1
|
From M, Crosby KM. Endocannabinoid and nitric oxide interactions in the brain. Neuroscience 2025; 569:267-276. [PMID: 39909337 DOI: 10.1016/j.neuroscience.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/16/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Endogenous cannabinoids (eCBs) and nitric oxide (NO) are classical retrograde transmitters that modulate synaptic function throughout the brain. Although much is known about how these signals individually control synaptic activity and behavior, accumulating evidence suggests that they can also interact in a multitude of ways in the brain and beyond. Here, we present evidence for interactions between endogenous cannabinoids and nitric oxide in the brain. Specifically, we describe the effects of eCBs on NO synthesis and downstream signaling and in turn, we discuss how NO alters eCB levels and signaling pathways. We also provide an overview on how these transmitters work together or in opposition at the same synapses. This information will further our understanding of how two important, ubiquitous signals interact in the brain to ultimately affect neural function and behavior. Because eCBs and NO are involved in many physiological and pathological phenomena, understanding how these transmitters interact in non-human animals could lead to important therapeutic interventions in humans that potentially target both systems.
Collapse
Affiliation(s)
- Mary From
- Biology Department, Mount Allison University, 63B York Street, Sackville, NB E4L1G7, Canada
| | - Karen M Crosby
- Biology Department, Mount Allison University, 63B York Street, Sackville, NB E4L1G7, Canada.
| |
Collapse
|
2
|
Sharpe MJ. The cognitive (lateral) hypothalamus. Trends Cogn Sci 2024; 28:18-29. [PMID: 37758590 PMCID: PMC10841673 DOI: 10.1016/j.tics.2023.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Despite the physiological complexity of the hypothalamus, its role is typically restricted to initiation or cessation of innate behaviors. For example, theories of lateral hypothalamus argue that it is a switch to turn feeding 'on' and 'off' as dictated by higher-order structures that render when feeding is appropriate. However, recent data demonstrate that the lateral hypothalamus is critical for learning about food-related cues. Furthermore, the lateral hypothalamus opposes learning about information that is neutral or distal to food. This reveals the lateral hypothalamus as a unique arbitrator of learning capable of shifting behavior toward or away from important events. This has relevance for disorders characterized by changes in this balance, including addiction and schizophrenia. Generally, this suggests that hypothalamic function is more complex than increasing or decreasing innate behaviors.
Collapse
Affiliation(s)
- Melissa J Sharpe
- Department of Psychology, University of Sydney, Camperdown, NSW 2006, Australia; Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
McFadden T, Carucci I, Farrell K, Fletchall E, Jarome TJ. Hypothalamic DNA 5-hydroxymethylation levels are altered by diet-induced weight gain during the development of obesity in a sex-specific manner. Brain Res 2023; 1817:148478. [PMID: 37422205 PMCID: PMC10529936 DOI: 10.1016/j.brainres.2023.148478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Obesity is a major health concern that is associated with altered gene transcription in the hypothalamus. However, the mechanisms controlling this gene expression dysregulation remain largely unknown. DNA 5-hydroxymethylation (5-hmC) is a potent transcriptional activator that is expressed at 10 times higher levels in the brain than the periphery. Despite this, no study has examined if DNA 5-hmC is altered in the brain following exposure to obesogenic diets or contributes to abnormal weight gain over time. Here, we used a rodent diet-induced obesity model in combination with quantitative molecular assays and CRISPR-dCas9 manipulations to test the role of hypothalamic DNA 5-hmC in abnormal weight gain in male and female rats. We found that males, but not females, have decreased levels of DNA 5-hmC in the hypothalamus following exposure to a high fat diet, which directly correlate with increased body weight. Short-term exposure to a high fat diet, which does not result in significant weight gain, resulted in decreased hypothalamic DNA 5-hmC levels, suggesting these changes occur prior to obesity development. Moreover, decreases in DNA 5-hmC persist even after the high fat diet is removed, though the extent of this is diet-dependent. Importantly, CRISPR-dCas9-mediated upregulation of DNA 5-hmC enzymes in the male, but not female, ventromedial nucleus of the hypothalamus significantly reduced the percentage of weight gained on the high fat diet relative to controls. These results suggest that hypothalamic DNA 5-hmC is an important sex-specific regulator of abnormal weight gain following exposure to high fat diets.
Collapse
Affiliation(s)
| | - Isabella Carucci
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | - Timothy J Jarome
- School of Animal Sciences, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
4
|
Ravussin E, Smith SR, Ferrante AW. Physiology of Energy Expenditure in the Weight-Reduced State. Obesity (Silver Spring) 2021; 29 Suppl 1:S31-S38. [PMID: 33759394 PMCID: PMC8988211 DOI: 10.1002/oby.23095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/10/2022]
Abstract
Although many individuals achieve weight loss of 10% or more, the ability to maintain a reduced body mass over months and years is much rarer. Unfortunately, our understanding of the adverse consequences of having overweight and obesity argues that long-term maintenance of a reduced weight provides the greatest health benefit. However, to achieve long-term weight reduction requires overcoming neuroendocrine systems that favor restoration of one's initial weight. Identifying and characterizing the components of these systems will be important if we are to develop therapies and strategies to reduce the rates of obesity and its complications in our modern society. During this session, Eric Ravussin and Steven R. Smith, respectively, discussed the physiology of the weight-reduced state that favors weight regain and a molecular component that contributes to this response.
Collapse
Affiliation(s)
- Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | | - Anthony W. Ferrante
- Naomi Berrie Diabetes Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
5
|
Hariyanto TI, Kurniawan A. Cachexia in Cancer Patients: Systematic Literature Review. ASIAN JOURNAL OF ONCOLOGY 2020; 06:107-115. [DOI: 10.1055/s-0040-1713701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction Cachexia in cancer patients, especially in advanced stage, is recently known as an emerging problem. Cachexia occurs in about half of all patients with neoplastic disease. The diagnosis of cachexia needs comprehensive evaluation of body weight and body composition for several months. Cachexia will give negative impacts such as increased mortality, chemotoxicity, and decreased quality of life. Here, we review the current evidence describing the definition, stages, mechanisms, diagnosis and treatment of cachexia in cancer patients.
Methods We identified 75 studies and/or review articles evaluating cachexia and weight loss in cancer patients by searching PubMed and EMBASE databases.
Results Cachexia is reported across all stages and types of cancers. The most recent definition of cachexia is reported in a 2011 paper by International Consensus. The mechanism of cachexia in cancer is complex and involved many factors which elaborate together to produce cachexia. The diagnostic evaluation and cut-off measurement of cachexia, especially in cancer varied across studies. The loss of weight that happens during chemotherapy will make a poor prognosis. Cachexia can worsen chemotherapy toxicity. Combination of dietary modification and exercise with supplementation of medication that control appetite and inflammation are important in the management of cachexia in cancer patients.
Conclusion Patients with cancer are the population at risk for developing cachexia before and after chemotherapy. Cachexia diagnosis needs evaluation of body weight and body composition. Nonpharmacological treatments, such as dietary modification and physical exercise, are the best strategy to reduce cachexia in cancer patients.
Collapse
Affiliation(s)
- Timotius I. Hariyanto
- Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman Street, Karawaci, Tangerang, Banten, Indonesia
| | - Andree Kurniawan
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman Street, Karawaci, Tangerang, Banten, Indonesia
| |
Collapse
|
6
|
Shang A, Gan RY, Xu XY, Mao QQ, Zhang PZ, Li HB. Effects and mechanisms of edible and medicinal plants on obesity: an updated review. Crit Rev Food Sci Nutr 2020; 61:2061-2077. [PMID: 32462901 DOI: 10.1080/10408398.2020.1769548] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, obesity has become a global public health issue. It is closely associated with the occurrence of several chronic diseases, such as diabetes and cardiovascular diseases. Some edible and medicinal plants show anti-obesity activity, such as fruits, vegetables, spices, legumes, edible flowers, mushrooms, and medicinal plants. Numerous studies have indicated that these plants are potential candidates for the prevention and management of obesity. The major anti-obesity mechanisms of plants include suppressing appetite, reducing the absorption of lipids and carbohydrates, inhibiting adipogenesis and lipogenesis, regulating lipid metabolism, increasing energy expenditure, regulating gut microbiota, and improving obesity-related inflammation. In this review, the anti-obesity activity of edible and medicinal plants was summarized based on epidemiological, experimental, and clinical studies, with related mechanisms discussed, which provided the basis for the research and development of slimming products. Further studies should focus on the exploration of safer plants with anti-obesity activity and the identification of specific anti-obesity mechanisms.
Collapse
Affiliation(s)
- Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science and Technology Center (NASC), Chengdu, China
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Pang-Zhen Zhang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Song SY, Li Y, Zhai XM, Li YH, Bao CY, Shan CJ, Hong J, Cao JL, Zhang LC. Monosynaptic Input Mapping of Diencephalic Projections to the Cerebrospinal Fluid-Contacting Nucleus in the Rat. Front Neuroanat 2020; 14:7. [PMID: 32180709 PMCID: PMC7059736 DOI: 10.3389/fnana.2020.00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
Objective: To investigate the projections the cerebrospinal fluid-contacting (CSF-contacting) nucleus receives from the diencephalon and to speculate on the functional significance of these connections. Methods: The retrograde tracer cholera toxin B subunit (CB) was injected into the CSF-contacting nucleus in SD rats according to the experimental formula of the stereotaxic coordinates. Animals were perfused 7–10 days after the injection, and the diencephalon was sliced at 40 μm with a freezing microtome. CB-immunofluorescence was performed on all diencephalic sections. The features of CB-positive neuron distribution in the diencephalon were observed with a fluorescence microscope. Results: The retrograde labeled CB-positive neurons were found in the epithalamus, subthalamus, and hypothalamus. Three functional diencephalic areas including 43 sub-regions revealed projections to the CSF-contacting nucleus. The CB-positive neurons were distributed in different density ranges: sparse, moderate, and dense. Conclusion: Based on the connectivity patterns of the CSF-contacting nucleus that receives anatomical inputs from the diencephalon, we preliminarily assume that the CSF-contacting nucleus participates in homeostasis regulation, visceral activity, stress, emotion, pain and addiction, and sleeping and arousal. The present study firstly illustrates the broad projections of the CSF-contacting nucleus from the diencephalon, which implies the complicated functions of the nucleus especially for the unique roles of coordination in neural and body fluids regulations.
Collapse
Affiliation(s)
- Si-Yuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Meng Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Hao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Yi Bao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Jing Shan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jia Hong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Mahía J, Bernal A, Puerto A. Effects of oxytocin administration on the hydromineral balance of median eminence-lesioned rats. J Neuroendocrinol 2019; 31:e12778. [PMID: 31393999 DOI: 10.1111/jne.12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/13/2019] [Accepted: 08/06/2019] [Indexed: 11/30/2022]
Abstract
In the clinical setting, acute injuries in hypothalamic mediobasal regions, along with polydipsia and polyuria, have been observed in patients with cerebral salt wasting (CSW). CSW is also characterised by hypovolaemia and hyponatraemia as a result of an early increase in natriuretic peptide activity. Salt and additional amounts of fluid are the main treatment for this disorder. Similarly, experimental lesions to these brain regions, which include the median eminence (ME), produce a well-documented neurological model of polydipsia and polyuria in rats, which is preceded by an early sodium excretion of unknown cause. In the present study, oxytocin (OT) was used to increase the renal sodium loss and prolong the hydroelectrolyte abnormalities of ME-lesioned animals during the first few hours post-surgery. The objective was to determine whether OT-treated ME-lesioned animals increase their sodium appetite and water intake to restore the volume and composition of extracellular body fluid. Electrolytic lesion of the ME increased water intake, urinary volume and sodium excretion of food-deprived rats and also decreased urine osmolality and estimated plasma sodium concentration. OT administration at 8 hours post-surgery reduced water intake, urine output and plasma sodium concentration and also increased urine osmolality and urine sodium excretion between 8 and 24 hours post-lesion. From 24 to 30 hours, more water and hypertonic NaCl was consumed by OT-treated ME-lesioned rats than by physiological saline-treated-ME-lesioned animals. Food availability from 30 to 48 hours reduced the intake of hypertonic saline solution by ME/OT animals, which increased their water and food intake during this period. OT administration therefore appears to enhance the natriuretic effect of ME lesion, producing hydroelectrolyte changes that reduce the water intake of food-deprived animals. Conversely, the presence of hypertonic NaCl increases the fluid intake of these animals, possibly as a result of the plasma sodium depletion and hypovolaemic states previously generated. Finally, the subsequent increase in food intake by ME/OT animals reduces their need for hypertonic NaCl but not water, possibly in response to osmotic thirst. These results are discussed in relation to a possible transient activation of the ME with the consequent secretion of natriuretic peptides stored in terminal swellings, which would be augmented by OT administration. Electrolytic lesion of the ME may therefore represent a useful neurobiological model of CSW.
Collapse
Affiliation(s)
- Javier Mahía
- Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Antonio Bernal
- Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Amadeo Puerto
- Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
9
|
Neuronal Signal Transduction-Involved Genes in Pig Hypothalamus Affect Feed Efficiency as Revealed by Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5862571. [PMID: 30687750 PMCID: PMC6327278 DOI: 10.1155/2018/5862571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023]
Abstract
Feed efficiency (FE) is an important trait affecting costs in swine industry. Investigation on FE-related genes in different tissues is valuable for molecular breeding. Hypothalamus is a convergent and integrated centre for multiple nutrient-related signals. The present study identified 363 differentially expressed (DE) genes and 14 DE lincRNAs in the hypothalamus of high- and low-FE Yorkshire pigs. Furthermore, 983 significantly correlated DE gene-lincRNA pairs were identified through weighted correlation network analysis (WGCNA) and Pearson correlation analysis. These DE genes were primarily enriched in the neuronal signal transduction process containing the upregulated genes of VIPR1, CCR1, CCR5, LEPR, INSR, ADRA1A, CCKAR, and ADORA3 and the downregulated genes of GRM1, GRM4, GRM5, and VIPR2, which were located in the cell membrane. These signal receptors were mainly connected to downstream Jak-STAT signaling that involved the increased genes (JAK2, STAT3, and POMC) and mTOR signaling pathway, including the decreased genes (CAMKK2, AMPK, and MTOR). STAT3 and AMPK genes also played a role in two major hypothalamic neurons of POMC and NPY/AGRP. A total of eight DE lincRNAs also participated in the potential network. In conclusion, neuronal signaling transduction-involved genes and lincRNAs were related to FE variation in pig hypothalamus.
Collapse
|
10
|
Buresova J, Janovska P, Kuda O, Krizova J, der Stelt IRV, Keijer J, Hansikova H, Rossmeisl M, Kopecky J. Postnatal induction of muscle fatty acid oxidation in mice differing in propensity to obesity: a role of pyruvate dehydrogenase. Int J Obes (Lond) 2018; 44:235-244. [PMID: 30538280 DOI: 10.1038/s41366-018-0281-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/22/2018] [Accepted: 11/05/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND/OBJECTIVE Adaptation to the extrauterine environment depends on a switch from glycolysis to catabolism of fatty acids (FA) provided as milk lipids. We sought to learn whether the postnatal induction of muscle FA oxidation in mice could reflect propensity to obesity and to characterize the mechanisms controlling this induction. METHODS Experiments were conducted using obesity-resistant A/J and obesity-prone C57BL/6J (B6) mice maintained at 30 °C, from 5 to 28 days after birth. At day 10, both A/J and B6 mice with genetic ablation (KO) of α2 subunit of AMP-activated protein kinase (AMPK) were also used. In skeletal muscle, expression of selected genes was determined using quantitative real-time PCR, and AMPK subunits content was evaluated using Western blotting. Activities of both AMPK and pyruvate dehydrogenase (PDH), as well as acylcarnitine levels in the muscle were measured. RESULTS Acylcarnitine levels and gene expression indicated transient increase in FA oxidation during the first 2 weeks after birth, with a stronger increase in A/J mice. These data correlated with (i) the surge in plasma leptin levels, which peaked at day 10 and was higher in A/J mice, and (ii) relatively low activity of PDH linked with up-regulation of PDH kinase 4 gene (Pdk4) expression in the 10-day-old A/J mice. In contrast with the Pdk4 expression, transient up-regulation of uncoupling protein 3 gene was observed in B6 but not A/J mice. AMPK activity changed during the development, without major differences between A/J and B6 mice. Expression of neither Pdk4 nor other muscle genes was affected by AMPK-KO. CONCLUSIONS Our results indicate a relatively strong postnatal induction of FA oxidation in skeletal muscle of the obesity-resistant A/J mice. This induction is transient and probably results from suppression of PDH activity, linked with a postnatal surge in plasma leptin levels, independent of AMPK.
Collapse
Affiliation(s)
- Jana Buresova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Janovska
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Krizova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | | - Jaap Keijer
- Department of Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
11
|
Uneven balance of power between hypothalamic peptidergic neurons in the control of feeding. Proc Natl Acad Sci U S A 2018; 115:E9489-E9498. [PMID: 30224492 PMCID: PMC6176613 DOI: 10.1073/pnas.1802237115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The interplay between the anorexigenic and orexigenic neurons in the arcuate nucleus that contributes to the control of feeding remains elusive. Using optogenetic stimulation, we show that activation of POMC neurons rapidly inhibits feeding behavior in fasted animals. However, simultaneous stimulation of both POMC neurons and a subset of the orexigenic neurons that express AgRP is sufficient to reverse that inhibition and trigger intense feeding behavior. We used 3D imaging and functional studies to illuminate the anatomical underpinning of both the inhibitory and excitatory events. Our work suggests that translational applications that aim to control appetite need to target the activation rather than the inhibition mechanisms. Two classes of peptide-producing neurons in the arcuate nucleus (Arc) of the hypothalamus are known to exert opposing actions on feeding: the anorexigenic neurons that express proopiomelanocortin (POMC) and the orexigenic neurons that express agouti-related protein (AgRP) and neuropeptide Y (NPY). These neurons are thought to arise from a common embryonic progenitor, but our anatomical and functional understanding of the interplay of these two peptidergic systems that contribute to the control of feeding remains incomplete. The present study uses a combination of optogenetic stimulation with viral and transgenic approaches, coupled with neural activity mapping and brain transparency visualization to demonstrate the following: (i) selective activation of Arc POMC neurons inhibits food consumption rapidly in unsated animals; (ii) activation of Arc neurons arising from POMC-expressing progenitors, including POMC and a subset of AgRP neurons, triggers robust feeding behavior, even in the face of satiety signals from POMC neurons; (iii) the opposing effects on food intake are associated with distinct neuronal projection and activation patterns of adult hypothalamic POMC neurons versus Arc neurons derived from POMC-expressing lineages; and (iv) the increased food intake following the activation of orexigenic neurons derived from POMC-expressing progenitors engages an extensive neural network that involves the endogenous opioid system. Together, these findings shed further light on the dynamic balance between two peptidergic systems in the moment-to-moment regulation of feeding behavior.
Collapse
|
12
|
Arpaci F, Yilmaz MI, Ozet A, Ayta H, Ozturk B, Komurcu S, Ozata M. Low Serum Leptin Level in Colon Cancer Patients without Significant Weight Loss. TUMORI JOURNAL 2018; 88:147-9. [PMID: 12088256 DOI: 10.1177/030089160208800213] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims and Background Leptin is a protein that affects the metabolic, neuroendocrine, reproductive and hematopoietic systems and is involved in the regulation of body weight. The possible role of leptin in cancer patients, whose aforementioned systems show disorders at various levels, has been investigated by only a few studies and the results are quite contradictory. Methods In this study serum leptin levels were investigated in 36 patients with colon cancer having no weight loss or anorexia and in 36 healthy volunteers. Serum leptin levels were measured by radioimmunoassay. Results Significantly positive correlations were found between serum leptin level and/or body mass index (BMI) in patient and control groups (r = 0.842, P <0.001 and r = 0.785, P <0.001; r = 0.880, P <0.001 and r = 0.523, P = 0.001). Serum leptin levels of colon cancer patients were significantly lower than those of the control group (8.79 vs 15.95 ng/mL, P = 0.003). BMI and age of the colon cancer patients were not different from those of the control group. Serum leptin levels of early-stage patients (n = 15) did not differ from those of advanced-stage patients (n = 21) (7.74 vs 9.54 ng/mL, P = 0.542), nor was there any difference in the serum leptin levels of patients who did and patients who did not receive chemotherapy. There was no correlation in cancer patients between serum leptin levels and CEA or CA19-9 (r = 0.015, P = 0.929 and r = 0.097, P = 0.574). Conclusion Low serum leptin levels found in colon cancer patients without weight loss suggest that another mechanism regulating the leptin levels might be responsible.
Collapse
Affiliation(s)
- Fikret Arpaci
- Department of Medical Oncology, Gulhane School of Medicine, Etlik, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
13
|
Yeung AWK. Bibliometric Study on Functional Magnetic Resonance Imaging Literature (1995–2017) Concerning Chemosensory Perception. CHEMOSENS PERCEPT 2018. [DOI: 10.1007/s12078-018-9243-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Zubidat AE, Haim A. Artificial light-at-night - a novel lifestyle risk factor for metabolic disorder and cancer morbidity. J Basic Clin Physiol Pharmacol 2017; 28:295-313. [PMID: 28682785 DOI: 10.1515/jbcpp-2016-0116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
Both obesity and breast cancer are already recognized worldwide as the most common syndromes in our modern society. Currently, there is accumulating evidence from epidemiological and experimental studies suggesting that these syndromes are closely associated with circadian disruption. It has been suggested that melatonin (MLT) and the circadian clock genes both play an important role in the development of these syndromes. However, we still poorly understand the molecular mechanism underlying the association between circadian disruption and the modern health syndromes. One promising candidate is epigenetic modifications of various genes, including clock genes, circadian-related genes, oncogenes, and metabolic genes. DNA methylation is the most prominent epigenetic signaling tool for gene expression regulation induced by environmental exposures, such as artificial light-at-night (ALAN). In this review, we first provide an overview on the molecular feedback loops that generate the circadian regulation and how circadian disruption by ALAN can impose adverse impacts on public health, particularly metabolic disorders and breast cancer development. We then focus on the relation between ALAN-induced circadian disruption and both global DNA methylation and specific loci methylation in relation to obesity and breast cancer morbidities. DNA hypo-methylation and DNA hyper-methylation, are suggested as the most studied epigenetic tools for the activation and silencing of genes that regulate metabolic and monostatic responses. Finally, we discuss the potential clinical and therapeutic roles of MLT suppression and DNA methylation patterns as novel biomarkers for the early detection of metabolic disorders and breast cancer development.
Collapse
|
15
|
Zhang Y, Reichel JM, Han C, Zuniga-Hertz JP, Cai D. Astrocytic Process Plasticity and IKKβ/NF-κB in Central Control of Blood Glucose, Blood Pressure, and Body Weight. Cell Metab 2017; 25:1091-1102.e4. [PMID: 28467927 PMCID: PMC5576872 DOI: 10.1016/j.cmet.2017.04.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/07/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
Abstract
Central regulation of metabolic physiology is mediated critically through neuronal functions; however, whether astrocytes are also essential remains unclear. Here we show that the high-order processes of astrocytes in the mediobasal hypothalamus displayed shortening in fasting and elongation in fed status. Chronic overnutrition and astrocytic IKKβ/NF-κB upregulation similarly impaired astrocytic plasticity, leading to sustained shortening of high-order processes. In physiology, astrocytic IKKβ/NF-κB upregulation resulted in early-onset effects, including glucose intolerance and blood pressure rise, and late-onset effects, including body weight and fat gain. Appropriate inhibition in astrocytic IKKβ/NF-κB protected against chronic overnutrition impairing astrocytic plasticity and these physiological functions. Mechanistically, astrocytic regulation of hypothalamic extracellular GABA level and therefore BDNF expression were found partly accountable. Hence, astrocytic process plasticity and IKKβ/NF-κB play significant roles in central control of blood glucose, blood pressure, and body weight as well as the central induction of these physiological disorders leading to disease.
Collapse
Affiliation(s)
- Yalin Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Judith M Reichel
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cheng Han
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Juan Pablo Zuniga-Hertz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
16
|
Doneray H, Olcaysu E, Yildirim A, Ozden A. The effect of the zinc concentration in breast milk on neonatal weight gain. J Trace Elem Med Biol 2017; 41:32-35. [PMID: 28347460 DOI: 10.1016/j.jtemb.2017.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/18/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
Abstract
The change in breast milk zinc (Zn) concentration in a feeding period during lactation may affect neonatal weight gain. The aim of this study was to determine how to change the Zn concentrations in breast milk during a feeding period in early and late lactation periods and identify the relationship between the differences in the Zn levels in breast milk during lactation and neonatal weight gain. Breast milk was collected in the early and late lactation periods with samples being obtained before (foremilk) and after (hindmilk) a feeding period. Then, we determined the Zn concentrations in the breast milk and measured the weight of the infants before and after the same feeding period. The study was composed of 37 newborns and their mothers. During the feeding period, the Zn concentrations in both the transitional and mature milk decreased significantly. During the lactation period, the Zn levels were markedly lower in only the hindmilk. The body weights of the infants both before and after feeding in the early lactation period were negatively correlated with the delta Zn concentration in the same period, but the delta body weights in the early lactation period were positively correlated with the Zn levels in the hindmilk in the same period. In addition, body weights before feeding in the late lactation period were also positively correlated with Zn levels in hindmilk in the early lactation period. This study suggests that the Zn concentrations in both the transitional and mature milk decreased, which suggests that changes in the Zn content of breast milk during lactation might play a role in the weight gain of healthy neonates.
Collapse
Affiliation(s)
- Hakan Doneray
- Department of Pediatrics, Ataturk University Faculty of Medicine, 25240, Erzurum, Turkey.
| | - Elif Olcaysu
- Department of Pediatrics, Ataturk University Faculty of Medicine, 25240, Erzurum, Turkey
| | - Abdulkadir Yildirim
- Department of Biochemistry, Ataturk University Faculty of Medicine, 25240, Erzurum, Turkey
| | - Ayse Ozden
- Department of Pediatrics, Ataturk University Faculty of Medicine, 25240, Erzurum, Turkey
| |
Collapse
|
17
|
Li H, Kek HC, Lim J, Gelling RW, Han W. Green tea (-)-epigallocatechin-3-gallate counteracts daytime overeating induced by high-fat diet in mice. Mol Nutr Food Res 2016; 60:2565-2575. [DOI: 10.1002/mnfr.201600162] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/28/2016] [Accepted: 07/04/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Hongyu Li
- Laboratory of Metabolic Medicine; Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR); Singapore
| | | | - Joy Lim
- Laboratory of Metabolic Medicine; Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR); Singapore
| | - Richard Wayne Gelling
- Abbott Nutrition; Abbott Laboratories (Singapore) Pte Ltd; Singapore
- Department of Medicine, Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Weiping Han
- Laboratory of Metabolic Medicine; Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR); Singapore
| |
Collapse
|
18
|
El-Haddad MA, Desai M, Gayle D, Ross MG. In Utero Development of Fetal Thirst and Appetite: Potential for Programming. ACTA ACUST UNITED AC 2016; 11:123-30. [PMID: 15051031 DOI: 10.1016/j.jsgi.2003.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thirst and appetite-mediated ingestive behavior develop and are likely programmed in utero, thus preparing for newborn and adult ingestive behavior. Fetal swallowing activity is markedly different from that of the adult, as spontaneous fetal swallowing occurs at a markedly (six-fold) higher rate compared with spontaneous adult drinking activity. This high rate of fetal swallowing is critical for the regulation of amniotic fluid volume and the development of the fetal gastrointestinal tract. Disordered fetal swallowing has been associated with both a decrease (oligohydramnios) and increase (polyhydramnios) in amniotic fluid volume. Both conditions are associated with a significant increase in perinatal morbidity and mortality, and limited treatment modalities are currently available. The mechanisms underlying the high rate of human fetal swallowing are regulated, in part, by tonic activity of central angiotensin II, glutamate N-methyl-D-aspartate receptors, and neuronal nitric oxide synthase. Fetal hypertonicity-mediated dipsogenesis is likely programmed in utero, as offspring of water-restricted ewes demonstrate a programmed syndrome of plasma hypertonicity, with significant hematologic and cardiovascular alterations. Similar to dipsogenic mechanisms, peripheral and central fetal orexic mechanisms also develop in utero, as demonstrated by increased fetal swallowing after both oral sucrose infusion and central injection of neuropeptide Y. The role of leptin in regulating fetal ingestive behavior is interesting because, contrary to actions in adults, leptin does not suppress fetal ingestive behavior. Teleologically, this may be of value during the newborn period, as unopposed appetite stimulatory mechanisms may facilitate rapid fetal and newborn weight gain. An adverse intrauterine environment, with altered fetal orexic factors during the critical developmental period of fetal life, may alter the normal setpoints of appetitive behavior and potentially lead to programming of adulthood hyperphagia and obesity. Further research is needed to delineate the mechanistic relationship between the intrauterine environment and the development of the setpoints of adult appetite and thirst.
Collapse
Affiliation(s)
- M A El-Haddad
- Perinatal Research Laboratories, Harbor/UCLA Medical Center, UCLA School of Medicine, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
19
|
Mercer JG, Adam CL, Morgan PJ. Towards an Understanding of Physiological Body Mass Regulation: Seasonal Animal Models. Nutr Neurosci 2016; 3:307-20. [DOI: 10.1080/1028415x.2000.11747328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Milagro FI, Martínez JA. Orexin A and B are Involved in the Regulation of Body Temperature and Glucose Homeostasis in Rats. Nutr Neurosci 2016. [DOI: 10.1080/1028415x.2000.11747344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Abstract
A cross-sectional cohort study was conducted to investigate whether ghrelin level in obese women predicts the quality of life (QOL). A total of 307 subjects fulfilled the criteria: (1) age between 20 and 65 years old, (2) body mass index ≥27 kg/m2 (3) waist circumference ≥80 cm were enrolled in the study. All subjects were assigned to one of the plasma ghrelin level categories according to the quartiles. The median of age and BMI of the 307 obese women were 45 ± 18 years and 29.9 ± 4.1 kg/m2, respectively. The main outcome evaluated is the associations of plasma ghrelin level and QOL, which were evaluated using multiple linear regression analysis. Results of linear trend test show significant statistical difference in plasma lipoproteins (triglyceride, cholesterol, HDL-cholestero and LDL-cholesterol = and levels of obesity-related hormone peptides, including leptin, adiponectin, insulin among quartiles of ghrelin. Multiple liner regression analysis of serum obesity-related hormone peptide level and QOL using stepwise method shows ghrelin concentration was the only predictor of QOL, including PCS-12 level (β = -0.18, p = 0.001), MCS-12 level (β = -0.14, p = 0.009), WHOQOL-BREF scores: physical (β = -0.13, p = 0.03), psychological (β = -0.16, p = 0.007), social (β = -0.21, p = < 0.001), and environmental (β = -0.22, p = <0.001), after adjusting other factors for obese female subjects. This study demonstrated that ghrelin concentration is strongly associated with QOL level among obese women. Hence, ghrelin concentration might be a valuable marker to be monitored in obese women.
Collapse
Affiliation(s)
- P H Lu
- a School of Medicine, Institute of Traditional Medicine , National Yang-Ming University , Taipei , Taiwan.,b Department of Dermatology , Far Eastern Memorial Hospital , New Taipei City , Taiwan
| | - Y L Song
- a School of Medicine, Institute of Traditional Medicine , National Yang-Ming University , Taipei , Taiwan
| | - C H Hsu
- a School of Medicine, Institute of Traditional Medicine , National Yang-Ming University , Taipei , Taiwan.,c Branch of Linsen and Chinese Medicine , Taipei City Hospital , Taipei , Taiwan
| |
Collapse
|
22
|
Roles of calcium and Mitochondria-Associated Membranes in the development of obesity and diabetes. MEDICINA UNIVERSITARIA 2016. [DOI: 10.1016/j.rmu.2015.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
23
|
Abstract
Initially implicated in the regulation of feeding, orexins/hypocretins are now acknowledged to play a major role in the control of a wide variety of biological processes, such as sleep, energy expenditure, pain, cardiovascular function and neuroendocrine regulation, a feature that makes them one of the most pleiotropic families of hypothalamic neuropeptides. While the orexigenic effect of orexins is well described, their central effects on energy expenditure and particularly on brown adipose tissue (BAT) thermogenesis are not totally unraveled. Better understanding of these actions and their possible interrelationship with other hypothalamic systems controlling thermogenesis, such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress, will help to clarify the exact role and pathophysiological relevance of these neuropeptides have on energy balance.
Collapse
Affiliation(s)
- Johan Fernø
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, N-5021 Bergen, Norway.
| | - Rosa Señarís
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, Spain.
| |
Collapse
|
24
|
Ikeda H, Ardianto C, Yonemochi N, Yang L, Ohashi T, Ikegami M, Nagase H, Kamei J. Inhibition of opioid systems in the hypothalamus as well as the mesolimbic area suppresses feeding behavior of mice. Neuroscience 2015; 311:9-21. [PMID: 26454026 DOI: 10.1016/j.neuroscience.2015.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 12/23/2022]
Abstract
Opioid receptors, especially μ-opioid receptors, in the ventral tegmental area (VTA) and nucleus accumbens (NAcc) are reported to regulate food motivation. However, the roles of μ-, δ- and κ-opioid receptors are not fully understood. Moreover, since μ-, δ- and κ-opioid receptors are reported to distribute in the hypothalamus, these receptors in the hypothalamus might regulate feeding behavior. Thus, the present study investigated the role of μ-, δ- and κ-opioid receptors in the VTA, the NAcc and the hypothalamus in the regulation of feeding behavior. Male ICR mice were subjected to a feeding test after food deprivation for 16h. The mRNA levels of proopiomelanocortin (POMC), preproenkephalin (PENK) and prodynorphin (PDYN), the precursors of endogenous opioid peptides, were measured by reverse transcription-polymerase chain reaction (RT-PCR). The systemic injection of non-selective (naloxone) and selective μ (β-funaltrexamine; β-FNA), δ (naltrindole) and κ (norbinaltorphimine; norBNI) opioid receptor antagonists markedly reduced food intake. In contrast, the systemic injection of preferential μ (morphine), selective δ (KNT-127) and κ (U-50,488) opioid receptor agonists did not change food intake. The mRNA levels of POMC, PENK and PDYN were decreased in the hypothalamus and the midbrain after food deprivation, whereas the mRNA levels of PENK and PDYN, but not POMC, were decreased in the ventral striatum. The injection of naloxone into the NAcc, VTA and lateral hypothalamus (LH), but not the ventromedial nucleus of the hypothalamus, significantly decreased food intake. The injection of β-FNA and naltrindole into the LH, but not the VTA or NAcc, decreased food intake. The injection of norBNI into the LH and VTA, but not the NAcc, decreased food intake. These results indicate that μ-, δ- and κ-opioid receptors in the LH play a more important role in the regulation of feeding behavior than those receptors in the VTA and the NAcc.
Collapse
Affiliation(s)
- H Ikeda
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - C Ardianto
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - N Yonemochi
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - L Yang
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - T Ohashi
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - M Ikegami
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - H Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - J Kamei
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
25
|
Choi SI, Kwak H, Kim JY, Choi JG, Lee JH. Antiadipogenic Effects of Salvia plebeia R. Br. Extracts by Extraction Conditions in 3T3-L1 Preadipocytes. ACTA ACUST UNITED AC 2015. [DOI: 10.7783/kjmcs.2015.23.3.245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Kumar RB, Aronne LJ. Efficacy comparison of medications approved for chronic weight management. Obesity (Silver Spring) 2015; 23 Suppl 1:S4-7. [PMID: 25900871 DOI: 10.1002/oby.21093] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For the first time, patients who are obese are able to benefit from 5 different FDA approved pharmacologic agents for chronic weight management. Although weight loss from all of these medications was limited to 5% to 10% of total body weight loss in the Phase III clinical trials, patients are capable of losing more weight when a cumulative approach of diet, exercise, and multiple medications are used. A pilot study of adding phentermine to lorcaserin yielded double the weight loss than lorcaserin alone. A higher percentage of total body weight is lost with use of combination phentermine/topiramate compared to orlistat, lorcaserin, and bupropion/naltrexone but there are more contraindications to its use and potential cardiovascular adverse effects due to adrenergic agonism. Lorcaserin and bupropion/naltrexone yielded similar weight loss but carry different adverse effect profiles and interactions with other psychiatric medications may preclude use of one over the other. When choosing a medication for obesity, several factors need to be considered, such as comorbidities, medication interactions, and risk of potential adverse effects.
Collapse
Affiliation(s)
- Rekha B Kumar
- Weill Cornell Medical College, Department of Endocrinology, Diabetes, & Metabolism, Comprehensive Weight Control Center, New York, New York, USA
| | | |
Collapse
|
27
|
Peng H, Zhang Q, Shen H, Liu Y, Chao X, Tian H, Cai X, Jin J. Association between serum soluble corin and obesity in Chinese adults: a cross-sectional study. Obesity (Silver Spring) 2015; 23:856-61. [PMID: 25678428 DOI: 10.1002/oby.21016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/26/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Corin has been suggested to be associated with obesity by cell- and animal-based studies. However, the association has not yet been studied in populations. Here, the aim was to explore the association in a general population of China. METHODS This was a cross-sectional study. Data on demographic information, lifestyle risk factors, and personal medical history were collected; body mass index, waist circumference, and blood pressures were measured; and serum corin, blood lipids, and blood glucose were determined in 2498 participants aged above 30 years. RESULTS Log-transformed corin correlated to body mass index (r = 0.197, P < 0.001) and waist circumference (r = 0.289, P < 0.001). In the risk factor-adjusted analysis, compared with participants in the lowest quartile of serum corin, participants in the 4th quartile had significantly increased risk of prevalent overweight or obesity (OR = 2.26, 95% CI: 1.67-3.04) and central obesity (OR = 1.74, 95% CI: 1.30-2.34). ORs of overweight or obesity and central obesity positively and significantly increased with serum corin levels (P for trend < 0.001). CONCLUSIONS Serum soluble corin was significantly and positively associated with obesity. Our findings suggested that serum soluble corin may be a marker or risk factor for obesity.
Collapse
Affiliation(s)
- Hao Peng
- Center for Disease Prevention and Control of Gusu District, Suzhou, China; Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gillette R, Miller-Crews I, Skinner MK, Crews D. Distinct actions of ancestral vinclozolin and juvenile stress on neural gene expression in the male rat. Front Genet 2015; 6:56. [PMID: 25784924 PMCID: PMC4345841 DOI: 10.3389/fgene.2015.00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/06/2015] [Indexed: 01/18/2023] Open
Abstract
Exposure to the endocrine disrupting chemical vinclozolin during gestation of an F0 generation and/or chronic restraint stress during adolescence of the F3 descendants affects behavior, physiology, and gene expression in the brain. Genes related to the networks of growth factors, signaling peptides, and receptors, steroid hormone receptors and enzymes, and epigenetic related factors were measured using quantitative polymerase chain reaction via Taqman low density arrays targeting 48 genes in the central amygdaloid nucleus, medial amygdaloid nucleus, medial preoptic area (mPOA), lateral hypothalamus (LH), and the ventromedial nucleus of the hypothalamus. We found that growth factors are particularly vulnerable to ancestral exposure in the central and medial amygdala; restraint stress during adolescence affected neural growth factors in the medial amygdala. Signaling peptides were affected by both ancestral exposure and stress during adolescence primarily in hypothalamic nuclei. Steroid hormone receptors and enzymes were strongly affected by restraint stress in the mPOA. Epigenetic related genes were affected by stress in the ventromedial nucleus and by both ancestral exposure and stress during adolescence independently in the central amygdala. It is noteworthy that the LH showed no effects of either manipulation. Gene expression is discussed in the context of behavioral and physiological measures previously published.
Collapse
Affiliation(s)
- Ross Gillette
- Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Isaac Miller-Crews
- Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University Pullman, WA, USA
| | - David Crews
- Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA ; Department of Integrative Biology, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
29
|
Wada N, Hirako S, Takenoya F, Kageyama H, Okabe M, Shioda S. Leptin and its receptors. J Chem Neuroanat 2014; 61-62:191-9. [PMID: 25218975 DOI: 10.1016/j.jchemneu.2014.09.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/11/2022]
Abstract
Leptin is mainly produced in the white adipose tissue before being secreted into the blood and transported across the blood-brain barrier. Leptin binds to a specific receptor (LepR) that has numerous subtypes (LepRa, LepRb, LepRc, LepRd, LepRe, and LepRf). LepRb, in particular, is expressed in several brain nuclei, including the arcuate nucleus, the paraventricular nucleus, and the dorsomedial, lateral and ventromedial regions of the hypothalamus. LepRb is also co-expressed with several neuropeptides, including proopiomelanocortin, neuropeptide Y, galanin, galanin-like peptide, gonadotropin-releasing hormone, tyrosine hydroxylase and neuropeptide W. Functionally, LepRb induces activation of the JAK2/ERK, /STAT3, /STAT5 and IRS/PI3 kinase signaling cascades, which are important for the regulation of energy homeostasis and appetite in mammals. In this review, we discuss the structure, genetics and distribution of the leptin receptors, and their role in cell signaling mechanisms.
Collapse
Affiliation(s)
- Nobuhiro Wada
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan
| | - Satoshi Hirako
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan
| | - Fumiko Takenoya
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan; Department of Physical Education, Hoshi University School of Pharmacy and Pharmaceutical Science, Tokyo 142-8501, Japan
| | - Haruaki Kageyama
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan; Department of Nutrition, Faculty of Health Care, Kiryu University, 606-7 Kasakakecho Azami, Midori City 379-2392, Gunma, Japan
| | - Mai Okabe
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan; Tokyo Shokuryo Dietitian Academy, Tokyo 154-0001, Japan
| | - Seiji Shioda
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
30
|
Abstract
With increasing awareness of the obesity epidemic have come research efforts to understand the pathophysiology of body weight and appetite regulation. Clinical trials of diet-induced weight loss demonstrate the difficulty of achieving long term success in obese and overweight individuals, leading investigators to examine the question of what mechanisms makes weight loss so difficult. This has lead to a greater focus on neurologic and hormonal reasons that could explain why maintenance of lost weight is so challenging. Injury to the hypothalamic areas known to play a role in feeding and body weight regulation is being studied. Mechanisms of hypothalamic injury include increased inflammation, gliosis/scarring, and apoptosis of anorexigenic neurons in rodent models of diet induced obesity. Although there is evidence of hypothalamic damage due to interference of cell signaling and eventual loss of weight regulating neurons in rodent models, there is limited data thus far on whether we can apply this mechanism of injury to human obesity.
Collapse
Affiliation(s)
- Rekha B Kumar
- Weill Cornell Medical College/New York Presbyterian Hospital, 1165 York Ave, New York, NY, 10065, USA.
| | - Louis J Aronne
- Center for Weight Management and Metabolic Clinical Research, Weill Cornell Medical College/New York Presbyterian Hospital, 1165 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
31
|
Zhao ZJ, Chi QS, Cao J, Wang DH. Seasonal changes of body mass and energy budget in striped hamsters: the role of leptin. Physiol Biochem Zool 2014; 87:245-56. [PMID: 24642542 DOI: 10.1086/674974] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Proper adjustments of physiology and behavior are required for small mammals to cope with seasonal climate change. The aim of this study was to examine the role of leptin in the regulation of body mass and energy budget in striped hamsters. We first investigated seasonal changes in body mass, energy budget, and serum leptin levels in hamsters acclimated to outdoor natural daylight and ambient temperature. Then we assessed the effect of leptin administration on energy budget, serum lipoprotein lipase (LPL) and hepatic lipase (HL) activities, and gene expression of uncoupling protein 1 (UCP1) in brown adipose tissue and of hypothalamic neuropeptides associated with the regulation of energy balance in hamsters maintained at 21° and 5°C. Hamsters showed constant body mass throughout the four seasons but significantly increased food intake and thermogenesis in winter, compared to summer. Minimum body fat was observed in winter, and minimum serum leptin was found in autumn. Hamsters housed at 5°C showed higher energy intake, upregulated gene expression of UCP1 and hormone-sensitive lipase, and lower fat content and LPL and HL activity than the animals maintained at 21°C. Leptin administration had no effect on energy intake but increased maximal thermogenic capacity, as indicated by upregulated UCP1 gene expression at both 21° and 5°C. Body fat and activity of LPL and HL were decreased in hamsters treated with leptin. The results suggest that leptin plays an important role in the seasonal regulation of thermogenic capacity and body composition in striped hamsters. Leptin may be involved in increasing maximal thermogenesis in the cold rather than acting as a starvation signal to increase energy intake.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325027, China; 2State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; 3School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | | | | | | |
Collapse
|
32
|
Abstract
Many molecules are involved in the regulation of feeding behavior, and they and their receptors are located in the brain hypothalamus and adipocytes. On the basis of evidence suggesting an association between the brain and adipose tissue, we propose the concept of the brain-adipose axis. This model consists of (l) the expression of endogenous molecules and/or their receptors in the hypothalamus and peripheral adipose tissue, (2) the function of these molecules as appetite regulators in the brain, (3) their existence in the general circulation as secreted proteins and (4) the physiological affects of these molecules on fat cell size and number. These molecules can be divided into two anorexigenic and orexigenic classes. In adipose tissue, all orexigenic molecules possess adipogenic activity, and almost all anorexigenic molecules suppress fat cell proliferation. Although the manner, in which they present in the circulating blood connect the brain and peripheral adipocytes, remains to be well-organized, these observations suggest the positive feedback axis affecting molecules in the hypothalamus and adipose tissue. Analysis of the disturbance and dysregulation of this axis might promote the development of new anti-obesity drugs useful in treating the metabolic syndrome.
Collapse
Affiliation(s)
- Hiroyuki Shimizu
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | |
Collapse
|
33
|
Suzuki H, Asakawa A, Amitani H, Fujitsuka N, Nakamura N, Inui A. Cancer cachexia pathophysiology and translational aspect of herbal medicine. Jpn J Clin Oncol 2013; 43:695-705. [PMID: 23737606 DOI: 10.1093/jjco/hyt075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
About half of all cancer patients show a syndrome of cachexia, characterized by anorexia and loss of adipose tissue and skeletal muscle mass. Numerous cytokines have been postulated to play a role in the etiology of cancer cachexia. Cytokines can elicit effects that mimic leptin signaling and suppress orexigenic ghrelin and neuropeptide Y signaling, inducing sustained anorexia and cachexia not accompanied by the usual compensatory response. Furthermore, cytokines have been implicated in the induction of cancer-related muscle wasting. In particular, tumor necrosis factor-alpha, interleukin-1, interleukin-6 and interferon-gamma have been implicated in the induction of cancer-related muscle wasting. Cytokine-induced skeletal muscle wasting is probably a multifactorial process, which involves a depression in protein synthesis, an increase in protein degradation or a combination of both. Cancer patients suffer from the reduction in physical function, tolerance to anti-cancer therapy and survival, while many effective chemotherapeutic agents for cancer are burdened by toxicities that can reduce patient's quality of life or hinder their effective use. Herbal medicines have been widely used to help improve such conditions. Recent studies have shown that herbal medicines such as rikkunshito enhance ghrelin signaling and consequently improve nausea, appetite loss and cachexia associated with cancer or cancer chemotherapy, which worsens the quality of life and life expectancy of the patients. The multicomponent herbal medicines capable of targeting multiple sites could be useful for future drug discovery. Mechanistic studies and identification of active compounds could lead to new discoveries in biological and biomedical sciences.
Collapse
Affiliation(s)
- Hajime Suzuki
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The story of oxytocin (OXT) began long ago in evolutionary terms with its recognition as a classical neurohypophyseal hormone important for lactation and uterine contraction. With the recent discovery of its local actions in the brain, its previously-unappreciated diverse functions in regulating social behaviors and metabolic physiology are emerging. In light of metabolic control, OXT has been shown to induce feeding restriction and body weight lowering through acting on brain regulatory regions, in particular the hypothalamus. Studies from pharmacologic interventions and genetic manipulations demonstrated that OXT can play significant roles in affecting glucose metabolism as well as insulin secretion and lipolysis, many of those functions being regulated both centrally and peripherally. Also excitingly, recent therapeutic success was obtained in clinical endeavor showing that OXT nasal spray effectively induced weight loss and metabolic improvement in human patients with obesity, thus further indicating OXT as a tangible drug target for treating obesity and metabolic complications. In addition to the native form, OXT-derived analogues have been found effective in inducing body weight control and glucose balance. Altogether, all recent advances in studying OXT and metabolic regulation has promoted a promising foundation for the therapeutic strategy of developing innovative OXT peptidyl drugs for the treatment of obesity and related metabolic diseases.
Collapse
|
35
|
Suzuki H, Asakawa A, Amitani H, Nakamura N, Inui A. Cancer cachexia--pathophysiology and management. J Gastroenterol 2013; 48:574-94. [PMID: 23512346 PMCID: PMC3698426 DOI: 10.1007/s00535-013-0787-0] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 02/20/2013] [Indexed: 02/04/2023]
Abstract
About half of all cancer patients show a syndrome of cachexia, characterized by anorexia and loss of adipose tissue and skeletal muscle mass. Cachexia can have a profound impact on quality of life, symptom burden, and a patient's sense of dignity. It is a very serious complication, as weight loss during cancer treatment is associated with more chemotherapy-related side effects, fewer completed cycles of chemotherapy, and decreased survival rates. Numerous cytokines have been postulated to play a role in the etiology of cancer cachexia. Cytokines can elicit effects that mimic leptin signaling and suppress orexigenic ghrelin and neuropeptide Y (NPY) signaling, inducing sustained anorexia and cachexia not accompanied by the usual compensatory response. Furthermore, cytokines have been implicated in the induction of cancer-related muscle wasting. Cytokine-induced skeletal muscle wasting is probably a multifactorial process, which involves a protein synthesis inhibition, an increase in protein degradation, or a combination of both. The best treatment of the cachectic syndrome is a multifactorial approach. Many drugs including appetite stimulants, thalidomide, cytokine inhibitors, steroids, nonsteroidal anti-inflammatory drugs, branched-chain amino acids, eicosapentaenoic acid, and antiserotoninergic drugs have been proposed and used in clinical trials, while others are still under investigation using experimental animals. There is a growing awareness of the positive impact of supportive care measures and development of promising novel pharmaceutical agents for cachexia. While there has been great progress in understanding the underlying biological mechanisms of cachexia, health care providers must also recognize the psychosocial and biomedical impact cachexia can have.
Collapse
Affiliation(s)
- Hajime Suzuki
- />Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520 Japan
- />Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520 Japan
| | - Akihiro Asakawa
- />Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520 Japan
| | - Haruka Amitani
- />Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520 Japan
| | - Norifumi Nakamura
- />Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520 Japan
| | - Akio Inui
- />Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520 Japan
| |
Collapse
|
36
|
Differential lasting inhibitory effects of oxytocin and food-deprivation on mediobasal hypothalamic polydipsia. Brain Res Bull 2013; 94:40-8. [DOI: 10.1016/j.brainresbull.2013.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/30/2013] [Accepted: 02/13/2013] [Indexed: 11/19/2022]
|
37
|
Expression of inflammation-related genes is altered in gastric tissue of patients with advanced stages of NAFLD. Mediators Inflamm 2013; 2013:684237. [PMID: 23661906 PMCID: PMC3626032 DOI: 10.1155/2013/684237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 12/11/2022] Open
Abstract
Obesity is associated with chronic low-grade inflammation perpetuated by visceral adipose. Other organs, particularly stomach and intestine, may also overproduce proinflammatory molecules. We examined the gene expression patterns in gastric tissue of morbidly obese patients with nonalcoholic fatty liver disease (NAFLD) and compared the changes in gene expression in different histological forms of NAFLD. Stomach tissue samples from 20 morbidly obese NAFLD patients who were undergoing sleeve gastrectomy were profiled using qPCR for 84 genes encoding inflammatory cytokines, chemokines, their receptors, and other components of inflammatory cascades. Interleukin 8 receptor-beta (IL8RB) gene overexpression in gastric tissue was correlated with the presence of hepatic steatosis, hepatic fibrosis, and histologic diagnosis of nonalcoholic steatohepatitis (NASH). Expression levels of soluble interleukin 1 receptor antagonist (IL1RN) were correlated with the presence of NASH and hepatic fibrosis. mRNA levels of interleukin 8 (IL8), chemokine (C-C motif) ligand 4 (CCL4), and its receptor chemokine (C-C motif) receptor type 5 (CCR5) showed a significant increase in patients with advanced hepatic inflammation and were correlated with the severity of the hepatic inflammation. The results of our study suggest that changes in expression patterns for inflammatory molecule encoding genes within gastric tissue may contribute to the pathogenesis of obesity-related NAFLD.
Collapse
|
38
|
Park SJ, Choi JH, Jung YS, Yu MH. Inhibitory Effect of Rumex Crispus L. Fraction on Adipocyte Differentiation in 3T3-L1 Cells. ACTA ACUST UNITED AC 2013. [DOI: 10.9721/kjfst.2013.45.1.90] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Albayrak M, Karatas A, Demiraran Y, Erman H, Topuz S, Bıyık İ, Uzun H, Erkan M. Ghrelin, acylated ghrelin, leptin and PYY-3 levels in hyperemesis gravidarum. J Matern Fetal Neonatal Med 2013; 26:866-70. [PMID: 23330872 DOI: 10.3109/14767058.2013.766699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To assess the serum levels of gut and adipocyte-derived metabolic hormones that control appetite, adipocity, weight gain and energy hemostasis, namely total ghrelin (TG), acylated ghrelin (AG), leptin and PYY-3 in hyperemesis gravidarum (HG). METHODS Plasma samples of 86 women in their first trimester pregnancies with HG (n = 30), morning sickness of pregnancy (MSP) (n = 34) and control (n = 22) groups were obtained. Serum levels of TG, AG, leptin and PYY-3 were compared between the groups, and the correlations with severity of symptoms using modified PUQE (Pregnancy Unique Quantification of Emesis) scoring, BMI, E2, hCG and TSH were calculated. RESULTS Levels of TG, AG, PYY-3 and the TG/leptin ratio were significantly higher in HG group compared to MSP and the control groups (p ≤ 0.017). AG/TG ratio was significantly lower in the HG group compared to both MSP and control groups (p ≤ 0.017). There were either weak or no significant statistical correlations between the gut and adipose-related hormones and the modified PUQE scores, BMI, E2, hCG and TSH. CONCLUSION Gut-derived metabolic hormones ghrelin, AG and PYY-3 may be involved in the HG pathophysiology.
Collapse
Affiliation(s)
- Mustafa Albayrak
- Department of and Obstetrics and Gynecology, Duzce University School of Medicine, Duzce, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Liu T, Wang Q, Berglund ED, Tong Q. Action of Neurotransmitter: A Key to Unlock the AgRP Neuron Feeding Circuit. Front Neurosci 2013; 6:200. [PMID: 23346045 PMCID: PMC3549528 DOI: 10.3389/fnins.2012.00200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/31/2012] [Indexed: 01/08/2023] Open
Abstract
The current obesity epidemic and lack of efficient therapeutics demand a clear understanding of the mechanism underlying body weight regulation. Despite intensive research focus on obesity pathogenesis, an effective therapeutic strategy to treat and cure obesity is still lacking. Exciting studies in last decades have established the importance of hypothalamic agouti-related protein-expressing neurons (AgRP neurons) in the regulation of body weight homeostasis. AgRP neurons are both required and sufficient for feeding regulation. The activity of AgRP neurons is intricately regulated by nutritional hormones as well as synaptic inputs from upstream neurons. Changes in AgRP neuron activity lead to alterations in the release of mediators, including neuropeptides Neuropeptide Y (NPY) and AgRP, and fast-acting neurotransmitter GABA. Recent studies based on mouse genetics, novel optogenetics, and designer receptor exclusively activated by designer drugs have identified a critical role for GABA release from AgRP neurons in the parabrachial nucleus and paraventricular hypothalamus in feeding control. This review will summarize recent findings about AgRP neuron-mediated control of feeding circuits with a focus on the role of neurotransmitters. Given the limited knowledge on feeding regulation, understanding the action of neurotransmitters may be a key to unlock neurocircuitry that governs feeding.
Collapse
Affiliation(s)
- Tiemin Liu
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas Dallas, TX, USA
| | | | | | | |
Collapse
|
41
|
Bradley RL, Mansfield JPR, Maratos-Flier E. Neuropeptides, Including Neuropeptide Y and Melanocortins, Mediate Lipolysis in Murine Adipocytes. ACTA ACUST UNITED AC 2012; 13:653-61. [PMID: 15897473 DOI: 10.1038/oby.2005.73] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To determine whether key appetite-regulating neuropeptides such as melanin-concentrating hormone (MCH), neuropeptide Y (NPY), and alpha-melanocyte-stimulating hormone (alpha-MSH), which are known to mediate energy balance through centrally mediated pathways, also have direct acute effects on the lipolytic activity of murine adipocytes. RESEARCH METHODS AND PROCEDURES Fully differentiated 3T3-L1 adipocytes serum starved overnight in Dulbecco's modified Eagle medium containing 2% bovine serum albumin or freshly isolated mouse adipocytes were incubated for up to 2 hours in the absence and presence of 100 nM each of NPY, MCH, alpha-MSH, the melanocortin receptor agonist MTII, or isoproterenol as a control. Free fatty acids secreted into the incubation medium were measured using a commercially available nonesterified fatty acid C test kit. RESULTS Treatment of 3T3-L1 cells with 100 nM NPY decreased basal free fatty acid secretion (basal, 0.006 +/- 0.001 vs. NPY, 0.001 +/- 0.0003 nM at 90 minutes; p < 0.05), whereas both alpha-MSH and MTII stimulated up to a 7-fold increase in free fatty acid release (MTII, 0.238 +/- 0.004 vs. basal, 0.024 +/- 0.002 nM at 2 hours; p < 0.05; and alpha-MSH, 0.22 +/- 0.005 vs. basal, 0.04 +/- 0.003 nM at 2 hours; p < 0.05). Treatment with 100 nM MCH had no effect on basal free fatty acid release or on alpha-MSH-induced lipolysis during concurrent treatment. Conversely, concurrent treatment with 100 nM NPY dramatically inhibited (by approximately 90%) alpha-MSH-induced lipolysis. Similar treatment of freshly isolated mouse adipocytes showed virtually identical results. DISCUSSION In addition to their centrally mediated actions, appetite-regulating neuropeptides modulate adipose tissue mass through direct peripheral effects. Systemic administration of pharmacological agents altering the effects of these neuropeptides may form the basis of future obesity therapies. Thus, some of these agents will likely have direct effects on adipocytes that may serve to alter their therapeutic effectiveness.
Collapse
|
42
|
Tritos NA, Segal-Lieberman G, Vezeridis PS, Maratos-Flier E. Estradiol-Induced Anorexia Is Independent of Leptin and Melanin-Concentrating Hormone. ACTA ACUST UNITED AC 2012; 12:716-24. [PMID: 15090642 DOI: 10.1038/oby.2004.84] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Treatment of male rodents with estradiol (E2) is associated with anorexia and weight loss by poorly understood mechanisms. We examined the role of the orexigenic hypothalamic peptide melanin-concentrating hormone (MCH) and the appetite-inhibiting, fat-derived hormone leptin in mediating E2-induced anorexia. RESEARCH METHODS AND PROCEDURES We studied the effect of E2 treatment (implantation of either E2 pellet or matching placebo) in male C57Bl/6J mice, as well as in a lean mouse model (MCH knockout mice) and an obese model (leptin-deficient ob/ob mice). We also studied the effect of E2 treatment in the context of high-fat diet. RESULTS We confirmed E2 dose-dependent anorexia in male wild type mice fed a normal chow diet. E2 treatment was associated with a significant decrease in body fat, serum leptin levels, and arcuate hypothalamic proopiomelanocortin expression. E2-implanted mice also showed increased hypothalamic neuropeptide Y and MCH expression. As MCH has been implicated in E2-induced hypophagia, we performed E2 pellet implantation in MCH knockout mice and observed hypophagia and weight loss, indicating that MCH is not an essential mediator of E2-induced anorexia. E2-implanted ob/ob mice also had hypophagia and weight loss, indicating that leptin is not essential for E2-induced anorexia. High-fat diet significantly exacerbated the effect of E2 treatment, leading to a 99.6% decrease in food intake at 48 hours and a 30% loss of body weight within 1 week. DISCUSSION The anorectic effects of E2 were independent of MCH and leptin. Our results suggested that E2 may have effects on nutrient preferences.
Collapse
|
43
|
Patra SK, Arora S. Integrative role of neuropeptides and cytokines in cancer anorexia-cachexia syndrome. Clin Chim Acta 2012; 413:1025-34. [PMID: 22251421 DOI: 10.1016/j.cca.2011.12.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/02/2011] [Accepted: 12/08/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND The cachexia anorexia syndrome is a complex metabolic syndrome associated with cancer and some other palliative conditions characterized by involuntary weight loss involving fat and muscle, weight loss, anorexia, early satiety, fatigue, weakness due to shifts in metabolism caused by tumour by-products and cytokines. Various neuropeptides like Leptin, neuropeptide Y, melanocortin, agouti-related peptides have been known to regulate appetite and body weight. METHOD A comprehensive literature search was carried out on the websites of Pubmed Central (http://www.pubmedcentral.nih.gov/), National Library of Medicine (http://www.ncbl.nlm.nih.gov) and various other net resources. RESULT Data from observational studies shows that various cytokines (TNF-α, IL-6 and IL-1) are associated with metabolic changes resulting in cachexia in cancer patients. These cytokines may mimic the action of various neuropeptides resulting in anorexia, various metabolic effects resulting from enhanced catabolic state and weight loss. CONCLUSION There is a need to understand and explore the role of various neuropeptides and cytokines in the pathophysiology of cancer-anorexia syndrome so that therapeutic measures may be designed for effective palliative care.
Collapse
Affiliation(s)
- Surajeet K Patra
- Department of Biochemistry, Lady Hardinge Medical College, New Delhi-110001, India
| | | |
Collapse
|
44
|
Genotype–phenotype correlation in interstitial 6q deletions: a report of 12 new cases. Neurogenetics 2012; 13:31-47. [DOI: 10.1007/s10048-011-0306-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/22/2011] [Indexed: 01/04/2023]
|
45
|
Relationship between Obesity-related Hormone Peptides and Quality of Life in Obese Women among Different Traditional Chinese Medicine Syndrome Groups. J Tradit Complement Med 2012; 2:61-6. [PMID: 24716116 PMCID: PMC3943013 DOI: 10.1016/s2225-4110(16)30072-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was to explore the relationship between obesity-related hormone peptides and quality of life in obese women among different traditional Chinese medicine (TCM) syndrome groups (證型 zhèng xíng). 260 obese women met with age between 20 and 65 years old and body mass index (BMI) ≧ 27 kg/m2, were recruited. The participants filled out a questionnaire on obese TCM syndrome groups, which was designed by professional TCM doctors, and two questionnaires on quality of life (QOL), WHOQOL-BREF Taiwan version and MOS Short Form-12 (SF-12). Data of biochemical characteristics and obesity-related hormone peptides were collected at the same time. According to the responses provided, the obese subjects were classified into spleen deficiency with dampness encumbrance syndrome (脾虛濕阻證 pí xū shī zǔ zhèng; SDD), stomach heat with dampness encumbrance syndrome (胃熱濕阻證 wèi rè shī zǔ zhèng; SHD), liver depression and qi stagnation syndrome (肝鬱氣滯證 gān yù qì zhì zhèng; LDQ), dual spleen-kidney deficiency syndrome (脾腎兩虛證 pí shèn liǎng xū zhèng; SKD), yin deficiency with internal heat syndrome (陰虛內熱證 yīn xū nèi rè zhèng; YDI) and a control group. For physical conditions, SDD group had significantly higher means in weight and BMI compared with the control group. The insulin and leptin levels in SHD group were significantly higher than those in the control group. The LDQ group showed marked decrease in mental condition scores compared with the control group. This study found that obese women in the SDD group were fatter than those in the control group. SHD group might have greater influence on the regulation of obesity-related hormone peptides. The LDQ group had poor QOL than the control group. Analysis of TCM syndrome groups among obese women merits further investigation.
Collapse
|
46
|
Pico C, Jilkova ZM, Kus V, Palou A, Kopecky J. Perinatal programming of body weight control by leptin: putative roles of AMP kinase and muscle thermogenesis. Am J Clin Nutr 2011; 94:1830S-1837S. [PMID: 21543529 DOI: 10.3945/ajcn.110.000752] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Breastfeeding, compared with infant-formula feeding, confers later protection against obesity. Leptin represents a candidate for the programming of the lean phenotype as suggested by 1) the presence of leptin in breast milk and its absence in infant formula, 2) a human study that showed a negative correlation between leptin concentrations in breast milk and body weights of infants until 2 y of age, and 3) intervention studies in animals. Milk-borne leptin and leptin synthesized in adipose tissue and the stomach may contribute to leptinemia in newborns. Studies in rodents suggested that early leptin treatment may program either a lean or obese phenotype, probably depending on the dose, route of administration, and timing of exposure to high leptin concentrations, whereas these studies also suggested the importance of the physiologic postnatal surge in leptinemia for the programming effect. Leptin oral administration at physiologic doses to neonate rats during the entire lactation period had later positive effects that prevented the animals from overweight and obesity and other metabolic alterations, which were particularly associated with feeding of a high-fat diet. High leptin sensitivity, which is associated with leanness, and leptin resistance in obesity may be programmed by the early life environment. The differential sensitivity to leptin implies a contribution of leptin-inducible energy expenditure to the adult phenotype. Available data have suggested the involvement of nonshivering thermogenesis induced by a leptin-AMP-activated protein kinase axis in oxidative muscles, which is based on lipid metabolism. Additional studies on the programming effects of leptin, mainly in response to the oral intake of leptin, are required.
Collapse
Affiliation(s)
- Catalina Pico
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Palma de Mallorca, Spain
| | | | | | | | | |
Collapse
|
47
|
Valen R, Jordal AEO, Murashita K, Rønnestad I. Postprandial effects on appetite-related neuropeptide expression in the brain of Atlantic salmon, Salmo salar. Gen Comp Endocrinol 2011; 171:359-66. [PMID: 21377470 DOI: 10.1016/j.ygcen.2011.02.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 02/24/2011] [Accepted: 02/27/2011] [Indexed: 11/29/2022]
Abstract
Following feeding of a single meal to Atlantic salmon, the temporal changes in the brain mRNA expression of neuropeptide y (npy), cocaine-amphetamine regulated transcript (cart), peptide yy (pyy), two isoforms of agouti-related protein (agrp), two isoforms of cholecystokinin (cck), and four isoforms of proopiomelanocortin (pomc) were assessed by q-PCR. In the course of 24h post-feeding (hpf), several of the brain neuropeptides displayed changes in mRNA expression compared to an unfed control group, indicating that food intake and processing affect the regulation of expression of these genes in Atlantic salmon. Expression of cart, cck-l, pomc-a1 and pomc-b all increased within 3h of feeding, while most of the feed was still in the stomach, suggesting that these neuropeptides play central anorexigenic roles similar to those described in higher vertebrates, including determining meal intervals. On the other hand, the npy and agrp isoforms which have been described as playing orexigenic roles in mammals, showed an opposite response in salmon and both were elevated in the first 3h after feeding. The different isoforms of cck, agrp and pomc had different mRNA expression patterns, which indicate specific roles related to feeding regulation. The minimal effect of feeding and digestion on pyy expression in the brain indicates that PYY plays a minor role in the central control of short-term food intake in Atlantic salmon.
Collapse
Affiliation(s)
- R Valen
- Department of Biology, University of Bergen, NO-5020 Bergen, Norway.
| | | | | | | |
Collapse
|
48
|
Zhang G, Bai H, Zhang H, Dean C, Wu Q, Li J, Guariglia S, Meng Q, Cai D. Neuropeptide exocytosis involving synaptotagmin-4 and oxytocin in hypothalamic programming of body weight and energy balance. Neuron 2011; 69:523-535. [PMID: 21315262 PMCID: PMC4353647 DOI: 10.1016/j.neuron.2010.12.036] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2010] [Indexed: 12/27/2022]
Abstract
Hypothalamic neuropeptides play essential roles in regulating energy and body weight balance. Energy imbalance and obesity have been linked to hypothalamic signaling defects in regulating neuropeptide genes; however, it is unknown whether dysregulation of neuropeptide exocytosis could be critically involved. This study discovered that synaptotagmin-4, an atypical modulator of synaptic exocytosis, is expressed most abundantly in oxytocin neurons of the hypothalamus. Synaptotagmin-4 negatively regulates oxytocin exocytosis, and dietary obesity is associated with increased vesicle binding of synaptotagmin-4 and thus enhanced negative regulation of oxytocin release. Overexpressing synaptotagmin-4 in hypothalamic oxytocin neurons and centrally antagonizing oxytocin in mice are similarly obesogenic. Synaptotagmin-4 inhibition prevents against dietary obesity by normalizing oxytocin release and energy balance under chronic nutritional excess. In conclusion, the negative regulation of synaptotagmin-4 on oxytocin release represents a hypothalamic basis of neuropeptide exocytosis in controlling obesity and related diseases.
Collapse
Affiliation(s)
- Guo Zhang
- Department of Molecular Pharmacology and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Physiology, University of Wisconsin-Madison, Madison, WI 53706
| | - Hua Bai
- Department of Physiology, University of Wisconsin-Madison, Madison, WI 53706
| | - Hai Zhang
- Department of Molecular Pharmacology and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Physiology, University of Wisconsin-Madison, Madison, WI 53706
- Cellular & Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Camin Dean
- Department of Physiology, University of Wisconsin-Madison, Madison, WI 53706
| | - Qiang Wu
- Department of Physiology, University of Wisconsin-Madison, Madison, WI 53706
| | - Juxue Li
- Department of Molecular Pharmacology and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Physiology, University of Wisconsin-Madison, Madison, WI 53706
| | - Sara Guariglia
- Department of Molecular Pharmacology and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Qingyuan Meng
- Department of Molecular Pharmacology and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Dongsheng Cai
- Department of Molecular Pharmacology and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Physiology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
49
|
Han D, Kim S, Cho B. mRNA Expression on Neuropeptide Y (NPY) to Exercise Intensity and Recovery Time. J Phys Ther Sci 2011. [DOI: 10.1589/jpts.23.781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Dongyup Han
- Department of Physical Education, Chungnam National University
| | - Seonrye Kim
- Department of Public Health, Chungnam National University
| | - Byungjun Cho
- Department of Emergency Medical Technology, Kangwon National University
| |
Collapse
|
50
|
Morganstern I, Chang GQ, Chen YW, Barson JR, Zhiyu Y, Hoebel BG, Leibowitz SF. Role of melanin-concentrating hormone in the control of ethanol consumption: Region-specific effects revealed by expression and injection studies. Physiol Behav 2010; 101:428-37. [PMID: 20670637 PMCID: PMC2949500 DOI: 10.1016/j.physbeh.2010.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/27/2010] [Accepted: 07/21/2010] [Indexed: 11/23/2022]
Abstract
The peptide melanin-concentrating hormone (MCH), produced mainly by cells in the lateral hypothalamus (LH), perifornical area (PF) and zona incerta (ZI), is suggested to have a role in the consumption of rewarding substances, such as ethanol, sucrose and palatable food. However, there is limited information on the specific brain sites where MCH acts to stimulate intake of these rewarding substances and on the feedback effects that their consumption has on the expression of endogenous MCH. The current study investigated MCH in relation to ethanol consumption, in Sprague-Dawley rats. In Experiment 1, chronic consumption of ethanol (from 0.70 to 2.7 g/kg/day) dose-dependently reduced MCH gene expression in the LH. In Experiments 2-4, the opposite effect was observed with acute oral ethanol, which stimulated MCH expression specifically in the LH but not the ZI. In Experiment 5, the effect of MCH injection in brain-cannulated rats on ethanol consumption was examined. Compared to saline, MCH injected in the paraventricular nucleus (PVN) and nucleus accumbens (NAc) selectively stimulated ethanol consumption without affecting food or water intake. In contrast, it reduced ethanol intake when administered into the LH, while having no effect in the ZI. These results demonstrate that voluntary, chronic consumption of ethanol leads to local negative feedback control of MCH expression in the LH. However, with a brief exposure, ethanol stimulates MCH-expressing neurons in this region, which through projections to the feeding-related PVN and reward-related NAc can promote further drinking behavior.
Collapse
Affiliation(s)
- I Morganstern
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|