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Sherr Elliott
- Departments of Neurology and Pediatrics, Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Yiyan Ruan
- Guangxi Clinical Research Center for Pediatric Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Cyril Mignot
- APHP Sorbonne Université, Département de Génétique, Hôpital Pitié-Salpêtrière et Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Boris Keren
- APHP Sorbonne Université, Département de Génétique, Hôpital Pitié-Salpêtrière et Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Hua Xie
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoyan Wang
- Department of Children's Nutrition Research Center, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany; Berlin Institute of Health at Charité-Universitäts medizin Berlin, Center of Functional Genomics, Hessische Straße 4A, Berlin, Germany
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Juliette Piard
- Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France; UMR 1231 GAD, Inserm, Université de Bourgogne Franche Comté, Dijon, France
| | - Christine Coubes
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée Hôpital Arnaud de Villeneuve, 34295 Montpellier Cedex, Dijon, France
| | - Frederic Tran Mau-Them
- UF6254 Innovation en Diagnostic Genomique des Maladies Rares, Dijon, France; Inserm UMR1231 GAD, 21000 Dijon, France
| | - Hana Safraou
- UF6254 Innovation en Diagnostic Genomique des Maladies Rares, Dijon, France; Inserm UMR1231 GAD, 21000 Dijon, France
| | - A Micheil Innes
- Department of Medical Genetics and Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Julie Gauthier
- Molecular Diagnostic Laboratory, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| | - Jacques L Michaud
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Daniel C Koboldt
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Odent Sylvie
- Service de Génétique clinique, CHU Rennes, ERN ITHACA, Rennes, France; University Rennes, CNRS, INSERM, IGDR (Institut de Génétique et développement de Rennes), UMR 6290, ERL U1305, Rennes, France
| | - Marjolaine Willems
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Inserm U1298, INM, Montpellier University, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Cogne
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Claudine Rieubland
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominique Braun
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Scott Douglas McLean
- Division of Clinical Genetics, The Children's Hospital of San Antonio, San Antonio, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Pia Zacher
- Epilepsy Center Kleinwachau, Dresden-Radeberg, Germany
| | - Henry Oppermann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Lucie Evenepoel
- Centre de Génétique Humaine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Avenue Hippocrate 10-1200, Brussels, Belgium
| | - Pierre Blanc
- Sorbonne Université, Department of Medical Genetics, APHP, Pitié-Salpêtrière hospital, Paris Brain Institute-ICM, Laboratoire SeqOIA-PFMG2025, Paris, France
| | - Laïla El Khattabi
- Department of Medical Genetics, APHP, Armand Trousseau and Pitié-Salpêtrière hospitals, Brain Development team, Paris Brain Institute-ICM, Sorbonne Université, Paris, France; Laboratoire SeqOIA-PFMG2025, Paris, France
| | - Neshatul Haque
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nikita R Dsouza
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raul Urrutia
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eric W Klee
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Yiping Shen
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; SynerGene Education, Hejun College, Huichang Jiangxi, China
| | - Hongzhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Leonard Rappaport
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaoli Chen
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Smith G, McCoy K, Di Prisco GV, Kuklish A, Grant E, Bhat M, Patel S, Mackie K, Atwood B, Kalinovsky A. Deletion of endocannabinoid synthesizing enzyme DAGLα from cerebellar Purkinje cells decreases social preference and elevates anxiety. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607068. [PMID: 39211155 PMCID: PMC11361171 DOI: 10.1101/2024.08.08.607068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The endocannabinoid (eCB) signaling system is robustly expressed in the cerebellum starting from the embryonic developmental stages to adulthood. There it plays a key role in regulating cerebellar synaptic plasticity and excitability, suggesting that impaired eCB signaling will lead to deficits in cerebellar adjustments of ongoing behaviors and cerebellar learning. Indeed, human mutations in DAGLα are associated with neurodevelopmental disorders. In this study, we show that selective deletion of the eCB synthesizing enzyme diacylglycerol lipase alpha (Daglα) from mouse cerebellar Purkinje cells (PCs) alters motor and social behaviors, disrupts short-term synaptic plasticity in both excitatory and inhibitory synapses, and reduces Purkinje cell activity during social exploration. Our results provide the first evidence for cerebellar-specific eCB regulation of social behaviors and implicate eCB regulation of synaptic plasticity and PC activity as the neural substrates contributing to these deficits. Abstract Figure
Collapse
|
5
|
Priya, Yadav N, Anand S, Banerjee J, Tripathi M, Chandra PS, Dixit AB. The multifaceted role of Wnt canonical signalling in neurogenesis, neuroinflammation, and hyperexcitability in mesial temporal lobe epilepsy. Neuropharmacology 2024; 251:109942. [PMID: 38570066 DOI: 10.1016/j.neuropharm.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Epilepsy is a neurological disorder characterised by unprovoked, repetitive seizures caused by abnormal neuronal firing. The Wnt/β-Catenin signalling pathway is involved in seizure-induced neurogenesis, aberrant neurogenesis, neuroinflammation, and hyperexcitability associated with epileptic disorder. Wnt/β-Catenin signalling is crucial for early brain development processes including neuronal patterning, synapse formation, and N-methyl-d-aspartate receptor (NMDAR) regulation. Disruption of molecular networks such as Wnt/β-catenin signalling in epilepsy could offer encouraging anti-epileptogenic targets. So, with a better understanding of the canonical Wnt/-Catenin pathway, we highlight in this review the important elements of Wnt/-Catenin signalling specifically in Mesial Temporal Lobe Epilepsy (MTLE) for potential therapeutic targets.
Collapse
Affiliation(s)
- Priya
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Nitin Yadav
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sneha Anand
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
6
|
Gottlieb S, van der Vaart A, Hassan A, Bledsoe D, Morgan A, O'Rourke B, Rogers WD, Wolstenholme JT, Miles MF. A selective GSK3β inhibitor, tideglusib, decreases intermittent access and binge ethanol self-administration in C57BL/6J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593949. [PMID: 38798478 PMCID: PMC11118361 DOI: 10.1101/2024.05.13.593949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Over 10% of the US population over 12 years old meets criteria for Alcohol Use Disorder (AUD), yet few effective, long-term treatments are currently available. Glycogen synthase kinase 3 beta (GSK3β) has been implicated in ethanol behaviors and poses as a potential therapeutic target in the treatment of AUD. Here we investigate the role of tideglusib, a selective GSK3β inhibitor, in ethanol consumption and other behaviors. We have shown tideglusib decreases ethanol consumption in both a model of daily, progressive ethanol intake (two-bottle choice, intermittent ethanol access) and binge-like drinking behavior (drinking-in-the-dark) without effecting water intake. Further, we have shown tideglusib to have no effect on ethanol pharmacokinetics, taste preference, or anxiety-like behavior, though there was a transient increase in total locomotion following treatment. Additionally, we assessed liver health following treatment via serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase and showed no effect on aminotransferase levels though there was a decrease in alkaline phosphatase. RNA sequencing studies revealed a role of GSK3β inhibition via tideglusib on the canonical Wnt signaling pathway, suggesting tideglusib may carry out its effects on ethanol consumption through effects on β-catenin binding to the transcription factors TCF3 and LEF1. The data presented here further implicate GSK3β in alcohol consumption and support the use of tideglusib as a potential therapeutic in the treatment of AUD.
Collapse
|
7
|
Wang M, Fan J, Shao Z. Cellular and Molecular Mechanisms Underlying Synaptic Subcellular Specificity. Brain Sci 2024; 14:155. [PMID: 38391729 PMCID: PMC10886843 DOI: 10.3390/brainsci14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Chemical synapses are essential for neuronal information storage and relay. The synaptic signal received or sent from spatially distinct subcellular compartments often generates different outcomes due to the distance or physical property difference. Therefore, the final output of postsynaptic neurons is determined not only by the type and intensity of synaptic inputs but also by the synaptic subcellular location. How synaptic subcellular specificity is determined has long been the focus of study in the neurodevelopment field. Genetic studies from invertebrates such as Caenorhabditis elegans (C. elegans) have uncovered important molecular and cellular mechanisms required for subcellular specificity. Interestingly, similar molecular mechanisms were found in the mammalian cerebellum, hippocampus, and cerebral cortex. This review summarizes the comprehensive advances in the cellular and molecular mechanisms underlying synaptic subcellular specificity, focusing on studies from C. elegans and rodents.
Collapse
Affiliation(s)
- Mengqing Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Jiale Fan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| |
Collapse
|
8
|
Jovanović A, Tošić N, Marjanović I, Komazec J, Zukić B, Nikitović M, Ilić R, Grujičić D, Janić D, Pavlović S. Germline Variants in Cancer Predisposition Genes in Pediatric Patients with Central Nervous System Tumors. Int J Mol Sci 2023; 24:17387. [PMID: 38139220 PMCID: PMC10744041 DOI: 10.3390/ijms242417387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Central nervous system (CNS) tumors comprise around 20% of childhood malignancies. Germline variants in cancer predisposition genes (CPGs) are found in approximately 10% of pediatric patients with CNS tumors. This study aimed to characterize variants in CPGs in pediatric patients with CNS tumors and correlate these findings with clinically relevant data. Genomic DNA was isolated from the peripheral blood of 51 pediatric patients and further analyzed by the next-generation sequencing approach. Bioinformatic analysis was done using an "in-house" gene list panel, which included 144 genes related to pediatric brain tumors, and the gene list panel Neoplasm (HP:0002664). Our study found that 27% of pediatric patients with CNS tumors have a germline variant in some of the known CPGs, like ALK, APC, CHEK2, ELP1, MLH1, MSH2, NF1, NF2 and TP53. This study represents the first comprehensive evaluation of germline variants in pediatric patients with CNS tumors in the Western Balkans region. Our results indicate the necessity of genomic research to reveal the genetic basis of pediatric CNS tumors, as well as to define targets for the application and development of innovative therapeutics that form the basis of the upcoming era of personalized medicine.
Collapse
Affiliation(s)
- Aleksa Jovanović
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Nataša Tošić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Irena Marjanović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Jovana Komazec
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Branka Zukić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Marina Nikitović
- Pediatric Radiation Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
| | - Rosanda Ilić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Danica Grujičić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Dragana Janić
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Sonja Pavlović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| |
Collapse
|
9
|
Shakya R, Amonruttanapun P, Limboonreung T, Chongthammakun S. 17β-estradiol mitigates the inhibition of SH-SY5Y cell differentiation through WNT1 expression. Cells Dev 2023; 176:203881. [PMID: 37914154 DOI: 10.1016/j.cdev.2023.203881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/01/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
17β-estradiol (E2) and canonical WNT-signaling represent crucial regulatory pathways for microtubule dynamics and synaptic formation. However, it is unclear yet whether E2-induced canonical WNT ligands have significant impact on neurogenic repair under inflammatory condition. In this study, first, we prepared the chronic activated-microglial-conditioned media, known to be comprised of neuro-inflammatory components. Long term exposure of microglial conditioned media to SH-SY5Y cells showed a negative impact on differentiation markers, microtubule associated protein-2 (MAP2) and synaptophysin (SYP), which was successfully rescued by pre and co-treatment of 10 nM 17β-estradiol. The inhibition of estrogen receptors, ERα and ERβ significantly blocked the E2-mediated recovery in the expression of differentiation marker, SYP. Furthermore, the inflammatory inhibition of canonical signaling ligand, WNT1 was also found to be rescued by E2. To our surprise, E2 was unable to replicate this success with β-catenin, which is considered to be the intracellular transducer of canonical WNT signaling. However, WNT antagonist - Dkk1 blocked the E2-mediated recovery in the expression of the differentiation marker, MAP2. Therefore, our data suggests that E2-mediated recovery in SH-SY5Y differentiation follows a divergent pathway from the conventional canonical WNT signaling pathway, which seems to regulate microtubule stability without the involvement of β-catenin. This mechanism provides fresh insight into how estradiol contributes to the restoration of differentiation marker proteins in the context of chronic neuroinflammation.
Collapse
Affiliation(s)
- Rubina Shakya
- Department of Anatomy and Center for Neuroscience Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Anatomy, Kathmandu University, School of Medical Sciences, Dhulikhel, Kavre 11008, Nepal.
| | - Prateep Amonruttanapun
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12121, Thailand.
| | - Tanapol Limboonreung
- Department of Oral Biology, Faculty of Dentistry, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand.
| | - Sukumal Chongthammakun
- Department of Anatomy and Center for Neuroscience Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
10
|
Anand AA, Khan M, V M, Kar D. The Molecular Basis of Wnt/ β-Catenin Signaling Pathways in Neurodegenerative Diseases. Int J Cell Biol 2023; 2023:9296092. [PMID: 37780577 PMCID: PMC10539095 DOI: 10.1155/2023/9296092] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 10/03/2023] Open
Abstract
Defective Wnt signaling is found to be associated with various neurodegenerative diseases. In the canonical pathway, the Frizzled receptor (Fzd) and the lipoprotein receptor-related proteins 5/6 (LRP5/LRP6) create a seven-pass transmembrane receptor complex to which the Wnt ligands bind. This interaction causes the tumor suppressor adenomatous polyposis coli gene product (APC), casein kinase 1 (CK1), and GSK-3β (glycogen synthase kinase-3 beta) to be recruited by the scaffold protein Dishevelled (Dvl), which in turn deactivates the β-catenin destruction complex. This inactivation stops the destruction complex from phosphorylating β-catenin. As a result, β-catenin first builds up in the cytoplasm and then migrates into the nucleus, where it binds to the Lef/Tcf transcription factor to activate the transcription of more than 50 Wnt target genes, including those involved in cell growth, survival, differentiation, neurogenesis, and inflammation. The treatments that are currently available for neurodegenerative illnesses are most commonly not curative in nature but are only symptomatic. According to all available research, restoring Wnt/β-catenin signaling in the brains of patients with neurodegenerative disorders, particularly Alzheimer's and Parkinson's disease, would improve the condition of several patients with neurological disorders. The importance of Wnt activators and modulators in patients with such illnesses is to mainly restore rather than overstimulate the Wnt/β-catenin signaling, thereby reestablishing the equilibrium between Wnt-OFF and Wnt-ON states. In this review, we have tried to summarize the significance of the Wnt canonical pathway in the pathophysiology of certain neurodegenerative diseases, such as Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis, and other similar diseases, and as to how can it be restored in these patients.
Collapse
Affiliation(s)
- Ananya Anurag Anand
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad 211012, India
| | - Misbah Khan
- Department of Biotechnology, Ramaiah University of Applied Sciences, Bengaluru 560054, India
| | - Monica V
- Department of Biotechnology, Ramaiah University of Applied Sciences, Bengaluru 560054, India
| | - Debasish Kar
- Department of Biotechnology, Ramaiah University of Applied Sciences, Bengaluru 560054, India
| |
Collapse
|
11
|
Lucarelli M, Camuso S, Di Pietro C, Bruno F, La Rosa P, Marazziti D, Fiorenza MT, Canterini S. Reduced Cerebellar BDNF Availability Affects Postnatal Differentiation and Maturation of Granule Cells in a Mouse Model of Cholesterol Dyshomeostasis. Mol Neurobiol 2023; 60:5395-5410. [PMID: 37314654 PMCID: PMC10415459 DOI: 10.1007/s12035-023-03435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Niemann-Pick type C1 (NPC1) disease is a lysosomal lipid storage disorder due to mutations in the NPC1 gene resulting in the accumulation of cholesterol within the endosomal/lysosomal compartments. The prominent feature of the disorder is the progressive Purkinje cell degeneration leading to ataxia.In a mouse model of NPC1 disease, we have previously demonstrated that impaired Sonic hedgehog signaling causes defective proliferation of granule cells (GCs) and abnormal cerebellar morphogenesis. Studies conducted on cortical and hippocampal neurons indicate a functional interaction between Sonic hedgehog and brain-derived neurotrophic factor (BDNF) expression, leading us to hypothesize that BDNF signaling may be altered in Npc1 mutant mice, contributing to the onset of cerebellar alterations present in NPC1 disease before the appearance of signs of ataxia.We characterized the expression/localization patterns of the BDNF and its receptor, tropomyosin-related kinase B (TrkB), in the early postnatal and young adult cerebellum of the Npc1nmf164 mutant mouse strain.In Npc1nmf164 mice, our results show (i) a reduced expression of cerebellar BDNF and pTrkB in the first 2 weeks postpartum, phases in which most GCs complete the proliferative/migrative program and begin differentiation; (ii) an altered subcellular localization of the pTrkB receptor in GCs, both in vivo and in vitro; (iii) reduced chemotactic response to BDNF in GCs cultured in vitro, associated with impaired internalization of the activated TrkB receptor; (iv) an overall increase in dendritic branching in mature GCs, resulting in impaired differentiation of the cerebellar glomeruli, the major synaptic complex between GCs and mossy fibers.
Collapse
Affiliation(s)
- Micaela Lucarelli
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Serena Camuso
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Italy
| | - Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP, 88046, Lamezia Terme, Catanzaro, Italy
- Association for Neurogenetic Research (ARN), 88046, Lamezia Terme, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Rome, Italy.
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
12
|
Kim M, Jun S, Park H, Tanaka-Yamamoto K, Yamamoto Y. Regulation of cerebellar network development by granule cells and their molecules. Front Mol Neurosci 2023; 16:1236015. [PMID: 37520428 PMCID: PMC10375027 DOI: 10.3389/fnmol.2023.1236015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The well-organized cerebellar structures and neuronal networks are likely crucial for their functions in motor coordination, motor learning, cognition, and emotion. Such cerebellar structures and neuronal networks are formed during developmental periods through orchestrated mechanisms, which include not only cell-autonomous programs but also interactions between the same or different types of neurons. Cerebellar granule cells (GCs) are the most numerous neurons in the brain and are generated through intensive cell division of GC precursors (GCPs) during postnatal developmental periods. While GCs go through their own developmental processes of proliferation, differentiation, migration, and maturation, they also play a crucial role in cerebellar development. One of the best-characterized contributions is the enlargement and foliation of the cerebellum through massive proliferation of GCPs. In addition to this contribution, studies have shown that immature GCs and GCPs regulate multiple factors in the developing cerebellum, such as the development of other types of cerebellar neurons or the establishment of afferent innervations. These studies have often found impairments of cerebellar development in animals lacking expression of certain molecules in GCs, suggesting that the regulations are mediated by molecules that are secreted from or present in GCs. Given the growing recognition of GCs as regulators of cerebellar development, this review will summarize our current understanding of cerebellar development regulated by GCs and molecules in GCs, based on accumulated studies and recent findings, and will discuss their potential further contributions.
Collapse
Affiliation(s)
- Muwoong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
13
|
Aljović A, Jacobi A, Marcantoni M, Kagerer F, Loy K, Kendirli A, Bräutigam J, Fabbio L, Van Steenbergen V, Pleśniar K, Kerschensteiner M, Bareyre FM. Synaptogenic gene therapy with FGF22 improves circuit plasticity and functional recovery following spinal cord injury. EMBO Mol Med 2023; 15:e16111. [PMID: 36601738 PMCID: PMC9906383 DOI: 10.15252/emmm.202216111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Functional recovery following incomplete spinal cord injury (SCI) depends on the rewiring of motor circuits during which supraspinal connections form new contacts onto spinal relay neurons. We have recently identified a critical role of the presynaptic organizer FGF22 for the formation of new synapses in the remodeling spinal cord. Here, we now explore whether and how targeted overexpression of FGF22 can be used to mitigate the severe functional consequences of SCI. By targeting FGF22 expression to either long propriospinal neurons, excitatory interneurons, or a broader population of interneurons, we establish that FGF22 can enhance neuronal rewiring both in a circuit-specific and comprehensive way. We can further demonstrate that the latter approach can restore functional recovery when applied either on the day of the lesion or within 24 h. Our study thus establishes viral gene transfer of FGF22 as a new synaptogenic treatment for SCI and defines a critical therapeutic window for its application.
Collapse
Affiliation(s)
- Almir Aljović
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany,Graduate School of Systemic NeurosciencesLMU MunichPlaneggGermany
| | - Anne Jacobi
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany,Present address:
F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of NeurologyHarvard Medical SchoolBostonMAUSA
| | - Maite Marcantoni
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany
| | - Fritz Kagerer
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany,Elite Graduate Program M.Sc. Biomedical NeuroscienceTUMMunichGermany
| | - Kristina Loy
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany
| | - Arek Kendirli
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany,Graduate School of Systemic NeurosciencesLMU MunichPlaneggGermany
| | - Jonas Bräutigam
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany
| | - Luca Fabbio
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany
| | - Valérie Van Steenbergen
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany
| | - Katarzyna Pleśniar
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany,Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Florence M Bareyre
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany,Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| |
Collapse
|
14
|
Bonansco C, Cerpa W, Inestrosa NC. How Are Synapses Born? A Functional and Molecular View of the Role of the Wnt Signaling Pathway. Int J Mol Sci 2022; 24:ijms24010708. [PMID: 36614149 PMCID: PMC9821221 DOI: 10.3390/ijms24010708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 01/03/2023] Open
Abstract
Synaptic transmission is a dynamic process that requires precise regulation. Early in life, we must be able to forge appropriate connections (add and remove) to control our behavior. Neurons must recognize appropriate targets, and external soluble factors that activate specific signaling cascades provide the regulation needed to achieve this goal. Wnt signaling has been implicated in several forms of synaptic plasticity, including functional and structural changes associated with brain development. The analysis of synapses from an electrophysiological perspective allows us to characterize the functional role of cellular signaling pathways involved in brain development. The application of quantal theory to principles of developmental plasticity offers the possibility of dissecting the function of structural changes associated with the birth of new synapses as well as the maturation of immature silent synapses. Here, we focus on electrophysiological and molecular evidence that the Wnt signaling pathway regulates glutamatergic synaptic transmission, specifically N-methyl-d-aspartate receptors (NMDARs), to control the birth of new synapses. We also focus on the role of Wnts in the conversion of silent synapses into functional synapses.
Collapse
Affiliation(s)
- Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: (C.B.); (N.C.I.)
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Nibaldo C. Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (C.B.); (N.C.I.)
| |
Collapse
|
15
|
Leroux S, Rodriguez-Duboc A, Arabo A, Basille-Dugay M, Vaudry D, Burel D. Intermittent hypoxia in a mouse model of apnea of prematurity leads to a retardation of cerebellar development and long-term functional deficits. Cell Biosci 2022; 12:148. [PMID: 36068642 PMCID: PMC9450451 DOI: 10.1186/s13578-022-00869-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Background Apnea of prematurity (AOP) is caused by respiratory control immaturity and affects nearly 50% of premature newborns. This pathology induces perinatal intermittent hypoxia (IH), which leads to neurodevelopmental disorders. The impact on the brain has been well investigated. However, despite its functional importance and immaturity at birth, the involvement of the cerebellum remains poorly understood. Therefore, this study aims to identify the effects of IH on cerebellar development using a mouse model of AOP consisting of repeated 2-min cycles of hypoxia and reoxygenation over 6 h and for 10 days starting on postnatal day 2 (P2). Results At P12, IH-mice cerebella present higher oxidative stress associated with delayed maturation of the cerebellar cortex and decreased dendritic arborization of Purkinje cells. Moreover, mice present with growth retardation and motor disorders. In response to hypoxia, the developing cerebellum triggers compensatory mechanisms resulting in the unaltered organization of the cortical layers from P21 onwards. Nevertheless, some abnormalities remain in adult Purkinje cells, such as the dendritic densification, the increase in afferent innervation, and axon hypomyelination. Moreover, this compensation seems insufficient to allow locomotor recovery because adult mice still show motor impairment and significant disorders in spatial learning. Conclusions All these findings indicate that the cerebellum is a target of intermittent hypoxia through alterations of developmental mechanisms leading to long-term functional deficits. Thus, the cerebellum could contribute, like others brain structures, to explaining the pathophysiology of AOP. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00869-5.
Collapse
|
16
|
Luttik K, Tejwani L, Ju H, Driessen T, Smeets CJLM, Edamakanti CR, Khan A, Yun J, Opal P, Lim J. Differential effects of Wnt-β-catenin signaling in Purkinje cells and Bergmann glia in spinocerebellar ataxia type 1. Proc Natl Acad Sci U S A 2022; 119:e2208513119. [PMID: 35969780 PMCID: PMC9407543 DOI: 10.1073/pnas.2208513119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/25/2022] [Indexed: 12/11/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease characterized by progressive ataxia and degeneration of specific neuronal populations, including Purkinje cells (PCs) in the cerebellum. Previous studies have demonstrated a critical role for various evolutionarily conserved signaling pathways in cerebellar patterning, such as the Wnt-β-catenin pathway; however, the roles of these pathways in adult cerebellar function and cerebellar neurodegeneration are largely unknown. In this study, we found that Wnt-β-catenin signaling activity was progressively enhanced in multiple cell types in the adult SCA1 mouse cerebellum, and that activation of this signaling occurs in an ataxin-1 polyglutamine (polyQ) expansion-dependent manner. Genetic manipulation of the Wnt-β-catenin signaling pathway in specific cerebellar cell populations revealed that activation of Wnt-β-catenin signaling in PCs alone was not sufficient to induce SCA1-like phenotypes, while its activation in astrocytes, including Bergmann glia (BG), resulted in gliosis and disrupted BG localization, which was replicated in SCA1 mouse models. Our studies identify a mechanism in which polyQ-expanded ataxin-1 positively regulates Wnt-β-catenin signaling and demonstrate that different cell types have distinct responses to the enhanced Wnt-β-catenin signaling in the SCA1 cerebellum, underscoring an important role of BG in SCA1 pathogenesis.
Collapse
Affiliation(s)
- Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
| | - Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
| | - Hyoungseok Ju
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
| | - Terri Driessen
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
| | | | | | | | - Joy Yun
- Yale College, New Haven, CT 06510
| | - Puneet Opal
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
17
|
Shi Y, Qin L, Wu M, Zheng J, Xie T, Shao Z. Gut neuroendocrine signaling regulates synaptic assembly in C. elegans. EMBO Rep 2022; 23:e53267. [PMID: 35748387 DOI: 10.15252/embr.202153267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Synaptic connections are essential to build a functional brain. How synapses are formed during development is a fundamental question in neuroscience. Recent studies provided evidence that the gut plays an important role in neuronal development through processing signals derived from gut microbes or nutrients. Defects in gut-brain communication can lead to various neurological disorders. Although the roles of the gut in communicating signals from its internal environment to the brain are well known, it remains unclear whether the gut plays a genetically encoded role in neuronal development. Using C. elegans as a model, we uncover that a Wnt-endocrine signaling pathway in the gut regulates synaptic development in the brain. A canonical Wnt signaling pathway promotes synapse formation through regulating the expression of the neuropeptides encoding gene nlp-40 in the gut, which functions through the neuronally expressed GPCR/AEX-2 receptor during development. Wnt-NLP-40-AEX-2 signaling likely acts to modulate neuronal activity. Our study reveals a genetic role of the gut in synaptic development and identifies a novel contribution of the gut-brain axis.
Collapse
Affiliation(s)
- Yanjun Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Qin
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengting Wu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junyu Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Wang Y, Venkatesh A, Xu J, Xu M, Williams J, Smallwood PM, James A, Nathans J. The WNT7A/WNT7B/GPR124/RECK signaling module plays an essential role in mammalian limb development. Development 2022; 149:275368. [PMID: 35552394 PMCID: PMC9148564 DOI: 10.1242/dev.200340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/20/2022] [Indexed: 12/04/2022]
Abstract
In central nervous system vascular endothelial cells, signaling via the partially redundant ligands WNT7A and WNT7B requires two co-activator proteins, GPR124 and RECK. WNT7A and RECK have been shown previously to play a role in limb development, but the mechanism of RECK action in this context is unknown. The roles of WNT7B and GPR124 in limb development have not been investigated. Using combinations of conventional and/or conditional loss-of-function alleles for mouse Wnt7a, Wnt7b, Gpr124 and Reck, including a Reck allele that codes for a protein that is specifically defective in WNT7A/WNT7B signaling, we show that reductions in ligand and/or co-activator function synergize to cause reduced and dysmorphic limb bone growth. Two additional limb phenotypes – loss of distal Lmx1b expression and ectopic growth of nail-like structures – occur with reduced Wnt7a/Wnt7b gene copy number and, respectively, with Reck mutations and with combined Reck and Gpr124 mutations. A third limb phenotype – bleeding into a digit – occurs with the most severe combinations of Wnt7a/Wnt7b, Reck and Gpr124 mutations. These data imply that the WNT7A/WNT7B-FRIZZLED-LRP5/LRP6-GPR124-RECK signaling system functions as an integral unit in limb development. Summary: Genetic analyses in mice show that the WNT7A/WNT7B-FRIZZLED-LRP5/LRP6-GPR124-RECK signaling system, first defined in the context of CNS angiogenesis and barrier development, also functions as an integral unit in limb development.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Arjun Venkatesh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mingxin Xu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip M. Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aaron James
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Yeewa R, Chaiya P, Jantrapirom S, Shotelersuk V, Lo Piccolo L. Multifaceted roles of YEATS domain-containing proteins and novel links to neurological diseases. Cell Mol Life Sci 2022; 79:183. [PMID: 35279775 PMCID: PMC11071958 DOI: 10.1007/s00018-022-04218-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
The so-called Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins, hereafter referred to as YD proteins, take control over the transcription by multiple steps of regulation either involving epigenetic remodelling of chromatin or guiding the processivity of RNA polymerase II to facilitate elongation-coupled mRNA 3' processing. Interestingly, an increasing amount of evidence suggest a wider repertoire of YD protein's functions spanning from non-coding RNA regulation, RNA-binding proteins networking, post-translational regulation of a few signalling transduction proteins and the spindle pole formation. However, such a large set of non-canonical roles is still poorly characterized. Notably, four paralogous of human YEATS domain family members, namely eleven-nineteen-leukaemia (ENL), ALL1-fused gene from chromosome 9 protein (AF9), YEATS2 and glioma amplified sequence 41 (GAS41), have a strong link to cancer yet new findings also highlight a potential novel role in neurological diseases. Here, in an attempt to more comprehensively understand the complexity of four YD proteins and to gain more insight into the novel functions they may accomplish in the neurons, we summarized the YD protein's networks, systematically searched and reviewed the YD genetic variants associated with neurodevelopmental disorders and finally interrogated the model organism Drosophila melanogaster.
Collapse
Affiliation(s)
- Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pawita Chaiya
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Salinee Jantrapirom
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Centre for Genomics and Precision Medicine, The Thai Red Cross Society, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Musculoskeletal Science and Translational Research Centre (MSTR), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
20
|
Upadhyay J, Ansari MN, Samad A, Sayana A. Dysregulation of multiple signaling pathways: A possible cause of cerebral palsy. Exp Biol Med (Maywood) 2022; 247:779-787. [PMID: 35253451 DOI: 10.1177/15353702221081022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cerebral palsy (CP) is a lifelong disability characterized by the impairment of brain functions that result in improper posture and abnormal motor patterns. Understanding this brain abnormality and the role of genetic, epigenetic, and non-genetic factors such as signaling pathway dysregulation and cytokine dysregulation in the pathogenesis of CP is a complex process. Hypoxic-ischemic injury and prematurity are two well-known contributors of CP. Like in the case of other neurodevelopmental disorders such as intellectual disability and autism, the genomic constituents in CP are highly complex. The neuroinflammation that is triggered by maternal cytokine response plays a critical role in the pathogenesis of fetal inflammation response, which is one of the contributing factors of CP, and it continues even after the birth of children suffering from CP. Canonical Wnt signaling pathway is important for the development of mammalian fetal brain and it regulates distinct processes including neurogenesis. The glycogen synthase kinase-3 (GSK-3) antagonistic activity in the Wnt signaling pathway plays a crucial role in neurogenesis and neural development. In this review, we investigated several genetic and non-genetic pathways that are involved in the pathogenesis of CP and their regulation, impairment, and implications for causing CP during embryonic growth and developmental period. Investigating the role of these pathways help to develop novel therapeutic interventions and biomarkers for early diagnosis and treatment. This review also helps us to comprehend the mechanical approach of various signaling pathways, as well as their consequences and relevance in the understanding of CP.
Collapse
Affiliation(s)
- Jyoti Upadhyay
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil 44001, Iraq
| | | |
Collapse
|
21
|
Pathological oligodendrocyte precursor cells revealed in human schizophrenic brains and trigger schizophrenia-like behaviors and synaptic defects in genetic animal model. Mol Psychiatry 2022; 27:5154-5166. [PMID: 36131044 PMCID: PMC9763102 DOI: 10.1038/s41380-022-01777-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 01/19/2023]
Abstract
Although the link of white matter to pathophysiology of schizophrenia is documented, loss of myelin is not detected in patients at the early stages of the disease, suggesting that pathological evolution of schizophrenia may occur before significant myelin loss. Disrupted-in-schizophrenia-1 (DISC1) protein is highly expressed in oligodendrocyte precursor cells (OPCs) and regulates their maturation. Recently, DISC1-Δ3, a major DISC1 variant that lacks exon 3, has been identified in schizophrenia patients, although its pathological significance remains unknown. In this study, we detected in schizophrenia patients a previously unidentified pathological phenotype of OPCs exhibiting excessive branching. We replicated this phenotype by generating a mouse strain expressing DISC1-Δ3 gene in OPCs. We further demonstrated that pathological OPCs, rather than myelin defects, drive the onset of schizophrenic phenotype by hyperactivating OPCs' Wnt/β-catenin pathway, which consequently upregulates Wnt Inhibitory Factor 1 (Wif1), leading to the aberrant synaptic formation and neuronal activity. Suppressing Wif1 in OPCs rescues synaptic loss and behavioral disorders in DISC1-Δ3 mice. Our findings reveal the pathogenetic role of OPC-specific DISC1-Δ3 variant in the onset of schizophrenia and highlight the therapeutic potential of Wif1 as an alternative target for the treatment of this disease.
Collapse
|
22
|
Čada Š, Bryja V. Local Wnt signalling in the asymmetric migrating vertebrate cells. Semin Cell Dev Biol 2021; 125:26-36. [PMID: 34896020 DOI: 10.1016/j.semcdb.2021.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/27/2022]
Abstract
Wnt signalling is known to generate cellular asymmetry via Wnt/planar cell polarity pathway (Wnt/PCP). Wnt/PCP acts locally (i) to orient membrane polarity and asymmetric establishment of intercellular junctions via conserved set of PCP proteins most specifically represented by Vangl and Prickle, and (ii) to asymmetrically rearrange cytoskeletal structures via downstream effectors of Dishevelled (Dvl). This process is best described on stable phenotypes of epithelial cells. Here, however, we review the activity of Wnt signalling in migratory cells which experience the extensive rearrangements of cytoskeleton and consequently dynamic asymmetry, making the localised effects of Wnt signalling easier to distinguish. Firstly, we focused on migration of neuronal axons, which allows to study how the pre-existent cellular asymmetry can influence Wnt signalling outcome. Then, we reviewed the role of Wnt signalling in models of mesenchymal migration including neural crest, melanoma, and breast cancer cells. Last, we collected evidence for local Wnt signalling in amoeboid cells, especially lymphocytes. As the outcome of this review, we identify blank spots in our current understanding of this topic, propose models that synthesise the current observations and allow formulation of testable hypotheses for the future research.
Collapse
Affiliation(s)
- Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics CAS, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
23
|
Narvaes RF, Furini CRG. Role of Wnt signaling in synaptic plasticity and memory. Neurobiol Learn Mem 2021; 187:107558. [PMID: 34808336 DOI: 10.1016/j.nlm.2021.107558] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Ever since their discoveries, the Wnt pathways have been consistently associated with key features of cellular development, including metabolism, structure and cell fate. The three known pathways (the canonical Wnt/β-catenin and the two non-canonical Wnt/Ca++ and Wnt/JNK/PCP pathways) participate in complex networks of interaction with a wide range of regulators of cell function, such as GSK-3β, AKT, PKC and mTOR, among others. These proteins are known to be involved in the formation and maintenance of memory. Currently, studies with Wnt and memory have shown that the canonical and non-canonical pathways play key roles in different processes associated with memory. So, in this review we briefly summarize the different roles that Wnt signaling can play in neurons and in memory, as well as in Alzheimer's disease, focusing towards animal studies. We start with the molecular characterization of the family and its receptors, as well as the most commonly used drugs for pharmacological manipulations. Next, we describe its role in synaptic plasticity and memory, and how the regulations of these pathways affect crucial features of neuronal function. Furthermore, we succinctly present the current knowledge on how the Wnt pathways are implicated in Alzheimer's disease, and how studies are seeing them as a potential candidate for effective treatments. Lastly, we point toward challenges of Wnt research, and how knowledge on these pathways can lead towards a better understanding of neurobiological and pathological processes.
Collapse
Affiliation(s)
- Rodrigo F Narvaes
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000 Porto Alegre, RS, Brazil.
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Caracci MO, Avila ME, Espinoza-Cavieres FA, López HR, Ugarte GD, De Ferrari GV. Wnt/β-Catenin-Dependent Transcription in Autism Spectrum Disorders. Front Mol Neurosci 2021; 14:764756. [PMID: 34858139 PMCID: PMC8632544 DOI: 10.3389/fnmol.2021.764756] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) is a heterogeneous group of neurodevelopmental disorders characterized by synaptic dysfunction and defects in dendritic spine morphology. In the past decade, an extensive list of genes associated with ASD has been identified by genome-wide sequencing initiatives. Several of these genes functionally converge in the regulation of the Wnt/β-catenin signaling pathway, a conserved cascade essential for stem cell pluripotency and cell fate decisions during development. Here, we review current information regarding the transcriptional program of Wnt/β-catenin signaling in ASD. First, we discuss that Wnt/β-catenin gain and loss of function studies recapitulate brain developmental abnormalities associated with ASD. Second, transcriptomic approaches using patient-derived induced pluripotent stem cells (iPSC) cells, featuring mutations in high confidence ASD genes, reveal a significant dysregulation in the expression of Wnt signaling components. Finally, we focus on the activity of chromatin-remodeling proteins and transcription factors considered high confidence ASD genes, including CHD8, ARID1B, ADNP, and TBR1, that regulate Wnt/β-catenin-dependent transcriptional activity in multiple cell types, including pyramidal neurons, interneurons and oligodendrocytes, cells which are becoming increasingly relevant in the study of ASD. We conclude that the level of Wnt/β-catenin signaling activation could explain the high phenotypical heterogeneity of ASD and be instrumental in the development of new diagnostics tools and therapies.
Collapse
Affiliation(s)
- Mario O. Caracci
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Miguel E. Avila
- Faculty of Veterinary Medicine and Agronomy, Nucleus of Applied Research in Veterinary and Agronomic Sciences (NIAVA), Institute of Natural Sciences, Universidad de Las Américas, Santiago, Chile
| | - Francisca A. Espinoza-Cavieres
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Héctor R. López
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Giorgia D. Ugarte
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Giancarlo V. De Ferrari
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
25
|
Nayak R, Rosh I, Kustanovich I, Stern S. Mood Stabilizers in Psychiatric Disorders and Mechanisms Learnt from In Vitro Model Systems. Int J Mol Sci 2021; 22:9315. [PMID: 34502224 PMCID: PMC8431659 DOI: 10.3390/ijms22179315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Bipolar disorder (BD) and schizophrenia are psychiatric disorders that manifest unusual mental, behavioral, and emotional patterns leading to suffering and disability. These disorders span heterogeneous conditions with variable heredity and elusive pathophysiology. Mood stabilizers such as lithium and valproic acid (VPA) have been shown to be effective in BD and, to some extent in schizophrenia. This review highlights the efficacy of lithium and VPA treatment in several randomized, controlled human trials conducted in patients suffering from BD and schizophrenia. Furthermore, we also address the importance of using induced pluripotent stem cells (iPSCs) as a disease model for mirroring the disease's phenotypes. In BD, iPSC-derived neurons enabled finding an endophenotype of hyperexcitability with increased hyperpolarizations. Some of the disease phenotypes were significantly alleviated by lithium treatment. VPA studies have also reported rescuing the Wnt/β-catenin pathway and reducing activity. Another significant contribution of iPSC models can be attributed to studying the molecular etiologies of schizophrenia such as abnormal differentiation of patient-derived neural stem cells, decreased neuronal connectivity and neurite number, impaired synaptic function, and altered gene expression patterns. Overall, despite significant advances using these novel models, much more work remains to fully understand the mechanisms by which these disorders affect the patients' brains.
Collapse
Affiliation(s)
| | | | | | - Shani Stern
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel; (R.N.); (I.R.); (I.K.)
| |
Collapse
|
26
|
Wnt signaling recruits KIF2A to the spindle to ensure chromosome congression and alignment during mitosis. Proc Natl Acad Sci U S A 2021; 118:2108145118. [PMID: 34417301 DOI: 10.1073/pnas.2108145118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Canonical Wnt signaling plays critical roles in development and tissue renewal by regulating β-catenin target genes. Recent evidence showed that β-catenin-independent Wnt signaling is also required for faithful execution of mitosis. However, the targets and specific functions of mitotic Wnt signaling still remain uncharacterized. Using phosphoproteomics, we identified that Wnt signaling regulates the microtubule depolymerase KIF2A during mitosis. We found that Dishevelled recruits KIF2A via its N-terminal and motor domains, which is further promoted upon LRP6 signalosome formation during cell division. We show that Wnt signaling modulates KIF2A interaction with PLK1, which is critical for KIF2A localization at the spindle. Accordingly, inhibition of basal Wnt signaling leads to chromosome misalignment in somatic cells and pluripotent stem cells. We propose that Wnt signaling monitors KIF2A activity at the spindle poles during mitosis to ensure timely chromosome alignment. Our findings highlight a function of Wnt signaling during cell division, which could have important implications for genome maintenance, notably in stem cells.
Collapse
|
27
|
Godoy JA, Espinoza-Caicedo J, Inestrosa NC. Morphological neurite changes induced by porcupine inhibition are rescued by Wnt ligands. Cell Commun Signal 2021; 19:87. [PMID: 34399774 PMCID: PMC8369806 DOI: 10.1186/s12964-021-00709-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background Wnt signaling plays key roles in cellular and physiological processes, including cell proliferation, differentiation and migration during development and tissue homeostasis in adults. This pathway can be defined as Wnt/β-catenin-dependent or β-catenin-independent or “non-canonical”, both signaling are involved in neurite and synapse development/maintenance. Porcupine (PORCN), an acylase that o-acylates Wnt ligands, a major modification in secretion and interaction with its receptors. We use Wnt-C59, a specific PORCN inhibitor, to block the secretion of endogenous Wnts in embryonic hippocampal neurons (DIV 4). Under these conditions, the activity of exogenous Wnt ligands on the complexity of the dendritic tree and axonal polarity were evaluated Methods Cultured primary embryonic hippocampal neurons obtained from Sprague–Dawley rat fetuses (E18), were cultured until day in vitro (DIV) 4 (according to Banker´s protocol) and treated with Wnt-C59 for 24 h, Wnt ligands were added to the cultures on DIV 3 for 24 h. Dendritic arbors and neurites were analysis by fluorescence microscopy. Transfection with Lipofectamine 2000 on DIV 2 of plasmid expressing eGFP and KIF5-Cherry was carried out to evaluate neuronal polarity. Immunostaining was performed with MAP1B and Tau protein. Immunoblot analysis was carried out with Wnt3a, β-catenin and GSK-3β (p-Ser9). Quantitative analysis of dendrite morphology was carried out with ImageJ (NIH) software with Neuron J Plugin. Results We report, here, that Wnt-C59 treatment changed the morphology of the dendritic arbors and neurites of embryonic hippocampal neurons, with decreases β-catenin and Wnt3a and an apparent increase in GSK-3β (p-Ser9) levels. No effect was observed on axonal polarity. In sister cultures, addition of exogenous Wnt3a, 5a and 7a ligands rescued the changes in neuronal morphology. Wnt3a restored the length of neurites to near that of the control, but Wnt7a increased the neurite length beyond that of the control. Wnt5a also restored the length of neurites relative to Wnt concentrations. Conclusions Results indicated that Wnt ligands, added exogenously, restored dendritic arbor complexity in embryonic hippocampal neurons, previously treated with a high affinity specific Porcupine inhibitor. We proposed that PORCN is an emerging molecular target of interest in the search for preclinical options to study and treat Wnt-related diseases. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00709-y.
Collapse
Affiliation(s)
- Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O`Higgins 340, Santiago de Chile, Chile
| | - Jasson Espinoza-Caicedo
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O`Higgins 340, Santiago de Chile, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O`Higgins 340, Santiago de Chile, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
28
|
GSK3 as a Regulator of Cytoskeleton Architecture: Consequences for Health and Disease. Cells 2021; 10:cells10082092. [PMID: 34440861 PMCID: PMC8393567 DOI: 10.3390/cells10082092] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) was initially isolated as a critical protein in energy metabolism. However, subsequent studies indicate that GSK-3 is a multi-tasking kinase that links numerous signaling pathways in a cell and plays a vital role in the regulation of many aspects of cellular physiology. As a regulator of actin and tubulin cytoskeleton, GSK3 influences processes of cell polarization, interaction with the extracellular matrix, and directional migration of cells and their organelles during the growth and development of an animal organism. In this review, the roles of GSK3–cytoskeleton interactions in brain development and pathology, migration of healthy and cancer cells, and in cellular trafficking of mitochondria will be discussed.
Collapse
|
29
|
Kurashina M, Wang J, Lin J, Lee KK, Johal A, Mizumoto K. Sustained expression of unc-4 homeobox gene and unc-37/Groucho in postmitotic neurons specifies the spatial organization of the cholinergic synapses in C. elegans. eLife 2021; 10:66011. [PMID: 34388088 PMCID: PMC8363302 DOI: 10.7554/elife.66011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/07/2021] [Indexed: 11/13/2022] Open
Abstract
Neuronal cell fate determinants establish the identities of neurons by controlling gene expression to regulate neuronal morphology and synaptic connectivity. However, it is not understood if neuronal cell fate determinants have postmitotic functions in synapse pattern formation. Here we identify a novel role for UNC-4 homeobox protein and its corepressor UNC-37/Groucho, in tiled synaptic patterning of the cholinergic motor neurons in Caenorhabditis elegans. We show that unc-4 is not required during neurogenesis but is required in the postmitotic neurons for proper synapse patterning. In contrast, unc-37 is required in both developing and postmitotic neurons. The synaptic tiling defects of unc-4 mutants are suppressed by bar-1/β-catenin mutation, which positively regulates the expression of ceh-12/HB9. Ectopic ceh-12 expression partly underlies the synaptic tiling defects of unc-4 and unc-37 mutants. Our results reveal a novel postmitotic role of neuronal cell fate determinants in synapse pattern formation through inhibiting the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Mizuki Kurashina
- Department of Zoology, University of British Columbia, Vancouver, Canada.,Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, Canada
| | - Jane Wang
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Jeffrey Lin
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Kathy Kyungeun Lee
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Arpun Johal
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver, Canada.,Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, Canada.,Life Sciences Institute, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
30
|
Larouche JA, Mohiuddin M, Choi JJ, Ulintz PJ, Fraczek P, Sabin K, Pitchiaya S, Kurpiers SJ, Castor-Macias J, Liu W, Hastings RL, Brown LA, Markworth JF, De Silva K, Levi B, Merajver SD, Valdez G, Chakkalakal JV, Jang YC, Brooks SV, Aguilar CA. Murine muscle stem cell response to perturbations of the neuromuscular junction are attenuated with aging. eLife 2021; 10:e66749. [PMID: 34323217 PMCID: PMC8360658 DOI: 10.7554/elife.66749] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
During aging and neuromuscular diseases, there is a progressive loss of skeletal muscle volume and function impacting mobility and quality of life. Muscle loss is often associated with denervation and a loss of resident muscle stem cells (satellite cells or MuSCs); however, the relationship between MuSCs and innervation has not been established. Herein, we administered severe neuromuscular trauma to a transgenic murine model that permits MuSC lineage tracing. We show that a subset of MuSCs specifically engraft in a position proximal to the neuromuscular junction (NMJ), the synapse between myofibers and motor neurons, in healthy young adult muscles. In aging and in a mouse model of neuromuscular degeneration (Cu/Zn superoxide dismutase knockout - Sod1-/-), this localized engraftment behavior was reduced. Genetic rescue of motor neurons in Sod1-/- mice reestablished integrity of the NMJ in a manner akin to young muscle and partially restored MuSC ability to engraft into positions proximal to the NMJ. Using single cell RNA-sequencing of MuSCs isolated from aged muscle, we demonstrate that a subset of MuSCs are molecularly distinguishable from MuSCs responding to myofiber injury and share similarity to synaptic myonuclei. Collectively, these data reveal unique features of MuSCs that respond to synaptic perturbations caused by aging and other stressors.
Collapse
Affiliation(s)
- Jacqueline A Larouche
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Mahir Mohiuddin
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Jeongmoon J Choi
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Peter J Ulintz
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
- Internal Medicine-Hematology/Oncology, University of MichiganAnn ArborUnited States
| | - Paula Fraczek
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Kaitlyn Sabin
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | | | - Sarah J Kurpiers
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Jesus Castor-Macias
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Wenxuan Liu
- Department of Pharmacology and Physiology, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of Rochester Medical CenterRochesterUnited States
- Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical CenterRochesterUnited States
| | - Robert Louis Hastings
- Departmentof Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
| | - Lemuel A Brown
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - James F Markworth
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Kanishka De Silva
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Benjamin Levi
- Department of Surgery, University of Texas SouthwesternDallasUnited States
- Childrens Research Institute and Center for Mineral MetabolismDallasUnited States
- Program in Cellular and Molecular Biology, University of MichiganAnn ArborUnited States
| | - Sofia D Merajver
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Internal Medicine-Hematology/Oncology, University of MichiganAnn ArborUnited States
| | - Gregorio Valdez
- Departmentof Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of Rochester Medical CenterRochesterUnited States
- Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical CenterRochesterUnited States
| | - Young C Jang
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Susan V Brooks
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
- Childrens Research Institute and Center for Mineral MetabolismDallasUnited States
- Program in Cellular and Molecular Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
31
|
Vallejo D, Lindsay CB, González-Billault C, Inestrosa NC. Wnt5a modulates dendritic spine dynamics through the regulation of Cofilin via small Rho GTPase activity in hippocampal neurons. J Neurochem 2021; 158:673-693. [PMID: 34107066 DOI: 10.1111/jnc.15448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/21/2023]
Abstract
Dendritic spines are small, actin-rich protrusions that act as the receiving sites of most excitatory inputs in the central nervous system. The remodeling of the synapse architecture is mediated by actin cytoskeleton dynamics, a process precisely regulated by the small Rho GTPase family. Wnt ligands exert their presynaptic and postsynaptic effects during formation and consolidation of the synaptic structure. Specifically, Wnt5a has been identified as an indispensable synaptogenic factor for the regulation and organization of the postsynaptic side; however, the molecular mechanisms through which Wnt5a induces morphological changes resulting from actin cytoskeleton dynamics within dendritic spines remain unclear. In this work, we employ primary rat hippocampal cultures and HT22 murine hippocampal neuronal cell models, molecular and pharmacological tools, and fluorescence microscopy (laser confocal and epifluorescence) to define the Wnt5a-induced molecular signaling involved in postsynaptic remodeling mediated via the regulation of the small Rho GTPase family. We report that Wnt5a differentially regulates the phosphorylation of Cofilin in neurons through both Ras-related C3 botulinum toxin substrate 1 and cell division cycle 42 depending on the subcellular compartment and the extracellular calcium levels. Additionally, we demonstrate that Wnt5a increases the density of dendritic spines and promotes their maturation via Ras-related C3 botulinum toxin substrate 1. Accordingly, we find that Wnt5a requires the combined activation of small Rho GTPases to increase the levels of filamentous actin, thus promoting the stability of actin filaments. Altogether, these results provide evidence for a new mechanism by which Wnt5a may target actin dynamics, thereby regulating the subsequent morphological changes in dendritic spine architecture.
Collapse
Affiliation(s)
- Daniela Vallejo
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina B Lindsay
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian González-Billault
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, USA
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
32
|
Martínez M, Inestrosa NC. The transcriptional landscape of Alzheimer's disease and its association with Wnt signaling pathway. Neurosci Biobehav Rev 2021; 128:454-466. [PMID: 34224789 DOI: 10.1016/j.neubiorev.2021.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/31/2021] [Accepted: 06/20/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a neurological disorder primarily affecting the elderly. The disease manifests as progressive deterioration in cognitive functions, leading to a loss of autonomy. The identification of transcriptional changes in susceptible signaling pathways has provided clues to the origin and progression of AD and has pinpointed synapse loss as the prominent event in early stages of the disease. Synapse failure represents a key pathological correlate of cognitive decline in patients. Genetics and transcriptomics studies have also identified novel genes, processes, and pathways associated with AD. This evidence suggests that a deficiency in Wnt signaling pathway contributes to AD pathogenesis by inducing synaptic dysfunction and neuronal degeneration. In the adult nervous system, Wnt signaling plays a crucial role in synaptic physiology, modulating the synaptic vesicle cycle, trafficking neurotransmitter receptors, and modulating the expression of different genes associated with these processes. In this review, we describe the general transcriptional landscape associated with AD, specifically transcriptional changes associated with the Wnt signaling pathway and their effects in the context of disease.
Collapse
Affiliation(s)
- Milka Martínez
- Centro de Envejecimiento y Regeneración (CARE UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
33
|
Teo S, Salinas PC. Wnt-Frizzled Signaling Regulates Activity-Mediated Synapse Formation. Front Mol Neurosci 2021; 14:683035. [PMID: 34194299 PMCID: PMC8236581 DOI: 10.3389/fnmol.2021.683035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022] Open
Abstract
The formation of synapses is a tightly regulated process that requires the coordinated assembly of the presynaptic and postsynaptic sides. Defects in synaptogenesis during development or in the adult can lead to neurodevelopmental disorders, neurological disorders, and neurodegenerative diseases. In order to develop therapeutic approaches for these neurological conditions, we must first understand the molecular mechanisms that regulate synapse formation. The Wnt family of secreted glycoproteins are key regulators of synapse formation in different model systems from invertebrates to mammals. In this review, we will discuss the role of Wnt signaling in the formation of excitatory synapses in the mammalian brain by focusing on Wnt7a and Wnt5a, two Wnt ligands that play an in vivo role in this process. We will also discuss how changes in neuronal activity modulate the expression and/or release of Wnts, resulting in changes in the localization of surface levels of Frizzled, key Wnt receptors, at the synapse. Thus, changes in neuronal activity influence the magnitude of Wnt signaling, which in turn contributes to activity-mediated synapse formation.
Collapse
Affiliation(s)
| | - Patricia C. Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
34
|
Yoon J, Mao Y. Dissecting Molecular Genetic Mechanisms of 1q21.1 CNV in Neuropsychiatric Disorders. Int J Mol Sci 2021; 22:5811. [PMID: 34071723 PMCID: PMC8197994 DOI: 10.3390/ijms22115811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Pathogenic copy number variations (CNVs) contribute to the etiology of neurodevelopmental/neuropsychiatric disorders (NDs). Increased CNV burden has been found to be critically involved in NDs compared with controls in clinical studies. The 1q21.1 CNVs, rare and large chromosomal microduplications and microdeletions, are detected in many patients with NDs. Phenotypes of duplication and deletion appear at the two ends of the spectrum. Microdeletions are predominant in individuals with schizophrenia (SCZ) and microcephaly, whereas microduplications are predominant in individuals with autism spectrum disorder (ASD) and macrocephaly. However, its complexity hinders the discovery of molecular pathways and phenotypic networks. In this review, we summarize the recent genome-wide association studies (GWASs) that have identified candidate genes positively correlated with 1q21.1 CNVs, which are likely to contribute to abnormal phenotypes in carriers. We discuss the clinical data implicated in the 1q21.1 genetic structure that is strongly associated with neurodevelopmental dysfunctions like cognitive impairment and reduced synaptic plasticity. We further present variations reported in the phenotypic severity, genomic penetrance and inheritance.
Collapse
Affiliation(s)
| | - Yingwei Mao
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
35
|
van der Heijden ME, Sillitoe RV. Interactions Between Purkinje Cells and Granule Cells Coordinate the Development of Functional Cerebellar Circuits. Neuroscience 2021; 462:4-21. [PMID: 32554107 PMCID: PMC7736359 DOI: 10.1016/j.neuroscience.2020.06.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Cerebellar development has a remarkably protracted morphogenetic timeline that is coordinated by multiple cell types. Here, we discuss the intriguing cellular consequences of interactions between inhibitory Purkinje cells and excitatory granule cells during embryonic and postnatal development. Purkinje cells are central to all cerebellar circuits, they are the first cerebellar cortical neurons to be born, and based on their cellular and molecular signaling, they are considered the master regulators of cerebellar development. Although rudimentary Purkinje cell circuits are already present at birth, their connectivity is morphologically and functionally distinct from their mature counterparts. The establishment of the Purkinje cell circuit with its mature firing properties has a temporal dependence on cues provided by granule cells. Granule cells are the latest born, yet most populous, neuronal type in the cerebellar cortex. They provide a combination of mechanical, molecular and activity-based cues that shape the maturation of Purkinje cell structure, connectivity and function. We propose that the wiring of Purkinje cells for function falls into two developmental phases: an initial phase that is guided by intrinsic mechanisms and a later phase that is guided by dynamically-acting cues, some of which are provided by granule cells. In this review, we highlight the mechanisms that granule cells use to help establish the unique properties of Purkinje cell firing.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
36
|
Cordero Cervantes D, Zurzolo C. Peering into tunneling nanotubes-The path forward. EMBO J 2021; 40:e105789. [PMID: 33646572 PMCID: PMC8047439 DOI: 10.15252/embj.2020105789] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
The identification of Tunneling Nanotubes (TNTs) and TNT-like structures signified a critical turning point in the field of cell-cell communication. With hypothesized roles in development and disease progression, TNTs' ability to transport biological cargo between distant cells has elevated these structures to a unique and privileged position among other mechanisms of intercellular communication. However, the field faces numerous challenges-some of the most pressing issues being the demonstration of TNTs in vivo and understanding how they form and function. Another stumbling block is represented by the vast disparity in structures classified as TNTs. In order to address this ambiguity, we propose a clear nomenclature and provide a comprehensive overview of the existing knowledge concerning TNTs. We also discuss their structure, formation-related pathways, biological function, as well as their proposed role in disease. Furthermore, we pinpoint gaps and dichotomies found across the field and highlight unexplored research avenues. Lastly, we review the methods employed to date and suggest the application of new technologies to better understand these elusive biological structures.
Collapse
Affiliation(s)
| | - Chiara Zurzolo
- Institut PasteurMembrane Traffic and PathogenesisParisFrance
| |
Collapse
|
37
|
García-Velázquez L, Arias C. Differential Regulation of Wnt Signaling Components During Hippocampal Reorganization After Entorhinal Cortex Lesion. Cell Mol Neurobiol 2021; 41:537-549. [PMID: 32435957 PMCID: PMC11448588 DOI: 10.1007/s10571-020-00870-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/07/2020] [Indexed: 01/17/2023]
Abstract
Entorhinal cortex lesions have been established as a model for hippocampal deafferentation and have provided valuable information about the mechanisms of synapse reorganization and plasticity. Although several molecules have been proposed to contribute to these processes, the role of Wnt signaling components has not been explored, despite the critical roles that Wnt molecules play in the formation and maintenance of neuronal and synaptic structure and function in the adult brain. In this work, we assessed the reorganization process of the dentate gyrus (DG) at 1, 3, 7, and 30 days after an excitotoxic lesion in layer II of the entorhinal cortex. We found that cholinergic fibers sprouted into the outer molecular layer of the DG and revealed an increase of the developmental regulated MAP2C isoform 7 days after lesion. These structural changes were accompanied by the differential regulation of the Wnt signaling components Wnt7a, Wnt5a, Dkk1, and Sfrp1 over time. The progressive increase in the downstream Wnt-regulated elements, active-β-catenin, and cyclin D1 suggested the activation of the canonical Wnt pathway beginning on day 7 after lesion, which correlates with the structural adaptations observed in the DG. These findings suggest the important role of Wnt signaling in the reorganization processes after brain lesion and indicate the modulation of this pathway as an interesting target for neuronal tissue regeneration.
Collapse
Affiliation(s)
- Lizbeth García-Velázquez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, México, DF, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, México, DF, Mexico.
| |
Collapse
|
38
|
Pinto MJ, Tomé D, Almeida RD. The Ubiquitinated Axon: Local Control of Axon Development and Function by Ubiquitin. J Neurosci 2021; 41:2796-2813. [PMID: 33789876 PMCID: PMC8018891 DOI: 10.1523/jneurosci.2251-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 02/01/2023] Open
Abstract
Ubiquitin tagging sets protein fate. With a wide range of possible patterns and reversibility, ubiquitination can assume many shapes to meet specific demands of a particular cell across time and space. In neurons, unique cells with functionally distinct axons and dendrites harboring dynamic synapses, the ubiquitin code is exploited at the height of its power. Indeed, wide expression of ubiquitination and proteasome machinery at synapses, a diverse brain ubiquitome, and the existence of ubiquitin-related neurodevelopmental diseases support a fundamental role of ubiquitin signaling in the developing and mature brain. While special attention has been given to dendritic ubiquitin-dependent control, how axonal biology is governed by this small but versatile molecule has been considerably less discussed. Herein, we set out to explore the ubiquitin-mediated spatiotemporal control of an axon's lifetime: from its differentiation and growth through presynaptic formation, function, and pruning.
Collapse
Affiliation(s)
- Maria J Pinto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Diogo Tomé
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ramiro D Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
39
|
DePew AT, Mosca TJ. Conservation and Innovation: Versatile Roles for LRP4 in Nervous System Development. J Dev Biol 2021; 9:9. [PMID: 33799485 PMCID: PMC8006230 DOI: 10.3390/jdb9010009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
As the nervous system develops, connections between neurons must form to enable efficient communication. This complex process of synaptic development requires the coordination of a series of intricate mechanisms between partner neurons to ensure pre- and postsynaptic differentiation. Many of these mechanisms employ transsynaptic signaling via essential secreted factors and cell surface receptors to promote each step of synaptic development. One such cell surface receptor, LRP4, has emerged as a synaptic organizer, playing a critical role in conveying extracellular signals to initiate diverse intracellular events during development. To date, LRP4 is largely known for its role in development of the mammalian neuromuscular junction, where it functions as a receptor for the synaptogenic signal Agrin to regulate synapse development. Recently however, LRP4 has emerged as a synapse organizer in the brain, where new functions for the protein continue to arise, adding further complexity to its already versatile roles. Additional findings indicate that LRP4 plays a role in disorders of the nervous system, including myasthenia gravis, amyotrophic lateral sclerosis, and Alzheimer's disease, demonstrating the need for further study to understand disease etiology. This review will highlight our current knowledge of how LRP4 functions in the nervous system, focusing on the diverse developmental roles and different modes this essential cell surface protein uses to ensure the formation of robust synaptic connections.
Collapse
Affiliation(s)
| | - Timothy J. Mosca
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
40
|
Liu C, Liu J, Liu C, Zhou Q, Zhou Y, Zhang B, Saijilafu. The intrinsic axon regenerative properties of mature neurons after injury. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1-9. [PMID: 33258872 DOI: 10.1093/abbs/gmaa148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 01/07/2023] Open
Abstract
Thousands of nerve injuries occur in the world each year. Axon regeneration is a very critical process for the restoration of the injured nervous system's function. However, the precise molecular mechanism or signaling cascades that control axon regeneration are not clearly understood, especially in mammals. Therefore, there is almost no ideal treatment method to repair the nervous system's injury until now. Mammalian axonal regeneration requires multiple signaling pathways to coordinately regulate gene expression in soma and assembly of the cytoskeleton protein in the growth cone. A better understanding of their molecular mechanisms, such as axon regeneration regulatory signaling cascades, will be helpful in developing new treatment strategies for promoting axon regeneration. In this review, we mainly focus on describing these regeneration-associated signaling cascades, which regulate axon regeneration.
Collapse
Affiliation(s)
- Chunfeng Liu
- Department of Orthopedic Surgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou 215000, China
| | - Jinlian Liu
- Department of Orthopedic Surgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou 215000, China
| | - Chaoqun Liu
- Department of Orthopedic Surgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou 215000, China
| | - Qing Zhou
- Department of Orthopedic Surgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou 215000, China
| | - Yaodong Zhou
- Department of Orthopedic Surgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou 215000, China
| | - Boyin Zhang
- Orthopedics Surgery Department, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Saijilafu
- Department of Orthopaedics, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, Suzhou 215007, China
| |
Collapse
|
41
|
Inestrosa NC, Tapia-Rojas C, Cerpa W, Cisternas P, Zolezzi JM. WNT Signaling Is a Key Player in Alzheimer's Disease. Handb Exp Pharmacol 2021; 269:357-382. [PMID: 34486097 DOI: 10.1007/164_2021_532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cellular processes regulated by WNT signaling have been mainly studied during embryonic development and cancer. In the last two decades, the role of WNT in the adult central nervous system has been the focus of interest in our laboratory. In this chapter, we will be summarized β-catenin-dependent and -independent WNT pathways, then we will be revised WNT signaling function at the pre- and post-synaptic level. Concerning Alzheimer's disease (AD) initially, we found that WNT/β-catenin signaling activation exerts a neuroprotective mechanism against the amyloid β (Αβ) peptide toxicity. Later, we found that WNT/β-catenin participates in Tau phosphorylation and in learning and memory. In the last years, we demonstrated that WNT/β-catenin signaling is instrumental in the amyloid precursor protein (APP) processing and that WNT/β-catenin dysfunction results in Aβ production and aggregation. We highlight the importance of WNT/β-catenin signaling dysfunction in the onset of AD and propose that the loss of WNT/β-catenin signaling is a triggering factor of AD. The WNT pathway is therefore positioned as a therapeutic target for AD and could be a valid concept for improving AD therapy. We think that metabolism and inflammation will be relevant when defining future research in the context of WNT signaling and the neurodegeneration associated with AD.
Collapse
Affiliation(s)
- Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Laboratory of Neurobiology of Aging, Facultad de Medicina y Ciencia, Universidad de San Sebastián, Sede Los Leones, Santiago, Chile
| | - Waldo Cerpa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ciencias de la Salud, Universidad de O´Higgins, Rancagua, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
42
|
Puñal VM, Ahmed M, Thornton-Kolbe EM, Clowney EJ. Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx. Cell Tissue Res 2021; 383:91-112. [PMID: 33404837 PMCID: PMC9835099 DOI: 10.1007/s00441-020-03386-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/07/2020] [Indexed: 01/16/2023]
Abstract
Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar, Drosophila mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.
Collapse
Affiliation(s)
- Vanessa M. Puñal
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA,Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria Ahmed
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma M. Thornton-Kolbe
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA,Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 48109, USA
| | - E. Josephine Clowney
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
43
|
Silencing Celsr2 inhibits the proliferation and migration of Schwann cells through suppressing the Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2020; 533:623-630. [PMID: 32988580 DOI: 10.1016/j.bbrc.2020.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 01/26/2023]
Abstract
After a peripheral nerve injury, the remaining Schwann cells undergo proliferation and adopt a migratory phenotype to prepare for the regeneration of nerves. Celsr2 has been reported to play an important role in the development and maintenance of the function of the nervous system. However, the role and mechanism of Celsr2 during peripheral nerve regeneration remain unknown. Here, we showed that after sciatic nerve injury, Celsr2 mRNA and protein were significantly increased in nerve tissues. In addition, silencing Celsr2 decreased the ki67-positve portion and the migration distance of Schwann cells in vivo. In vitro, the results of MTT and EdU staining, transwell and wound healing assays indicated that Celsr2 siRNA-transfected primary Schwann cells showed significant decrease in proliferation and migration compared to that seen in negative control (NC)-transfected cells. Furthermore, we found that Wnt/β-catenin luciferase activity was reduced, as were the expression of β-catenin in the nucleus and the mRNA levels of its downstream genes Cyclin D1 and MMP-7 in Celsr2 siRNA-transfected primary Schwann cells. Further investigations showed that silencing Celsr2 inhibited the phosphorylation of GSK3β. Moreover, specific activators of the Wnt/β-catenin pathway, LiCl or mutant β-catenin (S33Y), partially reversed the inhibitory effect of Celsr2 siRNA. Taken together, our data indicated that silencing Celsr2 inhibited Schwann cells migration and proliferation through the suppressing Wnt/β-catenin pathway, providing a potential target for peripheral nerve regeneration.
Collapse
|
44
|
McLeod F, Boyle K, Marzo A, Martin-Flores N, Moe TZ, Palomer E, Gibb AJ, Salinas PC. Wnt Signaling Through Nitric Oxide Synthase Promotes the Formation of Multi-Innervated Spines. Front Synaptic Neurosci 2020; 12:575863. [PMID: 33013349 PMCID: PMC7509412 DOI: 10.3389/fnsyn.2020.575863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/13/2020] [Indexed: 01/06/2023] Open
Abstract
Structural plasticity of synapses correlates with changes in synaptic strength. Dynamic modifications in dendritic spine number and size are crucial for long-term potentiation (LTP), the cellular correlate of learning and memory. Recent studies have suggested the generation of multi-innervated spines (MIS), in the form of several excitatory presynaptic inputs onto one spine, are crucial for hippocampal memory storage. However, little is known about the molecular mechanisms underlying MIS formation and their contribution to LTP. Using 3D enhanced resolution confocal images, we examined the contribution of Wnt synaptic modulators in MIS formation in the context of LTP. We show that blockage of endogenous Wnts with specific Wnt antagonists supresses the formation of MIS upon chemical LTP induction in cultured hippocampal neurons. Gain- and loss-of-function studies demonstrate that Wnt7a signaling promotes MIS formation through the postsynaptic Wnt scaffold protein Disheveled 1 (Dvl1) by stimulating neuronal nitric oxide (NO) synthase (nNOS). Subsequently, NO activates soluble guanylyl cyclase (sGC) to increase MIS formation. Consistently, we observed an enhanced frequency and amplitude of excitatory postsynaptic currents. Collectively, our findings identify a unique role for Wnt secreted proteins through nNOS/NO/sGC signaling to modulate MIS formation during LTP.
Collapse
Affiliation(s)
- Faye McLeod
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Kieran Boyle
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Aude Marzo
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Nuria Martin-Flores
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Thaw Zin Moe
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Ernest Palomer
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
45
|
Paracrine Role for Somatostatin Interneurons in the Assembly of Perisomatic Inhibitory Synapses. J Neurosci 2020; 40:7421-7435. [PMID: 32847968 DOI: 10.1523/jneurosci.0613-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
GABAergic interneurons represent a heterogenous group of cell types in neocortex that can be clustered based on developmental origin, morphology, physiology, and connectivity. Two abundant populations of cortical GABAergic interneurons include the low-threshold, somatostatin (SST)-expressing cells and the fast-spiking, parvalbumin (PV)-expressing cells. While SST+ and PV+ interneurons are both early born and migrate into the developing neocortex at similar times, SST+ cells are incorporated into functional circuits prior to PV+ cells. During this early period of neural development, SST+ cells play critical roles in the assembly and maturation of other cortical circuits; however, the mechanisms underlying this process remain poorly understood. Here, using both sexes of conditional mutant mice, we discovered that SST+ interneuron-derived Collagen XIX, a synaptogenic extracellular matrix protein, is required for the formation of GABAergic, perisomatic synapses by PV+ cells. These results, therefore, identify a paracrine mechanism by which early-born SST+ cells orchestrate inhibitory circuit formation in the developing neocortex.SIGNIFICANCE STATEMENT Inhibitory interneurons in the cerebral cortex represent a heterogenous group of cells that generate the inhibitory neurotransmitter GABA. One such interneuron type is the low-threshold, somatostatin (SST)-expressing cell, which is one of the first types of interneurons to migrate into the cerebral cortex and become incorporated into functional circuits. In addition, to contributing important roles in controlling the flow of information in the adult cerebral cortex, SST+ cells play important roles in the development of other neural circuits in the developing brain. Here, we identified an extracellular matrix protein that is released by these early-born SST+ neurons to orchestrate inhibitory circuit formation in the developing cerebral cortex.
Collapse
|
46
|
Refinement of Cerebellar Network Organization by Extracellular Signaling During Development. Neuroscience 2020; 462:44-55. [PMID: 32502568 DOI: 10.1016/j.neuroscience.2020.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
The cerebellum forms regular neural network structures consisting of a few major types of neurons, such as Purkinje cells, granule cells, and molecular layer interneurons, and receives two major inputs from climbing fibers and mossy fibers. Its regular structures consist of three well-defined layers, with each type of neuron designated to a specific location and forming specific synaptic connections. During the first few weeks of postnatal development in rodents, the cerebellum goes through dynamic changes via proliferation, migration, differentiation, synaptogenesis, and maturation, to create such a network structure. The development of this organized network structure presumably relies on the communication between developing elements in the network, including not only individual neurons, but also their dendrites, axons, and synapses. Therefore, it is reasonable that extracellular signaling via synaptic transmission, secreted molecules, and cell adhesion molecules, plays important roles in cerebellar network development. Although it is not yet clear as to how overall cerebellar development is orchestrated, there is indeed accumulating lines of evidence that extracellular signaling acts toward the development of individual elements in the cerebellar networks. In this article, we introduce what we have learned from many studies regarding the extracellular signaling required for cerebellar network development, including our recent study suggesting the importance of unbiased synaptic inputs from parallel fibers.
Collapse
|
47
|
Falck J, Bruns C, Hoffmann-Conaway S, Straub I, Plautz EJ, Orlando M, Munawar H, Rivalan M, Winter Y, Izsvák Z, Schmitz D, Hamra FK, Hallermann S, Garner CC, Ackermann F. Loss of Piccolo Function in Rats Induces Cerebellar Network Dysfunction and Pontocerebellar Hypoplasia Type 3-like Phenotypes. J Neurosci 2020; 40:2943-2959. [PMID: 32122952 PMCID: PMC7117892 DOI: 10.1523/jneurosci.2316-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
Piccolo, a presynaptic active zone protein, is best known for its role in the regulated assembly and function of vertebrate synapses. Genetic studies suggest a further link to several psychiatric disorders as well as Pontocerebellar Hypoplasia type 3 (PCH3). We have characterized recently generated Piccolo KO (Pclogt/gt ) rats. Analysis of rats of both sexes revealed a dramatic reduction in brain size compared with WT (Pclowt/wt ) animals, attributed to a decrease in the size of the cerebral cortical, cerebellar, and pontine regions. Analysis of the cerebellum and brainstem revealed a reduced granule cell layer and a reduction in size of pontine nuclei. Moreover, the maturation of mossy fiber afferents from pontine neurons and the expression of the α6 GABAA receptor subunit at the mossy fiber-granule cell synapse are perturbed, as well as the innervation of Purkinje cells by cerebellar climbing fibers. Ultrastructural and functional studies revealed a reduced size of mossy fiber boutons, with fewer synaptic vesicles and altered synaptic transmission. These data imply that Piccolo is required for the normal development, maturation, and function of neuronal networks formed between the brainstem and cerebellum. Consistently, behavioral studies demonstrated that adult Pclogt/gt rats display impaired motor coordination, despite adequate performance in tasks that reflect muscle strength and locomotion. Together, these data suggest that loss of Piccolo function in patients with PCH3 could be involved in many of the observed anatomical and behavioral symptoms, and that the further analysis of these animals could provide fundamental mechanistic insights into this devastating disorder.SIGNIFICANCE STATEMENT Pontocerebellar Hypoplasia Type 3 is a devastating developmental disorder associated with severe developmental delay, progressive microcephaly with brachycephaly, optic atrophy, seizures, and hypertonia with hyperreflexia. Recent genetic studies have identified non-sense mutations in the coding region of the PCLO gene, suggesting a functional link between this disorder and the presynaptic active zone. Our analysis of Piccolo KO rats supports this hypothesis, formally demonstrating that anatomical and behavioral phenotypes seen in patients with Pontocerebellar Hypoplasia Type 3 are also exhibited by these Piccolo deficient animals.
Collapse
Affiliation(s)
- Joanne Falck
- German Center for Neurodegenerative Diseases, Charité Medical University, 10117 Berlin, Germany
| | - Christine Bruns
- German Center for Neurodegenerative Diseases, Charité Medical University, 10117 Berlin, Germany
| | - Sheila Hoffmann-Conaway
- German Center for Neurodegenerative Diseases, Charité Medical University, 10117 Berlin, Germany
| | - Isabelle Straub
- Carl-Ludwig Institute for Physiology, 04103 Leipzig, Germany
| | - Erik J Plautz
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern, Dallas, Texas 75390
| | - Marta Orlando
- Charité Medical University Berlin and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany
| | - Humaira Munawar
- Department of Biology, Humboldt University, 10099 Berlin, Germany
| | - Marion Rivalan
- Charité Medical University Berlin and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany
- Department of Biology, Humboldt University, 10099 Berlin, Germany
| | - York Winter
- Charité Medical University Berlin and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany
- Department of Biology, Humboldt University, 10099 Berlin, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, 13125 Berlin, Germany, and
| | - Dietmar Schmitz
- Charité Medical University Berlin and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany
| | - F Kent Hamra
- Department of Obstetrics and Gynecology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern, Dallas, Texas 75390
| | | | - Craig Curtis Garner
- German Center for Neurodegenerative Diseases, Charité Medical University, 10117 Berlin, Germany
| | - Frauke Ackermann
- German Center for Neurodegenerative Diseases, Charité Medical University, 10117 Berlin, Germany,
| |
Collapse
|
48
|
Ibarra-Lecue I, Diez-Alarcia R, Morentin B, Meana JJ, Callado LF, Urigüen L. Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia. Front Pharmacol 2020; 11:344. [PMID: 32265715 PMCID: PMC7105616 DOI: 10.3389/fphar.2020.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 12/26/2022] Open
Abstract
The mechanistic target of rapamycin (also known as mammalian target of rapamycin) (mTOR)-dependent signaling pathway plays an important role in protein synthesis, cell growth, and proliferation, and has been linked to the development of the central nervous system. Recent studies suggest that mTOR signaling pathway dysfunction could be involved in the etiopathogenesis of schizophrenia. The main goal of this study was to evaluate the status of mTOR signaling pathway in postmortem prefrontal cortex (PFC) samples of subjects with schizophrenia. For this purpose, we quantified the protein expression and phosphorylation status of the mTOR downstream effector ribosomal protein S6 as well as other pathway interactors such as Akt and GSK3β. Furthermore, we quantified the status of these proteins in the brain cortex of rats chronically treated with the antipsychotics haloperidol, clozapine, or risperidone. We found a striking decrease in the expression of total S6 and in its active phosphorylated form phospho-S6 (Ser235/236) in the brain of subjects with schizophrenia compared to matched controls. The chronic treatment with the antipsychotics haloperidol and clozapine affected both the expression of GSK3β and the activation of Akt [phospho-Akt (Ser473)] in rat brain cortex, while no changes were observed in S6 and phospho-S6 (Ser235/236) protein expression with any antipsychotic treatment. These findings provide further evidence for the involvement of the mTOR-dependent signaling pathway in schizophrenia and suggest that a hypofunctional S6 may have a role in the etiopathogenesis of this disorder.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Benito Morentin
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
49
|
Draxin-mediated Regulation of Granule Cell Progenitor Differentiation in the Postnatal Hippocampal Dentate Gyrus. Neuroscience 2020; 431:184-192. [PMID: 32081722 DOI: 10.1016/j.neuroscience.2020.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 02/03/2023]
Abstract
The hippocampus is characterized by the presence of life-long neurogenesis. To elucidate the molecular mechanism regulating hippocampal neurogenesis, we studied the functions of the chemorepellent Draxin in neuronal proliferation and differentiation in the postnatal dentate gyrus. The present in vivo cell labeling and fate tracking analyses revealed enhanced differentiation of hippocampal neural stem and progenitor cells (hNSPCs) in the subgranular zone (SGZ) of Draxin-deficient mice. We observed a reduction in the number of BrdU-pulse labeled or Ki-67 immunopositive SGZ cells in the mutant mice. However, Draxin deficiency did not affect cell cycle duration of SGZ cells. In situ hybridization analysis indicated that the receptor component of the canonical Wnt pathway, Lrp6, is expressed in SGZ cells, including Nestin and Sox2 double-positive hNSPCs. Taken together with the previous finding that Draxin interacts physically with Lrp6, we postulate that Draxin plays a pivotal role in the regulation of Wnt-driven hNSPC differentiation to modulate the rate of neuronal differentiation in the progenitor population.
Collapse
|
50
|
Kim MS, Bang J, Jeon WK. The Involvement of Canonical Wnt Signaling in Memory Impairment Induced by Chronic Cerebral Hypoperfusion in Mice. Transl Stroke Res 2020; 11:734-746. [DOI: 10.1007/s12975-019-00748-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/25/2023]
|