1
|
Murray SM, Howard M. Center Finding in E. coli and the Role of Mathematical Modeling: Past, Present and Future. J Mol Biol 2019; 431:928-938. [PMID: 30664868 DOI: 10.1016/j.jmb.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
We review the key role played by mathematical modeling in elucidating two center-finding patterning systems in Escherichia coli: midcell division positioning by the MinCDE system and DNA partitioning by the ParABS system. We focus particularly on how, despite much experimental effort, these systems were simply too complex to unravel by experiments alone, and instead required key injections of quantitative, mathematical thinking. We conclude the review by analyzing the frequency of modeling approaches in microbiology over time. We find that while such methods are increasing in popularity, they are still probably heavily under-utilized for optimal progress on complex biological questions.
Collapse
Affiliation(s)
- Seán M Murray
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, 35043 Marburg, Germany.
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
2
|
Xu M, Zhao J, Yu L, Yang ST. Comparative genomic analysis of Clostridium acetobutylicum for understanding the mutations contributing to enhanced butanol tolerance and production. J Biotechnol 2017; 263:36-44. [DOI: 10.1016/j.jbiotec.2017.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023]
|
3
|
Ortiz C, Casanova M, Palacios P, Vicente M. The hypermorph FtsA* protein has an in vivo role in relieving the Escherichia coli proto-ring block caused by excess ZapC. PLoS One 2017; 12:e0184184. [PMID: 28877250 PMCID: PMC5587298 DOI: 10.1371/journal.pone.0184184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023] Open
Abstract
Assembly of the proto-ring, formed by the essential FtsZ, FtsA and ZipA proteins, and its progression into a divisome, are essential events for Escherichia coli division. ZapC is a cytoplasmic protein that belongs to a group of non-essential components that assist FtsZ during proto-ring assembly. Any overproduction of these proteins leads to faulty FtsZ-rings, resulting in a cell division block. We show that ZapC overproduction can be counteracted by an excess of the ZipA-independent hypermorph FtsA* mutant, but not by similar amounts of wild type FtsA+. An excess of FtsA+ allowed regular spacing of the ZapC-blocked FtsZ-rings, but failed to promote recruitment of the late-assembling proteins FtsQ, FtsK and FtsN and therefore, to activate constriction. In contrast, overproduction of FtsA*, besides allowing correct FtsZ-ring localization at midcell, restored the ability of FtsQ, FtsK and FtsN to be incorporated into active divisomes.
Collapse
Affiliation(s)
- Cristina Ortiz
- Centro Nacional de Biotecnología- Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mercedes Casanova
- Centro Nacional de Biotecnología- Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pilar Palacios
- Centro Nacional de Biotecnología- Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Miguel Vicente
- Centro Nacional de Biotecnología- Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| |
Collapse
|
4
|
Naylor J, Fellermann H, Ding Y, Mohammed WK, Jakubovics NS, Mukherjee J, Biggs CA, Wright PC, Krasnogor N. Simbiotics: A Multiscale Integrative Platform for 3D Modeling of Bacterial Populations. ACS Synth Biol 2017; 6:1194-1210. [PMID: 28475309 DOI: 10.1021/acssynbio.6b00315] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Simbiotics is a spatially explicit multiscale modeling platform for the design, simulation and analysis of bacterial populations. Systems ranging from planktonic cells and colonies, to biofilm formation and development may be modeled. Representation of biological systems in Simbiotics is flexible, and user-defined processes may be in a variety of forms depending on desired model abstraction. Simbiotics provides a library of modules such as cell geometries, physical force dynamics, genetic circuits, metabolic pathways, chemical diffusion and cell interactions. Model defined processes are integrated and scheduled for parallel multithread and multi-CPU execution. A virtual lab provides the modeler with analysis modules and some simulated lab equipment, enabling automation of sample interaction and data collection. An extendable and modular framework allows for the platform to be updated as novel models of bacteria are developed, coupled with an intuitive user interface to allow for model definitions with minimal programming experience. Simbiotics can integrate existing standards such as SBML, and process microscopy images to initialize the 3D spatial configuration of bacteria consortia. Two case studies, used to illustrate the platform flexibility, focus on the physical properties of the biosystems modeled. These pilot case studies demonstrate Simbiotics versatility in modeling and analysis of natural systems and as a CAD tool for synthetic biology.
Collapse
Affiliation(s)
- Jonathan Naylor
- Interdisciplinary
Computing and Complex Biosystems (ICOS) research group, School of
Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Harold Fellermann
- Interdisciplinary
Computing and Complex Biosystems (ICOS) research group, School of
Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Yuchun Ding
- Interdisciplinary
Computing and Complex Biosystems (ICOS) research group, School of
Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Waleed K. Mohammed
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, U.K
| | | | - Joy Mukherjee
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, U.K
| | - Catherine A. Biggs
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, U.K
| | - Phillip C. Wright
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Natalio Krasnogor
- Interdisciplinary
Computing and Complex Biosystems (ICOS) research group, School of
Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| |
Collapse
|
5
|
Nishida Y, Takeuchi H, Morimoto N, Umeda A, Kadota Y, Kira M, Okazaki A, Matsumura Y, Sugiura T. Intrinsic characteristics of Min proteins on the cell division of Helicobacter pylori. FEMS Microbiol Lett 2016; 363:fnw025. [PMID: 26862143 DOI: 10.1093/femsle/fnw025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2016] [Indexed: 01/24/2023] Open
Abstract
Helicobacter pylori divides in the human stomach resulting in persistent infections and causing various disorders. Bacterial cell division is precisely coordinated by many molecules, including FtsZ and Min proteins. However, the role of Min proteins in H. pylori division is poorly understood. We investigated the functional characteristics of Min proteins in wild-type HPK5 and five HPK5-derivative mutants using morphological and genetic approaches. All mutants showed a filamentous shape. However, the bacterial cell growth and viability of three single-gene mutants (minC, minD, minE) were similar to that of the wild-type. The coccoid form number was lowest in the minE-disruptant, indicating that MinE contributes to the coccoid form conversion during the stationary phase. Immunofluorescence microscopic observations showed that FtsZ was dispersedly distributed throughout the bacterial cell irrespective of nucleoid position in only minD-disruptants, indicating that MinD is involved in the nucleoid occlusion system. A chase assay demonstrated that MinC loss suppressed FtsZ-degradation, indicating that FtsZ degrades in a MinC-dependent manner. Molecular interactions between FtsZ and Min proteins were confirmed by immunoprecipitation (IP)-western blotting (WB), suggesting the functional cooperation of these molecules during bacterial cell division. This study describes the intrinsic characteristics of Min proteins and provides new insights into H. pylori cell division.
Collapse
Affiliation(s)
- Yoshie Nishida
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Hiroaki Takeuchi
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Norihito Morimoto
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Akiko Umeda
- Department of Clinical Laboratory Medicine, Yamaguchi University, 1-1-1 MinamiKogushi, Ube-city, Yamaguchi 755-8505, Japan
| | - Yoshu Kadota
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Mizuki Kira
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Ami Okazaki
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Yoshihisa Matsumura
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Tetsuro Sugiura
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| |
Collapse
|
6
|
Storck T, Picioreanu C, Virdis B, Batstone DJ. Variable cell morphology approach for individual-based modeling of microbial communities. Biophys J 2014; 106:2037-48. [PMID: 24806936 DOI: 10.1016/j.bpj.2014.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/14/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022] Open
Abstract
An individual-based, mass-spring modeling framework has been developed to investigate the effect of cell properties on the structure of biofilms and microbial aggregates through Lagrangian modeling. Key features that distinguish this model are variable cell morphology described by a collection of particles connected by springs and a mechanical representation of deformable intracellular, intercellular, and cell-substratum links. A first case study describes the colony formation of a rod-shaped species on a planar substratum. This case shows the importance of mechanical interactions in a community of growing and dividing rod-shaped cells (i.e., bacilli). Cell-substratum links promote formation of mounds as opposed to single-layer biofilms, whereas filial links affect the roundness of the biofilm. A second case study describes the formation of flocs and development of external filaments in a mixed-culture activated sludge community. It is shown by modeling that distinct cell-cell links, microbial morphology, and growth kinetics can lead to excessive filamentous proliferation and interfloc bridging, possible causes for detrimental sludge bulking. This methodology has been extended to more advanced microbial morphologies such as filament branching and proves to be a very powerful tool in determining how fundamental controlling mechanisms determine diverse microbial colony architectures.
Collapse
Affiliation(s)
- Tomas Storck
- Advanced Water Management Centre, The University of Queensland, Brisbane, Australia
| | - Cristian Picioreanu
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Bernardino Virdis
- Advanced Water Management Centre, The University of Queensland, Brisbane, Australia; Centre for Microbial Electrosynthesis, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Damien J Batstone
- Advanced Water Management Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
7
|
Parti RP, Biswas D, Wang M, Liao M, Dillon JAR. A minD mutant of enterohemorrhagic E. coli O157:H7 has reduced adherence to human epithelial cells. Microb Pathog 2011; 51:378-83. [PMID: 21798335 DOI: 10.1016/j.micpath.2011.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 06/29/2011] [Accepted: 07/06/2011] [Indexed: 11/29/2022]
Abstract
Adherence to epithelial cells is a prerequisite for intestinal colonization by the bacterial pathogen, enterohemorrhagic Escherichia coli (EHEC). The deletion of minD, a cell division gene, in EHEC caused reduced adherence to human epithelioid cervical carcinoma (HeLa) and human colonic adenocarcinoma (Caco-2) cells as compared to wild-type. The minD mutant formed minicells and filaments owing to aberrant cytokinesis. Moreover, its ability to form microcolonies as typically seen in the co-cultures of wild-type with Caco-2 cells, was abolished. In conclusion, the present study highlights the importance of minD in regards to EHEC adherence to human epithelial cells.
Collapse
Affiliation(s)
- Rajinder P Parti
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E3
| | | | | | | | | |
Collapse
|
8
|
Mao S, Luo Y, Bao G, Zhang Y, Li Y, Ma Y. Comparative analysis on the membrane proteome of Clostridium acetobutylicum wild type strain and its butanol-tolerant mutant. MOLECULAR BIOSYSTEMS 2011; 7:1660-77. [DOI: 10.1039/c0mb00330a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Abstract
The process of cell division has been intensively studied at the molecular level for decades but some basic questions remain unanswered. The mechanisms of cell division are probably best characterized in the rod-shaped bacteria Escherichia coli and Bacillus subtilis. Many of the key players are known, but detailed descriptions of the molecular mechanisms which determine where, how and when cells form the division septum are lacking. Different models have been proposed to account for the high precision with which the septum is constructed at the midcell and these models have been evaluated and refined against new data emerging from the fast improving methodologies of cell biology. This review summarizes important advances in our understanding of how the cell positions the division septum, whether it be vegetative or asymmetric. It also describes how the asymmetric septum forms and how this septation event is linked to chromosome segregation and subsequent asymmetric gene expression during spore formation in B. subtilis.
Collapse
Affiliation(s)
- Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | |
Collapse
|
10
|
Kroth PG. Protein transport into secondary plastids and the evolution of primary and secondary plastids. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:191-255. [PMID: 12455749 DOI: 10.1016/s0074-7696(02)21013-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chloroplasts are key organelles in algae and plants due to their photosynthetic abilities. They are thought to have evolved from prokaryotic cyanobacteria taken up by a eukaryotic host cell in a process termed primary endocytobiosis. In addition, a variety of organisms have evolved by subsequent secondary endocytobioses, in which a heterotrophic host cell engulfed a eukaryotic alga. Both processes dramatically enhanced the complexity of the resulting cells. Since the first version of the endosymbiotic theory was proposed more than 100 years ago, morphological, physiological, biochemical, and molecular data have been collected substantiating the emerging picture about the origin and the relationship of individual organisms with different primary or secondary chloroplast types. Depending on their origin, plastids in different lineages may have two, three, or four envelope membranes. The evolutionary success of endocytobioses depends, among other factors, on the specific exchange of molecules between the host and endosymbiont. This raises questions concerning how targeting of nucleus-encoded proteins into the different plastid types occurs and how these processes may have developed. Most studies of protein translocation into plastids have been performed on primary plastids, but in recent years more complex protein-translocation systems of secondary plastids have been investigated. Analyses of transport systems in different algal lineages with secondary plastids reveal that during evolution existing translocation machineries were recycled or recombined rather than being developed de novo. This review deals with current knowledge about the evolution and function of primary and secondary plastids and the respective protein-targeting systems.
Collapse
Affiliation(s)
- Peter G Kroth
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
11
|
Muchová KN, Kutejová E, Scott DJ, Brannigan JA, Lewis RJ, Wilkinson AJ, Barák I. Oligomerization of the Bacillus subtilis division protein DivIVA. MICROBIOLOGY (READING, ENGLAND) 2002; 148:807-813. [PMID: 11882716 DOI: 10.1099/00221287-148-3-807] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DivIVA appears to be a mediator of inhibition by MinCD of division at the cell poles in Bacillus subtilis. Gel permeation and ultracentrifugation techniques were used to show self-association of DivIVA into a form consisting of 10-12 monomers in vitro. Western blot analysis of non-denaturating polyacrylamide gels confirms the presence of similar oligomers in B. subtilis cell lysates. These oligomers persist in a B. subtilis strain containing the divIVA1 mutation, in which proper vegetative septum positioning is abolished. In contrast, the divIVA2 mutation, which has a similar biological impact, appears to produce a protein with different oligomerization properties. The results of the present study suggest that oligomerization of DivIVA is important, but not sufficient for its function in the cell division process.
Collapse
Affiliation(s)
- Katarı Na Muchová
- Institute of Molecular Biology, Slovak Academy of Sciences, 842 51 Bratislava, Slovakia1
| | - Eva Kutejová
- Institute of Molecular Biology, Slovak Academy of Sciences, 842 51 Bratislava, Slovakia1
| | - David J Scott
- Department of Biology, University of York, Heslington YO10 5YW, UK3
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK2
| | - James A Brannigan
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK2
| | - Richard J Lewis
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK2
| | - Anthony J Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK2
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, 842 51 Bratislava, Slovakia1
| |
Collapse
|
12
|
Howard M, Rutenberg AD, de Vet S. Dynamic compartmentalization of bacteria: accurate division in E. coli. PHYSICAL REVIEW LETTERS 2001; 87:278102. [PMID: 11800919 DOI: 10.1103/physrevlett.87.278102] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2001] [Indexed: 05/23/2023]
Abstract
Positioning of the midcell division plane within the bacterium E. coli is controlled by the min system of proteins: MinC, MinD, and MinE. These proteins coherently oscillate from end to end of the bacterium. We present a reaction-diffusion model describing the diffusion of min proteins along the bacterium and their transfer between the cytoplasmic membrane and cytoplasm. Our model spontaneously generates protein oscillations in good agreement with experiments. We explore the oscillation stability, frequency, and wavelength as a function of protein concentration and bacterial length.
Collapse
Affiliation(s)
- M Howard
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | |
Collapse
|
13
|
Sakai N, Yao M, Itou H, Watanabe N, Yumoto F, Tanokura M, Tanaka I. The three-dimensional structure of septum site-determining protein MinD from Pyrococcus horikoshii OT3 in complex with Mg-ADP. Structure 2001; 9:817-26. [PMID: 11566131 DOI: 10.1016/s0969-2126(01)00638-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In Escherichia coli, the cell division site is determined by the cooperative activity of min operon products MinC, MinD, and MinE. MinC is a nonspecific inhibitor of the septum protein FtsZ, and MinE is the supressor of MinC. MinD plays a multifunctional role. It is a membrane-associated ATPase and is a septum site-determining factor through the activation and regulation of MinC and MinE. MinD is also known to undergo a rapid pole-to-pole oscillation movement in vivo as observed by fluorescent microscopy. RESULTS The three-dimensional structure of the MinD-2 from Pyrococcus horikoshii OT3 (PH0612) has been determined at 2.3 A resolution by X-ray crystallography using the Se-Met MAD method. The molecule consists of a beta sheet with 7 parallel and 1 antiparallel strands and 11 peripheral alpha helices. It contains the classical mononucleotide binding loop with bound ADP and magnesium ion, which is consistent with the suggested ATPase activity. CONCLUSIONS Structure analysis shows that MinD is most similar to nitrogenase iron protein, which is a member of the P loop-containing nucleotide triphosphate hydrolase superfamily of proteins. Unlike nitrogenase or other member proteins that normally work as a dimer, MinD was present as a monomer in the crystal. Both the 31P NMR and Malachite Green method exhibited relatively low levels of ATPase activity. These facts suggest that MinD may work as a molecular switch in the multiprotein complex in bacterial cell division.
Collapse
Affiliation(s)
- N Sakai
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Bacterial cell division requires accurate selection of the middle of the cell, where the bacterial tubulin homologue FtsZ polymerizes into a ring structure. In Escherichia coli, site selection is dependent on MinC, MinD and MINE: MinC acts, with MinD, to inhibit division at sites other than the midcell by directly interacting with FTSZ: Here we report the crystal structure to 2.2 A of MinC from Thermotoga maritima. MinC consists of two domains separated by a short linker. The C-terminal domain is a right-handed beta-helix and is involved in dimer formation. The crystals contain two different MinC dimers, demonstrating flexibility in the linker region. The two-domain architecture and dimerization of MinC can be rationalized with a model of cell division inhibition. MinC does not act like SulA, which affects the GTPase activity of FtsZ, and the model can explain how MinC would select for the FtsZ polymer rather than the monomer.
Collapse
Affiliation(s)
| | | | - Jan Löwe
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
Corresponding author e-mail:
| |
Collapse
|
15
|
Abstract
The earliest stage of cell division in bacteria is the formation of a Z ring, composed of a polymer of the FtsZ protein, at the division site. Z rings appear to be synthesized in a bi-directional manner from a nucleation site (NS) located on the inside of the cytoplasmic membrane. It is the utilization of a NS specifically at the site of septum formation that determines where and when division will occur. However, a Z ring can be made to form at positions other than at the division site. How does a cell regulate utilization of a NS at the correct location and at the right time? In rod-shaped bacteria such as Escherichia coli and Bacillus subtilis, two factors involved in this regulation are the Min system and nucleoid occlusion. It is suggested that in B. subtilis, the main role of the Min proteins is to inhibit division at the nucleoid-free cell poles. In E. coli it is currently not clear whether the Min system can direct a Z ring to the division site at mid-cell or whether its main role is to ensure that division inhibition occurs away from mid-cell, a role analogous to that in B. subtilis. While the nucleoid negatively influences Z-ring formation in its vicinity in these rod-shaped organisms, the exact relationship between nucleoid occlusion and the ability to form a mid-cell Z ring is unresolved. Recent evidence suggests that in B. subtilis and Caulobacter crescentus, utilization of the NS at the division site is intimately linked to the progress of a round of chromosome replication and this may form the basis of achieving co-ordination between chromosome replication and cell division.
Collapse
Affiliation(s)
- E J Harry
- Department of Biochemistry, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
16
|
Fu X, Shih YL, Zhang Y, Rothfield LI. The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle. Proc Natl Acad Sci U S A 2001; 98:980-5. [PMID: 11158581 PMCID: PMC14695 DOI: 10.1073/pnas.98.3.980] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Placement of the division site at midcell in Escherichia coli requires the MinE protein. MinE acts by imparting topological specificity to the MinCD division inhibitor, preventing the inhibitor from acting at the midcell site while permitting it to block division at other unwanted sites along the length of the cell. It was previously shown that MinE assembled into a ring structure that appeared to be localized near midcell, apparently explaining the ability of MinE to specifically counteract MinCD at midcell. We report here that the MinE ring is not fixed in position near midcell but is a dynamic structure that undergoes a repetitive cycle of movement first to one cell pole and then to the opposite pole. Taken together with studies of the dynamic behavior of the MinD protein, the results suggest that the topological specificity of division site placement may not involve a localized action of MinE to counteract the MinCD division inhibitor at midcell but rather the ability of MinE to move the division inhibitor away from midcell and to the cell poles.
Collapse
Affiliation(s)
- X Fu
- Department of Microbiology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
17
|
The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11158581 PMCID: PMC14695 DOI: 10.1073/pnas.031549298] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Placement of the division site at midcell in Escherichia coli requires the MinE protein. MinE acts by imparting topological specificity to the MinCD division inhibitor, preventing the inhibitor from acting at the midcell site while permitting it to block division at other unwanted sites along the length of the cell. It was previously shown that MinE assembled into a ring structure that appeared to be localized near midcell, apparently explaining the ability of MinE to specifically counteract MinCD at midcell. We report here that the MinE ring is not fixed in position near midcell but is a dynamic structure that undergoes a repetitive cycle of movement first to one cell pole and then to the opposite pole. Taken together with studies of the dynamic behavior of the MinD protein, the results suggest that the topological specificity of division site placement may not involve a localized action of MinE to counteract the MinCD division inhibitor at midcell but rather the ability of MinE to move the division inhibitor away from midcell and to the cell poles.
Collapse
|
18
|
Justice SS, García-Lara J, Rothfield LI. Cell division inhibitors SulA and MinC/MinD block septum formation at different steps in the assembly of the Escherichia coli division machinery. Mol Microbiol 2000; 37:410-23. [PMID: 10931335 DOI: 10.1046/j.1365-2958.2000.02007.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SulA and MinCD are specific inhibitors of cell division in Escherichia coli. In this paper, size exclusion chromatography was used to study the effect of the SulA and MinCD division inhibitors on the oligomerization state of endogenous FtsZ in cytoplasmic extracts, and immunofluorescence microscopy was used to determine the effect of SulA and MinCD on the formation of FtsZ, FtsA and ZipA rings at potential division sites. SulA prevented the formation of high-molecular-weight FtsZ polymers by interfering with FtsZ dimerization and subsequent oligomerization. In contrast, the MinCD division inhibitor did not prevent the oligomerization of FtsZ in the cell extracts or the formation of FtsZ and ZipA ring structures in vivo. However, MinCD did prevent the formation of FtsA rings. Increased expression of ftsA suppressed MinCD-induced division inhibition, but had no effect on SulA-induced division inhibition. These results indicate that MinCD blocks the assembly of the septation machinery at a later step than SulA, at the stage at which FtsA is added to the FtsZ ring.
Collapse
Affiliation(s)
- S S Justice
- Department of Microbiology, University of Connecticut Health Center, Farmington, CT 06030-3205, USA
| | | | | |
Collapse
|
19
|
Colletti KS, Tattersall EA, Pyke KA, Froelich JE, Stokes KD, Osteryoung KW. A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus. Curr Biol 2000; 10:507-16. [PMID: 10801439 DOI: 10.1016/s0960-9822(00)00466-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chloroplast division in plant cells occurs by binary fission, yielding two daughter plastids of equal size. Previously, we reported that two Arabidopsis homologues of FtsZ, a bacterial protein that forms a cytokinetic ring during cell division, are essential for plastid division in plants, and may be involved in the formation of plastid-dividing rings on both the stromal and cytosolic surfaces of the chloroplast envelope membranes. In bacteria, positioning of the FtsZ ring at the center of the cell is mediated in part by the protein MinD. Here, we identified AtMinD1, an Arabidopsis homologue of MinD, and investigated whether positioning of the plastid-division apparatus at the plastid midpoint might involve a mechanism similar to that in bacteria. RESULTS Sequence analysis and in vitro chloroplast import experiments indicated that AtMinD1 contains a transit peptide that targets it to the chloroplast. Transgenic Arabidopsis plants with reduced AtMinD1 expression exhibited variability in chloroplast size and number and asymmetrically constricted chloroplasts, strongly suggesting that the plastid-division machinery is misplaced. Overexpression of AtMinD1 inhibited chloroplast division. These phenotypes resemble those of bacterial mutants with altered minD expression. CONCLUSIONS Placement of the plastid-division machinery at the organelle midpoint requires a plastid-targeted form of MinD. The results are consistent with a model whereby assembly of the division apparatus is initiated inside the chloroplast by the plastidic form of FtsZ, and suggest that positioning of the cytosolic components of the apparatus is specified by the position of the plastidic components.
Collapse
Affiliation(s)
- K S Colletti
- Department of Biochemistry, University of Nevada, Reno, 89557, USA
| | | | | | | | | | | |
Collapse
|
20
|
Rivas G, López A, Mingorance J, Ferrándiz MJ, Zorrilla S, Minton AP, Vicente M, Andreu JM. Magnesium-induced linear self-association of the FtsZ bacterial cell division protein monomer. The primary steps for FtsZ assembly. J Biol Chem 2000; 275:11740-9. [PMID: 10766796 DOI: 10.1074/jbc.275.16.11740] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial cell division protein FtsZ from Escherichia coli has been purified with a new calcium precipitation method. The protein contains one GDP and one Mg(2+) bound, it shows GTPase activity, and requires GTP and Mg(2+) to polymerize into long thin filaments at pH 6.5. FtsZ, with moderate ionic strength and low Mg(2+) concentrations, at pH 7.5, is a compact and globular monomer. Mg(2+) induces FtsZ self-association into oligomers, which has been studied by sedimentation equilibrium over a wide range of Mg(2+) and FtsZ concentrations. The oligomer formation mechanism is best described as an indefinite self-association, with binding of an additional Mg(2+) for each FtsZ monomer added to the growing oligomer, and a slight gradual decrease of the affinity of addition of a protomer with increasing oligomer size. The sedimentation velocity of FtsZ oligomer populations is compatible with a linear single-stranded arrangement of FtsZ monomers and a spacing of 4 nm. It is proposed that these FtsZ oligomers and the polymers formed under assembly conditions share a similar axial interaction between monomers (like in the case of tubulin, the eukaryotic homolog of FtsZ). Similar mechanisms may apply to FtsZ assembly in vivo, but additional factors, such as macromolecular crowding, nucleoid occlusion, or specific interactions with other cellular components active in septation have to be invoked to explain FtsZ assembly into a division ring.
Collapse
Affiliation(s)
- G Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Formation of the bacterial division septum is catalyzed by a number of essential proteins that assemble into a ring structure at the future division site. Assembly of proteins into the cytokinetic ring appears to occur in a hierarchial order that is initiated by the FtsZ protein, a structural and functional analog of eukaryotic tubulins. Placement of the division site at its correct location in Escherichia coli requires a division inhibitor (MinC), that is responsible for preventing septation at unwanted sites near the cell poles, and a topological specificity protein (MinE), that forms a ring at midcell and protects the midcell site from the division inhibitor. However, the mechanism responsible for identifying the position of the midcell site or the polar sites used for spore septum formation is still unclear. Regulation of the division process and its coordination with other cell cycle events, such as chromosome replication, are poorly understood. However, a protein has been identified in Caulobacter (CtrA) that regulates both the initiation of chromosome regulation and the transcription of ftsZ, and that may play an important role in the coordination process.
Collapse
Affiliation(s)
- L Rothfield
- Department of Microbiology, University of Connecticut Health Center, Farmington 06032, USA.
| | | | | |
Collapse
|
22
|
Pedersen LB, Setlow P. Penicillin-binding protein-related factor A is required for proper chromosome segregation in Bacillus subtilis. J Bacteriol 2000; 182:1650-8. [PMID: 10692371 PMCID: PMC94463 DOI: 10.1128/jb.182.6.1650-1658.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work has shown that the ponA gene, encoding penicillin-binding protein 1 (PBP1), is in a two-gene operon with prfA (PBP-related factor A) (also called recU), which encodes a putative 206-residue basic protein (pI = 10.1) with no significant sequence homology to proteins with known functions. Inactivation of prfA results in cells that grow slower and vary significantly in length relative to wild-type cells. We now show that prfA mutant cells have a defect in chromosome segregation resulting in the production of approximately 0.9 to 3% anucleate cells in prfA cultures grown at 30 or 37 degrees C in rich medium and that the lack of PrfA exacerbates the chromosome segregation defect in smc and spoOJ mutant cells. In addition, overexpression of prfA was found to be toxic for and cause nucleoid condensation in Escherichia coli.
Collapse
Affiliation(s)
- L B Pedersen
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | |
Collapse
|
23
|
Rowland SL, Fu X, Sayed MA, Zhang Y, Cook WR, Rothfield LI. Membrane redistribution of the Escherichia coli MinD protein induced by MinE. J Bacteriol 2000; 182:613-9. [PMID: 10633093 PMCID: PMC94322 DOI: 10.1128/jb.182.3.613-619.2000] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli cells contain potential division sites at midcell and adjacent to the cell poles. Selection of the correct division site at midcell is controlled by three proteins: MinC, MinD, and MinE. It has previously been shown (D. Raskin and P. de Boer, Cell 91:685-694, 1997) that MinE-Gfp localizes to the midcell site in an MinD-dependent manner. We use here Gfp-MinD to show that MinD associates with the membrane around the entire periphery of the cell in the absence of the other Min proteins and that MinE is capable of altering the membrane distribution pattern of Gfp-MinD. Studies with the isolated N-terminal and C-terminal MinE domains indicated different roles for the two MinE domains in the redistribution of membrane-associated MinD.
Collapse
Affiliation(s)
- S L Rowland
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Some Escherichia coli strains with impaired cell division form branched cells at high frequencies during certain growth conditions. Here, we show that neither FtsI nor FtsZ activity is required for the development of branches. Buds did not form at specific positions along the cell surface during high-branching conditions. Antibiotics affecting cell wall synthesis had a positive effect on branch formation in the case of ampicillin, cephalexin, and penicillin G, whereas mecillinam and D-cycloserine had no substantial effect. Altering the cell morphology by nutritional shifts showed that changes in morphology preceded branching, indicating that the cell's physiological state rather than specific medium components induced branching. Finally, there was no increased probability for bud formation in the daughters of a cell with a bud or branch, showing that bud formation is a random event. We suggest that branch formation is caused by abnormalities in cell wall elongation rather than by aberrant cell division events.
Collapse
Affiliation(s)
- B Gullbrand
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, S-751 24, Uppsala, Sweden
| | | | | |
Collapse
|
25
|
Levin PA, Kurtser IG, Grossman AD. Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc Natl Acad Sci U S A 1999; 96:9642-7. [PMID: 10449747 PMCID: PMC22263 DOI: 10.1073/pnas.96.17.9642] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/1999] [Accepted: 06/16/1999] [Indexed: 11/18/2022] Open
Abstract
During the bacterial cell cycle, the tubulin-like cell-division protein FtsZ polymerizes into a ring structure that establishes the location of the nascent division site. We have identified a regulator of FtsZ ring formation in Bacillus subtilis. This protein, EzrA, modulates the frequency and position of FtsZ ring formation. The loss of ezrA resulted in cells with multiple FtsZ rings located at polar as well as medial sites. Moreover, the critical concentration of FtsZ required for ring formation was lower in ezrA null mutants than in wild-type cells. EzrA was associated with the cell membrane and also colocalized with FtsZ to the nascent septal site. We propose that EzrA interacts either with FtsZ or with one of its binding partners to promote depolymerization.
Collapse
Affiliation(s)
- P A Levin
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
26
|
Marston AL, Errington J. Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol Microbiol 1999; 33:84-96. [PMID: 10411726 DOI: 10.1046/j.1365-2958.1999.01450.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial cell division commences with the assembly of the tubulin-like protein, FtsZ, at midcell to form a ring. Division site selection in rod-shaped bacteria is mediated by MinC and MinD, which form a division inhibitor. Bacillus subtilis DivIVA protein ensures that MinCD specifically inhibits division close to the cell poles, while allowing division at midcell. We have examined the localization of MinC protein and show that it is targeted to midcell and retained at the mature cell poles. This localization is reminiscent of the pattern previously described for MinD. Localization of MinC requires both early (FtsZ) and late (PbpB) division proteins, and it is completely dependent on MinD. The effects of a divIVA mutation on localization of MinC now suggest that the main role of DivIVA is to retain MinCD at the cell poles after division, rather than recruitment to nascent division sites. By overexpressing minC or minD, we show that both proteins are required to block division, but that only MinD needs to be in excess of wild-type levels. The results suggest a mechanism whereby MinD is required both to pilot MinC to the cell poles and to constitute a functional division inhibitor.
Collapse
Affiliation(s)
- A L Marston
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|
27
|
Affiliation(s)
- C Jacobs
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
28
|
Yu XC, Margolin W. FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization. Mol Microbiol 1999; 32:315-26. [PMID: 10231488 DOI: 10.1046/j.1365-2958.1999.01351.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To understand further the role of the nucleoid and the min system in selection of the cell division site, we examined FtsZ localization in Escherichia coli cells lacking MinCDE and in parC mutants defective in chromosome segregation. More than one FtsZ ring was sometimes found in the gaps between nucleoids in min mutant filaments. These multiple FtsZ rings were more apparent in longer cells; double or triple rings were often found in the nucleoid-free gaps in ftsI min and ftsA min double mutant filaments. Introducing a parC mutation into the ftsA min double mutant allowed the nucleoid-free gaps to become significantly longer. These gaps often contained dramatic clusters of FtsZ rings. In contrast, filaments of the ftsA parC double mutant, which contained active MinCDE, assembled only one or two rings in most of the large nucleoid-free gaps. These results suggest that all positions along the cell length are competent for FtsZ ring assembly, not just sites at mid-cell or at the poles. Consistent with previous results, unsegregated nucleoids also correlated with a lack of FtsZ localization. A model is proposed in which both the inhibitory effect of the nucleoid and the regulation by MinCDE ensure that cells divide precisely at the midpoint.
Collapse
Affiliation(s)
- X C Yu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin, Houston, TX 77030, USA
| | | |
Collapse
|
29
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 946] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
30
|
Joseleau-Petit D, Vinella D, D'Ari R. Metabolic alarms and cell division in Escherichia coli. J Bacteriol 1999; 181:9-14. [PMID: 9864306 PMCID: PMC103525 DOI: 10.1128/jb.181.1.9-14.1999] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- D Joseleau-Petit
- Institut Jacques Monod (Centre National de la Recherche Scientifique, Université Paris 6, Université Paris 7), F-75251 Paris Cedex 05, France
| | | | | |
Collapse
|
31
|
Levin PA, Shim JJ, Grossman AD. Effect of minCD on FtsZ ring position and polar septation in Bacillus subtilis. J Bacteriol 1998; 180:6048-51. [PMID: 9811667 PMCID: PMC107683 DOI: 10.1128/jb.180.22.6048-6051.1998] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the pattern of FtsZ localization in a Bacillus subtilis minCD mutant. When grown in minimal medium, the majority (approximately 89%) of the minCD mutant cells with an FtsZ ring had a single, medially positioned FtsZ ring. These results indicate that genes in addition to minCD function to restrict the number and position of FtsZ rings. When grown in rich medium, greater than 50% of the minCD mutant cells had multiple FtsZ rings, indicating significant differences in regulation of FtsZ ring formation based on growth medium.
Collapse
Affiliation(s)
- P A Levin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
32
|
Marston AL, Thomaides HB, Edwards DH, Sharpe ME, Errington J. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 1998; 12:3419-30. [PMID: 9808628 PMCID: PMC317235 DOI: 10.1101/gad.12.21.3419] [Citation(s) in RCA: 290] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cell division in rod-shaped bacteria is initiated by formation of a ring of the tubulin-like protein FtsZ at mid-cell. Division site selection is controlled by a conserved division inhibitor MinCD, which prevents aberrant division at the cell poles. The Bacillus subtilis DivIVA protein controls the topological specificity of MinCD action. Here we show that DivIVA is targeted to division sites late in their assembly, after some MinCD-sensitive step requiring FtsZ and other division proteins has been passed. DivIVA then recruits MinD to the division sites preventing another division from taking place near the newly formed cell poles. Sequestration of MinD to the poles also releases the next mid-cell sites for division. Remarkably, this mechanism of DivIVA action is completely different from that of the equivalent protein MinE of Escherichia coli, even though both systems operate via the same division inhibitor MinCD.
Collapse
Affiliation(s)
- A L Marston
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
33
|
Zhang Y, Rowland S, King G, Braswell E, Rothfield L. The relationship between hetero-oligomer formation and function of the topological specificity domain of the Escherichia coli MinE protein. Mol Microbiol 1998; 30:265-73. [PMID: 9791172 DOI: 10.1046/j.1365-2958.1998.01059.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MinE is an oligomeric protein that, in conjunction with other Min proteins, is required for the proper placement of the cell division site of Escherichia coli. We have examined the self-association properties of MinE by analytical ultracentrifugation and by studies of hetero-oligomer formation in non-denaturing polyacrylamide gels. The self-association properties of purified MinE predict that cytoplasmic MinE is likely to exist as a mixture of monomers and dimers. Consistent with this prediction, the C-terminal MinE22-88 fragment forms hetero-oligomers with MinE+ when the proteins are co-expressed. In contrast, the MinE36-88 fragment does not form MinE+/MinE36-88 hetero-oligomers, although MinE36-88 affects the topological specificity of septum placement as shown by its ability to induce minicell formation when co-expressed with MinE+ in wild-type cells. Therefore, hetero-oligomer formation is not necessary for the induction of minicelling by expression of MinE36-88 in wild-type cells. The interference with normal septal placement is ascribed to competition between MinE36-88 and the corresponding domain in the complete MinE protein for a component required for the topological specificity of septal placement.
Collapse
Affiliation(s)
- Y Zhang
- Department of Microbiology, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | | | |
Collapse
|
34
|
Barák I, Prepiak P, Schmeisser F. MinCD proteins control the septation process during sporulation of Bacillus subtilis. J Bacteriol 1998; 180:5327-33. [PMID: 9765563 PMCID: PMC107580 DOI: 10.1128/jb.180.20.5327-5333.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutation of the divIVB locus in Bacillus subtilis causes misplacement of the septum during cell division and allows the formation of anucleate minicells. The divIVB locus contains five open reading frames (ORFs). The last two ORFs (minCD) are homologous to minC and minD of Escherichia coli but a minE homolog is lacking in B. subtilis. There is some similarity between minicell formation and the asymmetric septation that normally occurs during sporulation in terms of polar septum localization. However, it has been proposed that MinCD has no essential role in sporulation septum formation. We have used electron microscopic studies to show septation events during sporulation in some minD strains. We have observed an unusually thin septum at the midcell position in minD and also in minD spoIIE71 mutant cells. Fluorescence microscopy also localized a SpoIIE-green fluorescent protein fusion protein at the midcell site in minD cells. We propose that the MinCD complex plays an important role in asymmetric septum formation during sporulation of B. subtilis cells.
Collapse
Affiliation(s)
- I Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, 841 51 Bratislava, Slovak Republic
| | | | | |
Collapse
|
35
|
Trusca D, Scott S, Thompson C, Bramhill D. Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein. J Bacteriol 1998; 180:3946-53. [PMID: 9683493 PMCID: PMC107380 DOI: 10.1128/jb.180.15.3946-3953.1998] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cell division of Escherichia coli is inhibited when the SulA protein is induced in response to DNA damage as part of the SOS checkpoint control system. The SulA protein interacts with the tubulin-like FtsZ division protein. We investigated the effects of purified SulA upon FtsZ. SulA protein inhibits the polymerization and the GTPase activity of FtsZ, while point mutant SulA proteins show little effect on either of these FtsZ activities. SulA did not inhibit the polymerization of purified FtsZ2 mutant protein, which was originally isolated as insensitive to SulA. These studies define polymerization assays for FtsZ which respond to an authentic cellular regulator. The observations presented here support the notion that polymerization of FtsZ is central to its cellular role and that direct, reversible inhibition of FtsZ polymerization by SulA may account for division inhibition.
Collapse
Affiliation(s)
- D Trusca
- Department of Enzymology, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Thanks to genetics, to the study of protein-protein interactions and to direct viewing of subcellular structures by the use of immunofluorescence and green fluorescent protein (GFP) fusions, the organization of the constriction apparatus of walled bacteria is gradually coming to light. The tubulin-like protein FtsZ assembles as a ring around the site of constriction and operates as an organizer and activator of septum-shaping proteins. Much less is known about the factors specifying the location of FtsZ rings. Circumstantial evidence favours the presence at future ring positions of fixed elements, the potential division sites (PDS), before FtsZ assembles. FtsZ polymerization is initiated from a point on a PDS, the nucleation site, still to be identified, and proceeds bidirectionally around the cell. We hypothesize that new PDS are specified in a manner that depends on the functioning of an active chromosome partition apparatus. This view is supported by the fact that formation of mid-cell PDS requires initiation of DNA replication, and by recent studies supporting the existence of a specialized partition apparatus in a variety of microorganisms. Although PDS may be specified directly by the partition apparatus, indirect localization linked to compartmentalized gene expression during chromosome segregation is also possible. Once created, PDS are used in a regulated manner, and several mechanisms normally operate to direct constriction to selected PDS at the correct time. One, dedicated to the permanent suppression of polar PDS, rests on the minicell suppression system and involves a protein that is able to discriminate between polar and non-polar sites. Another is involved in asymmetric site selection at the early stages of sporulation in Bacillus subtilis. Finally, a mechanism observed only in certain multi-nucleated cells appears to favour division at non-polar PDS related to the most ancient replication/DNA segregation events.
Collapse
Affiliation(s)
- J P Bouché
- Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, Toulouse, France.
| | | |
Collapse
|
37
|
Sun Q, Yu XC, Margolin W. Assembly of the FtsZ ring at the central division site in the absence of the chromosome. Mol Microbiol 1998; 29:491-503. [PMID: 9720867 DOI: 10.1046/j.1365-2958.1998.00942.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The FtsZ ring assembles between segregated daughter chromosomes in prokaryotic cells and is essential for cell division. To understand better how the FtsZ ring is influenced by chromosome positioning and structure in Escherichia coli, we investigated its localization in parC and mukB mutants that are defective for chromosome segregation. Cells of both mutants at non-permissive temperatures were either filamentous with unsegregated nucleoids or short and anucleate. In parC filaments, FtsZ rings tended to localize only to either side of the central unsegregated nucleoid and rarely to the cell midpoint; however, medial rings reappeared soon after switching back to the permissive temperature. Filamentous mukB cells were usually longer and lacked many potential rings. At temperatures permissive for mukB viability, medial FtsZ rings assembled despite the presence of apparently unsegregated nucleoids. However, a significant proportion of these FtsZ rings were mislocalized or structurally abnormal. The most surprising result of this study was revealed upon further examination of FtsZ ring positioning in anucleate cells generated by the parC and mukB mutants: many of these cells, despite having no chromosome, possessed FtsZ rings at their midpoints. This discovery strongly suggests that the chromosome itself is not required for the proper positioning and development of the medial division site.
Collapse
Affiliation(s)
- Q Sun
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030, USA
| | | | | |
Collapse
|
38
|
Pogliano J, Dong JM, De Wulf P, Furlong D, Boyd D, Losick R, Pogliano K, Lin EC. Aberrant cell division and random FtsZ ring positioning in Escherichia coli cpxA* mutants. J Bacteriol 1998; 180:3486-90. [PMID: 9642209 PMCID: PMC107311 DOI: 10.1128/jb.180.13.3486-3490.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Escherichia coli, certain mutations in the cpxA gene (encoding a sensor kinase of a two-component signal transduction system) randomize the location of FtsZ ring assembly and dramatically affect cell division. However, deletion of the cpxRA operon, encoding the sensor kinase and its cognate regulator CpxR, has no effect on division site biogenesis. It appears that certain mutant sensor kinases (CpxA*) either exhibit hyperactivity on CpxR or extend their signalling activity to one or more noncognate response regulators involved in cell division.
Collapse
Affiliation(s)
- J Pogliano
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Improved fluorescence techniques for visualizing proteins in whole bacterial cells have resulted in recent breakthroughs in our understanding of chromosome segregation and cytokinesis in prokaryotes. The dynamics and localization of some of these proteins reveal surprisingly cytoskeletal-like behavior.
Collapse
Affiliation(s)
- W Margolin
- Dept of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030, USA.
| |
Collapse
|
40
|
Abstract
Understanding how a cell responds to hormonal signals with a new program of cellular differentiation and organization is an important focus of research in developmental biology. In Funaria hygrometrica and Physcomitrella patens, two related species of moss, cytokinin induces the development of a bud during the transition from filamentous to meristematic growth. Within hours of cytokinin perception, a single-celled initial responds with changes in patterns of cell expansion, elongation, and division to begin the process of bud assembly. Bud assembly in moss provides an excellent model for the study of hormone-induced organogenesis because it is a relatively simple, well-defined process. Since buds form in a nonrandom pattern on cells that are not embedded in other tissues, it is possible to predict which cells will respond and where the ensuing changes will take place. In addition, bud assembly is amenable to biochemical, cellular, and molecular biological analyses. This review examines our current understanding of cytokinin-induced bud assembly and the potential underlying mechanisms, reviews the state of genetic analyses in moss, and sets goals for future research with this organism.
Collapse
Affiliation(s)
- Karen S. Schumaker
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721; e-mail:
| | | |
Collapse
|
41
|
Strepp R, Scholz S, Kruse S, Speth V, Reski R. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci U S A 1998; 95:4368-73. [PMID: 9539743 PMCID: PMC22495 DOI: 10.1073/pnas.95.8.4368] [Citation(s) in RCA: 250] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/1997] [Accepted: 02/03/1998] [Indexed: 02/07/2023] Open
Abstract
Little is known about the division of eukaryotic cell organelles and up to now neither in animals nor in plants has a gene product been shown to mediate this process. A cDNA encoding a homolog of the bacterial cell division protein FtsZ, an ancestral tubulin, was isolated from the eukaryote Physcomitrella patens and used to disrupt efficiently the genomic locus in this terrestrial seedless plant. Seven out of 51 transgenics obtained were knockout plants generated by homologous recombination; they were specifically impeded in plastid division with no detectable effect on mitochondrial division or plant morphology. Implications on the theory of endosymbiosis and on the use of reverse genetics in plants are discussed.
Collapse
Affiliation(s)
- R Strepp
- Institut Biologie II, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
42
|
Abstract
The dynamics and assembly of bacterial cell division protein FtsZ were monitored in individual, growing and dividing Escherichia coli cells in real time by microculture of a merodiploid strain expressing green fluorescent protein (GFP)-tagged FtsZ. Cells expressing FtsZ-GFP at levels less than or equivalent to that of wild-type FtsZ were able to grow and divide over multiple generations, with their FtsZ rings visualized by fluorescence. During the late stages of cytokinesis, which constituted the last one-fourth of the cell cycle, the lumen of the FtsZ ring disappeared as the whole structure condensed. At this time, loops of FtsZ-GFP polymers emanated outward from the condensing ring structure and other unstable fluorescent structures elsewhere in the cell were also observed. Assembly of FtsZ rings at new division sites occurred within 1 min, from what appeared to be single points. Interestingly, this nucleation often took place in the predivisional cell at the same time the central FtsZ ring was in its final contraction phase. This demonstrates directly that, at least when FtsZ-GFP is being expressed, new division sites have the capacity to become fully functional for FtsZ targeting and assembly before cell division of the mother cell is completed. The results suggest that the timing of FtsZ assembly may be normally controlled in part by cellular FtsZ concentration. The use of wide-field optical sectioning microscopy to obtain sharp fluorescence images of FtsZ structures is also discussed.
Collapse
Affiliation(s)
- Q Sun
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030, USA
| | | |
Collapse
|
43
|
Höltje JV. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 1998; 62:181-203. [PMID: 9529891 PMCID: PMC98910 DOI: 10.1128/mmbr.62.1.181-203.1998] [Citation(s) in RCA: 874] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To withstand the high intracellular pressure, the cell wall of most bacteria is stabilized by a unique cross-linked biopolymer called murein or peptidoglycan. It is made of glycan strands [poly-(GlcNAc-MurNAc)], which are linked by short peptides to form a covalently closed net. Completely surrounding the cell, the murein represents a kind of bacterial exoskeleton known as the murein sacculus. Not only does the sacculus endow bacteria with mechanical stability, but in addition it maintains the specific shape of the cell. Enlargement and division of the murein sacculus is a prerequisite for growth of the bacterium. Two groups of enzymes, hydrolases and synthases, have to cooperate to allow the insertion of new subunits into the murein net. The action of these enzymes must be well coordinated to guarantee growth of the stress-bearing sacculus without risking bacteriolysis. Protein-protein interaction studies suggest that this is accomplished by the formation of a multienzyme complex, a murein-synthesizing machinery combining murein hydrolases and synthases. Enlargement of both the multilayered murein of gram-positive and the thin, single-layered murein of gram-negative bacteria seems to follow an inside-to-outside growth strategy. New material is hooked in a relaxed state underneath the stress-bearing sacculus before it becomes inserted upon cleavage of covalent bonds in the layer(s) under tension. A model is presented that postulates that maintenance of bacterial shape is achieved by the enzyme complex copying the preexisting murein sacculus that plays the role of a template.
Collapse
Affiliation(s)
- J V Höltje
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, Germany.
| |
Collapse
|
44
|
Abstract
Bacteria usually divide by building a central septum across the middle of the cell. This review focuses on recent results indicating that the tubulin-like FtsZ protein plays a central role in cytokinesis as a major component of a contractile cytoskeleton. Assembly of this cytoskeletal element abutting the membrane is a key point for regulation. The characterization of FtsZ homologues in Mycoplasmas, Archaea, and chloroplasts implies that the constriction mechanism is conserved and that FtsZ can constrict in the absence of peptidoglycan synthesis. In most Eubacteria, the internal cytoskeleton must also regulate synthesis of septal peptidoglycan. The Escherichia coli septum-specific penicillin-binding protein 3 (PBP3) forms a complex with other enzymes involved in murein metabolism, suggesting a centrally located transmembrane complex capable of splicing multiple new strands of peptidoglycan into the cell wall. Important questions remain about the spatial and temporal control of bacterial division.
Collapse
Affiliation(s)
- D Bramhill
- Department of Enzymology, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA.
| |
Collapse
|
45
|
Raskin DM, de Boer PA. The MinE ring: an FtsZ-independent cell structure required for selection of the correct division site in E. coli. Cell 1997; 91:685-94. [PMID: 9393861 DOI: 10.1016/s0092-8674(00)80455-9] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
E. coli cell division is mediated by the FtsZ ring and associated factors. Selection of the correct division site requires the combined action of an inhibitor of FtsZ ring formation (MinCD) and of a topological specificity factor that somehow prevents MinCD action at the middle of the cell (MinE). Here we show that a biologically active MinE-Gfp fusion accumulates in an annular structure near the middle of young cells. Formation of the MinE ring required MinD but was independent of MinC and continued in nondividing cells in which FtsZ function was inhibited. The results indicate that the MinE ring represents a novel cell structure, which allows FtsZ ring formation at midcell by suppressing MinCD activity at this site.
Collapse
Affiliation(s)
- D M Raskin
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4960, USA
| | | |
Collapse
|
46
|
Abstract
The Bacillus subtilis divIVA1 mutation causes misplacement of the septum during cell division, resulting in the formation of small, circular, anucleate minicells. This study reports the cloning and sequence analysis of 2.4 kb of the B. subtilis chromosome including the divIVA locus. Three open reading frames were identified: orf, whose function is unknown; divIVA; and isoleucyl tRNA synthetase (ileS). We identified the point mutation in the divIVA1 mutant allele. Inactivation of divIVA produces a minicell phenotype, whereas overproduction of DivIVA results in a filamentation phenotype. Mutants with mutations at both of the minicell loci of B. subtilis, divIVA and divIVB, possess a minicell phenotype identical to that of the DivIVB- mutant. The DivIVA-mutants, but not the DivIVB- mutants, show a decrease in sporulation efficiency and a delay in the kinetics of endospore formation. The data support a model in which divIVA encodes the topological specificity subunit of the minCD system. The model suggests that DivIVA acts as a pilot protein, directing minCD to the polar septation sites. DivIVA also appears to be the interface between a sporulation component and MinCD, freeing up the polar septation sites for use during the asymmetric septation event of the sporulation process.
Collapse
Affiliation(s)
- J H Cha
- Department of Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, USA
| | | |
Collapse
|
47
|
Pogliano J, Pogliano K, Weiss DS, Losick R, Beckwith J. Inactivation of FtsI inhibits constriction of the FtsZ cytokinetic ring and delays the assembly of FtsZ rings at potential division sites. Proc Natl Acad Sci U S A 1997; 94:559-64. [PMID: 9012823 PMCID: PMC19552 DOI: 10.1073/pnas.94.2.559] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A universally conserved event in cell division is the formation of a cytokinetic ring at the future site of division. In the bacterium Escherichia coli, this ring is formed by the essential cell division protein FtsZ. We have used immunofluorescence microscopy to show that FtsZ assembles early in the division cycle, suggesting that constriction of the FtsZ ring is regulated and supporting the view that FtsZ serves as a bacterial cytoskeleton. Assembly of FtsZ rings was heterogeneously affected in an ftsI temperature-sensitive mutant grown at the nonpermissive temperature, some filaments displaying a striking defect in FtsZ assembly and others displaying little or no defect. By using low concentrations of the beta-lactams cephalexin and piperacillin to specifically inhibit FtsI (PBP3), an enzyme that synthesizes peptidoglycan at the division septum, we show that FtsZ ring constriction requires the transpeptidase activity of FtsI. Unconstricted FtsZ rings are stably trapped at the midpoint of the cell for several generations after inactivation of FtsI, whereas partially constricted FtsZ rings are less effectively trapped. In addition, FtsZ rings are able to assemble in newborn cells in the presence of cephalexin, suggesting that newborn cells contain a site at which FtsZ can assemble (the nascent division site) and that the transpeptidase activity of FtsI is not required for assembly of FtsZ at these sites. However, aside from this first round of FtsZ ring assembly, very few additional FtsZ rings assemble in the presence of cephalexin, even after several generations of growth. One interpretation of these results is that the transpeptidase activity of FtsI is required, directly or indirectly, for the assembly of nascent division sites and thereby for future assembly of FtsZ rings.
Collapse
Affiliation(s)
- J Pogliano
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
The process of sporulation in the bacterium Bacillus subtilis proceeds through a well-defined series of morphological stages that involve the conversion of a growing cell into a two-cell-chamber sporangium within which a spore is produced. Over 125 genes are involved in this process, the transcription of which is temporally and spatially controlled by four DNA-binding proteins and five RNA polymerase sigma factors. Through a combination of genetic, biochemical, and cell biological approaches, regulatory networks have been elucidated that explicitly link the activation of these sigma factors to landmark events in the course of morphogenesis and to each other through pathways of intercellular communication. Signals targeting proteins to specific subcellular localizations and governing the assembly of macromolecular structures have been uncovered but their nature remains to be determined.
Collapse
Affiliation(s)
- P Stragier
- Institut de Biologie Physico-Chimique, Paris, France.
| | | |
Collapse
|
49
|
Ma X, Ehrhardt DW, Margolin W. Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci U S A 1996; 93:12998-3003. [PMID: 8917533 PMCID: PMC24035 DOI: 10.1073/pnas.93.23.12998] [Citation(s) in RCA: 366] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the current model for bacterial cell division, FtsZ protein forms a ring that marks the division plane, creating a cytoskeletal framework for the subsequent action of other proteins such as FtsA. This putative protein complex ultimately generates the division septum. Herein we report that FtsZ and FtsA proteins tagged with green fluorescent protein (GEP) colocalize to division-site ring-like structures in living bacterial cells in a visible space between the segregated nucleoids. Cells with higher levels of FtsZ-GFP or with FtsA-GFP plus excess wild-type FtsZ were inhibited for cell division and often exhibited bright fluorescent spiral tubules that spanned the length of the filamentous cells. This suggests that FtsZ may switch from a septation-competent localized ring to an unlocalized spiral under some conditions and that FtsA can bind to FtsZ in both conformations. FtsZ-GFP also formed nonproductive but localized aggregates at a higher concentration that could represent FtsZ nucleation sites. The general domain structure of FtsZ-GFP resembles that of tubulin, since the C terminus of FtsZ is not required for polymerization but may regulate polymerization state. The N-terminal portion of Rhizobium FtsZ polymerized in Escherichia coli and appeared to copolymerize with E. coli FtsZ, suggesting a degree of interspecies functional conservation. Analysis of several deletions of FtsA-GFP suggests that multiple segments of FtsA are important for its localization to the FtsZ ring.
Collapse
Affiliation(s)
- X Ma
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030, USA
| | | | | |
Collapse
|
50
|
Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 1996; 273:1058-73. [PMID: 8688087 DOI: 10.1126/science.273.5278.1058] [Citation(s) in RCA: 1785] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The complete 1.66-megabase pair genome sequence of an autotrophic archaeon, Methanococcus jannaschii, and its 58- and 16-kilobase pair extrachromosomal elements have been determined by whole-genome random sequencing. A total of 1738 predicted protein-coding genes were identified; however, only a minority of these (38 percent) could be assigned a putative cellular role with high confidence. Although the majority of genes related to energy production, cell division, and metabolism in M. jannaschii are most similar to those found in Bacteria, most of the genes involved in transcription, translation, and replication in M. jannaschii are more similar to those found in Eukaryotes.
Collapse
Affiliation(s)
- C J Bult
- Microbiology Department, University of Illinois, Champaign-Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|