1
|
Roy S, Saha G, Ghosh MK. UPS and Kinases-Gatekeepers of the G1/S Transition. Biofactors 2025; 51:e70020. [PMID: 40305374 DOI: 10.1002/biof.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
The G1/S transition is a highly regulated and pivotal checkpoint in the cell cycle, where the cell decides whether to commit to DNA replication and subsequent division or enter a non-dividing state. This checkpoint serves as a critical control point for preventing uncontrolled cell proliferation and maintaining genomic stability. The major driving force underlying the G1/S transition is the sequential activation of Cyclin-dependent kinases (CDKs), which is regulated by the coordinated binding of Cyclin partners, as well as the phosphorylation and ubiquitin-mediated degradation of both Cyclin partners and Cyclin-dependent kinase inhibitors (CKIs). Various E3 ligase families govern the timely degradation of these regulatory proteins, with their activity intricately controlled by phosphorylation events. This coordination enables the cells to efficiently translate the environmental cues and molecular signaling inputs to determine their fate. We explore the evolution of three distinct models describing the G1/S transition, highlighting how the traditional linear model is being challenged by recent paradigm shifts and conflicting findings. These advances reveal emerging complexity and unresolved questions in the field, particularly regarding how the latest insights into coordinated phosphorylation and ubiquitination-dependent degradation integrate into contemporary models of the G1/S transition.
Collapse
Affiliation(s)
- Srija Roy
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Gouranga Saha
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
2
|
Rana M, Liou KC, Thakur A, Nepali K, Liou JP. Advancing glioblastoma therapy: Learning from the past and innovations for the future. Cancer Lett 2025; 617:217601. [PMID: 40037502 DOI: 10.1016/j.canlet.2025.217601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Marred by a median survival of only around 12-15 months coupled with poor prognosis and effective therapeutic deprived drug armory, treatment/management of glioblastoma has proved to be a daunting task. Surgical resection, flanked by radiotherapy and chemotherapy with temozolomide, stands as the standard of care; however, this trimodal therapy often manifests limited efficacy due to the heterogeneous and highly infiltrative nature of GBM cells. In addition, the existence of the blood-brain barrier, tumor microenvironment, and the immunosuppressive nature of GBM, along with the encountered resistance of GBM cells towards conventional therapy, also hinders the therapeutic applications of chemotherapeutics in GBM. This review presents key insights into the molecular pathology of GBM, including genetic mutations, signaling pathways, and tumor microenvironment characteristics. Recent innovations such as immunotherapy, oncolytic viral therapies, vaccines, nanotechnology, electric field, and cancer neuroscience, as well as their clinical progress, have been covered. In addition, this compilation also encompasses a discussion on the role of personalized medicine in tailoring treatments based on individual tumor profiles, an approach that is gradually shifting the paradigm in GBM management. Endowed with the learnings imbibed from past failures coupled with the zeal to embrace novel/multidisciplinary approaches, researchers appear to be on the right track to pinpoint more effective and durable solutions in the context of GBM treatment.
Collapse
Affiliation(s)
- Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
3
|
Flower CT, Liu C, Chuang HY, Ye X, Cheng H, Heath JR, Wei W, White FM. Signaling and transcriptional dynamics underlying early adaptation to oncogenic BRAF inhibition. Cell Syst 2025; 16:101239. [PMID: 40118060 PMCID: PMC12045616 DOI: 10.1016/j.cels.2025.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/19/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025]
Abstract
A major contributor to poor sensitivity to anti-cancer kinase inhibitor therapy is drug-induced cellular adaptation, whereby remodeling of signaling and gene regulatory networks permits a drug-tolerant phenotype. Here, we resolve the scale and kinetics of critical subcellular events following oncogenic kinase inhibition and preceding cell cycle re-entry, using mass spectrometry-based phosphoproteomics and RNA sequencing (RNA-seq) to monitor the dynamics of thousands of growth- and survival-related signals over the first minutes, hours, and days of oncogenic BRAF inhibition in human melanoma cells. We observed sustained inhibition of the BRAF-ERK axis, gradual downregulation of cell cycle signaling, and three distinct, reversible phase transitions toward quiescence. Statistical inference of kinetically defined regulatory modules revealed a dominant compensatory induction of SRC family kinase (SFK) signaling, promoted in part by excess reactive oxygen species, rendering cells sensitive to co-treatment with an SFK inhibitor in vitro and in vivo, underscoring the translational potential for assessing early drug-induced adaptive signaling. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Cameron T Flower
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chunmei Liu
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Xiaoyang Ye
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Wei Wei
- Institute for Systems Biology, Seattle, WA, USA.
| | - Forest M White
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Sharma S, Berger H, Meyer T, Teruel MN. Inactivation of CDK4/6, CDK2, and ERK in G1-phase triggers differentiation commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647597. [PMID: 40291750 PMCID: PMC12026982 DOI: 10.1101/2025.04.07.647597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Terminal cell differentiation, a process vital for tissue development and regeneration where progenitor cells acquire specialized functions and permanently exit the cell cycle, is still poorly understood at the molecular level. Using live-cell imaging and adipogenesis as a model, we demonstrate that the initial stage involves a variable number of cell divisions driven by redundant CDK4/6 or CDK2 activation.. Subsequently, a delayed decrease in cyclin D1 and an increase in p27 levels leads to the attenuation of CDK4/6 and CDK2 activity. This results in G1 lengthening and the induction of PPARG, the master regulator of adipogenesis. PPARG then induces p21, and later p18, culminating in the irreversible inactivation of CDK4/6 and CDK2, and thus, permanent cell cycle exit. However, contrary to expectation, CDK inactivation alone is not sufficient to trigger commitment to differentiation and functional specialization; ERK inactivation is also required. Our study establishes that the coordinated activation and subsequent delayed inactivation of CDK4/6, CDK2, and ERK are crucial determinants for irreversible cell cycle exit and differentiation commitment in terminal cell differentiation.
Collapse
|
5
|
Zhang W, Bradburn D, Heidebrink G, Liu Y, Jang H, Nussinov R, Kõivomägi M. Distinct Allosteric Networks in CDK4 and CDK6 in the Cell Cycle and in Drug Resistance. J Mol Biol 2025:169121. [PMID: 40174666 DOI: 10.1016/j.jmb.2025.169121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) are key regulators of the G1-S phase transition in the cell cycle. In cancer cells, CDK6 overexpression often outcompetes CDK4 in driving cell cycle progression, contributing to resistance against CDK4/6 inhibitors (CDK4/6i). This suggests distinct functional and conformational differences between these two kinases, despite their striking structural and sequence similarities. Understanding the mechanisms that differentiate CDK4 and CDK6 is crucial, as resistance to CDK4/6i-frequently linked to CDK6 overexpression-remains a significant therapeutic challenge. Notably, CDK6 is often upregulated in CDK4/6i-resistant cancers and rapidly proliferating hematopoietic stem cells, underscoring its unique regulatory roles. We hypothesize that their distinct conformational dynamics explain their differences in phosphorylation of retinoblastoma protein, Rb, inhibitor efficacy, and cell cycle control. This leads us to question how their dissimilar conformational dynamics encode their distinct actions. To elucidate their differential activities, molecular mechanisms, and inhibitor binding, we combine biochemical assays and molecular dynamics (MD) simulations. We discover that CDK4 and CDK6 have distinct allosteric networks connecting the β3-αC loop and the G-loop. CDK6 exhibits stronger coupling and shorter path lengths between these regions, resulting in higher kinase activity upon cyclin binding and impacting inhibitor specificity. We also discover an unrecognized role of the unstructured CDK6 C-terminus, which allosterically connects and stabilizes the R-spine, facilitating slightly higher activity. Our findings bridge the gap between the structural similarity and functional divergence of CDK4 and CDK6, advancing the understanding of kinase regulation in cancer biology.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Devin Bradburn
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gretchen Heidebrink
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Mardo Kõivomägi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Zhang W, Bradburn D, Heidebrink G, Liu Y, Jang H, Nussinov R, Kõivomägi M. Distinct allosteric networks in CDK4 and CDK6 in the cell cycle and in drug resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640857. [PMID: 40093074 PMCID: PMC11908124 DOI: 10.1101/2025.02.28.640857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) are key regulators of the G1-S phase transition in the cell cycle. In cancer cells, CDK6 overexpression often outcompetes CDK4 in driving cell cycle progression, contributing to resistance against CDK4/6 inhibitors (CDK4/6i). This suggests distinct functional and conformational differences between these two kinases, despite their striking structural and sequence similarities. Understanding the mechanisms that differentiate CDK4 and CDK6 is crucial, as resistance to CDK4/6i-frequently linked to CDK6 overexpression-remains a significant therapeutic challenge. Notably, CDK6 is often upregulated in CDK4/6i-resistant cancers and rapidly proliferating hematopoietic stem cells, underscoring its unique regulatory roles. We hypothesize that their distinct conformational dynamics explain their differences in phosphorylation of retinoblastoma protein, Rb, inhibitor efficacy, and cell cycle control. This leads us to question how their dissimilar conformational dynamics encode their distinct actions. To elucidate their differential activities, molecular mechanisms, and inhibitor binding, we combine biochemical assays and molecular dynamics (MD) simulations. We discover that CDK4 and CDK6 have distinct allosteric networks connecting the β3-αC loop and the G-loop. CDK6 exhibits stronger coupling and shorter path lengths between these regions, resulting in higher kinase activity upon cyclin binding and impacting inhibitor specificity. We also discover an unrecognized role of the unstructured CDK6 C-terminus, which allosterically connects and stabilizes the R-spine, facilitating slightly higher activity. Our findings bridge the gap between the structural similarity and functional divergence of CDK4 and CDK6, advancing the understanding of kinase regulation in cancer biology.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Devin Bradburn
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, U.S.A
| | - Gretchen Heidebrink
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, U.S.A
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Hyunbum Jang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
| | - Ruth Nussinov
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mardo Kõivomägi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, U.S.A
| |
Collapse
|
7
|
Chen W, Zhuang X, Chen Y, Yang H, Shen L, Feng S, Min W, Yuan K, Yang P. Recent advances in regulating the cell cycle through inhibiting CDKs for cancer treatment. Chin J Nat Med 2025; 23:286-298. [PMID: 40122659 DOI: 10.1016/s1875-5364(25)60846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/11/2024] [Accepted: 06/29/2024] [Indexed: 03/25/2025]
Abstract
The inhibition of cyclin-dependent kinases (CDKs) is considered a promising strategy for cancer treatment due to their role in cell cycle regulation. However, CDK inhibitors with no selectivity among CDK families have not been approved. A CDK inhibitor with high selectivity for CDK4/6 exhibited significant treatment effects on breast cancer and has become a heavy bomb on the market. Subsequently, resistance gradually decreased the efficacy of selective CDK4/6 inhibitors in breast cancer treatment. In this review, we first introduce the development of selective CDK4/6 inhibitors and then explain the role of CDK2 activation in inducing resistance to CDK4/6 inhibitors. Moreover, we focused on the development of CDK2/4/6 inhibitors and selective CDK2 inhibitors, which will aid in the discovery of novel CDK inhibitors targeting the cell cycle in the future.
Collapse
Affiliation(s)
- Weijiao Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xujie Zhuang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanyuan Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huanaoyu Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Linhu Shen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Sikai Feng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
8
|
Sine C, Watts L, Fernandez B, Wang J, Knudsen E, Witkiewicz A, Spencer SL. p16 expression confers sensitivity to CDK2 inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637344. [PMID: 39990340 PMCID: PMC11844365 DOI: 10.1101/2025.02.10.637344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Blocking the cell cycle is a promising avenue for cancer therapy, with Cyclin-Dependent Kinase 2 (CDK2) emerging as a key target. However, in multiple cell types, CDK4/6 activity compensates for CDK2 inhibition and sustains the proliferative program, enabling CDK2 reactivation. Thus, we hypothesized that sensitivity to CDK2 inhibition is linked to the absence of this CDK4/6-mediated compensatory mechanism. Here we show that Cyclin E1-driven ovarian cancers often co-express the tumor suppressor p16, which inhibits CDK4/6. We show that ovarian cancer cells expressing p16 exhibit heightened sensitivity to CDK2 inhibitors and that depletion of p16 renders them significantly more resistant. Multiplexed immunofluorescence of 225 ovarian patient tumors reveals that at least 18% of tumors express high Cyclin E1 and high p16, a group that we expect to be particularly sensitive to CDK2 inhibition. Thus, p16 may be a useful biomarker for identifying the patients most likely to benefit from CDK2 inhibitors.
Collapse
|
9
|
Kumarasamy V, Wang J, Roti M, Wan Y, Dommer AP, Rosenheck H, Putta S, Trub A, Bisi J, Strum J, Roberts P, Rubin SM, Frangou C, McLean K, Witkiewicz AK, Knudsen ES. Discrete vulnerability to pharmacological CDK2 inhibition is governed by heterogeneity of the cancer cell cycle. Nat Commun 2025; 16:1476. [PMID: 39924553 PMCID: PMC11808123 DOI: 10.1038/s41467-025-56674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Cyclin dependent kinase 2 (CDK2) regulates cell cycle and is an emerging target for cancer therapy. There are relatively small numbers of tumor models that exhibit strong dependence on CDK2 and undergo G1 cell cycle arrest following CDK2 inhibition. The expression of P16INK4A and cyclin E1 determines this sensitivity to CDK2 inhibition. The co-expression of these genes occurs in breast cancer patients highlighting their clinical significance as predictive biomarkers for CDK2-targeted therapies. In cancer models that are genetically independent of CDK2, pharmacological inhibitors suppress cell proliferation by inducing 4N cell cycle arrest and increasing the expressions of phospho-CDK1 (Y15) and cyclin B1. CRISPR screens identify CDK2 loss as a mediator of resistance to a CDK2 inhibitor, INX-315. Furthermore, CDK2 deletion reverses the G2/M block induced by CDK2 inhibitors and restores cell proliferation. Complementary drug screens define multiple means to cooperate with CDK2 inhibition beyond G1/S. These include the depletion of mitotic regulators as well as CDK4/6 inhibitors cooperate with CDK2 inhibition in multiple phases of the cell cycle. Overall, this study underscores two fundamentally distinct features of response to CDK2 inhibitors that are conditioned by tumor context and could serve as the basis for differential therapeutic strategies in a wide range of cancers.
Collapse
Affiliation(s)
- Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jianxin Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Michelle Roti
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yin Wan
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Adam P Dommer
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hanna Rosenheck
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sivasankar Putta
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | | | | | | | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Costakis Frangou
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Karen McLean
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Agnieszka K Witkiewicz
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
10
|
Bobbitt JR, Cuellar-Vite L, Weber-Bonk KL, Yancey MR, Majmudar PR, Keri RA. Targeting the mitotic kinase NEK2 enhances CDK4/6 inhibitor efficacy by potentiating genome instability. J Biol Chem 2025; 301:108196. [PMID: 39826695 PMCID: PMC11849632 DOI: 10.1016/j.jbc.2025.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Selective inhibitors that target cyclin-dependent kinases 4 and 6 (CDK4/6i) are approved by the U.S. Food and Drug Administration (FDA) for treatment of a subset of breast cancers and are being evaluated in numerous clinical trials for other cancers. Despite this advance, a subset of tumors are intrinsically resistant to these drugs and acquired resistance is nearly inevitable. Recent mechanistic evidence suggests that in addition to stalling the cell cycle, the antitumor effects of CDK4/6i involve the induction of chromosomal instability (CIN). Here, we exploit this mechanism by combining CDK4/6i with other instability-promoting agents to induce maladaptive CIN and irreversible cell fates. Specifically, dual targeting of CDK4/6 and the mitotic kinase NEK2 in vitro drives centrosome amplification and the accumulation of CIN that induces catastrophic mitoses, cell cycle exit, and cell death. Dual targeting also induces CIN in vivo and significantly decreases mouse tumor volume to a greater extent than either drug alone, without inducing overt toxicity. Importantly, we provide evidence that breast cancer cells are selectively dependent on NEK2, but nontransformed cells are not, in contrast with other mitotic kinases that are commonly essential in all cell types. These findings implicate NEK2 as a potential therapeutic target for breast cancer that could circumvent the dose-limiting toxicities that are commonly observed when blocking other mitotic kinases. Moreover, these data suggest that NEK2 inhibitors could be used to sensitize tumors to FDA-approved CDK4/6i for the treatment of breast cancers, improving their efficacy and providing a foundation for expanding the patient population that could benefit from CDK4/6i.
Collapse
Affiliation(s)
- Jessica R Bobbitt
- Department of Pathology School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Leslie Cuellar-Vite
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kristen L Weber-Bonk
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Marlee R Yancey
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Parth R Majmudar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ruth A Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
11
|
Datta RR, Akdogan D, Tezcan EB, Onal P. Versatile roles of disordered transcription factor effector domains in transcriptional regulation. FEBS J 2025. [PMID: 39888268 DOI: 10.1111/febs.17424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/25/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Transcription, a crucial step in the regulation of gene expression, is tightly controlled and involves several essential processes, such as chromatin organization, recognition of the specific genomic sequences, DNA binding, and ultimately recruiting the transcriptional machinery to facilitate transcript synthesis. At the center of this regulation are transcription factors (TFs), which comprise at least one DNA-binding domain (DBD) and an effector domain (ED). Although the structure and function of DBDs have been well studied, our knowledge of the structure and function of effector domains is limited. EDs are of particular importance in generating distinct transcriptional responses between protein members of the same TF family that have similar DBDs and specificities. The study of transcriptional activity conferred by effector domains has traditionally been conducted through examining protein-protein interactions. However, recent research has uncovered alternative mechanisms by which EDs regulate gene expression, such as the formation of condensates that increase the local concentration of transcription factors, cofactors, and coregulated genes, as well as DNA binding. Here, we provide a comprehensive overview of the known roles of transcription factor EDs, with a specific focus on disordered regions. Additionally, we emphasize the significance of intrinsically disordered regions (IDRs) during transcriptional regulation. We examine the mechanisms underlying the establishment and maintenance of transcriptional specificity through the structural properties of predominantly disordered EDs. We then provide a comprehensive overview of the current understanding of these domains, including their physical and chemical characteristics, as well as their functional roles.
Collapse
Affiliation(s)
| | - Dilan Akdogan
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Elif B Tezcan
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Pinar Onal
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| |
Collapse
|
12
|
Komatsu R, Fujii R, Ogasawara T, Suzuki-Takahashi Y, Chen S, Sugishita Y, Niki H, Yudoh K. CDK6-Dependent, CDK4-Independent Synovial Hyperplasia in Arthritic Mice and Tumor Necrosis Factor-α-Induced Proliferation of Synovial Fibroblasts. Int J Mol Sci 2025; 26:1151. [PMID: 39940918 PMCID: PMC11817658 DOI: 10.3390/ijms26031151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Palbociclib, a dual CDK4/6 kinase inhibitor used for breast cancer, has been explored as a treatment option for rheumatoid arthritis (RA). Preclinical studies have reported palbociclib-induced myelosuppression, but no such effects have been observed in Cdk4 or Cdk6 single-deficient mice. Synoviocyte proliferation-associated in collagen-induced arthritis 1/serum amyloid A-like 1 (SPACIA1/SAAL1) is involved in G1 phase progression. Given that SPACIA1/SAAL1 upregulates CDK6 (but not CDK4) expression, we aimed to determine whether suppressing CDK6 expression alone could prevent synovial hyperplasia without myelosuppression. The effects of CDK6 expression on TNF-α-induced rheumatoid arthritis synovial fibroblast (RASF) proliferation and synovial hyperplasia in collagen-induced arthritis (CIA) mice were investigated by modulating the transcriptional level with a CDK6 expression inhibitor (indole-3-carbinol), CDK6 small interfering RNA (siRNA), and Cdk6-deficient mice. Indole-3-carbinol or CDK6 siRNA inhibited TNF-α-induced RASF proliferation without suppressing CDK4 expression and reduced retinoblastoma protein phosphorylation. In CIA mice, indole-3-carbinol did not cause myelosuppression, considerably delayed CIA onset and progression, and reduced arthritis severity. Cdk6-deficient mice showed similar improvements in CIA pathogenesis but had lower serum anti-type II collagen IgG levels. Notably, synovial hyperplasia was not observed in Cdk6-deficient mice. CIA-synovial hyperplasia depends on CDK6, but not CDK4, expression.
Collapse
Affiliation(s)
- Rie Komatsu
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Kanagawa, Japan; (R.K.); (Y.S.-T.); (S.C.); (Y.S.); (K.Y.)
| | - Ryoji Fujii
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Kanagawa, Japan; (R.K.); (Y.S.-T.); (S.C.); (Y.S.); (K.Y.)
| | - Toru Ogasawara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Yuki Suzuki-Takahashi
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Kanagawa, Japan; (R.K.); (Y.S.-T.); (S.C.); (Y.S.); (K.Y.)
| | - Sandy Chen
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Kanagawa, Japan; (R.K.); (Y.S.-T.); (S.C.); (Y.S.); (K.Y.)
| | - Yodo Sugishita
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Kanagawa, Japan; (R.K.); (Y.S.-T.); (S.C.); (Y.S.); (K.Y.)
| | - Hisateru Niki
- Department of Orthopedic Surgery, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan;
| | - Kazuo Yudoh
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Kanagawa, Japan; (R.K.); (Y.S.-T.); (S.C.); (Y.S.); (K.Y.)
| |
Collapse
|
13
|
Bhambri S, Jha PC. Targeting cyclin-dependent kinase 11: a computational approach for natural anti-cancer compound discovery. Mol Divers 2025:10.1007/s11030-025-11107-8. [PMID: 39847188 DOI: 10.1007/s11030-025-11107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Cancer, a leading global cause of death, presents considerable treatment challenges due to resistance to conventional therapies like chemotherapy and radiotherapy. Cyclin-dependent kinase 11 (CDK11), which plays a pivotal role in cell cycle regulation and transcription, is overexpressed in various cancers and is linked to poor prognosis. This study focused on identifying potential inhibitors of CDK11 using computational drug discovery methods. Techniques such as pharmacophore modeling, virtual screening, molecular docking, ADMET predictions, molecular dynamics simulations, and binding free energy analysis were applied to screen a large natural product database. Three pharmacophore models were validated, leading to the identification of several promising compounds with stronger binding affinities than the reference inhibitor. ADMET profiling indicated favorable drug-like properties, while molecular dynamics simulations confirmed the stability and favorable interactions of top candidates with CDK11. Binding free energy calculations further revealed that UNPD29888 exhibited the strongest binding affinity. In conclusion, the identified compound shows potential as a CDK11 inhibitor based on computational predictions, suggesting their future application in cancer treatment by targeting CDK11. These computational findings encourage further experimental validation as anti-cancer agents.
Collapse
Affiliation(s)
- Suruchi Bhambri
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Prakash C Jha
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
14
|
Simonini S. Regulation of cell cycle in plant gametes: when is the right time to divide? Development 2025; 152:dev204217. [PMID: 39831611 PMCID: PMC11829769 DOI: 10.1242/dev.204217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Cell division is a fundamental process shared across diverse life forms, from yeast to humans and plants. Multicellular organisms reproduce through the formation of specialized types of cells, the gametes, which at maturity enter a quiescent state that can last decades. At the point of fertilization, signalling lifts the quiescent state and triggers cell cycle reactivation. Studying how the cell cycle is regulated during plant gamete development and fertilization is challenging, and decades of research have provided valuable, yet sometimes contradictory, insights. This Review summarizes the current understanding of plant cell cycle regulation, gamete development, quiescence, and fertilization-triggered reactivation.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH8008, Zurich, Switzerland
| |
Collapse
|
15
|
Takeuchi R, Nomura T, Yaguchi M, Kuwahara N, Amino Y, Taguchi C, Suzuki I, Suzuki H, Nagashima T, Arikawa K, Okada Y, Nomoto T, Hiratsuka K. Cyclosporine A causes gingival overgrowth via reduced G1 cell cycle arrest in gingival fibroblasts. PLoS One 2024; 19:e0309189. [PMID: 39705288 DOI: 10.1371/journal.pone.0309189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 12/22/2024] Open
Abstract
Gingival overgrowth caused by cyclosporine A is due to increased fibroblast proliferation in gingival tissues. Cell cycle system balances proliferation and anti-proliferation of gingival fibroblasts and plays a role in the maintenance of its population in gingival tissues. When cells detect and respond to abnormalities (e.g. DNA damage), cell cycle progression is arrested in the G1 phase until the completion of damage restoration. In this study, we investigated the effects of cyclosporine A on G1 cell cycle arrest and on its regulators in gingival fibroblasts to clarify the mechanism of cyclosporine A-induced gingival overgrowth. Human gingival fibroblasts from healthy donors were cultured to semi-confluence and were then treated with or without 200 ng/mL (166 nM) cyclosporine A in D-MEM with 2% fetal bovine serum. Cell proliferation was assessed by counting total cell numbers. The distribution of cell cycle phases was assessed using flow cytometric analysis. The levels of mRNA and protein expression for cell cycle regulators were quantified using reverse transcription-quantitative PCR and western blot analysis, respectively. Treatment with cyclosporine A markedly increased cell proliferation, inhibited G1 cell cycle arrest, significantly increased CDC25A and CYCLIN E1 mRNA expression levels, significantly decreased P21, SMAD3 and SMAD4 mRNA expression levels, significantly upregulated the protein expression levels of CDC25A, CYCLIN E1, pCDK2 and pRB1 and significantly downregulated the protein expression levels of P21, SMAD3 and SMAD4. Treatment with cyclosporine A also increased MYC and ATM mRNA expression levels and decreased CDK2, ATR, P27, P53 and RB1 mRNA expression levels but not significantly. These results demonstrate that cyclosporine A causes gingival overgrowth due to the following mechanism in gingival fibroblasts: cyclosporine A increases levels of phospho-CDK2 and CYCLIN E1 by upregulating CDC25A and downregulating P21 with the downregulation of SMAD3 and SMAD4, which results in the inhibition of G1 cell cycle arrest.
Collapse
Affiliation(s)
- Reiri Takeuchi
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Takatoshi Nomura
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Manabu Yaguchi
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Noriko Kuwahara
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yuta Amino
- Department of Oral Implantology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Chieko Taguchi
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Itaru Suzuki
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Haruka Suzuki
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Teruaki Nagashima
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
- Department of Community Oral Health, Nihon University Graduate School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Kazumune Arikawa
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yuichiro Okada
- Department of Histology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Takato Nomoto
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| |
Collapse
|
16
|
Takeuchi R, Kuwahara N, Amino Y, Hayashi S, Taguchi C, Suzuki I, Suzuki H, Nagashima T, Arikawa K, Okada Y, Nomoto T, Hiratsuka K. Cyclosporine A Causes Gingival Overgrowth by Promoting Entry into the S Phase at the G1/S Cell Cycle Checkpoint in Gingival Fibroblasts Exposed to Lipopolysaccharide. Diseases 2024; 12:322. [PMID: 39727652 PMCID: PMC11727098 DOI: 10.3390/diseases12120322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVES Cyclosporine A promotes gingival fibrosis by enhancing the proliferation of gingival fibroblasts, leading to gingival overgrowth. The population of gingival fibroblasts is regulated by cell cycle machinery, which balances cell growth and inhibition. Cells that detect DNA damage pause at the G1/S checkpoint to repair the damage instead of progressing to the S phase. Previous studies have linked drug-induced gingival overgrowth to the response of fibroblasts to lipopolysaccharide (LPS) and cyclosporine A. This research investigates the effects of cyclosporine A on the G1/S checkpoint and its mediators in LPS-treated gingival fibroblasts to clarify the mechanisms behind cyclosporine-A-induced gingival overgrowth. METHODS Semi-confluent human gingival fibroblasts were treated with LPS or cyclosporine A in DMEM. Cell proliferation was evaluated by counting the total number of cells. The distribution of the cell cycle phases was analyzed using flow cytometry. Additionally, the expression levels of mRNAs and proteins related to cell cycle regulators were quantified by reverse-transcription quantitative PCR and Western blotting, respectively. RESULTS Cyclosporine A treatment significantly enhanced cell proliferation and the G1-S cell cycle transition. It increased the mRNA levels of CDC25A and CYCLIN D while decreasing those of RB1, SMAD3, and SMAD4. Additionally, it upregulated the protein levels of CDC25A, CYCLIN D, CDK4, CDK6, and pRB and downregulated the protein levels of SMAD3 and SMAD4. CONCLUSIONS Gingival overgrowth induced by cyclosporine A could be attributed to these alterations.
Collapse
Affiliation(s)
- Reiri Takeuchi
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan; (N.K.); (K.H.)
| | - Noriko Kuwahara
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan; (N.K.); (K.H.)
| | - Yuta Amino
- Department of Oral Implantology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan;
| | - Sachiyo Hayashi
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan; (S.H.); (T.N.)
| | - Chieko Taguchi
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan; (C.T.); (I.S.); (H.S.); (K.A.)
| | - Itaru Suzuki
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan; (C.T.); (I.S.); (H.S.); (K.A.)
| | - Haruka Suzuki
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan; (C.T.); (I.S.); (H.S.); (K.A.)
| | - Teruaki Nagashima
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan; (C.T.); (I.S.); (H.S.); (K.A.)
- Department of Community Oral Health, Nihon University Graduate School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Kazumune Arikawa
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan; (C.T.); (I.S.); (H.S.); (K.A.)
| | - Yuichiro Okada
- Department of Histology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Takato Nomoto
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan; (S.H.); (T.N.)
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan; (N.K.); (K.H.)
| |
Collapse
|
17
|
Nam D, Park J, Lee J, Son J, Kim JE. mTOR potentiates senescent phenotypes and primary cilia formation after cisplatin-induced G2 arrest in retinal pigment epithelial cells. Cell Signal 2024; 124:111402. [PMID: 39251051 DOI: 10.1016/j.cellsig.2024.111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cisplatin, a platinum-based anticancer drug, is used to treat several types of cancer. Despite its effectiveness, cisplatin-induced side effects have often been reported. Although cisplatin-induced toxicities, such as apoptosis and/or necrosis, have been well studied, the fate of cells after exposure to sublethal doses of cisplatin needs further elucidation. Treatment with a sublethal dose of cisplatin induced cell cycle arrest at the G2 phase in retinal pigment epithelial cells. Following cisplatin withdrawal, the cells irreversibly exited the cell cycle and became senescent. Notably, the progression from the G2 to the G1 phase occurred without mitotic entry, a phenomenon referred to as mitotic bypass, resulting in the accumulation of cells containing 4N DNA content. Cisplatin-exposed cells exhibited morphological changes associated with senescence, including an enlarged size of cell and nucleus and increased granularity. In addition, the senescent cells possessed primary cilia and persistent DNA lesions. Senescence induced by transient exposure to cisplatin involves mTOR activation. Although transient co-exposure with an mTORC1 inhibitor rapamycin did not prevent mitotic bypass and entry into senescence, it delayed the progression of senescence and attenuated senescent phenotypes, resulting in shorter primary cilia formation. Conclusively, cisplatin induces senescence in retinal pigment epithelial cells by promoting mTOR activation.
Collapse
Affiliation(s)
- Dajeong Nam
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaejung Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaehong Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juyoung Son
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
18
|
Benvenuti C, Grinda T, Rassy E, Dixon-Douglas J, Ribeiro JM, Zambelli A, Santoro A, Pistilli B. Unveiling the Potential of Cyclin-Dependent Kinases 4 and 6 Inhibitors Beyond Progression in Hormone Receptor Positive/Human Epidermal Growth Factor Negative Advanced Breast Cancer - A Clinical Review. Curr Treat Options Oncol 2024; 25:1517-1537. [PMID: 39614985 PMCID: PMC11638444 DOI: 10.1007/s11864-024-01259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 12/13/2024]
Abstract
OPINION STATEMENT Cyclin-dependent kinases 4 and 6 inhibitors (CDK4/6i) have revolutionized the management of hormone receptor-positive (HR +) breast cancer. However, resistance to CDK4/6i remains an unavoidable challenge, with limited evidence to guide the choice of subsequent treatments. Continuation of CDK4/6 inhibition raises as a compelling treatment option and is currently an active area of research. This approach encompasses multifaceted strategies regarding CDK4/6i sequence (same or switched agent), endocrine therapy (ET) partner and potential combination with a third drug. Continuing CDK4/6 inhibition while targeting ET resistance in tumours still dependent on ER activity (i.e., ESR1 mutation) through a ctDNA-guided approach has the potential of becoming practice-changing, pending the results of ongoing phase III studies. Conversely, the efficacy of this strategy in cases of radiological progression in a biomarker-unselected population appears to be rather unsatisfactory. While some benefit, albeit modest, has been observed from switching to a different CDK4/6i after progression (e.g. ribociclib after palbociclib in the MAINTAIN trial and abemaciclib after both palbociclib and ribociclib in the postMONARCH trial), the current evidence (mainly with palbociclib) clearly argues against maintaining the same CDK4/6i. Biomarker analyses to optimally identify patients suitable for this approach yielded inconsistent findings that do not apply to daily clinical decision making. Attractive preliminary efficacy has recently emerged from combining a third agent (immunotherapy, AKT/ PIK3CA/mTOR inhibitor, new ET agents, CDK2 inhibitors) to CDK4/6i and ET, but further validation in larger ongoing trials is required to also determine the optimal timing for incorporating these agents into the therapeutic timeline. To date, CDK4/6i after CDK4/6i progression is far from being a standard of care. However, selected patients with indolent disease, prolonged exposure to previous CDK4/6i treatment (especially palbociclib) and without actionable molecular alterations, may be suitable for suchmaintenance strategy beyond progression. In this challenging and rapidly evolving treatment landscape, ongoing studies can refine the optimal approach and identify clinical and molecular factors to select the best treatment for the right patient.
Collapse
Affiliation(s)
- Chiara Benvenuti
- Department of Medical Oncology, Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano, MI, Italy
| | - Thomas Grinda
- Department of Medical Oncology, Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA
| | - Elie Rassy
- Department of Medical Oncology, Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France
| | - Julia Dixon-Douglas
- Department of Medical Oncology, Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France
- Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, 305 Grattan Street, Parkville, Melbourne, Victoria, Australia
| | - Joana M Ribeiro
- Department of Medical Oncology, Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France
| | - Alberto Zambelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano, MI, Italy
| | - Armando Santoro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano, MI, Italy
| | - Barbara Pistilli
- Department of Medical Oncology, Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France.
| |
Collapse
|
19
|
Chen Q, Zheng X, Cheng W, Li J. Landscape of targeted therapies for lung squamous cell carcinoma. Front Oncol 2024; 14:1467898. [PMID: 39544292 PMCID: PMC11560903 DOI: 10.3389/fonc.2024.1467898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
Lung cancer, a common type of malignant neoplasm, has seen significant advancements in the treatment of lung adenocarcinoma (LUAD). However, the management of lung squamous cell carcinoma (LSCC) continues to pose challenges. Traditional treatment methods for LSCC encompass surgical resection, chemotherapy, and radiotherapy. The introduction of targeted therapy and immunotherapy has greatly benefited LSCC patients, but issues such as limited immune response rates and adverse reactions persist. Therefore, gaining a deeper comprehension of the underlying mechanisms holds immense importance. This review provides an in-depth overview of classical signaling pathways and therapeutic targets, including the PI3K signaling pathway, CDK4/6 pathway, FGFR1 pathway and EGFR pathway. Additionally, we delve into alternative signaling pathways and potential targets that could offer new therapeutic avenues for LSCC. Lastly, we summarize the latest advancements in targeted therapy combined with immune checkpoint blockade (ICB) therapy for LSCC and discuss the prospects and challenges in this field.
Collapse
Affiliation(s)
- Qiuxuan Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoshuo Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weiting Cheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jian Li
- Institude of Experimental Immunology, University Clinic of Rheinische Friedrich-Wihelms-University, Bonn, Germany
| |
Collapse
|
20
|
Subramani R, Chatterjee A, Pedroza DA, Poudel S, Rajkumar P, Annabi J, Penner E, Lakshmanaswamy R. 2-methoxyestradiol inhibits the malignant behavior of triple negative breast cancer cells by altering their miRNome. Front Oncol 2024; 14:1371792. [PMID: 39328201 PMCID: PMC11424607 DOI: 10.3389/fonc.2024.1371792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a subtype of breast cancer with no effective targeted treatment currently available. Estrogen and its metabolites influence the growth of mammary cancer. Previously, we demonstrated the anti-cancer effects of 2-methoxyestradiol (2ME2) on mammary carcinogenesis. Materials and methods In the present study, we investigated the effects of 2ME2 on TNBC cells. TNBC (MDA-MB-231 and MDA-MB-468) and non-tumorigenic breast (MCF10A) cell lines were used to determine the effects of 2ME2 on cell proliferation (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; MTS assay), cell cycle (flow cytometric assay), migration (transwell migration assay), invasion (matrigel invasion assay), apoptosis (annexin V/propidium iodide assay), colony formation (soft agar assay), and miRNome (human miRNA profiling array). The miRNome data were analyzed using the c-BioPortal and Xena platforms. Moreover, Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and reactome pathway analyses were performed. Results We found that 2ME2 effectively inhibited cell proliferation and induced apoptosis. Furthermore, 2ME2 treatment arrested TNBC cells in the S-phase of the cell cycle. Treatment with 2ME2 also significantly decreased the aggressiveness of TNBC cells by inhibiting their migration and invasion. In addition, 2ME2 altered the miRNA expression in these cells. In silico analysis of the miRNome profile of 2ME2-treated MDA-MB-468 cells revealed that miRNAs altered the target genes involved in many different cancer hallmarks. Conclusion 2ME2 inhibits triple negative breast cancer by impacting major cellular processes like proliferation, apoptosis, metastasis, etc. It further modifies gene expression by altering the miRNome of triple negative breast cancer cells. Overall, our findings suggest 2ME2 as a potent anti-cancer drug for the treatment of TNBC.
Collapse
Affiliation(s)
- Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Animesh Chatterjee
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
| | - Diego A Pedroza
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Seeta Poudel
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
| | - Preetha Rajkumar
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT, United States
| | - Jeffrey Annabi
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
| | - Elizabeth Penner
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, United States
| |
Collapse
|
21
|
Gregoris F, Minervini G, Tosatto SCE. In Silico Exploration of AHR-HIF Pathway Interplay: Implications for Therapeutic Targeting in ccRCC. Genes (Basel) 2024; 15:1167. [PMID: 39336758 PMCID: PMC11431742 DOI: 10.3390/genes15091167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The oxygen-sensing pathway is a crucial regulatory circuit that defines cellular conditions and is extensively exploited in cancer development. Pathogenic mutations in the von Hippel-Lindau (VHL) tumour suppressor impair its role as a master regulator of hypoxia-inducible factors (HIFs), leading to constitutive HIF activation and uncontrolled angiogenesis, increasing the risk of developing clear cell renal cell carcinoma (ccRCC). HIF hyperactivation can sequester HIF-1β, preventing the aryl hydrocarbon receptor (AHR) from correctly activating gene expression in response to endogenous and exogenous ligands such as TCDD (dioxins). In this study, we used protein-protein interaction networks and gene expression profiling to characterize the impact of VHL loss on AHR activity. Our findings reveal specific expression patterns of AHR interactors following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and in ccRCC. We identified several AHR interactors significantly associated with poor survival rates in ccRCC patients. Notably, the upregulation of the androgen receptor (AR) and retinoblastoma-associated protein (RB1) by TCDD, coupled with their respective downregulation in ccRCC and association with poor survival rates, suggests novel therapeutic targets. The strategic activation of the AHR via selective AHR modulators (SAhRMs) could stimulate its anticancer activity, specifically targeting RB1 and AR to reduce cell cycle progression and metastasis formation in ccRCC. Our study provides comprehensive insights into the complex interplay between the AHR and HIF pathways in ccRCC pathogenesis, offering novel strategies for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Gregoris
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Giovanni Minervini
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
22
|
Glaviano A, Wander SA, Baird RD, Yap KCH, Lam HY, Toi M, Carbone D, Geoerger B, Serra V, Jones RH, Ngeow J, Toska E, Stebbing J, Crasta K, Finn RS, Diana P, Vuina K, de Bruin RAM, Surana U, Bardia A, Kumar AP. Mechanisms of sensitivity and resistance to CDK4/CDK6 inhibitors in hormone receptor-positive breast cancer treatment. Drug Resist Updat 2024; 76:101103. [PMID: 38943828 DOI: 10.1016/j.drup.2024.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Cell cycle dysregulation is a hallmark of cancer that promotes eccessive cell division. Cyclin-dependent kinase 4 (CDK4) and cyclin-dependent kinase 6 (CDK6) are key molecules in the G1-to-S phase cell cycle transition and are crucial for the onset, survival, and progression of breast cancer (BC). Small-molecule CDK4/CDK6 inhibitors (CDK4/6i) block phosphorylation of tumor suppressor Rb and thus restrain susceptible BC cells in G1 phase. Three CDK4/6i are approved for the first-line treatment of patients with advanced/metastatic hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) BC in combination with endocrine therapy (ET). Though this has improved the clinical outcomes for survival of BC patients, there is no established standard next-line treatment to tackle drug resistance. Recent studies suggest that CDK4/6i can modulate other distinct effects in both BC and breast stromal compartments, which may provide new insights into aspects of their clinical activity. This review describes the biochemistry of the CDK4/6-Rb-E2F pathway in HR+ BC, then discusses how CDK4/6i can trigger other effects in BC/breast stromal compartments, and finally outlines the mechanisms of CDK4/6i resistance that have emerged in recent preclinical studies and clinical cohorts, emphasizing the impact of these findings on novel therapeutic opportunities in BC.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90123, Italy
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard D Baird
- Cancer Research UK Cambridge Centre, Hills Road, Cambridge CB2 0QQ, UK
| | - Kenneth C-H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Masakazu Toi
- School of Medicine, Kyoto University, Kyoto, Japan
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90123, Italy
| | - Birgit Geoerger
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Inserm U1015, Université Paris-Saclay, Villejuif, France
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Robert H Jones
- Cardiff University and Velindre Cancer Centre, Museum Avenue, Cardiff CF10 3AX, UK
| | - Joanne Ngeow
- Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Experimental Medicine Building, 636921, Singapore; Cancer Genetics Service (CGS), National Cancer Centre Singapore, 168583, Singapore
| | - Eneda Toska
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK; Division of Cancer, Imperial College London, Hammersmith Campus, London, UK
| | - Karen Crasta
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Healthy Longetivity Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Richard S Finn
- Department of Oncology, Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90123, Italy
| | - Karla Vuina
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Uttam Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; SiNOPSEE Therapeutics Pte Ltd, A⁎STARTCentral, 139955, Singapore
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
23
|
Li W, Guo F, Zeng R, Liang H, Wang Y, Xiong W, Wu H, Yang C, Jin X. CDK4/6 Alters TBK1 Phosphorylation to Inhibit the STING Signaling Pathway in Prostate Cancer. Cancer Res 2024; 84:2588-2606. [PMID: 38861362 DOI: 10.1158/0008-5472.can-23-3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/02/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The efficacy of immunotherapy in patients with prostate cancer is limited due to the "cold" tumor microenvironment and the paucity of neoantigens. The STING-TBK1-IRF3 signaling axis is involved in innate immunity and has been increasingly recognized as a candidate target for cancer immunotherapy. Here, we found that treatment with CDK4/6 inhibitors stimulates the STING pathway and enhances the antitumor effect of STING agonists in prostate cancer. Mechanistically, CDK4/6 phosphorylated TBK1 at S527 to inactivate the STING signaling pathway independent of RB1 in prostate cancer cells. CDK4/6-mediated phosphorylation of RB1 at S249/T252 also induced the interaction of RB1 with TBK1 to diminish the phosphorylation of TBK1 at S172, which suppressed STING pathway activation. Overall, this study showed that CDK4/6 suppresses the STING pathway through RB1-dependent and RB1-independent pathways, indicating that CDK4/6 inhibition could be a potential strategy to overcome immunosuppression in prostate cancer. Significance: Inhibiting CDK4/6 activates STING-TBK1-IRF3 signaling in prostate cancer by regulating TBK1 phosphorylation, suggesting that the combination of CDK4/6 inhibitors and STING agonists could be an effective approach to stimulate innate immunity.
Collapse
Affiliation(s)
- Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruijiang Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Huaiyuan Liang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| |
Collapse
|
24
|
Li Z, Wan J, Li S, Tang Y, Lin YCD, Ni J, Cai X, Yu J, Huang HD, Lee TY. Multi-Omics Characterization of E3 Regulatory Patterns in Different Cancer Types. Int J Mol Sci 2024; 25:7639. [PMID: 39062881 PMCID: PMC11276688 DOI: 10.3390/ijms25147639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Ubiquitination, a post-translational modification, refers to the covalent attachment of ubiquitin molecules to substrates. This modification plays a critical role in diverse cellular processes such as protein degradation. The specificity of ubiquitination for substrates is regulated by E3 ubiquitin ligases. Dysregulation of ubiquitination has been associated with numerous diseases, including cancers. In our study, we first investigated the protein expression patterns of E3 ligases across 12 cancer types. Our findings indicated that E3 ligases tend to be up-regulated and exhibit reduced tissue specificity in tumors. Moreover, the correlation of protein expression between E3 ligases and substrates demonstrated significant changes in cancers, suggesting that E3-substrate specificity alters in tumors compared to normal tissues. By integrating transcriptome, proteome, and ubiquitylome data, we further characterized the E3-substrate regulatory patterns in lung squamous cell carcinoma. Our analysis revealed that the upregulation of the SKP2 E3 ligase leads to excessive degradation of BRCA2, potentially promoting tumor cell proliferation and metastasis. Furthermore, the upregulation of E3 ubiquitin-protein ligase TRIM33 was identified as a biomarker associated with a favorable prognosis by inhibiting the cell cycle. This work exemplifies how leveraging multi-omics data to analyze E3 ligases across various cancers can unveil prognosis biomarkers and facilitate the identification of potential drug targets for cancer therapy.
Collapse
Affiliation(s)
- Zhongyan Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Z.L.); (J.W.)
| | - Jingting Wan
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Z.L.); (J.W.)
| | - Shangfu Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Z.L.); (J.W.)
| | - Yun Tang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, No. 75, Boai Street, Hsinchu 300, Taiwan
| | - Yang-Chi-Dung Lin
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Z.L.); (J.W.)
| | - Jie Ni
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Z.L.); (J.W.)
| | - Xiaoxuan Cai
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Z.L.); (J.W.)
| | - Jinhan Yu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Z.L.); (J.W.)
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (Z.L.); (J.W.)
| | - Tzong-Yi Lee
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, No. 75, Boai Street, Hsinchu 300, Taiwan
| |
Collapse
|
25
|
Jiang Y, Ren X, Zhao J, Liu G, Liu F, Guo X, Hao M, Liu H, Liu K, Huang H. Exploring the Molecular Therapeutic Mechanisms of Gemcitabine through Quantitative Proteomics. J Proteome Res 2024; 23:2343-2354. [PMID: 38831540 DOI: 10.1021/acs.jproteome.3c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Gemcitabine (GEM) is widely employed in the treatment of various cancers, including pancreatic cancer. Despite their clinical success, challenges related to GEM resistance and toxicity persist. Therefore, a deeper understanding of its intracellular mechanisms and potential targets is urgently needed. In this study, through mass spectrometry analysis in data-dependent acquisition mode, we carried out quantitative proteomics (three independent replications) and thermal proteome profiling (TPP, two independent replications) on MIA PaCa-2 cells to explore the effects of GEM. Our proteomic analysis revealed that GEM led to the upregulation of the cell cycle and DNA replication proteins. Notably, we observed the upregulation of S-phase kinase-associated protein 2 (SKP2), a cell cycle and chemoresistance regulator. Combining SKP2 inhibition with GEM showed synergistic effects, suggesting SKP2 as a potential target for enhancing the GEM sensitivity. Through TPP, we pinpointed four potential GEM binding targets implicated in tumor development, including in breast and liver cancers, underscoring GEM's broad-spectrum antitumor capabilities. These findings provide valuable insights into GEM's molecular mechanisms and offer potential targets for improving treatment efficacy.
Collapse
Affiliation(s)
- Yue Jiang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuelian Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jing Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guobin Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fangfang Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinlong Guo
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Ming Hao
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kun Liu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - He Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
26
|
Zhang H, Lin J, Zheng S, Ma L, Pang Z, Yin H, Meng C, Wang Y, Han Q, Zhang X, Li Z, Cao L, Liu L, Fei T, Gao D, Yang L, Peng X, Ding C, Wang S, Sheng R. CDKL3 is a targetable regulator of cell cycle progression in cancers. J Clin Invest 2024; 134:e178428. [PMID: 38963708 PMCID: PMC11324297 DOI: 10.1172/jci178428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essential. Here, we identified that an underappreciated serine/threonine kinase, cyclin-dependent kinase-like 3 (CDKL3), crucially drives rapid cell cycle progression and cell growth in cancers. With regard to mechanism, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of cyclin-dependent kinase 4 (CDK4) by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized, and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes acquired resistance to CDK4/6 inhibitor. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presents an integrated paradigm of cancer cell cycle regulation and suggests CDKL3 targeting as a feasible approach in cancer treatment.
Collapse
Affiliation(s)
- Haijiao Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiahui Lin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shaoqin Zheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Lanjing Ma
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhongqiu Pang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hongyi Yin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chengcheng Meng
- Department of Pathology, the Fourth People’s Hospital of Shenyang, Shenyang, China
| | - Yinuo Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing Han
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xi Zhang
- College of Sciences, Northeastern University, Shenyang, China
| | - Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Liu Cao
- College of Basic Medical Science, China Medical University, Shenyang, China
| | - Lijun Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shixue Wang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Ren Sheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
27
|
Pathania AS, Chava H, Balusu R, Pasupulati AK, Coulter DW, Challagundla KB. The crosstalk between non-coding RNAs and cell-cycle events: A new frontier in cancer therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200785. [PMID: 38595981 PMCID: PMC10973673 DOI: 10.1016/j.omton.2024.200785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The cell cycle comprises sequential events during which a cell duplicates its genome and divides it into two daughter cells. This process is tightly regulated to ensure that the daughter cell receives identical copied chromosomal DNA and that any errors in the DNA during replication are correctly repaired. Cyclins and their enzyme partners, cyclin-dependent kinases (CDKs), are critical regulators of G- to M-phase transitions during the cell cycle. Mitogenic signals induce the formation of the cyclin/CDK complexes, resulting in phosphorylation and activation of the CDKs. Once activated, cyclin/CDK complexes phosphorylate specific substrates that drive the cell cycle forward. The sequential activation and inactivation of cyclin-CDK complexes are tightly controlled by activating and inactivating phosphorylation events induced by cell-cycle proteins. The non-coding RNAs (ncRNAs), which do not code for proteins, regulate cell-cycle proteins at the transcriptional and translational levels, thereby controlling their expression at different cell-cycle phases. Deregulation of ncRNAs can cause abnormal expression patterns of cell-cycle-regulating proteins, resulting in abnormalities in cell-cycle regulation and cancer development. This review explores how ncRNA dysregulation can disrupt cell division balance and discusses potential therapeutic approaches targeting these ncRNAs to control cell-cycle events in cancer treatment.
Collapse
Affiliation(s)
- Anup S. Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Haritha Chava
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Balusu
- Department of Hematologic Malignancies and Cellular Therapeutics, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Anil K. Pasupulati
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishore B. Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
28
|
Sung CYW, Li M, Jonjic S, Sanchez V, Britt WJ. Cytomegalovirus infection lengthens the cell cycle of granule cell precursors during postnatal cerebellar development. JCI Insight 2024; 9:e175525. [PMID: 38855871 PMCID: PMC11382886 DOI: 10.1172/jci.insight.175525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection in infants infected in utero can lead to a variety of neurodevelopmental disorders. However, mechanisms underlying altered neurodevelopment in infected infants remain poorly understood. We have previously described a murine model of congenital HCMV infection in which murine CMV (MCMV) spreads hematogenously and establishes a focal infection in all regions of the brain of newborn mice, including the cerebellum. Infection resulted in disruption of cerebellar cortical development characterized by reduced cerebellar size and foliation. This disruption was associated with altered cell cycle progression of the granule cell precursors (GCPs), which are the progenitors that give rise to granule cells (GCs), the most abundant neurons in the cerebellum. In the current study, we have demonstrated that MCMV infection leads to prolonged GCP cell cycle, premature exit from the cell cycle, and reduced numbers of GCs resulting in cerebellar hypoplasia. Treatment with TNF-α neutralizing antibody partially normalized the cell cycle alterations of GCPs and altered cerebellar morphogenesis induced by MCMV infection. Collectively, our results argue that virus-induced inflammation altered the cell cycle of GCPs resulting in a reduced numbers of GCs and cerebellar cortical hypoplasia, thus providing a potential mechanism for altered neurodevelopment in fetuses infected with HCMV.
Collapse
Affiliation(s)
- Cathy Yea Won Sung
- Department of Microbiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Mao Li
- Department of Pediatrics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - Stipan Jonjic
- Department of Histology and Embryology and
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Veronica Sanchez
- Department of Pediatrics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - William J Britt
- Department of Microbiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
- Department of Pediatrics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
- Department of Neurobiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
29
|
Conway PJ, Dao J, Kovalskyy D, Mahadevan D, Dray E. Polyploidy in Cancer: Causal Mechanisms, Cancer-Specific Consequences, and Emerging Treatments. Mol Cancer Ther 2024; 23:638-647. [PMID: 38315992 PMCID: PMC11174144 DOI: 10.1158/1535-7163.mct-23-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Drug resistance is the major determinant for metastatic disease and fatalities, across all cancers. Depending on the tissue of origin and the therapeutic course, a variety of biological mechanisms can support and sustain drug resistance. Although genetic mutations and gene silencing through epigenetic mechanisms are major culprits in targeted therapy, drug efflux and polyploidization are more global mechanisms that prevail in a broad range of pathologies, in response to a variety of treatments. There is an unmet need to identify patients at risk for polyploidy, understand the mechanisms underlying polyploidization, and to develop strategies to predict, limit, and reverse polyploidy thus enhancing efficacy of standard-of-care therapy that improve better outcomes. This literature review provides an overview of polyploidy in cancer and offers perspective on patient monitoring and actionable therapy.
Collapse
Affiliation(s)
- Patrick J Conway
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jonathan Dao
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Eloise Dray
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
30
|
Feng B, Wang X, Qiu D, Sun H, Deng J, Tan Y, Ji K, Xu S, Zhang S, Tang C. DDX18 Facilitates the Tumorigenesis of Lung Adenocarcinoma by Promoting Cell Cycle Progression through the Upregulation of CDK4. Int J Mol Sci 2024; 25:4953. [PMID: 38732173 PMCID: PMC11084921 DOI: 10.3390/ijms25094953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent and aggressive subtype of lung cancer, exhibiting a dismal prognosis with a five-year survival rate below 5%. DEAD-box RNA helicase 18 (DDX18, gene symbol DDX18), a crucial regulator of RNA metabolism, has been implicated in various cellular processes, including cell cycle control and tumorigenesis. However, its role in LUAD pathogenesis remains elusive. This study demonstrates the significant upregulation of DDX18 in LUAD tissues and its association with poor patient survival (from public databases). Functional in vivo and in vitro assays revealed that DDX18 knockdown potently suppresses LUAD progression. RNA sequencing and chromatin immunoprecipitation experiments identified cyclin-dependent kinase 4 (CDK4), a cell cycle regulator, as a direct transcriptional target of DDX18. Notably, DDX18 depletion induced G1 cell cycle arrest, while its overexpression promoted cell cycle progression even in normal lung cells. Interestingly, while the oncogenic protein c-Myc bound to the DDX18 promoter, it did not influence its expression. Collectively, these findings establish DDX18 as a potential oncogene in LUAD, functioning through the CDK4-mediated cell cycle pathway. DDX18 may represent a promising therapeutic target for LUAD intervention.
Collapse
Affiliation(s)
- Bingbing Feng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Xinying Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Ding Qiu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Haiyang Sun
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Jianping Deng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Ying Tan
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Kaile Ji
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Shaoting Xu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
| | - Shuishen Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ce Tang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou 510080, China
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
31
|
Cao X, Yan Z, Chen Z, Ge Y, Hu X, Peng F, Huang W, Zhang P, Sun R, Chen J, Ding M, Zong D, He X. The Emerging Role of Deubiquitinases in Radiosensitivity. Int J Radiat Oncol Biol Phys 2024; 118:1347-1370. [PMID: 38092257 DOI: 10.1016/j.ijrobp.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 02/05/2024]
Abstract
Radiation therapy is a primary treatment for cancer, but radioresistance remains a significant challenge in improving efficacy and reducing toxicity. Accumulating evidence suggests that deubiquitinases (DUBs) play a crucial role in regulating cell sensitivity to ionizing radiation. Traditional small-molecule DUB inhibitors have demonstrated radiosensitization effects, and novel deubiquitinase-targeting chimeras (DUBTACs) provide a promising strategy for radiosensitizer development by harnessing the ubiquitin-proteasome system. This review highlights the mechanisms by which DUBs regulate radiosensitivity, including DNA damage repair, the cell cycle, cell death, and hypoxia. Progress on DUB inhibitors and DUBTACs is summarized, and their potential radiosensitization effects are discussed. Developing drugs targeting DUBs appears to be a promising alternative approach to overcoming radioresistance, warranting further research into their mechanisms.
Collapse
Affiliation(s)
- Xiang Cao
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zhenyu Yan
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zihan Chen
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhi Ge
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xinyu Hu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Fanyu Peng
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Wenxuan Huang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Pingchuan Zhang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Ruozhou Sun
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jiazhen Chen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Mingjun Ding
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Dan Zong
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Xia He
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
32
|
Flower CT, Liu C, Chuang HY, Ye X, Cheng H, Heath JR, Wei W, White FM. Signaling and transcriptional dynamics underlying early adaptation to oncogenic BRAF inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581004. [PMID: 39071317 PMCID: PMC11275845 DOI: 10.1101/2024.02.19.581004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A major contributor to poor sensitivity to anti-cancer kinase inhibitor therapy is drug-induced cellular adaptation, whereby remodeling of signaling and gene regulatory networks permits a drug-tolerant phenotype. Here, we resolve the scale and kinetics of critical subcellular events following oncogenic kinase inhibition and preceding cell cycle re-entry, using mass spectrometry-based phosphoproteomics and RNA sequencing to capture molecular snapshots within the first minutes, hours, and days of BRAF kinase inhibitor exposure in a human BRAF -mutant melanoma model of adaptive therapy resistance. By enriching specific phospho-motifs associated with mitogenic kinase activity, we monitored the dynamics of thousands of growth- and survival-related protein phosphorylation events under oncogenic BRAF inhibition and drug removal. We observed early and sustained inhibition of the BRAF-ERK axis, gradual downregulation of canonical cell cycle-dependent signals, and three distinct and reversible phase transitions toward quiescence. Statistical inference of kinetically-defined signaling and transcriptional modules revealed a concerted response to oncogenic BRAF inhibition and a dominant compensatory induction of SRC family kinase (SFK) signaling, which we found to be at least partially driven by accumulation of reactive oxygen species via impaired redox homeostasis. This induction sensitized cells to co-treatment with an SFK inhibitor across a panel of patient-derived melanoma cell lines and in an orthotopic mouse xenograft model, underscoring the translational potential for measuring the early temporal dynamics of signaling and transcriptional networks under therapeutic challenge.
Collapse
|
33
|
Zhong N, Yu D, Yang M, Lu X, Zhang Q, Wei W, Jiao J, Yang X, Zhu Z, Chen S, Xiao J. A retrospective study on the mechanism underlying quick transfer from response to resistance in a repeated recurrent chordoma patient with molecular alterations treated with Palbociclib. J Cancer Res Clin Oncol 2024; 150:95. [PMID: 38369555 PMCID: PMC10874909 DOI: 10.1007/s00432-023-05560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 02/20/2024]
Abstract
PURPOSE There is no approved targeted therapy for chordoma at present. Although several preclinical studies have implied the potential applicability of CDK4/6 inhibitor for this rare tumor, no clinical evidence has been documented so far. The purpose of this study was to elucidate the therapeutic efficacy of CDK4/6 inhibitor for chordoma. METHODS The next generation sequencing (as for whole-exome sequencing, WES assay) and immunohistochemical (IHC) staining of the chordoma tissue from a patient with an advanced lesion were performed before treatment. Then, the patient was treated with Palbociclib for 4 months until progression occurred in the 5th month. Surgical resection was implemented and the tumor tissue was obtained postoperatively for assessment of molecular alterations. RESULTS Molecular features of the tumor before medical treatment suggested applicability of CDK4/6 inhibitor and the patient showed partial response (PR) according to Choi Criteria after 4 months treating with Palbociclib until progression occurred. Then, a drastic molecular alteration of the tumor as represented by emergence of dramatic E2F amplification, which is known to induce CDK4/6 independent cell-cycle entry and progression after treatment, was detected. The findings in this patient demonstrated tumor evolution under drug pressure. CONCLUSION The findings of the present study suggest the feasibility of Palbociclib for the clinical treatment of chordoma, and imply the necessity of combination therapies rather single drug administration due to the quick resistance of the tumor to Palbociclib treatment.
Collapse
Affiliation(s)
- Nanzhe Zhong
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Dong Yu
- Center of Translational Medicine, Naval Medical University, Shanghai, China
| | - Minglei Yang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xingyi Lu
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Qiangzu Zhang
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Wei Wei
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jian Jiao
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xinghai Yang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhi Zhu
- Department of Pathology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Su Chen
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Jianru Xiao
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
34
|
Yoshioka S, Arakawa Y, Hasegawa M, Kato S, Hashimoto H, Mori S, Ueda H, Watanabe M. Twin study: genotype-dependent epigenetic factors affecting free thyroxine levels in the normal range. Epigenomics 2024; 16:147-158. [PMID: 38264851 DOI: 10.2217/epi-2023-0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Aim: To explore the clinical application of DNA methylation affecting thyroid function, we evaluated the association of DNA methylation with free thyroxine (FT4) and TSH measurements in monozygotic twins. Materials & methods: Discordant pairs for FT4 or TSH levels were examined for the relationship between the within-pair difference of each measurement and the DNA methylation levels using epigenome-wide association studies. The contribution of polymorphisms to the methylation sensitivity was also examined. Results: We found two CpG sites significantly associated with FT4 levels, and also some CpG sites showing significant differences in their methylation levels within FT4-discordant pairs depending on the polymorphism in EPHB2. Conclusion: The FT4 level may be associated with a combination of methylation and polymorphisms in the EPHB2 gene.
Collapse
Affiliation(s)
- Saki Yoshioka
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Yuya Arakawa
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Mika Hasegawa
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Shiho Kato
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Hinako Hashimoto
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Saho Mori
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Hiromichi Ueda
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Mikio Watanabe
- Department of Clinical Laboratory & Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
- Center for Twin Research, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
35
|
Purohit L, Jones C, Gonzalez T, Castrellon A, Hussein A. The Role of CD4/6 Inhibitors in Breast Cancer Treatment. Int J Mol Sci 2024; 25:1242. [PMID: 38279242 PMCID: PMC10816395 DOI: 10.3390/ijms25021242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Over the last decade, treatment paradigms for breast cancer have undergone a renaissance, particularly in hormone-receptor-positive/HER2-negative breast cancer. These revolutionary therapies are based on the selective targeting of aberrancies within the cell cycle. This shift towards targeted therapies has also changed the landscape of disease monitoring. In this article, we will review the fundamentals of cell cycle progression in the context of the new cyclin-dependent kinase inhibitors. In addition to discussing the currently approved cyclin-dependent kinase inhibitors for breast cancer, we will explore the ongoing development and search for predictive biomarkers and modalities to monitor treatment.
Collapse
Affiliation(s)
| | | | | | - Aurelio Castrellon
- Memorial Health System, Pembroke Pines, FL 33024, USA; (L.P.); (C.J.); (T.G.); (A.H.)
| | | |
Collapse
|
36
|
Sharma S, Rana R, Prakash P, Ganguly NK. Drug target therapy and emerging clinical relevance of exosomes in meningeal tumors. Mol Cell Biochem 2024; 479:127-170. [PMID: 37016182 PMCID: PMC10072821 DOI: 10.1007/s11010-023-04715-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Meningioma is the most common central nervous system (CNS) tumor. In recent decades, several efforts have been made to eradicate this disease. Surgery and radiotherapy remain the standard treatment options for these tumors. Drug therapy comes to play its role when both surgery and radiotherapy fail to treat the tumor. This mostly happens when the tumors are close to vital brain structures and are nonbenign. Although a wide variety of chemotherapeutic drugs and molecular targeted drugs such as tyrosine kinase inhibitors, alkylating agents, endocrine drugs, interferon, and targeted molecular pathway inhibitors have been studied, the roles of numerous drugs remain unexplored. Recent interest is growing toward studying and engineering exosomes for the treatment of different types of cancer including meningioma. The latest studies have shown the involvement of exosomes in the theragnostic of various cancers such as the lung and pancreas in the form of biomarkers, drug delivery vehicles, and vaccines. Proper attention to this new emerging technology can be a boon in finding the consistent treatment of meningioma.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062 India
| | | |
Collapse
|
37
|
Pintado-Grima C, Bárcenas O, Ventura S. Expanding the Landscape of Amyloid Sequences with CARs-DB: A Database of Polar Amyloidogenic Peptides from Disordered Proteins. Methods Mol Biol 2024; 2714:171-185. [PMID: 37676599 DOI: 10.1007/978-1-0716-3441-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Several databases collecting amyloidogenic regions have been released to provide information on protein sequences able to form amyloid fibrils. However, most of these resources are built with data from experiments that detect highly hydrophobic stretches located within transiently exposed protein segments. We recently demonstrated that cryptic amyloidogenic regions (CARs) of polar nature have the potential to form amyloid fibrils in vitro. Given the underrepresentation of these types of sequences in current amyloid databases, we developed CARs-DB, the first repository that collects thousands of predicted CARs from intrinsically disordered regions. This protocol chapter describes how to use CARs-DB to search for sequences of interest that might be connected to disease or functional protein-protein interactions. In addition, we provide study cases to illustrate the database's features to users. The CARs-DB is readily accessible at http://carsdb.ppmclab.com/ .
Collapse
Affiliation(s)
- Carlos Pintado-Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
38
|
Hua T, Xue Y, Sarker DB, Kiran S, Li Y, Sang QXA. Modeling human brain rhabdoid tumor by inactivating tumor suppressor genes in induced pluripotent stem cells. Bioact Mater 2024; 31:136-150. [PMID: 37637078 PMCID: PMC10448240 DOI: 10.1016/j.bioactmat.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Atypical teratoid/rhabdoid tumor (ATRT) is a rare childhood malignancy that originates in the central nervous system. Over ninety-five percent of ATRT patients have biallelic inactivation of the tumor suppressor gene SMARCB1. ATRT has no standard treatment, and a major limiting factor in therapeutic development is the lack of reliable ATRT models. We employed CRISPR/Cas9 gene-editing technology to knock out SMARCB1 and TP53 genes in human episomal induced pluripotent stem cells (Epi-iPSCs), followed by brief neural induction, to generate an ATRT-like model. The dual knockout Epi-iPSCs retained their stemness with the capacity to differentiate into three germ layers. High expression of OCT4 and NANOG in neurally induced knockout spheroids was comparable to that in two ATRT cell lines. Beta-catenin protein expression was higher in SMARCB1-deficient cells and spheroids than in normal Epi-iPSC-derived spheroids. Nucleophosmin, Osteopontin, and Ki-67 proteins were also expressed by the SMARCB1-deficient spheroids. In summary, the tumor model resembled embryonal features of ATRT and expressed ATRT biomarkers at mRNA and protein levels. Ribociclib, PTC-209, and the combination of clofilium tosylate and pazopanib decreased the viability of the ATRT-like cells. This disease modeling scheme may enable the establishment of individualized tumor models with patient-specific mutations and facilitate high-throughput drug testing.
Collapse
Affiliation(s)
- Timothy Hua
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| | - Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| | - Sonia Kiran
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310-6046, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| |
Collapse
|
39
|
Järvinen J, Montaser AB, Adla SK, Leppänen J, Lehtonen M, Vellonen KS, Laitinen T, Jalkanen A, Elmquist WF, Timonen J, Huttunen KM, Rautio J. Altering distribution profile of palbociclib by its prodrugs. Eur J Pharm Sci 2024; 192:106637. [PMID: 37967656 DOI: 10.1016/j.ejps.2023.106637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Palbociclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor, is currently used clinically for treating hormone receptor-positive and human epidermal growth factor receptor 2 negative breast cancer. Additionally, it has the potential to be utilized in the treatment of various tumors, including malignant glioblastoma. Previous research has indicated that palbociclib is a substrate for two efflux transporters, P-glycoprotein (P-gp; MDR1) and breast cancer-resistant protein (BCRP), which restrict the brain exposure of palbociclib. In the present study, our objective was to alter the brain distribution pattern of palbociclib by creating and assessing two novel prodrugs through in vitro, in situ, and in vivo evaluations. To this end, we synthesized two prodrugs of palbociclib by attaching it to the tyrosine promoiety at the para- (PD1) and meta-(PD2) position via a carbamate bond. We hypothesized that the prodrugs could bypass efflux transporter-mediated drug resistance by leveraging the l-type amino acid transporter (LAT1) to facilitate their transport across the blood-brain barrier (BBB) and into cancer cells, such as glioma cells that express LAT1. The compounds PD1 and PD2 did not show selective binding and had limited inhibitory effects on LAT1 in three cell lines (MCF-7, U87-MG, HEK-hLAT1). However, PD1 and PD2 demonstrated the ability to evade efflux mechanisms, and their in vitro uptake profiles were comparable to that of palbociclib, indicating their potential for effective cellular transport. In in situ and in vivo studies, brain uptake was not significantly improved compared to palbociclib, but the pharmacokinetic profiles showed encouraging enhancements. PD1 exhibited a higher AUCbrain/plasma ratio, suggesting safer dosing, while PD2 showed favorable long-acting pharmacokinetics. Although our prodrug design did not significantly improve palbociclib brain delivery due to the potential size limitation of the prodrugs, the study provides valuable insights for future prodrug development and drug delivery strategies targeting specific transporters.
Collapse
Affiliation(s)
- Juulia Järvinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Ahmed B Montaser
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Santosh Kumar Adla
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jukka Leppänen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kati-Sisko Vellonen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tuomo Laitinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Aaro Jalkanen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - William F Elmquist
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Juri Timonen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014 Helsinki, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
40
|
Saunders H, Dias WB, Slawson C. Growing and dividing: how O-GlcNAcylation leads the way. J Biol Chem 2023; 299:105330. [PMID: 37820866 PMCID: PMC10641531 DOI: 10.1016/j.jbc.2023.105330] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
Cell cycle errors can lead to mutations, chromosomal instability, or death; thus, the precise control of cell cycle progression is essential for viability. The nutrient-sensing posttranslational modification, O-GlcNAc, regulates the cell cycle allowing one central control point directing progression of the cell cycle. O-GlcNAc is a single N-acetylglucosamine sugar modification to intracellular proteins that is dynamically added and removed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. These enzymes act as a rheostat to fine-tune protein function in response to a plethora of stimuli from nutrients to hormones. O-GlcNAc modulates mitogenic growth signaling, senses nutrient flux through the hexosamine biosynthetic pathway, and coordinates with other nutrient-sensing enzymes to progress cells through Gap phase 1 (G1). At the G1/S transition, O-GlcNAc modulates checkpoint control, while in S Phase, O-GlcNAcylation coordinates the replication fork. DNA replication errors activate O-GlcNAcylation to control the function of the tumor-suppressor p53 at Gap Phase 2 (G2). Finally, in mitosis (M phase), O-GlcNAc controls M phase progression and the organization of the mitotic spindle and midbody. Critical for M phase control is the interplay between OGT and OGA with mitotic kinases. Importantly, disruptions in OGT and OGA activity induce M phase defects and aneuploidy. These data point to an essential role for the O-GlcNAc rheostat in regulating cell division. In this review, we highlight O-GlcNAc nutrient sensing regulating G1, O-GlcNAc control of DNA replication and repair, and finally, O-GlcNAc organization of mitotic progression and spindle dynamics.
Collapse
Affiliation(s)
- Harmony Saunders
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wagner B Dias
- Federal University of Rio De Janeiro, Rio De Janeiro, Brazil; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
41
|
Milletti G, Colicchia V, Cecconi F. Cyclers' kinases in cell division: from molecules to cancer therapy. Cell Death Differ 2023; 30:2035-2052. [PMID: 37516809 PMCID: PMC10482880 DOI: 10.1038/s41418-023-01196-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Faithful eucaryotic cell division requires spatio-temporal orchestration of multiple sequential events. To ensure the dynamic nature of these molecular and morphological transitions, a swift modulation of key regulatory pathways is necessary. The molecular process that most certainly fits this description is phosphorylation, the post-translational modification provided by kinases, that is crucial to allowing the progression of the cell cycle and that culminates with the separation of two identical daughter cells. In detail, from the early stages of the interphase to the cytokinesis, each critical step of this process is tightly regulated by multiple families of kinases including the Cyclin-dependent kinases (CDKs), kinases of the Aurora, Polo, Wee1 families, and many others. While cell-cycle-related CDKs control the timing of the different phases, preventing replication machinery errors, the latter modulate the centrosome cycle and the spindle function, avoiding karyotypic abnormalities typical of chromosome instability. Such chromosomal abnormalities may result from replication stress (RS) and chromosome mis-segregation and are considered a hallmark of poor prognosis, therapeutic resistance, and metastasis in cancer patients. Here, we discuss recent advances in the understanding of how different families of kinases concur to govern cell cycle, preventing RS and mitotic infidelity. Additionally, considering the growing number of clinical trials targeting these molecules, we review to what extent and in which tumor context cell-cycle-related kinases inhibitors are worth exploiting as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Giacomo Milletti
- DNA Replication and Cancer Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| | - Valeria Colicchia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- IRBM S.p.A., Via Pontina Km 30.60, 00070, Pomezia, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark.
- Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
42
|
Flint AC, Mitchell DK, Angus SP, Smith AE, Bessler W, Jiang L, Mang H, Li X, Lu Q, Rodriguez B, Sandusky GE, Masters AR, Zhang C, Dang P, Koenig J, Johnson GL, Shen W, Liu J, Aggarwal A, Donoho GP, Willard MD, Bhagwat SV, Wade Clapp D, Rhodes SD. Combined CDK4/6 and ERK1/2 Inhibition Enhances Antitumor Activity in NF1-Associated Plexiform Neurofibroma. Clin Cancer Res 2023; 29:3438-3456. [PMID: 37406085 PMCID: PMC11060649 DOI: 10.1158/1078-0432.ccr-22-2854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/06/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE Plexiform neurofibromas (PNF) are peripheral nerve sheath tumors that cause significant morbidity in persons with neurofibromatosis type 1 (NF1), yet treatment options remain limited. To identify novel therapeutic targets for PNF, we applied an integrated multi-omic approach to quantitatively profile kinome enrichment in a mouse model that has predicted therapeutic responses in clinical trials for NF1-associated PNF with high fidelity. EXPERIMENTAL DESIGN Utilizing RNA sequencing combined with chemical proteomic profiling of the functionally enriched kinome using multiplexed inhibitor beads coupled with mass spectrometry, we identified molecular signatures predictive of response to CDK4/6 and RAS/MAPK pathway inhibition in PNF. Informed by these results, we evaluated the efficacy of the CDK4/6 inhibitor, abemaciclib, and the ERK1/2 inhibitor, LY3214996, alone and in combination in reducing PNF tumor burden in Nf1flox/flox;PostnCre mice. RESULTS Converging signatures of CDK4/6 and RAS/MAPK pathway activation were identified within the transcriptome and kinome that were conserved in both murine and human PNF. We observed robust additivity of the CDK4/6 inhibitor, abemaciclib, in combination with the ERK1/2 inhibitor, LY3214996, in murine and human NF1(Nf1) mutant Schwann cells. Consistent with these findings, the combination of abemaciclib (CDK4/6i) and LY3214996 (ERK1/2i) synergized to suppress molecular signatures of MAPK activation and exhibited enhanced antitumor activity in Nf1flox/flox;PostnCre mice in vivo. CONCLUSIONS These findings provide rationale for the clinical translation of CDK4/6 inhibitors alone and in combination with therapies targeting the RAS/MAPK pathway for the treatment of PNF and other peripheral nerve sheath tumors in persons with NF1.
Collapse
Affiliation(s)
- Alyssa C. Flint
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dana K. Mitchell
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven P. Angus
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | - Abbi E. Smith
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Waylan Bessler
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Li Jiang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Henry Mang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaohong Li
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qingbo Lu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brooke Rodriguez
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George E. Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andi R. Masters
- Clinical Pharmacology Analytical Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chi Zhang
- Center for Computational Biology and Bioinformatics and Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Pengtao Dang
- Center for Computational Biology and Bioinformatics and Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Jenna Koenig
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN USA
| | - Gary L. Johnson
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Weihua Shen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jiangang Liu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Amit Aggarwal
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Gregory P. Donoho
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Melinda D. Willard
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Shripad V. Bhagwat
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - D. Wade Clapp
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | - Steven D. Rhodes
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
43
|
Liang XB, Dai ZC, Zou R, Tang JX, Yao CW. The Therapeutic Potential of CDK4/6 Inhibitors, Novel Cancer Drugs, in Kidney Diseases. Int J Mol Sci 2023; 24:13558. [PMID: 37686364 PMCID: PMC10487876 DOI: 10.3390/ijms241713558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Inflammation is a crucial pathological feature in cancers and kidney diseases, playing a significant role in disease progression. Cyclin-dependent kinases CDK4 and CDK6 not only contribute to cell cycle progression but also participate in cell metabolism, immunogenicity and anti-tumor immune responses. Recently, CDK4/6 inhibitors have gained approval for investigational treatment of breast cancer and various other tumors. Kidney diseases and cancers commonly exhibit characteristic pathological features, such as the involvement of inflammatory cells and persistent chronic inflammation. Remarkably, CDK4/6 inhibitors have demonstrated impressive efficacy in treating non-cancerous conditions, including certain kidney diseases. Current studies have identified the renoprotective effect of CDK4/6 inhibitors, presenting a novel idea and potential direction for treating kidney diseases in the future. In this review, we briefly reviewed the cell cycle in mammals and the role of CDK4/6 in regulating it. We then provided an introduction to CDK4/6 inhibitors and their use in cancer treatment. Additionally, we emphasized the importance of these inhibitors in the treatment of kidney diseases. Collectively, growing evidence demonstrates that targeting CDK4 and CDK6 through CDK4/6 inhibitors might have therapeutic benefits in various cancers and kidney diseases and should be further explored in the future.
Collapse
Affiliation(s)
| | | | | | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Cui-Wei Yao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
44
|
Pašalić D, Nikuševa-Martić T, Sekovanić A, Kaštelan S. Genetic and Epigenetic Features of Uveal Melanoma-An Overview and Clinical Implications. Int J Mol Sci 2023; 24:12807. [PMID: 37628989 PMCID: PMC10454135 DOI: 10.3390/ijms241612807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Uveal melanoma (UM) is rare, but it is the most common primary intraocular malignancy among adults. This review represents the molecular, genetic, and immunobiological mechanisms involved in UM carcinogenesis and progression, as well as data about the association of chromosomal changes, genetic mutations, selective proteins, and biochemical biomarkers with the clinical implications of UM. Genetic analysis has the potential to identify patients with a high risk of UM metastasis, enabling management that is more effective and allowing for the follow-up of patients. Advancements in molecular characterization of UM offer opportunities to develop targeted therapeutic strategies by focusing on relevant signaling pathways. Changes in miRNA expression could be useful in the diagnosis and prognosis of UM, due to unique miRNA profiles in melanoma cells or tissue and its association with metastasis. Although liver function tests do not provide enough data on the prognosis of UM, due to the high frequency of liver metastasis, liver function tests (LFTs) might be useful indicators; however, the absence of rising LFT values cannot lead to the exclusion of liver metastases. Molecular analysis of tumor tissue will allow us to identify patients with the added benefit of new therapeutic agents and provide a better insight into melanoma pathogenesis and its biological behavior.
Collapse
Affiliation(s)
- Daria Pašalić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Tamara Nikuševa-Martić
- Department of Biology and Genetics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ankica Sekovanić
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia;
| | - Snježana Kaštelan
- Department of Ophthalmology and Optometry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Ophthalmology, Clinical Hospital Dubrava, 10000 Zagreb, Croatia
| |
Collapse
|
45
|
Arora M, Moser J, Hoffman TE, Watts LP, Min M, Musteanu M, Rong Y, Ill CR, Nangia V, Schneider J, Sanclemente M, Lapek J, Nguyen L, Niessen S, Dann S, VanArsdale T, Barbacid M, Miller N, Spencer SL. Rapid adaptation to CDK2 inhibition exposes intrinsic cell-cycle plasticity. Cell 2023; 186:2628-2643.e21. [PMID: 37267950 DOI: 10.1016/j.cell.2023.05.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 10/10/2022] [Accepted: 05/10/2023] [Indexed: 06/04/2023]
Abstract
CDK2 is a core cell-cycle kinase that phosphorylates many substrates to drive progression through the cell cycle. CDK2 is hyperactivated in multiple cancers and is therefore an attractive therapeutic target. Here, we use several CDK2 inhibitors in clinical development to interrogate CDK2 substrate phosphorylation, cell-cycle progression, and drug adaptation in preclinical models. Whereas CDK1 is known to compensate for loss of CDK2 in Cdk2-/- mice, this is not true of acute inhibition of CDK2. Upon CDK2 inhibition, cells exhibit a rapid loss of substrate phosphorylation that rebounds within several hours. CDK4/6 activity backstops inhibition of CDK2 and sustains the proliferative program by maintaining Rb1 hyperphosphorylation, active E2F transcription, and cyclin A2 expression, enabling re-activation of CDK2 in the presence of drug. Our results augment our understanding of CDK plasticity and indicate that co-inhibition of CDK2 and CDK4/6 may be required to suppress adaptation to CDK2 inhibitors currently under clinical assessment.
Collapse
Affiliation(s)
- Mansi Arora
- Department of Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80303, USA
| | - Justin Moser
- Department of Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80303, USA
| | - Timothy E Hoffman
- Department of Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80303, USA
| | - Lotte P Watts
- Department of Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80303, USA
| | - Mingwei Min
- Department of Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80303, USA; Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Monica Musteanu
- Experimental Oncology Group, Molecular Oncology Programme, Spanish National Cancer Research Centre, Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yao Rong
- Department of Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80303, USA; Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80303, USA
| | - C Ryland Ill
- Department of Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80303, USA
| | - Varuna Nangia
- Department of Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80303, USA
| | - Jordan Schneider
- Department of Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80303, USA
| | - Manuel Sanclemente
- Experimental Oncology Group, Molecular Oncology Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - John Lapek
- Oncology Research & Development, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Lisa Nguyen
- Oncology Research & Development, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Sherry Niessen
- Oncology Research & Development, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Stephen Dann
- Oncology Research & Development, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Todd VanArsdale
- Oncology Research & Development, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Mariano Barbacid
- Experimental Oncology Group, Molecular Oncology Programme, Spanish National Cancer Research Centre, Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Nichol Miller
- Oncology Research & Development, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Sabrina L Spencer
- Department of Biochemistry and BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
46
|
Qin A. An anti-cancer surveillance by the interplay between interferon-beta and retinoblastoma protein RB1. Front Oncol 2023; 13:1173467. [PMID: 37182173 PMCID: PMC10174298 DOI: 10.3389/fonc.2023.1173467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Interferon-beta (IFN-β), an extracellular cytokine that initiates signaling pathways for gene regulation, has been demonstrated to function as a tumor suppressor protein through lentiviral gene transduction. In this article, I review the relevant previous works and propose a cell cycle-based, tumor suppressor protein-mediated mechanism of anti-cancer surveillance. IFN-β induces a tumor cell cycle alteration that leads to S phase accumulation, senescence entry, and a loss of tumorigenicity in solid tumor cells. IFN-β does not show a significant cell cycle effect in their normal counterparts. Retinoblastoma protein RB1, another tumor suppressor protein, tightly controls the cell cycle and differentiation of normal cells, preventing them from being significantly impacted by the IFN-β effect. The interplay between IFN-β and RB1 acts as a mechanism of cell cycle-based, tumor suppressor protein-mediated anti-cancer surveillance that can selectively suppress solid tumor or proliferating transformed cells from the loss of control leading to cancer. This mechanism has important implications for the treatment of solid tumors.
Collapse
Affiliation(s)
- Albert Qin
- Medical Research & Clinical Operations, PharmaEssentia Corporation, Taipei, Taiwan
| |
Collapse
|
47
|
Gao Y, Liu T, Liu J, Yang Y, Sun K, Li Z, Zhai X, Zuo D. ZYY-B-2, a novel ALK inhibitor, overcomes resistance to ceritinib by inhibiting P-gp function and induces apoptosis through mitochondrial pathway in ceritinib-resistant H2228 cells. Chem Biol Interact 2023; 379:110516. [PMID: 37116853 DOI: 10.1016/j.cbi.2023.110516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Targeting the Echinoderm microtubule-associated protein-like 4 and anaplastic lymphoma kinase (EML4-ALK) fusion gene is a promising therapeutic strategy for non-small-cell lung cancer (NSCLC) patients. With the advent of the first- and second-generation ALK inhibitors, the mortality rate of lung cancer has shown a downward trend, but almost inevitably, patients will eventually develop resistance, which severely limits the clinical application. Hence, developing new ALK inhibitors which can overcome resistance is essential. Here, we synthesized a novel ALK inhibitor 1-[4-[[5-Chloro-4-[[2-[(1-methylethyl)sulfonyl]phenyl]amino]-2-pyrimidinyl]amino]-3-methoxyphenyl]-3-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-2-imidazolidinone (ZYY-B-2) based on the structure of the second-generation ALK inhibitor ceritinib. ZYY-B-2 exhibited impressive anti-proliferative effect in the EML4-ALK positive H2228 cells and ceritinib-resistant H2228 (H2228/Cer) cells. Meanwhile, ZYY-B-2 inhibited the activation of p-ALK in a concentration-dependent manner, and inactivated its downstream target proteins p-AKT and p-ERK to inhibit cell proliferation. Subsequently, we found that ZYY-B-2 blocked H2228 cells and H2228/Cer cells in G0/G1 phase and induced cells to undergo apoptosis through the mitochondrial pathway. The ability of its anti-proliferation and pro-apoptosis was significantly stronger than the second generation ALK inhibitor ceritinib. In addition, high expression of P-gp was found in H2228/Cer cells compared with H2228 cells. ZYY-B-2 could inhibit the expression of P-gp in a dose-dependent manner to overcome ceritinib resistance, and the suppression effect of ZYY-B-2 on P-gp might be related to its inhibition of PI3K/AKT signaling pathway. In summary, ZYY-B-2, a promising ALK inhibitor, shows potent activity against ceritinib-resistant cells, which provides experimental and theoretical basis for the further development of new ALK inhibitors.
Collapse
Affiliation(s)
- Ying Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Tong Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Jingang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yuying Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Keyan Sun
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
48
|
Zabihi M, Lotfi R, Yousefi AM, Bashash D. Cyclins and cyclin-dependent kinases: from biology to tumorigenesis and therapeutic opportunities. J Cancer Res Clin Oncol 2023; 149:1585-1606. [PMID: 35781526 DOI: 10.1007/s00432-022-04135-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/13/2022] [Indexed: 12/20/2022]
Abstract
The discussion on cell proliferation cannot be continued without taking a look at the cell cycle regulatory machinery. Cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors (CKIs) are valuable members of this system and their equilibrium guarantees the proper progression of the cell cycle. As expected, any dysregulation in the expression or function of these components can provide a platform for excessive cell proliferation leading to tumorigenesis. The high frequency of CDK abnormalities in human cancers, together with their druggable structure has raised the possibility that perhaps designing a series of inhibitors targeting CDKs might be advantageous for restricting the survival of tumor cells; however, their application has faced a serious concern, since these groups of serine-threonine kinases possess non-canonical functions as well. In the present review, we aimed to take a look at the biology of CDKs and then magnify their contribution to tumorigenesis. Then, by arguing the bright and dark aspects of CDK inhibition in the treatment of human cancers, we intend to reach a consensus on the application of these inhibitors in clinical settings.
Collapse
Affiliation(s)
- Mitra Zabihi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Lotfi
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Abdallah HY, Fareed A, Abdelmaogood AKK, Allam S, Abdelgawad M, Deen LATE. Introducing Circulating Vasculature-Related Transcripts as Biomarkers in Coronary Artery Disease. Mol Diagn Ther 2023; 27:243-259. [PMID: 36538237 PMCID: PMC10008268 DOI: 10.1007/s40291-022-00622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Atherosclerotic plaque is considered the hallmark of atherosclerotic lesions in coronary atherosclerosis (CAS), the primary pathogenesis in coronary artery disease (CAD), which develops and progresses through a complex interplay between immune cells, vascular cells, and endothelial shear stresses. Early diagnosis of CAS is critical for avoiding plaque rupture and sudden death. Therefore, identifying new CAD biomarkers linked to vessel wall functions, such as RNA molecules with their distinct signature, is a promising development for these patients. With this rationale, the present study investigated the expression level of the vascular-related RNA transcripts (lncRNA ANRIL, miRNA-126-5p, CDK4, CDK6, TGF-β, E-cadherin, and TNF-α) implicated in the cellular vascular function, proliferation, and inflammatory processes. METHODS A case-control study design with a total of 180 subjects classified participants into two groups; CAD and control groups. The relative expression levels of the seven transcripts under study-selected using online bioinformatics tools and current literature-were assessed in the plasma of all study participants using RT-qPCR. Their predictive significance testing, scoring of disease prioritization, enrichment analysis, and the miRNA-mRNA regulatory network was investigated. RESULTS The relative expression levels of all seven of the circulating vascular-related transcripts under study were statistically significant between CAD patients and controls. Receiver operating characteristic (ROC) analysis results indicated the statistical significance of all the transcripts under study with CDK4 showing the highest area under the curve (AUC) equivalent to 0.91, followed by E-cadherin (0.90), miRNA-126-5p (0.83), ANRIL (0.82), TNF-α (0.63), TGF-β (0.62), and CDK6 (0.59), in descending order. A strong association was detected between most of the transcripts studied in CAD patients with a significant Spearman's correlation coefficient with a two-tailed significance of p < 0.001. Network analysis revealed a strong relationship between the five circulating vasculature transcripts studied and their target miRNAs and miR-126-5p, but not for ANRIL. CONCLUSION The seven circulating vascular-related RNA transcripts under study could serve as potential CAD biomarkers, reflecting the cellular vascular function, proliferation, and inflammatory processes in CAD patients. Therefore, blood transcriptome analysis opens new frontiers for the non-invasive diagnosis of CAD.
Collapse
Affiliation(s)
- Hoda Y Abdallah
- Medical Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt. .,Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Ahmed Fareed
- Department of Cardiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Asmaa K K Abdelmaogood
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Sahar Allam
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Loaa A Tag El Deen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
50
|
Jung HA, Kim M, Kim HS, Kim JH, Choi YH, Cho J, Park JH, Park KU, Ku BM, Park S, Sun JM, Lee SH, Ahn JS, Park K, Ahn MJ. A Phase 2 Study of Palbociclib for Recurrent or Refractory Advanced Thymic Epithelial Tumors (KCSG LU17-21). J Thorac Oncol 2023; 18:223-231. [PMID: 36307042 DOI: 10.1016/j.jtho.2022.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Thymic epithelial tumors (TETs) are rare but are the most common tumors of the anterior mediastinum. Platinum-based combination chemotherapy is the standard of care for such tumors and is associated with a 50% to 90% objective response rate (ORR) in metastatic disease. Nevertheless, there is no standard chemotherapeutic option after failure of platinum-based combination chemotherapy. Genetic alterations associated with the cell cycle, including pRB, p16INK4A, and cyclin D1, are most often observed in TETs. On the basis of these results, we conducted a phase 2 trial to evaluate the efficacy and safety of palbociclib in patients with recurrent or refractory advanced TETs. METHODS This is a phase 2, multicenter, open-label, single-arm study of palbociclib monotherapy in patients with recurrent or metastatic advanced TETs who failed one or more cytotoxic chemotherapies. The patients received 125 mg of oral palbociclib daily for 21 days, followed by a 7-day break. The primary end point was progression-free survival (PFS). The secondary end points were ORR, duration of response, overall survival, and safety. RESULTS Between August 2017 and October 2019, a total of 48 patients were enrolled. The median number of previous chemotherapies was one (range: one to four), and 21 (43.7%) of 48 patients received thymectomy. By the WHO classification, the patients were type A (n = 1), type B1 (n = 2), type B2 (n = 8), type B3 (n = 13), thymic carcinoma (n = 23), and unknown (n = 1). With a median follow-up of 14.5 months (range: 0.8-38.2), the median number of cycles of palbociclib monotherapy was 10 (range: 1-40). The ORR was 12.5% (four partial responses in thymoma and two partial responses in thymic carcinoma). The PFS at 6 months was 60.2%, and the median PFS was 11.0 months (95% confidence interval: 4.6-17.4). The median overall survival was 26.4 months (95% confidence interval: 17.4-35.4). The most common treatment-related adverse events of any grade were neutropenia (62.5%), anemia (37.5%), and thrombocytopenia (29.1%), and the most common grade 3/4 treatment-related hematologic adverse event was neutropenia (41.7%). Neutropenia above grade 3 was reversible, and there were no cases with neutropenic fever. CONCLUSIONS Palbociclib monotherapy was well tolerated and had encouraging efficacy in patients with TETs who failed platinum-based combination chemotherapy.
Collapse
Affiliation(s)
- Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hae Su Kim
- Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Joo-Hang Kim
- Division of Medical Oncology, Department of Internal Medicine, CHA University Bundang Medical Center, Bundang, Republic of Korea
| | - Yoon Hee Choi
- Dongnam Institute of Radiological and Medical Sciences, Busan, Republic of Korea
| | - Jinhyun Cho
- Divison of Hematology-Oncology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Republic of Korea
| | - Ji Hyun Park
- Department of Hematology-Oncology, Division of Internal Medicine, KonKuk University Medical Center, Seoul, Republic of Korea
| | - Keon Uk Park
- Keimyung University Dongsan Medical Center, Daegu, Republic of Korea
| | - Bo Mi Ku
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|