1
|
Kanai Y, Shibai A, Yokoi N, Tsuru S, Furusawa C. Laboratory evolution of the bacterial genome structure through insertion sequence activation. Nucleic Acids Res 2025; 53:gkaf331. [PMID: 40347137 PMCID: PMC12065110 DOI: 10.1093/nar/gkaf331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 05/12/2025] Open
Abstract
The genome structure fundamentally shapes bacterial physiology, ecology, and evolution. Though insertion sequences (IS) are known drivers of drastic evolutionary changes in the genome structure, the process is typically slow and challenging to observe in the laboratory. Here, we developed a system to accelerate IS-mediated genome structure evolution by introducing multiple copies of a high-activity IS in Escherichia coli. We evolved the bacteria under relaxed neutral conditions, simulating those leading to IS expansion in host-restricted endosymbionts and pathogens. Strains accumulated a median of 24.5 IS insertions and underwent over 5% genome size changes within ten weeks, comparable to decades-long evolution in wild-type strains. The detected interplay of frequent small deletions and rare large duplications updates the view of genome reduction under relaxed selection from a simple consequence of the deletion bias to a nuanced picture including transient expansions. The high IS activity resulted in structural variants of IS and the emergence of composite transposons, illuminating potential evolutionary pathways for ISs and composite transposons. The extensive genome rearrangements we observed establish a baseline for assessing the fitness effects of IS insertions, genome size changes, and rearrangements, advancing our understanding of how mobile elements shape bacterial genomes.
Collapse
Affiliation(s)
- Yuki Kanai
- Department of Biological Sciences, The University of Tokyo, 7-3-1 Hongo, 113-0033 Tokyo, Japan
| | - Atsushi Shibai
- Center for Biosystems Dynamics Research, RIKEN, 6-7-1 Minatojima-minamimachi, Chuo-ku, 650-0047 Kobe, Japan
| | - Naomi Yokoi
- Center for Biosystems Dynamics Research, RIKEN, 6-7-1 Minatojima-minamimachi, Chuo-ku, 650-0047 Kobe, Japan
| | - Saburo Tsuru
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, 113-0033 Tokyo, Japan
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research, RIKEN, 6-7-1 Minatojima-minamimachi, Chuo-ku, 650-0047 Kobe, Japan
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, 113-0033 Tokyo, Japan
| |
Collapse
|
2
|
Ayoub H, Kumar MS, Mehta R, Sethuraj SE, Thomas P, Dhanze H, Dubey M, Salih HM, Chandrashekaraiah GB, Cull CA, Veeranna RP, Amachawadi RG. Genomic insights into Brucella melitensis in India: stability of ST8 and the role of virulence genes in regional adaptations. Microbiol Spectr 2025:e0264724. [PMID: 40272150 DOI: 10.1128/spectrum.02647-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/23/2025] [Indexed: 04/25/2025] Open
Abstract
Brucella melitensis is a highly infectious zoonotic pathogen responsible for brucellosis, which significantly affects both human and livestock health worldwide. This study employed whole-genome sequencing (WGS) to analyze the genetic diversity of 24 B. melitensis isolates from India. Pangenome analysis revealed a highly conserved nature with the involved strains having very limited accessory genes. Multilocus Sequence Typing (MLST) identified sequence type ST8 as predominant among Indian strains. Analysis of virulence genes revealed a total of 43 virulence-related genes in all strains, emphasizing their critical role in the pathogenicity of B. melitensis. Unique gene profiles and distinct phylogenetic clusters suggest regional adaptations and evolutionary pressures. The comprehensive genomic insights from this study help to elucidate the geographic distribution and interspecies transmission of Indian strains, highlighting the importance of targeted brucellosis control measures in India. Additionally, the identification of conserved virulence genes involved in immune evasion and intracellular survival highlights their importance in the bacterium's pathogenicity. This research contributes to the global understanding of B. melitensis genomic diversity, providing valuable insights for broader epidemiological studies and brucellosis management strategies worldwide.IMPORTANCEB. melitensis is a significant cause of illness in both humans and animals, particularly in India, where the disease remains a major concern. This study highlights that only a few genetic types of the bacteria are circulating in the region, which means control efforts can be better focused on these specific types. By understanding the unique characteristics of Indian strains, and how these strains spread and adapt, this research offers valuable guidance for improving brucellosis prevention strategies. These insights can help in developing more effective diagnostic tools, enhancing vaccination efforts, and strengthening disease control programs to reduce the impact of brucellosis on public health and livestock industries.
Collapse
Affiliation(s)
- Haris Ayoub
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - M Suman Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Rishabh Mehta
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Sanjumon E Sethuraj
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Himani Dhanze
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Muskan Dubey
- Xavier University School of Medicine, Xavier University School of Veterinary Medicine, Oranjestad, Aruba
| | - Harith M Salih
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | | | - Charley A Cull
- Midwest Veterinary Services, Inc, Oakland, New Jersey, USA
| | - Ravindra P Veeranna
- Xavier University School of Medicine, Xavier University School of Veterinary Medicine, Oranjestad, Aruba
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
3
|
Routh S, Lindsay RJ, Gudelj I, Dhar R. Metabolic remodeling and de novo mutations transcend cryptic variation as drivers of adaptation in yeast. Evolution 2025; 79:650-664. [PMID: 39918269 DOI: 10.1093/evolut/qpaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/18/2024] [Accepted: 02/04/2025] [Indexed: 04/04/2025]
Abstract
Many organisms live in predictable environments with periodic variations in growth conditions. Adaptation to these conditions can lead to loss of nonessential functions, which could be maladaptive in new environments. Alternatively, living in a predictable environment can allow populations to accumulate cryptic genetic variation that may have no fitness benefit in that condition, but can facilitate adaptation to new environments. However, how these processes together shape the fitness of populations growing in predictable environments remains unclear. Through laboratory evolution experiments in yeast, we show that populations grown in a nutrient-rich environment for 1,000 generations generally have reduced fitness and lower adaptability to novel stressful environments. These populations showed metabolic remodeling and increased lipid accumulation in rich medium which seemed to provide osmotic protection in salt stress. Subsequent adaptation to stressors was primarily driven by de novo mutations, with very little contribution from the mutations accumulated prior to the exposure. Thus, our work suggests that without exposure to new environments, populations might lose their ability to respond effectively to these environments. Furthermore, our findings highlight a major role of exaptation and de novo mutations in adaptation to new environments but do not reveal a significant contribution of cryptic variation in this process.
Collapse
Affiliation(s)
- Shreya Routh
- Department of Bioscience and Biotechnology, IIT Kharagpur, Kharagpur, India
| | - Richard J Lindsay
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Ivana Gudelj
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Riddhiman Dhar
- Department of Bioscience and Biotechnology, IIT Kharagpur, Kharagpur, India
| |
Collapse
|
4
|
Luiselli J, Rouzaud-Cornabas J, Lartillot N, Beslon G. Genome Streamlining: Effect of Mutation Rate and Population Size on Genome Size Reduction. Genome Biol Evol 2024; 16:evae250. [PMID: 39566106 DOI: 10.1093/gbe/evae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
Genome streamlining, i.e. genome size reduction, is observed in bacteria with very different life traits, including endosymbiotic bacteria and several marine bacteria, raising the question of its evolutionary origin. None of the hypotheses proposed in the literature is firmly established, mainly due to the many confounding factors related to the diverse habitats of species with streamlined genomes. Computational models may help overcome these difficulties and rigorously test hypotheses. In this work, we used Aevol, a platform designed to study the evolution of genome architecture, to test 2 main hypotheses: that an increase in population size (N) or mutation rate (μ) could cause genome reduction. In our experiments, both conditions lead to streamlining but have very different resulting genome structures. Under increased population sizes, genomes lose a significant fraction of noncoding sequences but maintain their coding size, resulting in densely packed genomes (akin to streamlined marine bacteria genomes). By contrast, under an increased mutation rate, genomes lose both coding and noncoding sequences (akin to endosymbiotic bacteria genomes). Hence, both factors lead to an overall reduction in genome size, but the coding density of the genome appears to be determined by N×μ. Thus, a broad range of genome size and density can be achieved by different combinations of N and μ. Our results suggest that genome size and coding density are determined by the interplay between selection for phenotypic adaptation and selection for robustness.
Collapse
Affiliation(s)
- Juliette Luiselli
- INSA-Lyon, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205, Lyon 69621, France
- Beagle Team, Inria Lyon La Doua, Villeurbanne, France
| | - Jonathan Rouzaud-Cornabas
- INSA-Lyon, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205, Lyon 69621, France
- Beagle Team, Inria Lyon La Doua, Villeurbanne, France
| | - Nicolas Lartillot
- Laboratoire de Biométrie et de Biologie Évolutive UMR CNRS 5558, Université Claude Bernard Lyon 1, Université Lyon 1, Villeurbanne, France
| | - Guillaume Beslon
- INSA-Lyon, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205, Lyon 69621, France
- Beagle Team, Inria Lyon La Doua, Villeurbanne, France
| |
Collapse
|
5
|
Wenbo L, Yewei Y, Hui Z, Zhongyu L. Hijacking host cell vesicular transport: New insights into the nutrient acquisition mechanism of Chlamydia. Virulence 2024; 15:2351234. [PMID: 38773735 PMCID: PMC11123459 DOI: 10.1080/21505594.2024.2351234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
Chlamydia infection is an important cause of public health diseases, and no effective vaccine is currently available. Owing to its unique intracellular lifestyle, Chlamydia requires a variety of nutrients and substrates from host cells, particularly sphingomyelin, cholesterol, iron, amino acids, and the mannose-6-phosphate receptor, which are essential for inclusion development. Here, we summarize the recent advances in Chlamydia nutrient acquisition mechanism by hijacking host cell vesicular transport, which plays an important role in chlamydial growth and development. Chlamydia obtains the components necessary to complete its intracellular developmental cycle by recruiting Rab proteins (major vesicular trafficking regulators) and Rab effector proteins to the inclusion, interfering with Rab-mediated multivesicular trafficking, reorienting the nutrition of host cells, and reconstructing the intracellular niche environment. Consequently, exploring the role of vesicular transport in nutrient acquisition offers a novel perspective on new approaches for preventing and treating Chlamydia infection.
Collapse
Affiliation(s)
- Lei Wenbo
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Yang Yewei
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zhou Hui
- Department of Laboratory Medicine and Pathology, First Affiliated Hospital of Hunan University of Chinese Traditional Medicine, Changsha, Hunan, P.R. China
| | - Li Zhongyu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
6
|
Salgado-Morales R, Barba-Xochipa K, Martínez-Ocampo F, Dantán-González E, Hernández-Mendoza A, Quiterio-Trenado M, Rodríguez-Santiago M, Rivera-Ramírez A. Pangenome-Wide Association Study in the Chlamydiaceae Family Reveals Key Evolutionary Aspects of Their Relationship with Their Hosts. Int J Mol Sci 2024; 25:12671. [PMID: 39684382 DOI: 10.3390/ijms252312671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
The Chlamydiaceae are a family of obligate intracellular bacteria known for their unique biphasic developmental cycle. Chlamydial are associated with various host organisms, including humans, and have been proposed as emerging pathogens. Genomic studies have significantly enhanced our understanding of chlamydial biology, host adaptation, and evolutionary processes. In this study, we conducted a complete pangenome association analysis (pan-GWAS) using 101 genomes from the Chlamydiaceae family to identify differentially represented genes in Chlamydia and Chlamydophila, revealing their distinct evolutionary strategies for interacting with eukaryotic hosts. Our analysis identified 289 genes with differential abundance between the two clades: 129 showed a strong association with Chlamydia and 160 with Chlamydophila. Most genes in Chlamydia were related to the type III secretion system, while Chlamydophila genes corresponded to various functional categories, including translation, replication, transport, and metabolism. These findings suggest that Chlamydia has developed a high dependence on mammalian cells for replication, facilitated by a complex T3SS for intracellular manipulation. In contrast, the metabolic and functional diversity in Chlamydophila allows it to colonize a broad range of hosts, such as birds, reptiles, amphibians, and mammals, making it a less specialized clade.
Collapse
Affiliation(s)
- Rosalba Salgado-Morales
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
| | - Karla Barba-Xochipa
- Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Universidad 1, Tlaxcala de Xicohténcatl CP 90000, Mexico
| | - Fernando Martínez-Ocampo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
- Programa de Estancias Posdoctorales por México 2022(3), Modalidad Académica-Inicial, Consejo Nacional de Humanidades, Ciencias y Tecnologías, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez CP 03940, Mexico
| | - Edgar Dantán-González
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
| | - Armando Hernández-Mendoza
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
| | - Manuel Quiterio-Trenado
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca CP 62100, Mexico
| | - Magdalena Rodríguez-Santiago
- Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Universidad 1, Tlaxcala de Xicohténcatl CP 90000, Mexico
| | - Abraham Rivera-Ramírez
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
| |
Collapse
|
7
|
Pontes A, Harrison MC, Rokas A, Gonçalves C. Convergent reductive evolution in bee-associated lactic acid bacteria. Appl Environ Microbiol 2024; 90:e0125724. [PMID: 39440949 DOI: 10.1128/aem.01257-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Distantly related organisms may evolve similar traits when exposed to similar environments or engaging in certain lifestyles. Several members of the Lactobacillaceae [lactic acid bacteria (LAB)] family are frequently isolated from the floral niche, mostly from bees and flowers. In some floral LAB species (henceforth referred to as bee-associated LAB), distinctive genomic (e.g., genome reduction) and phenotypic (e.g., preference for fructose over glucose or fructophily) features were recently documented. These features are found across distantly related species, raising the hypothesis that specific genomic and phenotypic traits evolved convergently during adaptation to the floral environment. To test this hypothesis, we examined representative genomes of 369 species of bee-associated and non-bee-associated LAB. Phylogenomic analysis unveiled seven independent ecological shifts toward the bee environment in LAB. In these species, we observed significant reductions of genome size, gene repertoire, and GC content. Using machine leaning, we could distinguish bee-associated from non-bee-associated species with 94% accuracy, based on the absence of genes involved in metabolism, osmotic stress, or DNA repair. Moreover, we found that the most important genes for the machine learning classifier were seemingly lost, independently, in multiple bee-associated lineages. One of these genes, acetaldehyde-alcohol dehydrogenase (adhE), encodes a bifunctional aldehyde-alcohol dehydrogenase which has been associated with the evolution of fructophily, a rare phenotypic trait that is pervasive across bee-associated LAB species. These results suggest that the independent evolution of distinctive phenotypes in bee-associated LAB has been largely driven by independent losses of the same sets of genes.IMPORTANCESeveral LAB species are intimately associated with bees and exhibit unique biochemical properties with potential for food applications and honeybee health. Using a machine learning-based approach, our study shows that adaptation of LAB to the bee environment was accompanied by a distinctive genomic trajectory deeply shaped by gene loss. Several of these gene losses occurred independently in distantly related species and are linked to some of their unique biotechnologically relevant traits, such as the preference for fructose over glucose (fructophily). This study underscores the potential of machine learning in identifying fingerprints of adaptation and detecting instances of convergent evolution. Furthermore, it sheds light onto the genomic and phenotypic particularities of bee-associated bacteria, thereby deepening the understanding of their positive impact on honeybee health.
Collapse
Affiliation(s)
- Ana Pontes
- Associate Laboratory i4HB, Institute for Health and Bioeconomy and UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Carla Gonçalves
- Associate Laboratory i4HB, Institute for Health and Bioeconomy and UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
8
|
Sanchez SE, Chiarelli TJ, Park MA, Carlyon JA. Orientia tsutsugamushi infection reduces host gluconeogenic but not glycolytic substrates. Infect Immun 2024; 92:e0028424. [PMID: 39324805 PMCID: PMC11556148 DOI: 10.1128/iai.00284-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Orientia tsutsugamushi a causal agent of scrub typhus, is an obligate intracellular bacterium that, akin to other rickettsiae, is dependent on host cell-derived nutrients for survival and thus pathogenesis. Based on limited experimental evidence and genome-based in silico predictions, O. tsutsugamushi is hypothesized to parasitize host central carbon metabolism (CCM). Here, we (re-)evaluated O. tsutsugamushi dependency on host cell CCM as initiated by glucose and glutamine. Orientia infection had no effect on host glucose and glutamine consumption or lactate accumulation, indicating no change in overall flux through CCM. However, host cell mitochondrial activity and ATP levels were reduced during infection and correspond with lower intracellular glutamine and glutamate pools. To further probe the essentiality of host CCM in O. tsutsugamushi proliferation, we developed a minimal medium for host cell cultivation and paired it with chemical inhibitors to restrict the intermediates and processes related to glucose and glutamine metabolism. These conditions failed to negatively impact O. tsutsugamushi intracellular growth, suggesting the bacterium is adept at scavenging from host CCM. Accordingly, untargeted metabolomics was utilized to evaluate minor changes in host CCM metabolic intermediates across O. tsutsugamushi infection and revealed that pathogen proliferation corresponds with reductions in critical CCM building blocks, including amino acids and TCA cycle intermediates, as well as increases in lipid catabolism. This study directly correlates O. tsutsugamushi proliferation to alterations in host CCM and identifies metabolic intermediates that are likely critical for pathogen fitness.IMPORTANCEObligate intracellular bacterial pathogens have evolved strategies to reside and proliferate within the eukaryotic intracellular environment. At the crux of this parasitism is the balance between host and pathogen metabolic requirements. The physiological basis driving O. tsutsugamushi dependency on its mammalian host remains undefined. By evaluating alterations in host metabolism during O. tsutsugamushi proliferation, we discovered that bacterial growth is independent of the host's nutritional environment but appears dependent on host gluconeogenic substrates, including amino acids. Given that O. tsutsugamushi replication is essential for its virulence, this study provides experimental evidence for the first time in the post-genomic era of metabolic intermediates potentially parasitized by a scrub typhus agent.
Collapse
Affiliation(s)
- Savannah E. Sanchez
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Travis J. Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Margaret A. Park
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
9
|
Sabin SJ, Beesley CA, Marston CK, Paisie TK, Gulvik CA, Sprenger GA, Gee JE, Traxler RM, Bell ME, McQuiston JR, Weiner ZP. Investigating Anthrax-Associated Virulence Genes among Archival and Contemporary Bacillus cereus Group Genomes. Pathogens 2024; 13:884. [PMID: 39452755 PMCID: PMC11510535 DOI: 10.3390/pathogens13100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Bacillus anthracis causes anthrax through virulence factors encoded on two plasmids. However, non-B. anthracis organisms within the closely related, environmentally ubiquitous Bacillus cereus group (BCG) may cause an anthrax-like disease in humans through the partial adoption of anthrax-associated virulence genes, challenging the definition of anthrax disease. To elucidate these phenomena and their evolutionary past, we performed whole-genome sequencing on non-anthracis BCG isolates, including 93 archival (1967-2003) and 5 contemporary isolates (2019-2023). We produced annotated genomic assemblies and performed a pan-genome analysis to identify evidence of virulence gene homology and virulence gene acquisition by linear inheritance or horizontal gene transfer. At least one anthrax-associated virulence gene was annotated in ten isolates. Most homologous sequences in archival isolates showed evidence of pseudogenization and subsequent gene loss. The presence or absence of accessory genes, including anthrax-associated virulence genes, aligned with the phylogenetic structure of the BCG core genome. These findings support the hypothesis that anthrax-associated virulence genes were inherited from a common ancestor in the BCG and were retained or lost across different lineages, and contribute to a growing body of work informing public health strategies related to anthrax surveillance and identification.
Collapse
Affiliation(s)
- Susanna J. Sabin
- Laboratory Leadership Service Fellow Assigned to the National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, GA 30329, USA
| | - Cari A. Beesley
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Bacterial Special Pathogens Branch, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Chung K. Marston
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Bacterial Special Pathogens Branch, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Taylor K. Paisie
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Christopher A. Gulvik
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Bacterial Special Pathogens Branch, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | | | - Jay E. Gee
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Bacterial Special Pathogens Branch, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Rita M. Traxler
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Bacterial Special Pathogens Branch, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Melissa E. Bell
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Bacterial Special Pathogens Branch, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - John R. McQuiston
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Bacterial Special Pathogens Branch, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Zachary P. Weiner
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Bacterial Special Pathogens Branch, 1600 Clifton Rd, Atlanta, GA 30329, USA
| |
Collapse
|
10
|
Singh A, Rani PS, Bandsode V, Nyambero M, Qumar S, Ahmed N. Drivers of virulence and antimicrobial resistance in Gram-negative bacteria in different settings: A genomic perspective. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 124:105666. [PMID: 39242067 DOI: 10.1016/j.meegid.2024.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/13/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The human gut presents a complex ecosystem harboring trillions of microorganisms living in close association with each other and the host body. Any perturbation or imbalance of the normal gut microbiota may prove detrimental to human health. Enteric infections and treatment with antibiotics pose major threats to gut microbiota health. Recent genomics-driven research has provided insights into the transmission and evolutionary dynamics of major enteric pathogens such as Escherichia coli, Klebsiella pneumoniae, Vibrio cholerae, Helicobacter pylori and Salmonella spp. Studies entailing the identification of various dominant lineages of some of these organisms based on artificial intelligence and machine learning point to the possibility of a system for prediction of antimicrobial resistance (AMR) as some lineages have a higher propensity to acquire virulence and fitness advantages. This is pertinent in the light of emerging AMR being one of the immediate threats posed by pathogenic bacteria in the form of a multi-layered fitness manifesting as phenotypic drug resistance at the level of clinics and field settings. To develop a holistic or systems-level understanding of such devastating traits, present methodologies need to be advanced with the high throughput techniques integrating community and ecosystem/niche level data across different omics platforms. The next major challenge for public health epidemiologists is understanding the interactions and functioning of these pathogens at the community level, both in the gut and outside. This would provide new insights into the dimensions of enteric bacteria in different environments and niches and would have a plausible impact on infection control strategies in terms of tackling AMR. Hence, the aim of this review is to discuss virulence and AMR in Gram-negative pathogens, the spillover of AMR and methodological advancements aimed at addressing it through a unified One Health framework applicable to the farms, the environment, different clinical settings and the human gut.
Collapse
Affiliation(s)
- Anuradha Singh
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Pittu Sandhya Rani
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Viraj Bandsode
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Mahanga Nyambero
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Shamsul Qumar
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
11
|
Hiller E, Hörz V, Sting R. Corynebacterium pseudotuberculosis: Whole genome sequencing reveals unforeseen and relevant genetic diversity in this pathogen. PLoS One 2024; 19:e0309282. [PMID: 39186721 PMCID: PMC11346948 DOI: 10.1371/journal.pone.0309282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024] Open
Abstract
Corynebacterium pseudotuberculosis (CPS) is an important bacterial animal pathogen. CPS causes chronic, debilitating and currently incurable infectious diseases affecting a wide range of livestock and wild herbivores including camelids worldwide. Belonging to the Corynebacterium diphtheriae complex, this pathogen can also infect humans. The classical characterization of CPS is typically based on the testing of nitrate reductase activity, separating the two biovars Equi and Ovis. However, more refined resolutions are required to unravel routes of infection. This was realized in our study by generating and analyzing whole genome sequencing (WGS) data. Using newly created core genome multilocus sequence typing (cgMLST) profiles we were the first to discover isolates grouping in a cluster adjacent to clusters formed by CPS biovar Equi isolates. This novel cluster includes CPS isolates from alpacas, llamas, camels and dromedaries, which are characterized by a lack of nitrate reductase activity as encountered in biovar Ovis. This is of special interest for molecular epidemiology. Nevertheless, these isolates bear the genes of the nitrate locus, which are characteristic of biovar Equi isolates. However, sequence analysis of the genes narG and narH of the nitrate locus revealed indels leading to frameshifts and inactivity of the enzymes involved in nitrate reduction. Interestingly, one CPS isolate originating from another lama with an insertion in the MFS transporter (narT) is adjacent to a cluster formed by ovine CPS isolates biovar Equi. Based on this knowledge, the combination of biochemical and PCR based molecular biological nitrate reductase detection can be used for a fast and uncomplicated classification of isolates in routine diagnostics in order to check the origin of camelid CPS isolates. Further analysis revealed that partial sequencing of the ABC transporter substrate binding protein (CP258_RS07935) is a powerful tool to assign the biovars and the novel genomovar.
Collapse
Affiliation(s)
- Ekkehard Hiller
- Chemical and Veterinary Analysis Agency Stuttgart, Fellbach, Germany
| | - Verena Hörz
- Chemical and Veterinary Analysis Agency Stuttgart, Fellbach, Germany
| | - Reinhard Sting
- Chemical and Veterinary Analysis Agency Stuttgart, Fellbach, Germany
- Consiliary Laboratory for Corynebacterium Pseudotuberculosis, Fellbach, Germany
| |
Collapse
|
12
|
Andrews KR, Besser TE, Stalder T, Top EM, Baker KN, Fagnan MW, New DD, Schneider GM, Gal A, Andrews-Dickert R, Hunter SS, Beckmen KB, Christensen L, Justice-Allen A, Konetchy D, Lehman CP, Manlove K, Miyasaki H, Nordeen T, Roug A, Cassirer EF. Comparative genomic analysis identifies potential adaptive variation in Mycoplasma ovipneumoniae. Microb Genom 2024; 10:001279. [PMID: 39213169 PMCID: PMC11364169 DOI: 10.1099/mgen.0.001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Mycoplasma ovipneumoniae is associated with respiratory disease in wild and domestic Caprinae globally, with wide variation in disease outcomes within and between host species. To gain insight into phylogenetic structure and mechanisms of pathogenicity for this bacterial species, we compared M. ovipneumoniae genomes for 99 samples from 6 countries (Australia, Bosnia and Herzegovina, Brazil, China, France and USA) and 4 host species (domestic sheep, domestic goats, bighorn sheep and caribou). Core genome sequences of M. ovipneumoniae assemblies from domestic sheep and goats fell into two well-supported phylogenetic clades that are divergent enough to be considered different bacterial species, consistent with each of these two clades having an evolutionary origin in separate host species. Genome assemblies from bighorn sheep and caribou also fell within these two clades, indicating multiple spillover events, most commonly from domestic sheep. Pangenome analysis indicated a high percentage (91.4 %) of accessory genes (i.e. genes found only in a subset of assemblies) compared to core genes (i.e. genes found in all assemblies), potentially indicating a propensity for this pathogen to adapt to within-host conditions. In addition, many genes related to carbon metabolism, which is a virulence factor for Mycoplasmas, showed evidence for homologous recombination, a potential signature of adaptation. The presence or absence of annotated genes was very similar between sheep and goat clades, with only two annotated genes significantly clade-associated. However, three M. ovipneumoniae genome assemblies from asymptomatic caribou in Alaska formed a highly divergent subclade within the sheep clade that lacked 23 annotated genes compared to other assemblies, and many of these genes had functions related to carbon metabolism. Overall, our results suggest that adaptation of M. ovipneumoniae has involved evolution of carbon metabolism pathways and virulence mechanisms related to those pathways. The genes involved in these pathways, along with other genes identified as potentially involved in virulence in this study, are potential targets for future investigation into a possible genomic basis for the high variation observed in disease outcomes within and between wild and domestic host species.
Collapse
Affiliation(s)
- Kimberly R. Andrews
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Thomas E. Besser
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Eva M. Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Katherine N. Baker
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Matthew W. Fagnan
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Daniel D. New
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - G. Maria Schneider
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Alexandra Gal
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Rebecca Andrews-Dickert
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, USA
| | - Samuel S. Hunter
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | | | - Lauren Christensen
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow ID, USA
| | | | - Denise Konetchy
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow ID, USA
| | | | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | | | - Todd Nordeen
- Nebraska Game and Parks Commission, Alliance, NE, USA
| | - Annette Roug
- Utah Division of Wildlife Resources, Salt Lake City, UT, USA
| | | |
Collapse
|
13
|
Pontes A, Harrison MC, Rokas A, Gonçalves C. Convergent reductive evolution in bee-associated lactic acid bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601270. [PMID: 39005388 PMCID: PMC11244873 DOI: 10.1101/2024.06.28.601270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Distantly related organisms may evolve similar traits when exposed to similar environments or engaging in certain lifestyles. Several members of the Lactobacillaceae (LAB) family are frequently isolated from the floral niche, mostly from bees and flowers. In some floral LAB species (henceforth referred to as bee-associated), distinctive genomic (e.g., genome reduction) and phenotypic (e.g., preference for fructose over glucose or fructophily) features were recently documented. These features are found across distantly related species, raising the hypothesis that specific genomic and phenotypic traits evolved convergently during adaptation to the floral environment. To test this hypothesis, we examined representative genomes of 369 species of bee-associated and non-bee-associated LAB. Phylogenomic analysis unveiled seven independent ecological shifts towards the floral niche in LAB. In these bee-associated LAB, we observed pervasive, significant reductions of genome size, gene repertoire, and GC content. Using machine leaning, we could distinguish bee-associated from non-bee-associated species with 94% accuracy, based on the absence of genes involved in metabolism, osmotic stress, or DNA repair. Moreover, we found that the most important genes for the machine learning classifier were seemingly lost, independently, in multiple bee-associated lineages. One of these genes, adhE, encodes a bifunctional aldehyde-alcohol dehydrogenase associated with the evolution of fructophily, a rare phenotypic trait that was recently identified in many floral LAB species. These results suggest that the independent evolution of distinctive phenotypes in bee-associated LAB has been largely driven by independent loss of the same set of genes. Importance Several lactic acid bacteria (LAB) species are intimately associated with bees and exhibit unique biochemical properties with potential for food applications and honeybee health. Using a machine-learning based approach, our study shows that adaptation of LAB to the bee environment was accompanied by a distinctive genomic trajectory deeply shaped by gene loss. Several of these gene losses occurred independently in distantly related species and are linked to some of their unique biotechnologically relevant traits, such as the preference of fructose over glucose (fructophily). This study underscores the potential of machine learning in identifying fingerprints of adaptation and detecting instances of convergent evolution. Furthermore, it sheds light onto the genomic and phenotypic particularities of bee-associated bacteria, thereby deepening the understanding of their positive impact on honeybee health.
Collapse
Affiliation(s)
- Ana Pontes
- Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Marie-Claire Harrison
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Carla Gonçalves
- Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
14
|
Pang L, Fang G, Liu Z, Dong Z, Chen J, Feng T, Zhang Q, Sheng Y, Lu Y, Wang Y, Zhang Y, Li G, Chen X, Zhan S, Huang J. Coordinated molecular and ecological adaptations underlie a highly successful parasitoid. eLife 2024; 13:RP94748. [PMID: 38904661 PMCID: PMC11192535 DOI: 10.7554/elife.94748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
The success of an organism depends on the molecular and ecological adaptations that promote its beneficial fitness. Parasitoids are valuable biocontrol agents for successfully managing agricultural pests, and they have evolved diversified strategies to adapt to both the physiological condition of hosts and the competition of other parasitoids. Here, we deconstructed the parasitic strategies in a highly successful parasitoid, Trichopria drosophilae, which parasitizes a broad range of Drosophila hosts, including the globally invasive species D. suzukii. We found that T. drosophilae had developed specialized venom proteins that arrest host development to obtain more nutrients via secreting tissue inhibitors of metalloproteinases (TIMPs), as well as a unique type of cell-teratocytes-that digest host tissues for feeding by releasing trypsin proteins. In addition to the molecular adaptations that optimize nutritional uptake, this pupal parasitoid has evolved ecologically adaptive strategies including the conditional tolerance of intraspecific competition to enhance parasitic success in older hosts and the obligate avoidance of interspecific competition with larval parasitoids. Our study not only demystifies how parasitoids weaponize themselves to colonize formidable hosts but also provided empirical evidence of the intricate coordination between the molecular and ecological adaptations that drive evolutionary success.
Collapse
Affiliation(s)
- Lan Pang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesShanghaiChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Zhiguo Liu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
| | - Zhi Dong
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
| | - Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
| | - Ting Feng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Qichao Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Yueqi Lu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Ying Wang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang UniversityHangzhouChina
| | - Yixiang Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesShanghaiChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Guiyun Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesShanghaiChina
| | - Xuexin Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang UniversityHangzhouChina
- State Key Lab of Rice Biology, Zhejiang UniversityHangzhouChina
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesShanghaiChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang UniversityHangzhouChina
| |
Collapse
|
15
|
Vo T, Pontarotti P, Rolain JM, Merhej V. Mechanisms of acquisition of the vanA operon among vancomycin-resistant Staphylococcus aureus genomes: The tip of the iceberg? Int J Antimicrob Agents 2024; 63:107154. [PMID: 38599552 DOI: 10.1016/j.ijantimicag.2024.107154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Vancomycin is frequently used as a last line of defence against infections due to multidrug-resistant Staphylococcus aureus (S. aureus). A recent finding described the acquisition of vancomycin-resistant S. aureus strains by the integration of an enterococcal plasmid containing the vanA operon into the S. aureus chromosome via homologous recombination involving a specific integration site called locus L2. METHODS To characterise all mechanisms of acquisition of vanA, this study analysed the 15 706 S. aureus genomes to look for vanA and described its genetic environment. RESULTS A complete vanA operon was found in 25 S. aureus strains isolated from 12 patients, including nine co-isolated with vancomycin-resistant Enterococcus strains. VanA was found within transposon Tn1546-like elements on 17 plasmids and eight chromosomes. VanA might be acquired through conjugation of enterococcal and staphylococcal plasmids, transposition of Tn1546 carrying vanA and plasmid integration into the chromosome. Further, L2 was detected in 2087 genomes (13.3%) of S. aureus strains across different continents. Six potential chromosomal hotspots for integration of the entire vanA-containing enterococcal plasmid were identified by homologous recombination via L2. CONCLUSIONS These findings suggest that the recently described scenario in a New York patient could be reproduced anywhere. Surveillance of this possibility is mandatory, especially in patients with vancomycin-resistant Enterococcus infection or colonisation.
Collapse
Affiliation(s)
- Tram Vo
- Aix Marseille University, MEPHI, Marseille, France; Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Pierre Pontarotti
- Aix Marseille University, MEPHI, Marseille, France; Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France; Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France
| | - Jean-Marc Rolain
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France; Aix Marseille University, APHM, MEPHI, Marseille, France
| | - Vicky Merhej
- Aix Marseille University, MEPHI, Marseille, France; Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France.
| |
Collapse
|
16
|
Thiriet-Rupert S, Josse J, Perez-Pascual D, Tasse J, Andre C, Abad L, Lebeaux D, Ghigo JM, Laurent F, Beloin C. Analysis of In-Patient Evolution of Escherichia coli Reveals Potential Links to Relapse of Bone and Joint Infections. J Infect Dis 2024; 229:1546-1556. [PMID: 38041851 DOI: 10.1093/infdis/jiad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023] Open
Abstract
Bone and joint infections (BJIs) are difficult to treat and affect a growing number of patients, in which relapses are observed in 10-20% of case. These relapses, which call for prolonged antibiotic treatment and increase resistance emergence risk, may originate from ill-understood adaptation of the pathogen to the host. Here, we investigated 3 pairs of Escherichia coli strains from BJI cases and their relapses to unravel adaptations within patients. Whole-genome comparison presented evidence for positive selection and phenotypic characterization showed that biofilm formation remained unchanged, contrary to what is usually described in such cases. Although virulence was not modified, we identified the loss of 2 virulence factors contributing to immune system evasion in one of the studied strains. Other strategies, including global growth optimization and colicin production, likely allowed the strains to outcompete competitors. This work highlights the variety of strategies allowing in-patient adaptation in BJIs.
Collapse
Affiliation(s)
| | - Jérôme Josse
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - David Perez-Pascual
- Genetics of Biofilms Laboratory, Institut Pasteur, Université de Paris-Cité, Paris, France
| | - Jason Tasse
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Camille Andre
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Lélia Abad
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - David Lebeaux
- Genetics of Biofilms Laboratory, Institut Pasteur, Université de Paris-Cité, Paris, France
- Département de Maladies Infectieuses et Tropicales, AP-HP, Hôpital Saint-Louis, Lariboisière, Paris, France
- FHU PROTHEE (Prosthetic joint infections: innovative strategies to overcome a medico-surgical challenge) Group
| | - Jean-Marc Ghigo
- Genetics of Biofilms Laboratory, Institut Pasteur, Université de Paris-Cité, Paris, France
| | - Frédéric Laurent
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Christophe Beloin
- Genetics of Biofilms Laboratory, Institut Pasteur, Université de Paris-Cité, Paris, France
| |
Collapse
|
17
|
Wülbern J, Windorfer L, Sato K, Nakao M, Hepner S, Margos G, Fingerle V, Kawabata H, Becker NS, Kraiczy P, Rollins RE. Unprecedented genetic variability of PFam54 paralogs among Eurasian Lyme borreliosis-causing spirochetes. Ecol Evol 2024; 14:e11397. [PMID: 38779535 PMCID: PMC11109050 DOI: 10.1002/ece3.11397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Lyme borreliosis (LB) is the most common vector-borne disease in the Northern Hemisphere caused by spirochetes belonging to the Borrelia burgdorferi sensu lato (Bbsl) complex. Borrelia spirochetes circulate in obligatory transmission cycles between tick vectors and different vertebrate hosts. To successfully complete this complex transmission cycle, Bbsl encodes for an arsenal of proteins including the PFam54 protein family with known, or proposed, influences to reservoir host and/or vector adaptation. Even so, only fragmentary information is available regarding the naturally occurring level of variation in the PFam54 gene array especially in relation to Eurasian-distributed species. Utilizing whole genome data from isolates (n = 141) originated from three major LB-causing Borrelia species across Eurasia (B. afzelii, B. bavariensis, and B. garinii), we aimed to characterize the diversity of the PFam54 gene array in these isolates to facilitate understanding the evolution of PFam54 paralogs on an intra- and interspecies level. We found an extraordinarily high level of variation in the PFam54 gene array with 39 PFam54 paralogs belonging to 23 orthologous groups including five novel paralogs. Even so, the gene array appears to have remained fairly stable over the evolutionary history of the studied Borrelia species. Interestingly, genes outside Clade IV, which contains genes encoding for proteins associated with Borrelia pathogenesis, more frequently displayed signatures of diversifying selection between clades that differ in hypothesized vector or host species. This could suggest that non-Clade IV paralogs play a more important role in host and/or vector adaptation than previously expected, which would require future lab-based studies to validate.
Collapse
Affiliation(s)
- Janna Wülbern
- Evolutionary Ecology and Genetics, Faculty of BiologyChristian‐Albrechts‐Universität Zu KielKielGermany
| | - Laura Windorfer
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life SciencesTechnical University of MunichFreisingGermany
- Disrupt.Design Lab, Faculty of Architecture and Town Planning, Segoe BuildingTechnion – Israel Institute of TechnologyTechnion CityIsrael
| | - Kozue Sato
- Department of Bacteriology INational Institute for Infectious DiseaseTokyoJapan
| | - Minoru Nakao
- Department of ParasitologyAsahikawa Medical UniversityAsahikawaJapan
| | - Sabrina Hepner
- German National Reference Center for Borrelia, Bavarian Health and Food Safety AuthorityOberschleissheimGermany
| | - Gabriele Margos
- German National Reference Center for Borrelia, Bavarian Health and Food Safety AuthorityOberschleissheimGermany
| | - Volker Fingerle
- German National Reference Center for Borrelia, Bavarian Health and Food Safety AuthorityOberschleissheimGermany
| | - Hiroki Kawabata
- Department of Bacteriology INational Institute for Infectious DiseaseTokyoJapan
| | - Noémie S. Becker
- Division of Evolutionary Biology, Faculty of BiologyLMU MunichPlanegg‐MartinsriedGermany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of FrankfurtGoethe University FrankfurtFrankfurtGermany
| | - Robert E. Rollins
- Institute of Avian Research “Vogelwarte Helgoland”WilhelmshavenGermany
| |
Collapse
|
18
|
Colson P, Chaudet H, Delerce J, Pontarotti P, Levasseur A, Fantini J, La Scola B, Devaux C, Raoult D. Role of SARS-CoV-2 mutations in the evolution of the COVID-19 pandemic. J Infect 2024; 88:106150. [PMID: 38570164 DOI: 10.1016/j.jinf.2024.106150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVES The SARS-CoV-2 pandemic and large-scale genomic surveillance provided an exceptional opportunity to analyze mutations that appeared over three years in viral genomes. Here we studied mutations and their epidemic consequences for SARS-CoV-2 genomes from our center. METHODS We analyzed 61,397 SARS-CoV-2 genomes we sequenced from respiratory samples for genomic surveillance. Mutations frequencies were calculated using Nextclade, Microsoft Excel, and an in-house Python script. RESULTS A total of 22,225 nucleotide mutations were identified, 220 (1.0%) being each at the root of ≥836 genomes, classifying mutations as 'hyperfertile'. Two seeded the European pandemic: P323L in RNA polymerase, associated with an increased mutation rate, and D614G in spike that improved fitness. Most 'hyperfertile' mutations occurred in areas not predicted with increased virulence. Their mean number was 8±6 (0-22) per 1000 nucleotides per gene. They were 3.7-times more frequent in accessory than informational genes (13.8 versus 3.7/1000 nucleotides). Particularly, they were 4.1-times more frequent in ORF8 than in the RNA polymerase gene. Interestingly, stop codons were present in 97 positions, almost only in accessory genes, including ORF8 (21/100 codons). CONCLUSIONS most 'hyperfertile' mutations did not predict emergence of a new epidemic, and some were stop codons indicating the existence of so-named 'non-virulence' genes.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), 27 Boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Hervé Chaudet
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France; Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Vecteurs, Infections Tropicales et Méditerranéennes (VITROME), 27 Boulevard Jean Moulin, 13005 Marseille, France; French Armed Forces Center for Epidemiology and Public Health (CESPA), Camp de Sainte Marthe, Marseille, France
| | - Jérémy Delerce
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), 27 Boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Pierre Pontarotti
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Department of Biological Sciences, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), 27 Boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Jacques Fantini
- "Aix-Marseille Université, INSERM UMR UA 16, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), 27 Boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Christian Devaux
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Department of Biological Sciences, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), 27 Boulevard Jean Moulin, 13005 Marseille, France.
| |
Collapse
|
19
|
Coale TH, Loconte V, Turk-Kubo KA, Vanslembrouck B, Mak WKE, Cheung S, Ekman A, Chen JH, Hagino K, Takano Y, Nishimura T, Adachi M, Le Gros M, Larabell C, Zehr JP. Nitrogen-fixing organelle in a marine alga. Science 2024; 384:217-222. [PMID: 38603509 DOI: 10.1126/science.adk1075] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/22/2024] [Indexed: 04/13/2024]
Abstract
Symbiotic interactions were key to the evolution of chloroplast and mitochondria organelles, which mediate carbon and energy metabolism in eukaryotes. Biological nitrogen fixation, the reduction of abundant atmospheric nitrogen gas (N2) to biologically available ammonia, is a key metabolic process performed exclusively by prokaryotes. Candidatus Atelocyanobacterium thalassa, or UCYN-A, is a metabolically streamlined N2-fixing cyanobacterium previously reported to be an endosymbiont of a marine unicellular alga. Here we show that UCYN-A has been tightly integrated into algal cell architecture and organellar division and that it imports proteins encoded by the algal genome. These are characteristics of organelles and show that UCYN-A has evolved beyond endosymbiosis and functions as an early evolutionary stage N2-fixing organelle, or "nitroplast."
Collapse
Affiliation(s)
- Tyler H Coale
- Ocean Sciences Department, University of California, Santa Cruz, CA, USA
| | - Valentina Loconte
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kendra A Turk-Kubo
- Ocean Sciences Department, University of California, Santa Cruz, CA, USA
| | - Bieke Vanslembrouck
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Shunyan Cheung
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Axel Ekman
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
| | - Jian-Hua Chen
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kyoko Hagino
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, Japan
| | - Yoshihito Takano
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, Japan
| | - Tomohiro Nishimura
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hatsukaichi, Hiroshima, Japan
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Mark Le Gros
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Carolyn Larabell
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California, Santa Cruz, CA, USA
| |
Collapse
|
20
|
Benning S, Pritsch K, Radl V, Siani R, Wang Z, Schloter M. (Pan)genomic analysis of two Rhodococcus isolates and their role in phenolic compound degradation. Microbiol Spectr 2024; 12:e0378323. [PMID: 38376357 PMCID: PMC10986565 DOI: 10.1128/spectrum.03783-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
The genus Rhodococcus is recognized for its potential to degrade a large range of aromatic substances, including plant-derived phenolic compounds. We used comparative genomics in the context of the broader Rhodococcus pan-genome to study genomic traits of two newly described Rhodococcus strains (type-strain Rhodococcus pseudokoreensis R79T and Rhodococcus koreensis R85) isolated from apple rhizosphere. Of particular interest was their ability to degrade phenolic compounds as part of an integrated approach to treat apple replant disease (ARD) syndrome. The pan-genome of the genus Rhodococcus based on 109 high-quality genomes was open with a small core (1.3%) consisting of genes assigned to basic cell functioning. The range of genome sizes in Rhodococcus was high, from 3.7 to 10.9 Mbp. Genomes from host-associated strains were generally smaller compared to environmental isolates which were characterized by exceptionally large genome sizes. Due to large genomic differences, we propose the reclassification of distinct groups of rhodococci like the Rhodococcus equi cluster to new genera. Taxonomic species affiliation was the most important factor in predicting genetic content and clustering of the genomes. Additionally, we found genes that discriminated between the strains based on habitat. All members of the genus Rhodococcus had at least one gene involved in the pathway for the degradation of benzoate, while biphenyl degradation was mainly restricted to strains in close phylogenetic relationships with our isolates. The ~40% of genes still unclassified in larger Rhodococcus genomes, particularly those of environmental isolates, need more research to explore the metabolic potential of this genus.IMPORTANCERhodococcus is a diverse, metabolically powerful genus, with high potential to adapt to different habitats due to the linear plasmids and large genome sizes. The analysis of its pan-genome allowed us to separate host-associated from environmental strains, supporting taxonomic reclassification. It was shown which genes contribute to the differentiation of the genomes based on habitat, which can possibly be used for targeted isolation and screening for desired traits. With respect to apple replant disease (ARD), our isolates showed genome traits that suggest potential for application in reducing plant-derived phenolic substances in soil, which makes them good candidates for further testing against ARD.
Collapse
Affiliation(s)
- Sarah Benning
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Karin Pritsch
- Research Unit for Environmental Simulations, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Viviane Radl
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Roberto Siani
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Zhongjie Wang
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair for Environmental Microbiology, TUM School of Life Sciences, Technical University Munich, Munich, Germany
| |
Collapse
|
21
|
Lanza A, Kimura S, Hirono I, Yoshitake K, Kinoshita S, Asakawa S. Transcriptome analysis of Edwardsiella piscicida during intracellular infection reveals excludons are involved with the activation of a mitochondrion-like energy generation program. mBio 2024; 15:e0352623. [PMID: 38349189 PMCID: PMC10936155 DOI: 10.1128/mbio.03526-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024] Open
Abstract
Phylogenetic evidence suggests a shared ancestry between mitochondria and modern Proteobacteria, a phylum including several genera of intracellular pathogens. Studying these diverse pathogens, particularly during intracellular infection of their hosts, can reveal characteristics potentially representative of the mitochondrial-Proteobacterial ancestor by identifying traits shared with mitochondria. While transcriptomic approaches can provide global insights into intracellular acclimatization by pathogens, they are often limited by excess host RNAs in extracts. Here, we developed a method employing magnetic nanoparticles to enrich RNA from an intracellular Gammaproteobacterium, Edwardsiella piscicida, within zebrafish, Danio rerio, fin fibroblasts, enabling comprehensive exploration of the bacterial transcriptome. Our findings revealed that the intracellular E. piscicida transcriptome reflects a mitochondrion-like energy generation program characterized by the suppression of glycolysis and sugar transport, coupled with upregulation of the tricarboxylic acid (TCA) cycle and alternative import of simple organic acids that directly flux into TCA cycle intermediates or electron transport chain donors. Additionally, genes predicted to be members of excludons, loci of gene pairs antagonistically co-regulated by overlapping antisense transcription, are significantly enriched in the set of all genes with perturbed sense and antisense transcription, suggesting a general but important involvement of excludons with intracellular acclimatization. Notably, genes involved with the activation of the mitochondrion-like energy generation program, specifically with metabolite import and glycolysis, are also members of predicted excludons. Other intracellular Proteobacterial pathogens appear to employ a similar mitochondrion-like energy generation program, suggesting a potentially conserved mechanism for optimized energy acquisition from hosts centered around the TCA cycle.IMPORTANCEPhylogenetic evidence suggests that mitochondria and Proteobacteria, a phylum encompassing various intracellular pathogens, share a common ancestral lineage. In this study, we developed a novel method employing magnetic nanoparticles to explore the transcriptome of an aquatic Gammaproteobacterium, Edwardsiella piscicida, during intracellular infection of host cells. We show that the strategy E. piscicida uses to generate energy strikingly mirrors the function of mitochondria-energy generators devoid of glycolytic processes. Notably, several implicated genes are members of excludons-gene pairs antagonistically co-regulated by overlapping antisense transcription. Other intracellular Proteobacterial pathogens appear to adopt a similar mitochondrion-like energy generation program, indicating a possibly conserved strategy for optimized energy acquisition from hosts centered around the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Andre Lanza
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kimura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuo Hirono
- Department of Marine Biosciences, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Ghasemian E, Faal N, Pickering H, Sillah A, Breuer J, Bailey RL, Mabey D, Holland MJ. Genomic insights into local-scale evolution of ocular Chlamydia trachomatis strains within and between individuals in Gambian trachoma-endemic villages. Microb Genom 2024; 10:001210. [PMID: 38445851 PMCID: PMC10999739 DOI: 10.1099/mgen.0.001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
Trachoma, a neglected tropical disease caused by Chlamydia trachomatis (Ct) serovars A-C, is the leading infectious cause of blindness worldwide. Africa bears the highest burden, accounting for over 86 % of global trachoma cases. We investigated Ct serovar A (SvA) and B (SvB) whole genome sequences prior to the induction of mass antibiotic drug administration in The Gambia. Here, we explore the factors contributing to Ct strain diversification and the implications for Ct evolution within the context of ocular infection. A cohort study in 2002-2003 collected ocular swabs across nine Gambian villages during a 6 month follow-up study. To explore the genetic diversity of Ct within and between individuals, we conducted whole-genome sequencing (WGS) on a limited number (n=43) of Ct-positive samples with an omcB load ≥10 from four villages. WGS was performed using target enrichment with SureSelect and Illumina paired-end sequencing. Out of 43 WGS samples, 41 provided sufficient quality for further analysis. ompA analysis revealed that 11 samples had highest identity to ompA from strain A/HAR13 (NC_007429) and 30 had highest identity to ompA from strain B/Jali20 (NC_012686). While SvB genome sequences formed two distinct village-driven subclades, the heterogeneity of SvA sequences led to the formation of many individual branches within the Gambian SvA subclade. Comparing the Gambian SvA and SvB sequences with their reference strains, Ct A/HAR13 and Ct B/Jali20, indicated an single nucleotide polymorphism accumulation rate of 2.4×10-5 per site per year for the Gambian SvA and 1.3×10-5 per site per year for SvB variants (P<0.0001). Variant calling resulted in a total of 1371 single nucleotide variants (SNVs) with a frequency >25 % in SvA sequences, and 438 SNVs in SvB sequences. Of note, in SvA variants, highest evolutionary pressure was recorded on genes responsible for host cell modulation and intracellular survival mechanisms, whereas in SvB variants this pressure was mainly on genes essential for DNA replication/repair mechanisms and protein synthesis. A comparison of the sequences between observed separate infection events (4-20 weeks between infections) suggested that the majority of the variations accumulated in genes responsible for host-pathogen interaction such as CTA_0166 (phospholipase D-like protein), CTA_0498 (TarP) and CTA_0948 (deubiquitinase). This comparison of Ct SvA and SvB variants within a trachoma endemic population focused on their local evolutionary adaptation. We found a different variation accumulation pattern in the Gambian SvA chromosomal genes compared with SvB, hinting at the potential of Ct serovar-specific variation in diversification and evolutionary fitness. These findings may have implications for optimizing trachoma control and prevention strategies.
Collapse
Affiliation(s)
- Ehsan Ghasemian
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Nkoyo Faal
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Harry Pickering
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Ansumana Sillah
- National Eye Health Programme, Ministry of Health, Kanifing, Gambia
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | - Robin L. Bailey
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - David Mabey
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Martin J. Holland
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
23
|
Castelli M, Nardi T, Gammuto L, Bellinzona G, Sabaneyeva E, Potekhin A, Serra V, Petroni G, Sassera D. Host association and intracellularity evolved multiple times independently in the Rickettsiales. Nat Commun 2024; 15:1093. [PMID: 38321113 PMCID: PMC10847448 DOI: 10.1038/s41467-024-45351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The order Rickettsiales (Alphaproteobacteria) encompasses multiple diverse lineages of host-associated bacteria, including pathogens, reproductive manipulators, and mutualists. Here, in order to understand how intracellularity and host association originated in this order, and whether they are ancestral or convergently evolved characteristics, we built a large and phylogenetically-balanced dataset that includes de novo sequenced genomes and a selection of published genomic and metagenomic assemblies. We perform detailed functional reconstructions that clearly indicates "late" and parallel evolution of obligate host-association in different Rickettsiales lineages. According to the depicted scenario, multiple independent horizontal acquisitions of transporters led to the progressive loss of biosynthesis of nucleotides, amino acids and other metabolites, producing distinct conditions of host-dependence. Each clade experienced a different pattern of evolution of the ancestral arsenal of interaction apparatuses, including development of specialised effectors involved in the lineage-specific mechanisms of host cell adhesion and/or invasion.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Greta Bellinzona
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Saint Petersburg State University, Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Saint Petersburg State University, Petersburg, Russia
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | | | | | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
- IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
24
|
Dragone NB, Hoffert M, Strickland MS, Fierer N. Taxonomic and genomic attributes of oligotrophic soil bacteria. ISME COMMUNICATIONS 2024; 4:ycae081. [PMID: 38988701 PMCID: PMC11234899 DOI: 10.1093/ismeco/ycae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/15/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Not all bacteria are fast growers. In soil as in other environments, bacteria exist along a continuum-from copiotrophs that can grow rapidly under resource-rich conditions to oligotrophs that are adapted to life in the "slow lane." However, the field of microbiology is built almost exclusively on the study of copiotrophs due, in part, to the ease of studying them in vitro. To begin understanding the attributes of soil oligotrophs, we analyzed three independent datasets that represent contrasts in organic carbon availability. These datasets included 185 samples collected from soil profiles across the USA, 950 paired bulk soil and rhizosphere samples collected across Europe, and soils from a microcosm experiment where carbon availability was manipulated directly. Using a combination of marker gene sequencing and targeted genomic analyses, we identified specific oligotrophic taxa that were consistently more abundant in carbon-limited environments (subsurface, bulk, unamended soils) compared to the corresponding carbon-rich environment (surface, rhizosphere, glucose-amended soils), including members of the Dormibacterota and Chloroflexi phyla. In general, putative soil oligotrophs had smaller genomes, slower maximum potential growth rates, and were under-represented in culture collections. The genomes of oligotrophs were more likely to be enriched in pathways that allow oligotrophs to metabolize a range of energy sources and store carbon, while genes associated with energy-intensive functions like chemotaxis and motility were under-represented. However, few genomic attributes were shared, highlighting that oligotrophs likely use a range of different metabolic strategies and regulatory pathways to thrive in resource-limited soils.
Collapse
Affiliation(s)
- Nicholas B Dragone
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Michael Hoffert
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Michael S Strickland
- Department of Soil and Water Systems, University of Idaho, Moscow, ID 83844, United States
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, United States
| |
Collapse
|
25
|
Hollensteiner J, Schneider D, Poehlein A, Brinkhoff T, Daniel R. Pan-genome analysis of six Paracoccus type strain genomes reveal lifestyle traits. PLoS One 2023; 18:e0287947. [PMID: 38117845 PMCID: PMC10732464 DOI: 10.1371/journal.pone.0287947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/15/2023] [Indexed: 12/22/2023] Open
Abstract
The genus Paracoccus capable of inhabiting a variety of different ecological niches both, marine and terrestrial, is globally distributed. In addition, Paracoccus is taxonomically, metabolically and regarding lifestyle highly diverse. Until now, little is known on how Paracoccus can adapt to such a range of different ecological niches and lifestyles. In the present study, the genus Paracoccus was phylogenomically analyzed (n = 160) and revisited, allowing species level classification of 16 so far unclassified Paracoccus sp. strains and detection of five misclassifications. Moreover, we performed pan-genome analysis of Paracoccus-type strains, isolated from a variety of ecological niches, including different soils, tidal flat sediment, host association such as the bluespotted cornetfish, Bugula plumosa, and the reef-building coral Stylophora pistillata to elucidate either i) the importance of lifestyle and adaptation potential, and ii) the role of the genomic equipment and niche adaptation potential. Six complete genomes were de novo hybrid assembled using a combination of short and long-read technologies. These Paracoccus genomes increase the number of completely closed high-quality genomes of type strains from 15 to 21. Pan-genome analysis revealed an open pan-genome composed of 13,819 genes with a minimal chromosomal core (8.84%) highlighting the genomic adaptation potential and the huge impact of extra-chromosomal elements. All genomes are shaped by the acquisition of various mobile genetic elements including genomic islands, prophages, transposases, and insertion sequences emphasizing their genomic plasticity. In terms of lifestyle, each mobile genetic elements should be evaluated separately with respect to the ecological context. Free-living genomes, in contrast to host-associated, tend to comprise (1) larger genomes, or the highest number of extra-chromosomal elements, (2) higher number of genomic islands and insertion sequence elements, and (3) a lower number of intact prophage regions. Regarding lifestyle adaptations, free-living genomes share genes linked to genetic exchange via T4SS, especially relevant for Paracoccus, known for their numerous extrachromosomal elements, enabling adaptation to dynamic environments. Conversely, host-associated genomes feature diverse genes involved in molecule transport, cell wall modification, attachment, stress protection, DNA repair, carbon, and nitrogen metabolism. Due to the vast number of adaptive genes, Paracoccus can quickly adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Jacqueline Hollensteiner
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Weinroth MD, Clawson ML, Harhay GP, Eppinger M, Harhay DM, Smith TPL, Bono JL. Escherichia coli O157:H7 tir 255 T > A allele strains differ in chromosomal and plasmid composition. Front Microbiol 2023; 14:1303387. [PMID: 38169669 PMCID: PMC10758439 DOI: 10.3389/fmicb.2023.1303387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O157:H7 strains with the T allele in the translocated intimin receptor polymorphism (tir) 255 A > T gene associate with human disease more than strains with an A allele; however, the allele is not thought to be the direct cause of this difference. We sequenced a diverse set of STEC O157:H7 strains (26% A allele, 74% T allele) to identify linked differences that might underlie disease association. The average chromosome and pO157 plasmid size and gene content were significantly greater within the tir 255 A allele strains. Eighteen coding sequences were unique to tir 255 A allele chromosomes, and three were unique to tir 255 T allele chromosomes. There also were non-pO157 plasmids that were unique to each tir 255 allele variant. The overall average number of prophages did not differ between tir 255 allele strains; however, there were different types between the strains. Genomic and mobile element variation linked to the tir 255 polymorphism may account for the increased frequency of the T allele isolates in human disease.
Collapse
Affiliation(s)
- Margaret D. Weinroth
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| | - Michael L. Clawson
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| | - Gregory P. Harhay
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Dayna M. Harhay
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| | - Timothy P. L. Smith
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| | - James L. Bono
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| |
Collapse
|
27
|
A J, S S S, K S, T S M. Extracellular vesicles in bacterial and fungal diseases - Pathogenesis to diagnostic biomarkers. Virulence 2023; 14:2180934. [PMID: 36794396 PMCID: PMC10012962 DOI: 10.1080/21505594.2023.2180934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Intercellular communication among microbes plays an important role in disease exacerbation. Recent advances have described small vesicles, termed as "extracellular vesicles" (EVs), previously disregarded as "cellular dust" to be vital in the intracellular and intercellular communication in host-microbe interactions. These signals have been known to initiate host damage and transfer of a variety of cargo including proteins, lipid particles, DNA, mRNA, and miRNAs. Microbial EVs, referred to generally as "membrane vesicles" (MVs), play a key role in disease exacerbation suggesting their importance in pathogenicity. Host EVs help coordinate antimicrobial responses and prime the immune cells for pathogen attack. Hence EVs with their central role in microbe-host communication, may serve as important diagnostic biomarkers of microbial pathogenesis. In this review, we summarize current research regarding the roles of EVs as markers of microbial pathogenesis with specific focus on their interaction with host immune defence and their potential as diagnostic biomarkers in disease conditions.
Collapse
Affiliation(s)
- Jnana A
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sadiya S S
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Satyamoorthy K
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Murali T S
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
28
|
Wang C, Yu QY, Ji NN, Zheng Y, Taylor JW, Guo LD, Gao C. Bacterial genome size and gene functional diversity negatively correlate with taxonomic diversity along a pH gradient. Nat Commun 2023; 14:7437. [PMID: 37978289 PMCID: PMC10656551 DOI: 10.1038/s41467-023-43297-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Bacterial gene repertoires reflect adaptive strategies, contribute to ecosystem functioning and are limited by genome size. However, gene functional diversity does not necessarily correlate with taxonomic diversity because average genome size may vary by community. Here, we analyse gene functional diversity (by shotgun metagenomics) and taxonomic diversity (by 16S rRNA gene amplicon sequencing) to investigate soil bacterial communities along a natural pH gradient in 12 tropical, subtropical, and temperate forests. We find that bacterial average genome size and gene functional diversity decrease, whereas taxonomic diversity increases, as soil pH rises from acid to neutral; as a result, bacterial taxonomic and functional diversity are negatively correlated. The gene repertoire of acid-adapted oligotrophs is enriched in functions of signal transduction, cell motility, secretion system, and degradation of complex compounds, while that of neutral pH-adapted copiotrophs is enriched in functions of energy metabolism and membrane transport. Our results indicate that a mismatch between taxonomic and functional diversity can arise when environmental factors (such as pH) select for adaptive strategies that affect genome size distributions.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qing-Yi Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- School of Geographical Sciences, Fujian Normal University, 350007, Fuzhou, China
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
29
|
Colson P, Delerce J, Fantini J, Pontarotti P, La Scola B, Raoult D. The return of the "Mistigri" (virus adaptative gain by gene loss) through the SARS-CoV-2 XBB.1.5 chimera that predominated in 2023. J Med Virol 2023; 95:e29146. [PMID: 37800455 DOI: 10.1002/jmv.29146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 XBB.1.5 is the first recombinant lineage to predominate at the country and global scales. Very interestingly, like the Marseille-4B subvariant (or B.1.160) and the pandemic variant B.1.1.7 (or Alpha) previously, it has its ORF8 gene inactivated by a stop codon. We aimed here to study the distribution of stop codons in ORF8 of XBB.1.5 and non-XBB.1.5 genomes. We identified that a stop codon was present at 89 (74%) ORF8 codons in ≥1 of 15 222 404 genomes available in GISAID. The mean proportion of genomes with a stop codon per codon was 0.11% (range, 0%-7.8%). In addition, a stop codon was detected at 15 (12%) codons in at least 1000 genomes. These 15 codons are notably located on seven stem-loop hairpin regions and in the signal peptide region for the case of the XBB.1.5 lineage (codon 8). Thus, it is very likely that stop codons in ORF8 gene contributed on at least three occasions and independently during the pandemic to the evolutionary success of a lineage that became transiently predominant. Such association of gene loss with evolutionary success, which suits the recently described Mistigri rule, is an important biological phenomenon very unknown in virology while largely described in cellular organisms.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille Université, Marseille, France
| | - Pierre Pontarotti
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- Department of Biological Sciences, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| |
Collapse
|
30
|
Mekonnen D, Munshea A, Nibret E, Adnew B, Herrera-Leon S, Amor Aramendia A, Benito A, Abascal E, Jacqueline C, Aseffa A, Herrera-Leon L. Comparative whole-genome sequence analysis of Mycobacterium tuberculosis isolated from pulmonary tuberculosis and tuberculous lymphadenitis patients in Northwest Ethiopia. Front Microbiol 2023; 14:1211267. [PMID: 37455714 PMCID: PMC10348828 DOI: 10.3389/fmicb.2023.1211267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Background Tuberculosis (TB), caused by the Mycobacterium tuberculosis complex (MTBC), is a chronic infectious disease with both pulmonary and extrapulmonary forms. This study set out to investigate and compare the genomic diversity and transmission dynamics of Mycobacterium tuberculosis (Mtb) isolates obtained from tuberculous lymphadenitis (TBLN) and pulmonary TB (PTB) cases in Northwest Ethiopia. Methods A facility-based cross-sectional study was conducted using two groups of samples collected between February 2021 and June 2022 (Group 1) and between June 2020 and June 2022 (Group 2) in Northwest Ethiopia. Deoxyribonucleic acid (DNA) was extracted from 200 heat-inactivated Mtb isolates. Whole-genome sequencing (WGS) was performed from 161 isolates having ≥1 ng DNA/μl using Illumina NovaSeq 6000 technology. Results From the total 161 isolates sequenced, 146 Mtb isolates were successfully genotyped into three lineages (L) and 18 sub-lineages. The Euro-American (EA, L4) lineage was the prevailing (n = 100; 68.5%) followed by Central Asian (CAS, L3, n = 43; 25.3%) and then L7 (n = 3; 2.05%). The L4.2.2.ETH sub-lineage accounted for 19.9%, while Haarlem estimated at 13.7%. The phylogenetic tree revealed distinct Mtb clusters between PTB and TBLN isolates even though there was no difference at lineages and sub-lineages levels. The clustering rate (CR) and recent transmission index (RTI) for PTB were 30 and 15%, respectively. Similarly, the CR and RTI for TBLN were 31.1 and 18 %, respectively. Conclusion and recommendations PTB and TBLN isolates showed no Mtb lineages and sub-lineages difference. However, at the threshold of five allelic distances, Mtb isolates obtained from PTB and TBLN form distinct complexes in the phylogenetic tree, which indicates the presence of Mtb genomic variation among the two clinical forms. The high rate of clustering and RTI among TBLN implied that TBLN was likely the result of recent transmission and/or reactivation from short latency. Hence, the high incidence rate of TBLN in the Amhara region could be the result of Mtb genomic diversity and rapid clinical progression from primary infection and/or short latency. To validate this conclusion, a similar community-based study with a large sample size and better sampling technique is highly desirable. Additionally, analysis of genomic variants other than phylogenetic informative regions could give insightful information. Combined analysis of the host and the pathogen genome (GXG) together with environmental (GxGxE) factors could give comprehensive co-evolutionary information.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Medical Laboratory Sciences, School of Health Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Amhara Public Health Institute, Bahir Dar, Ethiopia
| | - Abaineh Munshea
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Endalkachew Nibret
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | | | - Silvia Herrera-Leon
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Agustín Benito
- National Center of Tropical Medicine, Institute of Health Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
| | - Estefanía Abascal
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Camille Jacqueline
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- European Public Health Microbiology Training Programme, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Laura Herrera-Leon
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- CIBER Epidemiologia y Salud Publica, Madrid, Spain
| |
Collapse
|
31
|
Colson P, Penant G, Delerce J, Boschi C, Wurtz N, Bedotto M, Branger S, Brouqui P, Parola P, Lagier JC, Cassir N, Tissot-Dupont H, Million M, Aherfi S, La Scola B. Sequencing of monkeypox virus from infected patients reveals viral genomes with APOBEC3-like editing, gene inactivation, and bacterial agents of skin superinfection. J Med Virol 2023; 95:e28799. [PMID: 37342884 DOI: 10.1002/jmv.28799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023]
Abstract
A large outbreak of Monkeypox virus (MPXV) infections has arisen in May 2022 in nonendemic countries. Here, we performed DNA metagenomics using next-generation sequencing with Illumina or Nanopore technologies for clinical samples from MPXV-infected patients diagnosed between June and July 2022. Classification of the MPXV genomes and determination of their mutational patterns were performed using Nextclade. Twenty-five samples from 25 patients were studied. A MPXV genome was obtained for 18 patients, essentially from skin lesions and rectal swabbing. All 18 genomes were classified in clade IIb, lineage B.1, and we identified four B.1 sublineages (B.1.1, B.1.10, B.1.12, B.1.14). We detected a high number of mutations (range, 64-73) relatively to a 2018 Nigerian genome (genome GenBank Accession no. NC_063383.1), which were harbored by a large part of a set of 3184 MPXV genomes of lineage B.1 recovered from GenBank and Nextstrain; and we detected 35 mutations relatively to genome ON563414.3 (a B.1 lineage reference genome). Nonsynonymous mutations occurred in genes encoding central proteins, among which transcription factors and core and envelope proteins, and included two mutations that would truncate a RNA polymerase subunit and a phospholipase d-like protein, suggesting an alternative start codon and gene inactivation, respectively. A large majority (94%) of nucleotide substitutions were G > A or C > U, suggesting the action of human APOBEC3 enzymes. Finally, >1000 reads were identified as from Staphylococcus aureus and Streptococcus pyogenes for 3 and 6 samples, respectively. These findings warrant a close genomic monitoring of MPXV to get a better picture of the genetic micro-evolution and mutational patterns of this virus, and a close clinical monitoring of skin bacterial superinfection in monkeypox patients.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Gwilherm Penant
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | - Céline Boschi
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Nathalie Wurtz
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Marielle Bedotto
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Stéphanie Branger
- Service de Médecine Interne Infectiologie Aïgue Polyvalente, Centre hospitalier d'Avignon, Avignon, France
| | - Philippe Brouqui
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Philippe Parola
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Institut de Recherche pour le Développement (IRD), Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Aix-Marseille Univ., Marseille, France
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Nadim Cassir
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Hervé Tissot-Dupont
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Matthieu Million
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Sarah Aherfi
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| |
Collapse
|
32
|
Nasrin T, Hoque M, Ali S. Systems biology of the genomes' microsatellite signature of Orthopoxvirus including the Monkeypox virus. Comp Immunol Microbiol Infect Dis 2023; 98:102002. [PMID: 37329681 DOI: 10.1016/j.cimid.2023.102002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/07/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
This study is an attempt to extract and analyse the microsatellites or simple sequence repeats (SSRs) from the genomes of eight species of the genus Orthopoxvirus. The average size of genomes included in the study was 205 kb while the GC% was 33% for all but one. A total of 10,584 SSRs and 854 cSSRs were observed. POX2 with the largest genome of 224.499 kb had maximum of 1493 SSRs and 121 cSSRs (compound SSR) while POX7 with the smallest genome of 185.578 kb had minimum incident SSRs and cSSRs at 1181 and 96, respectively. There was significant correlation between genome size and SSR incidence. Di-nucleotide repeats were the most prevalent (57.47%) followed by mono- at 33% and tri- at 8.6%. Mono-nucleotide SSRs were predominantly T (51%) and A (48.4%). A majority of 80.32% SSRs were in the coding region. The three most similar genomes as per heat map POX1, POX7 and POX5 (93% similarity) are adjacent to one another in the phylogenetic tree. Ankyrin/Ankyrin like protein and Kelch protein which are associated with host determination and divergence have the highest SSR density in almost all studied viruses. Thus, SSRs are involved in genome evolution and host determination of viruses.
Collapse
Affiliation(s)
- Taslima Nasrin
- Clinical and Applied Genomics (CAG) Laboratory Department of Biological Sciences, Aliah University, Kolkata, India
| | - Mehboob Hoque
- Applied Biochemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, India
| | - Safdar Ali
- Clinical and Applied Genomics (CAG) Laboratory Department of Biological Sciences, Aliah University, Kolkata, India.
| |
Collapse
|
33
|
Luu LDW, Kasimov V, Phillips S, Myers GSA, Jelocnik M. Genome organization and genomics in Chlamydia: whole genome sequencing increases understanding of chlamydial virulence, evolution, and phylogeny. Front Cell Infect Microbiol 2023; 13:1178736. [PMID: 37287464 PMCID: PMC10242142 DOI: 10.3389/fcimb.2023.1178736] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
The genus Chlamydia contains important obligate intracellular bacterial pathogens to humans and animals, including C. trachomatis and C. pneumoniae. Since 1998, when the first Chlamydia genome was published, our understanding of how these microbes interact, evolved and adapted to different intracellular host environments has been transformed due to the expansion of chlamydial genomes. This review explores the current state of knowledge in Chlamydia genomics and how whole genome sequencing has revolutionised our understanding of Chlamydia virulence, evolution, and phylogeny over the past two and a half decades. This review will also highlight developments in multi-omics and other approaches that have complemented whole genome sequencing to advance knowledge of Chlamydia pathogenesis and future directions for chlamydial genomics.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Vasilli Kasimov
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Samuel Phillips
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Garry S. A. Myers
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Martina Jelocnik
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
34
|
Moore LD, Ballinger MJ. The toxins of vertically transmitted Spiroplasma. Front Microbiol 2023; 14:1148263. [PMID: 37275155 PMCID: PMC10232968 DOI: 10.3389/fmicb.2023.1148263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/19/2023] [Indexed: 06/07/2023] Open
Abstract
Vertically transmitted (VT) microbial symbionts play a vital role in the evolution of their insect hosts. A longstanding question in symbiont research is what genes help promote long-term stability of vertically transmitted lifestyles. Symbiont success in insect hosts is due in part to expression of beneficial or manipulative phenotypes that favor symbiont persistence in host populations. In Spiroplasma, these phenotypes have been linked to toxin and virulence domains among a few related strains. However, these domains also appear frequently in phylogenetically distant Spiroplasma, and little is known about their distribution across the Spiroplasma genus. In this study, we present the complete genome sequence of the Spiroplasma symbiont of Drosophila atripex, a non-manipulating member of the Ixodetis clade of Spiroplasma, for which genomic data are still limited. We perform a genus-wide comparative analysis of toxin domains implicated in defensive and reproductive phenotypes. From 12 VT and 31 non-VT Spiroplasma genomes, ribosome-inactivating proteins (RIPs), OTU-like cysteine proteases (OTUs), ankyrins, and ETX/MTX2 domains show high propensity for VT Spiroplasma compared to non-VT Spiroplasma. Specifically, OTU and ankyrin domains can be found only in VT-Spiroplasma, and RIP domains are found in all VT Spiroplasma and three non-VT Spiroplasma. These domains are frequently associated with Spiroplasma plasmids, suggesting a possible mechanism for dispersal and maintenance among heritable strains. Searching insect genome assemblies available on public databases uncovered uncharacterized Spiroplasma genomes from which we identified several spaid-like genes encoding RIP, OTU, and ankyrin domains, suggesting functional interactions among those domain types. Our results suggest a conserved core of symbiont domains play an important role in the evolution and persistence of VT Spiroplasma in insects.
Collapse
Affiliation(s)
- Logan D. Moore
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | | |
Collapse
|
35
|
Smita N, Anusha R, Indu B, Sasikala C, Ramana CV. In silico analysis of sporulene biosynthesis pathway genes in the members of the class Bacilli. Arch Microbiol 2023; 205:233. [PMID: 37171632 DOI: 10.1007/s00203-023-03558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
Sporulene, a pentacyclic triterpenoid, was discovered in Bacillus subtilis and is associated with bacterial endospores. However, the study was not further extended, leaving a trail of questions. One such question is what diversity of sporulenes exists among spore-forming members? Considering the sporulene biosynthesis pathway as a fundamental tool to survey the distribution of this molecule, a genome mining study was conducted. Mining for genes encoding putative proteins of sporulene biosynthesis pathway among the class Bacilli members revealed the presence of hepS, hepT, ytpB, and sqhC genes in the members of the family Bacillaceae, Caryophanaceae, Paenibacillaceae, and Sporolactobacillaceae. However, these genes were completely absent in the members of Staphylococcaceae, Lactobacillaceae, Aerococcaceae, Carnobacteriaceae, and Leuconostocaceae. Unlike other probable pathway related proteins, a conserved amino acid domain of putative terpenoid cyclase (YtpB) appeared deep-rooted among the genus Bacillus members. In-depth analysis showed the constant gene arrangement of hepS, hepT, ytpB, and sqhC genes in these members, there by demonstrating the conserved nature of sporulene biosynthesis pathway in the members of the genus Bacillus. Our study suggests confinement of the sporulene biosynthesis pathway to spore-forming members of the class Bacilli, majorly to the genus Bacillus.
Collapse
Affiliation(s)
- N Smita
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - R Anusha
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - B Indu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - Ch Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J.N.T. University Hyderabad, Kukatpally, Hyderabad, 500085, India.
| | - Ch V Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India.
| |
Collapse
|
36
|
Dresen M, Valentin-Weigand P, Berhanu Weldearegay Y. Role of Metabolic Adaptation of Streptococcus suis to Host Niches in Bacterial Fitness and Virulence. Pathogens 2023; 12:pathogens12040541. [PMID: 37111427 PMCID: PMC10144218 DOI: 10.3390/pathogens12040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Streptococcus suis, both a common colonizer of the porcine upper respiratory tract and an invasive pig pathogen, successfully adapts to different host environments encountered during infection. Whereas the initial infection mainly occurs via the respiratory tract, in a second step, the pathogen can breach the epithelial barrier and disseminate within the whole body. Thereby, the pathogen reaches other organs such as the heart, the joints, or the brain. In this review, we focus on the role of S. suis metabolism for adaptation to these different in vivo host niches to encounter changes in nutrient availability, host defense mechanisms and competing microbiota. Furthermore, we highlight the close link between S. suis metabolism and virulence. Mutants deficient in metabolic regulators often show an attenuation in infection experiments possibly due to downregulation of virulence factors, reduced resistance to nutritive or oxidative stress and to phagocytic activity. Finally, metabolic pathways as potential targets for new therapeutic strategies are discussed. As antimicrobial resistance in S. suis isolates has increased over the last years, the development of new antibiotics is of utmost importance to successfully fight infections in the future.
Collapse
Affiliation(s)
- Muriel Dresen
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | | |
Collapse
|
37
|
Endogenous Plasmids and Chromosomal Genome Reduction in the Cardinium Endosymbiont of Dermatophagoides farinae. mSphere 2023; 8:e0007423. [PMID: 36939349 PMCID: PMC10117132 DOI: 10.1128/msphere.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Cardinium bacteria are well known as endosymbionts that infect a wide range of arthropods and can manipulate host reproduction to promote their vertical transmission. As intracellular bacteria, Cardinium species undergo dramatic genome evolution, especially their chromosomal genome reduction. Although Cardinium plasmids have been reported to harbor important genes, the role of these plasmids in the genome evolution is yet to be fully understood. In this study, 2 genomes of Cardinium endosymbiont bacteria in astigmatic mites were de novo assembled, including the complete circular chromosomal genome of Cardinium sp. DF that was constructed in high quality using high-coverage long-read sequencing data. Intriguingly, 2 circular plasmids were assembled in Cardinium sp. DF and were identified to be endogenous for over 10 homologous genes shared with the chromosomal genome. Comparative genomics analysis illustrated an outline of the genome evolution of Cardinium bacteria, and the in-depth analysis of Cardinium sp. DF shed light on the multiple roles of endogenous plasmids in the molecular process of the chromosomal genome reduction. The endogenous plasmids of Cardinium sp. DF not only harbor massive homologous sequences that enable homologous recombination with the chromosome, but also can provide necessary functional proteins when the coding genes decayed in the chromosomal genome. IMPORTANCE As bacterial endosymbionts, Cardinium typically undergoes genome reduction, but the molecular process is still unclear, such as how plasmids get involved in chromosome reduction. Here, we de novo assembled 2 genomes of Cardinium in astigmatic mites, especially the chromosome of Cardinium sp. DF was assembled in a complete circular DNA using high-coverage long-read sequencing data. In the genome assembly of Cardinium sp. DF, 2 circular endogenous plasmids were identified to share at least 10 homologous genes with the chromosomal genome. In the comparative analysis, we identified a range of genes decayed in the chromosomal genome of Cardinium sp. DF but preserved in the 2 plasmids. Taken together with in-depth analyses, our results unveil that the endogenous plasmids harbor homologous sequences of chromosomal genome and can provide a structural basis of homologous recombination. Overall, this study reveals that endogenous plasmids participate in the ongoing chromosomal genome reduction of Cardinium sp. DF.
Collapse
|
38
|
Anderson BD, Bisanz JE. Challenges and opportunities of strain diversity in gut microbiome research. Front Microbiol 2023; 14:1117122. [PMID: 36876113 PMCID: PMC9981649 DOI: 10.3389/fmicb.2023.1117122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 02/19/2023] Open
Abstract
Just because two things are related does not mean they are the same. In analyzing microbiome data, we are often limited to species-level analyses, and even with the ability to resolve strains, we lack comprehensive databases and understanding of the importance of strain-level variation outside of a limited number of model organisms. The bacterial genome is highly plastic with gene gain and loss occurring at rates comparable or higher than de novo mutations. As such, the conserved portion of the genome is often a fraction of the pangenome which gives rise to significant phenotypic variation, particularly in traits which are important in host microbe interactions. In this review, we discuss the mechanisms that give rise to strain variation and methods that can be used to study it. We identify that while strain diversity can act as a major barrier in interpreting and generalizing microbiome data, it can also be a powerful tool for mechanistic research. We then highlight recent examples demonstrating the importance of strain variation in colonization, virulence, and xenobiotic metabolism. Moving past taxonomy and the species concept will be crucial for future mechanistic research to understand microbiome structure and function.
Collapse
Affiliation(s)
- Benjamin D. Anderson
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Jordan E. Bisanz
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- The Penn State Microbiome Center, Huck Institutes of the Life Sciences, University Park, PA, United States
| |
Collapse
|
39
|
Schindler Y, Rahav G, Nissan I, Treygerman O, Prajgrod G, Attia BZ, Raz R, Valenci GZ, Tekes-Manova D, Maor Y. Group B streptococcus virulence factors associated with different clinical syndromes: Asymptomatic carriage in pregnant women and early-onset disease in the newborn. Front Microbiol 2023; 14:1093288. [PMID: 36860481 PMCID: PMC9968972 DOI: 10.3389/fmicb.2023.1093288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Background Group B streptococcus (GBS) harbors many virulence factors but there is limited data regarding their importance in colonization in pregnancy and early-onset disease (EOD) in the newborn. We hypothesized that colonization and EOD are associated with different distribution and expression of virulence factors. Methods We studied 36 GBS EOD and 234 GBS isolates collected during routine screening. Virulence genes (pilus-like structures-PI-1, PI-2a, PI-2b; rib and hvgA) presence and expression were identified by PCR and qRT-PCR. Whole genome sequencing (WGS) and comparative genomic analyses were used to compare coding sequences (CDSs) of colonizing and EOD isolates. Results Serotype III (ST17) was significantly associated with EOD and serotype VI (ST1) with colonization. hvgA and rib genes were more prevalent among EOD isolates (58.3 and 77.8%, respectively; p < 0.01). The pilus loci PI-2b and PI-2a were more prevalent among EOD isolates (61.1%, p < 0.01), while the pilus loci PI-2a and PI-1 among colonizing isolates (89.7 and 93.1% vs. 55.6 and 69.4%, p < 0.01). qRT PCR analysis revealed that hvgA was barely expressed in colonizing isolates, even though the gene was detected. Expression of the rib gene and PI-2b was two-fold higher in EOD isolates compared to colonizing isolates. Transcription of PI-2a was three-fold higher in colonizing isolates compared to EOD isolates. ST17 isolates (associated with EOD) had a smaller genome size compared ST1 and the genome was more conserved relative to the reference strain and ST17 isolates. In a multivariate logistic regression analysis virulence factors independently associated with EOD were serotype 3, and PI-1 and PI-2a was protective. Conclusion There was a significant difference in the distribution of hvg A, rib, and PI genes among EOD (serotype III/ST17) and colonizing (serotype VI/ST1) isolates suggesting an association between invasive disease and these virulence factors. Further study is needed to understand the contribution of these genes to GBS virulence.
Collapse
Affiliation(s)
- Yulia Schindler
- Laboratory of Microbiology, Mayanei Hayeshua Medical Center, Bnei Brak, Israel,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Rahav
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel,Infectious Disease Unit, Sheba Medical Center, Tel HaShomer, Israel
| | - Israel Nissan
- Infectious Disease Unit, Sheba Medical Center, Tel HaShomer, Israel,National Public Health Laboratory, Ministry of Health, Tel Aviv, Israel
| | - Orit Treygerman
- Laboratory of Microbiology, Meuhedet Health Maintenance Organization, Lod, Israel
| | - George Prajgrod
- Laboratory of Microbiology, Meuhedet Health Maintenance Organization, Lod, Israel
| | | | - Ronit Raz
- Laboratory of Microbiology, Mayanei Hayeshua Medical Center, Bnei Brak, Israel
| | | | - Dorit Tekes-Manova
- Laboratory of Microbiology, Mayanei Hayeshua Medical Center, Bnei Brak, Israel
| | - Yasmin Maor
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel,Infectious Disease Unit, Wolfson Medical Center, Holon, Israel,*Correspondence: Yasmin Maor, ,
| |
Collapse
|
40
|
Staphylococcus aureus Host Spectrum Correlates with Methicillin Resistance in a Multi-Species Ecosystem. Microorganisms 2023; 11:microorganisms11020393. [PMID: 36838358 PMCID: PMC9964919 DOI: 10.3390/microorganisms11020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Although antibiotic resistance is a major issue for both human and animal health, very few studies have investigated the role of the bacterial host spectrum in its dissemination within natural ecosystems. Here, we assessed the prevalence of methicillin resistance among Staphylococcus aureus (MRSA) isolates from humans, non-human primates (NHPs), micromammals and bats in a primatology center located in southeast Gabon, and evaluated the plausibility of four main predictions regarding the acquisition of antibiotic resistance in this ecosystem. MRSA strain prevalence was much higher in exposed species (i.e., humans and NHPs which receive antibiotic treatment) than in unexposed species (micromammals and bats), and in NHP species living in enclosures than those in captivity-supporting the assumption that antibiotic pressure is a risk factor in the acquisition of MRSA that is reinforced by the irregularity of drug treatment. In the two unexposed groups of species, resistance prevalence was high in the generalist strains that infect humans or NHPs, supporting the hypothesis that MRSA strains diffuse to wild species through interspecific transmission of a generalist strain. Strikingly, the generalist strains that were not found in humans showed a higher proportion of MRSA strains than specialist strains, suggesting that generalist strains present a greater potential for the acquisition of antibiotic resistance than specialist strains. The host spectrum is thus a major component of the issue of antibiotic resistance in ecosystems where humans apply strong antibiotic pressure.
Collapse
|
41
|
Pawlak K, Błażej P, Mackiewicz D, Mackiewicz P. The Influence of the Selection at the Amino Acid Level on Synonymous Codon Usage from the Viewpoint of Alternative Genetic Codes. Int J Mol Sci 2023; 24:ijms24021185. [PMID: 36674703 PMCID: PMC9866869 DOI: 10.3390/ijms24021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Synonymous codon usage can be influenced by mutations and/or selection, e.g., for speed of protein translation and correct folding. However, this codon bias can also be affected by a general selection at the amino acid level due to differences in the acceptance of the loss and generation of these codons. To assess the importance of this effect, we constructed a mutation-selection model model, in which we generated almost 90,000 stationary nucleotide distributions produced by mutational processes and applied a selection based on differences in physicochemical properties of amino acids. Under these conditions, we calculated the usage of fourfold degenerated (4FD) codons and compared it with the usage characteristic of the pure mutations. We considered both the standard genetic code (SGC) and alternative genetic codes (AGCs). The analyses showed that a majority of AGCs produced a greater 4FD codon bias than the SGC. The mutations producing more thymine or adenine than guanine and cytosine increased the differences in usage. On the other hand, the mutational pressures generating a lot of cytosine or guanine with a low content of adenine and thymine decreased this bias because the nucleotide content of most 4FD codons stayed in the compositional equilibrium with these pressures. The comparison of the theoretical results with those for real protein coding sequences showed that the influence of selection at the amino acid level on the synonymous codon usage cannot be neglected. The analyses indicate that the effect of amino acid selection cannot be disregarded and that it can interfere with other selection factors influencing codon usage, especially in AT-rich genomes, in which AGCs are usually used.
Collapse
|
42
|
Dharamshi JE, Köstlbacher S, Schön ME, Collingro A, Ettema TJG, Horn M. Gene gain facilitated endosymbiotic evolution of Chlamydiae. Nat Microbiol 2023; 8:40-54. [PMID: 36604515 PMCID: PMC9816063 DOI: 10.1038/s41564-022-01284-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/07/2022] [Indexed: 01/07/2023]
Abstract
Chlamydiae is a bacterial phylum composed of obligate animal and protist endosymbionts. However, other members of the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum are primarily free living. How Chlamydiae transitioned to an endosymbiotic lifestyle is still largely unresolved. Here we reconstructed Planctomycetes-Verrucomicrobia-Chlamydiae species relationships and modelled superphylum genome evolution. Gene content reconstruction from 11,996 gene families suggests a motile and facultatively anaerobic last common Chlamydiae ancestor that had already gained characteristic endosymbiont genes. Counter to expectations for genome streamlining in strict endosymbionts, we detected substantial gene gain within Chlamydiae. We found that divergence in energy metabolism and aerobiosis observed in extant lineages emerged later during chlamydial evolution. In particular, metabolic and aerobic genes characteristic of the more metabolically versatile protist-infecting chlamydiae were gained, such as respiratory chain complexes. Our results show that metabolic complexity can increase during endosymbiont evolution, adding an additional perspective for understanding symbiont evolutionary trajectories across the tree of life.
Collapse
Affiliation(s)
- Jennah E Dharamshi
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stephan Köstlbacher
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Max E Schön
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Astrid Collingro
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria.
| |
Collapse
|
43
|
Devaux CA, Pontarotti P, Nehari S, Raoult D. 'Cannibalism' of exogenous DNA sequences: The ancestral form of adaptive immunity which entails recognition of danger. Front Immunol 2022; 13:989707. [PMID: 36618387 PMCID: PMC9816338 DOI: 10.3389/fimmu.2022.989707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Adaptive immunity is a sophisticated form of immune response capable of retaining the molecular memory of a very great diversity of target antigens (epitopes) as non-self. It is capable of reactivating itself upon a second encounter with an immunoglobulin or T-cell receptor antigen-binding site with a known epitope that had previously primed the host immune system. It has long been considered that adaptive immunity is a highly evolved form of non-self recognition that appeared quite late in speciation and complemented a more generalist response called innate immunity. Innate immunity offers a relatively non-specific defense (although mediated by sensors that could specifically recognize virus or bacteria compounds) and which does not retain a memory of the danger. But this notion of recent acquisition of adaptive immunity is challenged by the fact that another form of specific recognition mechanisms already existed in prokaryotes that may be able to specifically auto-protect against external danger. This recognition mechanism can be considered a primitive form of specific (adaptive) non-self recognition. It is based on the fact that many archaea and bacteria use a genome editing system that confers the ability to appropriate viral DNA sequences allowing prokaryotes to prevent host damage through a mechanism very similar to adaptive immunity. This is indistinctly called, 'endogenization of foreign DNA' or 'viral DNA predation' or, more pictorially 'DNA cannibalism'. For several years evidence has been accumulating, highlighting the crucial role of endogenization of foreign DNA in the fundamental processes related to adaptive immunity and leading to a change in the dogma that adaptive immunity appeared late in speciation.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France,Department of Biological Sciences, Centre National de la Recherche Scientifique, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France,*Correspondence: Christian A. Devaux,
| | - Pierre Pontarotti
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France,Department of Biological Sciences, Centre National de la Recherche Scientifique, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France
| | - Sephora Nehari
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France
| |
Collapse
|
44
|
Nishikawa S, Ogawa Y, Shiraiwa K, Nozawa R, Nakayama M, Eguchi M, Shimoji Y. Rational Design of Live-Attenuated Vaccines against Genome-Reduced Pathogens. Microbiol Spectr 2022; 10:e0377622. [PMID: 36453908 PMCID: PMC9769512 DOI: 10.1128/spectrum.03776-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022] Open
Abstract
To develop safe and highly effective live vaccines, rational vaccine design is necessary. Here, we sought a simple approach to rationally develop a safe attenuated vaccine against the genome-reduced pathogen Erysipelothrix rhusiopathiae. We examined the mRNA expression of all conserved amino acid biosynthetic genes remaining in the genome after the reductive evolution of E. rhusiopathiae. Reverse transcription-quantitative PCR (qRT-PCR) analysis revealed that half of the 14 genes examined were upregulated during the infection of murine J774A.1 macrophages. Gene deletion was possible only for three proline biosynthesis genes, proB, proA, and proC, the last of which was upregulated 29-fold during infection. Five mutants bearing an in-frame deletion of one (ΔproB, ΔproA, or ΔproC mutant), two (ΔproBA mutant), or three (ΔproBAC mutant) genes exhibited attenuated growth during J774A.1 infection, and the attenuation and vaccine efficacy of these mutants were confirmed in mice and pigs. Thus, for the rational design of live vaccines against genome-reduced bacteria, the selective targeting of genes that escaped chromosomal deletions during evolution may be a simple approach for identifying genes which are specifically upregulated during infection. IMPORTANCE Identification of bacterial genes that are specifically upregulated during infection can lead to the rational construction of live vaccines. For this purpose, genome-based approaches, including DNA microarray analysis and IVET (in vivo expression technology), have been used so far; however, these methods can become laborious and time-consuming. In this study, we used a simple in silico approach and showed that in genome-reduced bacteria, the genes which evolutionarily remained conserved for metabolic adaptations during infection may be the best targets for the deletion and construction of live vaccines.
Collapse
Affiliation(s)
- Sayaka Nishikawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yohsuke Ogawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Kazumasa Shiraiwa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Rieko Nozawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Momoko Nakayama
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Masahiro Eguchi
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yoshihiro Shimoji
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
45
|
Hu C, Jiao Z, Deng X, Tu X, Lu A, Xie C, Jiang K, Zeng X, Liu ZJ, Huang W, Luo Y. The ecological adaptation of the unparalleled plastome character evolution in slipper orchids. FRONTIERS IN PLANT SCIENCE 2022; 13:1075098. [PMID: 36605947 PMCID: PMC9808092 DOI: 10.3389/fpls.2022.1075098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Plastomes may have undergone adaptive evolution in the process of plant adaptation to diverse environments, whereby species may differ in plastome characters. Cypripedioideae successfully colonized distinct environments and could be an ideal group for studying the interspecific variation and adaptive evolution of plastomes. Comparative study of plastomes, ancestral state reconstruction, phylogenetic-based analysis, ecological niche modelling, and selective pressure analysis were conducted to reveal the evolutionary patterns of plastomes in Cypripedioideae and their relationship with environmental factors. The plastomes of the three evolved genera had reduced plastome size, increased GC content, and compacted gene content compared to the basal group. Variations in plastome size and GC content are proved to have clear relationships with climate regions. Furthermore, ecological niche modelling revealed that temperature and water factors are important climatic factors contributing to the distributional difference which is directly correlated with the climate regions. The temperature-sensitive genes ndh genes, infA, and rpl20 were found to be either lost/pseudogenized or under positive selection in the evolved groups. Unparalleled plastome character variations were discovered in slipper orchids. Our study indicates that variations in plastome characters have adaptive consequences and that temperature and water factors are important climatic factors that affect plastome evolution. This research highlights the expectation that plants can facilitate adaptation to different environmental conditions with the changes in plastome and has added critical insight for understanding the process of plastome evolution in plants.
Collapse
Affiliation(s)
- Chao Hu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenbin Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyan Deng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xiongde Tu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Aixian Lu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chengzhi Xie
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Kai Jiang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xinhua Zeng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weichang Huang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Yibo Luo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
46
|
Mutua TM, Kulohoma BW. Differences in genetic flux in invasive Streptococcus pneumoniae associated with bacteraemia and meningitis. Heliyon 2022; 8:e12229. [PMID: 36593853 PMCID: PMC9803773 DOI: 10.1016/j.heliyon.2022.e12229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Background Genetic flux, a crucial process of pneumococcal evolution, is an essential aspect of bacterial physiology during human pathogenesis. However, the role of these genetic changes and the selective forces that drive them is not fully understood. Elucidating the underlying selective forces that determine the magnitude and direction (gene gain or loss) of gene transfer is important for better understanding the pathogenesis process, and may also highlight potential therapeutic and diagnostic targets. Methods Here, we leveraged data from high throughput genome sequencing and robust probabilistic models to discover the magnitude and likely direction of genetic flux events, but not the source, in 209 multi-lineage invasive pneumococcal genomes generated from blood (n = 147) and CSF (n = 62) isolates, associated with bacteremia and meningitis respectively. The Gain and Loss Mapping Engine (GLOOME) was used to infer gene gain and loss more accurately by taking into account differences in rates of gene gain and loss among gene families, as well as independent evolution within and across lineages. Results Our results show the likely extent and direction of gene fluctuations at different niche, during pneumococcal pathogenesis, highlighting that evolutionary dynamics are important for tissue-specific host invasion and survival. Conclusion These findings improve insights on evolutionary dynamics during invasive pneumococcal disease, and highlight potential diagnostic and therapeutic targets.
Collapse
|
47
|
Grote A, Earl AM. Within-host evolution of bacterial pathogens during persistent infection of humans. Curr Opin Microbiol 2022; 70:102197. [PMID: 36063686 PMCID: PMC11333989 DOI: 10.1016/j.mib.2022.102197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023]
Abstract
Many bacterial pathogens can form persistent infections, providing an infectious reservoir, which allows for infection of new hosts. Currently, the molecular mechanisms and evolutionary dynamics driving persistence are still not well-understood. High-throughput sequencing methods have enabled the study of within-host evolution of persistent bacterial pathogens, revealing common trends among bacterial species in how they adapt to persist. We will focus on trends emerging from longitudinal human-cohort studies, including i) genome-size reduction, ii) metabolic adaptation to the host, iii) antimicrobial resistance, iv) changes in virulence and the bacterial cell surface, and v) hypermutation, and comment on where the field should focus going forward.
Collapse
Affiliation(s)
- Alexandra Grote
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
48
|
Ryback B, Bortfeld-Miller M, Vorholt JA. Metabolic adaptation to vitamin auxotrophy by leaf-associated bacteria. THE ISME JOURNAL 2022; 16:2712-2724. [PMID: 35987782 PMCID: PMC9666465 DOI: 10.1038/s41396-022-01303-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Auxotrophs are unable to synthesize all the metabolites essential for their metabolism and rely on others to provide them. They have been intensively studied in laboratory-generated and -evolved mutants, but emergent adaptation mechanisms to auxotrophy have not been systematically addressed. Here, we investigated auxotrophies in bacteria isolated from Arabidopsis thaliana leaves and found that up to half of the strains have auxotrophic requirements for biotin, niacin, pantothenate and/or thiamine. We then explored the genetic basis of auxotrophy as well as traits that co-occurred with vitamin auxotrophy. We found that auxotrophic strains generally stored coenzymes with the capacity to grow exponentially for 1-3 doublings without vitamin supplementation; however, the highest observed storage was for biotin, which allowed for 9 doublings in one strain. In co-culture experiments, we demonstrated vitamin supply to auxotrophs, and found that auxotrophic strains maintained higher species richness than prototrophs upon external supplementation with vitamins. Extension of a consumer-resource model predicted that auxotrophs can utilize carbon compounds provided by other organisms, suggesting that auxotrophic strains benefit from metabolic by-products beyond vitamins.
Collapse
Affiliation(s)
- Birgitta Ryback
- grid.5801.c0000 0001 2156 2780Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Miriam Bortfeld-Miller
- grid.5801.c0000 0001 2156 2780Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Julia A. Vorholt
- grid.5801.c0000 0001 2156 2780Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
49
|
Cohn AR, Orsi RH, Carroll LM, Liao J, Wiedmann M, Cheng RA. Salmonella enterica serovar Cerro displays a phylogenetic structure and genomic features consistent with virulence attenuation and adaptation to cattle. Front Microbiol 2022; 13:1005215. [PMID: 36532462 PMCID: PMC9748477 DOI: 10.3389/fmicb.2022.1005215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023] Open
Abstract
Salmonella enterica subsp. enterica (S.) serovar Cerro is rarely isolated from human clinical cases of salmonellosis but represents the most common serovar isolated from cattle without clinical signs of illness in the United States. In this study, using a large, diverse set of 316 isolates, we utilized genomic methods to further elucidate the evolutionary history of S. Cerro and to identify genomic features associated with its apparent virulence attenuation in humans. Phylogenetic analyses showed that within this polyphyletic serovar, 98.4% of isolates (311/316) represent a monophyletic clade within section Typhi and the remaining 1.6% of isolates (5/316) form a monophyletic clade within subspecies enterica Clade A1. Of the section Typhi S. Cerro isolates, 93.2% of isolates (290/311) clustered into a large clonal clade comprised of predominantly sequence type (ST) 367 cattle and environmental isolates, while the remaining 6.8% of isolates (21/311), primarily from human clinical sources, clustered outside of this clonal clade. A tip-dated phylogeny of S. Cerro ST367 identified two major clades (I and II), one of which overwhelmingly consisted of cattle isolates that share a most recent common ancestor that existed circa 1975. Gene presence/absence and rarefaction curve analyses suggested that the pangenome of section Typhi S. Cerro is open, potentially reflecting the gain/loss of prophage; human isolates contained the most open pangenome, while cattle isolates had the least open pangenome. Hypothetically disrupted coding sequences (HDCs) displayed clade-specific losses of intact speC and sopA virulence genes within the large clonal S. Cerro clade, while loss of intact vgrG, araH, and vapC occurred in all section Typhi S. Cerro isolates. Further phenotypic analysis suggested that the presence of a premature stop codon in speC does not abolish ornithine decarboxylase activity in S. Cerro, likely due to the activity of the second ornithine decarboxylase encoded by speF, which remained intact in all isolates. Overall, our study identifies specific genomic features associated with S. Cerro's infrequent isolation from humans and its apparent adaptation to cattle, which has broader implications for informing our understanding of the evolutionary events facilitating host adaptation in Salmonella.
Collapse
Affiliation(s)
- Alexa R. Cohn
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Renato H. Orsi
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Laura M. Carroll
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Rachel A. Cheng
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
50
|
Díez-Vives C, Koutsouveli V, Conejero M, Riesgo A. Global patterns in symbiont selection and transmission strategies in sponges. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1015592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sponges host dense and diverse communities of microbes (known as the microbiome) beneficial for the host nutrition and defense. Symbionts in turn receive shelter and metabolites from the sponge host, making their relationship beneficial for both partners. Given that sponge-microbes associations are fundamental for the survival of both, especially the sponge, such relationship is maintained through their life and even passed on to the future generations. In many organisms, the microbiome has profound effects on the development of the host, but the influence of the microbiome on the reproductive and developmental pathways of the sponges are less understood. In sponges, microbes are passed on to oocytes, sperm, embryos, and larvae (known as vertical transmission), using a variety of methods that include direct uptake from the mesohyl through phagocytosis by oocytes to indirect transmission to the oocyte by nurse cells. Such microbes can remain in the reproductive elements untouched, for transfer to offspring, or can be digested to make the yolky nutrient reserves of oocytes and larvae. When and how those decisions are made are fundamentally unanswered questions in sponge reproduction. Here we review the diversity of vertical transmission modes existent in the entire phylum Porifera through detailed imaging using electron microscopy, available metabarcoding data from reproductive elements, and macroevolutionary patterns associated to phylogenetic constraints. Additionally, we examine the fidelity of this vertical transmission and possible reasons for the observed variability in some developmental stages. Our current understanding in marine sponges, however, is that the adult microbial community is established by a combination of both vertical and horizontal (acquisition from the surrounding environment in each new generation) transmission processes, although the extent in which each mode shapes the adult microbiome still remains to be determined. We also assessed the fundamental role of filtration, the cellular structures for acquiring external microbes, and the role of the host immune system, that ultimately shapes the stable communities of prokaryotes observed in adult sponges.
Collapse
|