1
|
Daniel EA, Sommer NA, Sharma M. Polycystic kidneys: interaction of notch and renin. Clin Sci (Lond) 2023; 137:1145-1150. [PMID: 37553961 PMCID: PMC11132639 DOI: 10.1042/cs20230023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
Polycystic kidney disease (PKD) is a developmental disorder, which either manifests in early childhood or later in life, depending on the genetic mutation one harbors. The mechanisms of cyst initiation are not well understood. Increasing literature is now suggesting that Notch signaling may play a critical role in PKD. Activation of Notch signaling is important during nephrogenesis and slows down after development. Deletion of various Notch molecules in the cap mesenchyme leads to formation of cysts and early death in mice. A new study by Belyea et al. has now found that cells of renin lineage may link Notch expression and cystic kidney disease. Here, we use our understanding of Notch signaling and PKD to speculate about the significance of these interactions.
Collapse
Affiliation(s)
- Emily A Daniel
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, U.S.A
| | - Nicole A Sommer
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, U.S.A
| | - Madhulika Sharma
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, U.S.A
| |
Collapse
|
2
|
Beckmann D, Langnaese K, Gottfried A, Hradsky J, Tedford K, Tiwari N, Thomas U, Fischer KD, Korthals M. Ca 2+ Homeostasis by Plasma Membrane Ca 2+ ATPase (PMCA) 1 Is Essential for the Development of DP Thymocytes. Int J Mol Sci 2023; 24:ijms24021442. [PMID: 36674959 PMCID: PMC9865543 DOI: 10.3390/ijms24021442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
The strength of Ca2+ signaling is a hallmark of T cell activation, yet the role of Ca2+ homeostasis in developing T cells before expressing a mature T cell receptor is poorly understood. We aimed to unveil specific functions of the two plasma membrane Ca2+ ATPases expressed in T cells, PMCA1 and PMCA4. On a transcriptional and protein level we found that PMCA4 was expressed at low levels in CD4-CD8- double negative (DN) thymocytes and was even downregulated in subsequent stages while PMCA1 was present throughout development and upregulated in CD4+CD8+ double positive (DP) thymocytes. Mice with a targeted deletion of Pmca1 in DN3 thymocytes had an almost complete block of DP thymocyte development with an accumulation of DN4 thymocytes but severely reduced numbers of CD8+ immature single positive (ISP) thymocytes. The DN4 thymocytes of these mice showed strongly elevated basal cytosolic Ca2+ levels and a pre-mature CD5 expression, but in contrast to the DP thymocytes they were only mildly prone to apoptosis. Surprisingly, mice with a germline deletion of Pmca4 did not show any signs of altered progression through the developmental thymocyte stages, nor altered Ca2+ homeostasis throughout this process. PMCA1 is, therefore, non-redundant in keeping cellular Ca2+ levels low in the early thymocyte development required for the DN to DP transition.
Collapse
Affiliation(s)
- David Beckmann
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Kristina Langnaese
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Anna Gottfried
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Johannes Hradsky
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Kerry Tedford
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Nikhil Tiwari
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39120 Magdeburg, Germany
| | - Ulrich Thomas
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39120 Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| | - Mark Korthals
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
3
|
Steinbuck MP, Winandy S. A Review of Notch Processing With New Insights Into Ligand-Independent Notch Signaling in T-Cells. Front Immunol 2018; 9:1230. [PMID: 29910816 PMCID: PMC5992298 DOI: 10.3389/fimmu.2018.01230] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022] Open
Abstract
The Notch receptor is an evolutionarily highly conserved transmembrane protein essential to a wide spectrum of cellular systems, and its deregulation has been linked to a vast number of developmental disorders and malignancies. Regulated Notch function is critical for the generation of T-cells, in which abnormal Notch signaling results in leukemia. Notch activation through trans-activation of the receptor by one of its ligands expressed on adjacent cells has been well defined. In this canonical ligand-dependent pathway, Notch receptor undergoes conformational changes upon ligand engagement, stimulated by a pulling-force on the extracellular fragment of Notch that results from endocytosis of the receptor-bound ligand into the ligand-expressing cell. These conformational changes in the receptor allow for two consecutive proteolytic cleavage events to occur, which release the intracellular region of the receptor into the cytoplasm. It can then travel to the nucleus, where it induces gene transcription. However, there is accumulating evidence that other pathways may induce Notch signaling. A ligand-independent mechanism of Notch activation has been described in which receptor processing is initiated via cell-internal signals. These signals result in the internalization of Notch into endosomal compartments, where chemical changes existing in this microenvironment result in the conformational modifications required for receptor processing. This review will present mechanisms underlying both canonical ligand-dependent and non-canonical ligand-independent Notch activation pathways and discuss the latter in the context of Notch signaling in T-cells.
Collapse
Affiliation(s)
- Martin Peter Steinbuck
- Immunology Training Program, Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Susan Winandy
- Immunology Training Program, Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Steinbuck MP, Arakcheeva K, Winandy S. Novel TCR-Mediated Mechanisms of Notch Activation and Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:997-1007. [PMID: 29288204 PMCID: PMC5854196 DOI: 10.4049/jimmunol.1700070] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 11/22/2017] [Indexed: 01/04/2023]
Abstract
The Notch receptor is an evolutionarily highly conserved transmembrane protein that is essential to a wide spectrum of cellular systems. Notch signaling is especially important to T cell development, and its deregulation leads to leukemia. Although not well characterized, it continues to play an integral role in peripheral T cells, in which a unique mode of Notch activation can occur. In contrast to canonical Notch activation initiated by adjacent ligand-expressing cells, TCR stimulation is sufficient to induce Notch signaling. However, the interactions between these two pathways have not been defined. In this article, we show that Notch activation occurs in peripheral T cells within a few hours post-TCR stimulation and is required for optimal T cell activation. Using a panel of inhibitors against components of the TCR signaling cascade, we demonstrate that Notch activation is facilitated through initiation of protein kinase C-induced ADAM activity. Moreover, our data suggest that internalization of Notch via endocytosis plays a role in this process. Although ligand-mediated Notch stimulation relies on mechanical pulling forces that disrupt the autoinhibitory domain of Notch, we hypothesized that, in T cells in the absence of ligands, these conformational changes are induced through chemical adjustments in the endosome, causing alleviation of autoinhibition and receptor activation. Thus, T cells may have evolved a unique method of Notch receptor activation, which is described for the first time, to our knowledge, in this article.
Collapse
Affiliation(s)
- Martin Peter Steinbuck
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| | - Ksenia Arakcheeva
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| | - Susan Winandy
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
5
|
Wang T, Xiang Z, Wang Y, Li X, Fang C, Song S, Li C, Yu H, Wang H, Yan L, Hao S, Wang X, Sheng J. (-)-Epigallocatechin Gallate Targets Notch to Attenuate the Inflammatory Response in the Immediate Early Stage in Human Macrophages. Front Immunol 2017; 8:433. [PMID: 28443100 PMCID: PMC5385462 DOI: 10.3389/fimmu.2017.00433] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/28/2017] [Indexed: 01/10/2023] Open
Abstract
Inflammation plays important roles at different stages of diabetes mellitus, tumorigenesis, and cardiovascular diseases. (-)-Epigallocatechin gallate (EGCG) can attenuate inflammatory responses effectively. However, the immediate early mechanism of EGCG in inflammation remains unclear. Here, we showed that EGCG attenuated the inflammatory response in the immediate early stage of EGCG treatment by shutting off Notch signaling and that the effect did not involve the 67-kDa laminin receptor, the common receptor for EGCG. EGCG eliminated mature Notch from the cell membrane and the nuclear Notch intercellular domain, the active form of Notch, within 2 min by rapid degradation via the proteasome pathway. Transcription of the Notch target gene was downregulated simultaneously. Knockdown of Notch 1/2 expression by RNA interference impaired the downregulation of the inflammatory response elicited by EGCG. Further study showed that EGCG inhibited lipopolysaccharide-induced inflammation and turned off Notch signaling in human primary macrophages. Taken together, our results show that EGCG targets Notch to regulate the inflammatory response in the immediate early stage.
Collapse
Affiliation(s)
- Tengfei Wang
- College of Life Science, Jilin University, Changchun, China
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Zemin Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Ya Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xi Li
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Chongye Fang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Shuang Song
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Chunlei Li
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Haishuang Yu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Han Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Liang Yan
- Pu’er Institute of Pu-erh Tea, Pu’er, Yunnan, China
| | - Shumei Hao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| |
Collapse
|
6
|
Lin YT, Barske L, DeFalco T, Capel B. Numb regulates somatic cell lineage commitment during early gonadogenesis in mice. Development 2017; 144:1607-1618. [PMID: 28360133 DOI: 10.1242/dev.149203] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Abstract
During early gonadogenesis, proliferating cells in the coelomic epithelium (CE) give rise to most of the somatic cells in both XX and XY gonads. Previous dye-labeling experiments showed that a single CE cell could give rise to additional CE cells and to both supporting and interstitial cell lineages, implying that cells in the CE domain are multipotent progenitors, and suggesting that an asymmetric division is involved in the acquisition of gonadal cell fates. We found that NUMB is asymmetrically localized in CE cells, suggesting that it might be involved. To test this hypothesis, we conditionally deleted Numb on a Numbl mutant background just prior to gonadogenesis. Mutant gonads showed a loss of cell polarity in the surface epithelial layers, large interior cell patches expressing the undifferentiated cell marker LHX9, and a loss of differentiated cells in somatic cell lineages. These results indicate that NUMB is necessary for establishing polarity in CE cells, and that asymmetric divisions resulting from CE polarity are required for commitment to differentiated somatic cell fates. Surprisingly, germ cells, which do not arise from the CE, were also affected in mutants, which may be a direct or indirect effect of loss of Numb.
Collapse
Affiliation(s)
- Yi-Tzu Lin
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lindsey Barske
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
7
|
Activation of Notch1 synergizes with multiple pathways in promoting castration-resistant prostate cancer. Proc Natl Acad Sci U S A 2016; 113:E6457-E6466. [PMID: 27694579 DOI: 10.1073/pnas.1614529113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (CRPC) is the primary cause of prostate cancer-specific mortality. Defining new mechanisms that can predict recurrence and drive lethal CRPC is critical. Here, we demonstrate that localized high-risk prostate cancer and metastatic CRPC, but not benign prostate tissues or low/intermediate-risk prostate cancer, express high levels of nuclear Notch homolog 1, translocation-associated (Notch1) receptor intracellular domain. Chronic activation of Notch1 synergizes with multiple oncogenic pathways altered in early disease to promote the development of prostate adenocarcinoma. These tumors display features of epithelial-to-mesenchymal transition, a cellular state associated with increased tumor aggressiveness. Consistent with its activation in clinical CRPC, tumors driven by Notch1 intracellular domain in combination with multiple pathways altered in prostate cancer are metastatic and resistant to androgen deprivation. Our study provides functional evidence that the Notch1 signaling axis synergizes with alternative pathways in promoting metastatic CRPC and may represent a new therapeutic target for advanced prostate cancer.
Collapse
|
8
|
Abstract
Notch controls skeletogenesis, but its role in the remodeling of adult bone remains conflicting. In mature mice, the skeleton can become osteopenic or osteosclerotic depending on the time point at which Notch is activated or inactivated. Using adult EGFP reporter mice, we find that Notch expression is localized to osteocytes embedded within bone matrix. Conditional activation of Notch signaling in osteocytes triggers profound bone formation, mainly due to increased mineralization, which rescues both age-associated and ovariectomy-induced bone loss and promotes bone healing following osteotomy. In parallel, mice rendered haploinsufficient in γ-secretase presenilin-1 (Psen1), which inhibits downstream Notch activation, display almost-absent terminal osteoblast differentiation. Consistent with this finding, pharmacologic or genetic disruption of Notch or its ligand Jagged1 inhibits mineralization. We suggest that stimulation of Notch signaling in osteocytes initiates a profound, therapeutically relevant, anabolic response.
Collapse
|
9
|
Tanis KQ, Podtelezhnikov AA, Blackman SC, Hing J, Railkar RA, Lunceford J, Klappenbach JA, Wei B, Harman A, Camargo LM, Shah S, Finney EM, Hardwick JS, Loboda A, Watters J, Bergstrom DA, Demuth T, Herman GA, Strack PR, Iannone R. An accessible pharmacodynamic transcriptional biomarker for notch target engagement. Clin Pharmacol Ther 2016; 99:370-80. [DOI: 10.1002/cpt.335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 01/27/2023]
Affiliation(s)
- KQ Tanis
- Merck & Co., Kenilworth; New Jersey USA
| | | | | | - J Hing
- Merck & Co., Kenilworth; New Jersey USA
| | | | | | | | - B Wei
- Merck & Co., Kenilworth; New Jersey USA
| | - A Harman
- Merck & Co., Kenilworth; New Jersey USA
| | | | - S Shah
- Merck & Co., Kenilworth; New Jersey USA
| | - EM Finney
- Merck & Co., Kenilworth; New Jersey USA
| | | | - A Loboda
- Merck & Co., Kenilworth; New Jersey USA
| | - J Watters
- Merck & Co., Kenilworth; New Jersey USA
| | | | - T Demuth
- Merck & Co., Kenilworth; New Jersey USA
| | - GA Herman
- Merck & Co., Kenilworth; New Jersey USA
| | - PR Strack
- Merck & Co., Kenilworth; New Jersey USA
| | - R Iannone
- Merck & Co., Kenilworth; New Jersey USA
| |
Collapse
|
10
|
Wang X, Zhou Y, Zhu N, Wang L, Gu LJ, Yuan WJ. The deposition of Notch1 in hepatitis B virus-associated nephropathy and its role in hepatitis B virus X protein-induced epithelial-mesenchymal transdifferentiation and immunity disorder in renal tubular epithelial cells. J Viral Hepat 2014; 21:734-43. [PMID: 24628678 DOI: 10.1111/jvh.12244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/02/2014] [Indexed: 12/18/2022]
Abstract
Notch1 plays an important role in the regulation of immune responses and epithelial-mesenchymal transdifferentiation (EMT). Previous studies have observed inflammatory cell infiltration and tubulointerstitial fibrosis in the renal biopsies from patients with HBV-associated glomerulonephritis (HBV-GN). We hypothesized that Notch1 may be involved in the progression of HBV-GN. In this study, we evaluated the distribution of Notch1 in patients with HBV-GN. Our results showed that Notch1 was mainly distributed in renal tubules and the interstitial area, and the expression levels of Notch1 had a positive correlation with the renal tubular pathology. In this respect, we used human proximal tubular epithelial cells (HK-2) as target cells, which were transiently transfected with the hepatitis B virus X (HBx) gene using a eukaryotic vector. HBx expression resulted in significantly increased detection of Notch1, alpha-smooth muscle actin (α-SMA), major histocompatibility complex-II (MHC-II), CD40 and interleukin-4 (IL-4). At the same time, E-cadherin and interferon-γ (IFN-γ) expression levels were significantly inhibited. These HBx-induced phenotypes were exacerbated by upregulation of Notch1. Knock-down of Notch1 by specific shRNA caused decreases of α-SMA, MHC-II, CD40 and IL-4, and increases of E-cadherin and IFN-γ. These findings suggest that Notch1 is significantly associated with renal tubular and interstitial lesions. Notch1 can mediate HBx-induced EMT of HK-2 cells, promote HBx-induced increases in immune molecule expression and exacerbation of cytokine disorders, which may contribute to the progression of HBV-GN. Inhibitors of Notch1 signalling may be useful as new therapeutics for the treatment of HBV-GN.
Collapse
Affiliation(s)
- X Wang
- Department of Nephrology, Shanghai Jiaotong University Affiliated Shanghai First People's Hospital, Shanghai, China
| | | | | | | | | | | |
Collapse
|
11
|
Yuan Y, Lu X, Chen X, Shao H, Huang S. Jagged1 contributes to the drug resistance of Jurkat cells in contact with human umbilical cord-derived mesenchymal stem cells. Oncol Lett 2013; 6:1000-1006. [PMID: 24137453 PMCID: PMC3796424 DOI: 10.3892/ol.2013.1523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/30/2013] [Indexed: 11/05/2022] Open
Abstract
Notch signaling, which is driven by the Notch1 receptor, plays an essential role in the pathogenesis and stroma-mediated drug resistance of T-cell acute lymphoblastic leukemia (T-ALL). However, little is known about the roles of Notch ligands in the survival or drug resistance of T-ALL cells. In the present study, isolated mesenchymal stem cells (MSCs) from human umbilical cord (hUC) samples, termed hUC-MSCs, were used as stromal cells for the Jurkat T-ALL cell line. The role of the Notch ligand, Jagged1, was assessed in the survival of Jurkat T-ALL cells using this co-culture system. hUC-MSCs and Jurkat cells were observed to express Jagged1. Furthermore, co-culture with hUC-MSCs led to a significant upregulation of Jagged1 and a more significant overexpression of its receptor, Notch1, in the Jurkat cells, indicating that the receptor and ligand pair may play a role in the reciprocal or autonomous activation of the Notch pathway. In addition, a higher level of CD28 expression was observed in the Jurkat cells that were co-cultured with hUC-MSCs. Blocking Jagged1 expression using neutralizing antibodies restored drug-induced apoptosis in the Jurkat cells that were co-cultured with hUC-MSCs, and also increased the drug sensitivity of the Jurkat cells that were cultured alone. By contrast, direct incubation with exogenously recombinant Jagged1 produced the same protective effects in Jurkat cells as those induced by hUC-MSCs. These results indicate a significant role for Jagged1 in hUC-MSC-induced survival and the self-maintenance of the Jurkat T-ALL cell line, making it a potential target for the treatment of human T-ALL.
Collapse
Affiliation(s)
- Yin Yuan
- Southern Medical University, Guangzhou, Guangdong 510515, P.R. China ; Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | | | | | | | | |
Collapse
|
12
|
Liu H, Zhou J, Cheng P, Ramachandran I, Nefedova Y, Gabrilovich DI. Regulation of dendritic cell differentiation in bone marrow during emergency myelopoiesis. THE JOURNAL OF IMMUNOLOGY 2013; 191:1916-26. [PMID: 23833236 DOI: 10.4049/jimmunol.1300714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although accumulation of dendritic cell (DC) precursors occurs in bone marrow, the terminal differentiation of these cells takes place outside bone marrow. The signaling, regulating this process, remains poorly understood. We demonstrated that this process could be differentially regulated by Notch ligands: Jagged-1 (Jag1) and Delta-like ligand 1 (Dll1). In contrast to Dll1, Jag1, in vitro and during induced myelopoiesis in vivo, prevented DC differentiation by promoting the accumulation of their precursors. Although both ligands activated Notch in hematopoietic progenitor cells, they had an opposite effect on Wnt signaling. Dll1 activated Wnt pathways, whereas Jag1 inhibited it via downregulation of the expression of the Wnt receptors Frizzled (Fzd). Jag1 suppressed fzd expression by retaining histone deacetylase 1 in the complex with the transcription factor CSL/CBF-1 on the fzd promoter. Our results suggest that DC differentiation, during induced myelopoiesis, can be regulated by the nature of the Notch ligand expressed on adjacent stroma cells.
Collapse
Affiliation(s)
- Hao Liu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | |
Collapse
|
13
|
Zhang P, Zhao Y, Sun XH. Notch-regulated periphery B cell differentiation involves suppression of E protein function. THE JOURNAL OF IMMUNOLOGY 2013; 191:726-36. [PMID: 23752615 DOI: 10.4049/jimmunol.1202134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Notch signaling pathway plays important roles in promoting the generation of marginal zone (MZ) B cells at the expense of follicular (FO) B cells during periphery B cell maturation, but the underlying molecular mechanisms are not well understood. We hypothesize that Notch favors the generation of MZ B cells by downregulating E protein activity. In this study, we demonstrated that expression of Id2 and ankyrin-repeat SOCS box-containing protein 2 was elevated in MZ B cells and by Notch signaling. Id2 inhibits the DNA binding activity of E proteins, whereas ankyrin-repeat SOCS box-containing protein 2 facilitates E protein ubiquitination. Next, we examined the phenotypes of splenic B cells in mice expressing constitutively active Notch1 and/or two gain-of-function mutants of E proteins that counteract Id2-mediated inhibition or Notch-induced degradation. We found that upregulation of E proteins promoted the formation of FO B cells, whereas it suppressed the maturation of MZ B cells. In contrast, excessive amounts of Notch1 stimulated the differentiation of MZ B cells and inhibited the production of FO B cells. More interestingly, the effects of Notch1 were reversed by gain of E protein function. Furthermore, high levels of Bcl-6 expression in FO B cells was shown to be diminished by Notch signaling and restored by E proteins. In addition, E proteins facilitated and Notch hindered the differentiation of transitional B cells. Taken together, it appears that Notch regulates peripheral B cell differentiation, at least in part, through opposing E protein function.
Collapse
Affiliation(s)
- Ping Zhang
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
14
|
Martínez-Trillos A, Quesada V, Villamor N, Puente XS, López-Otín C, Campo E. Recurrent gene mutations in CLL. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 792:87-107. [PMID: 24014293 DOI: 10.1007/978-1-4614-8051-8_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing of whole genomes and exomes in chronic lymphocytic leukemia (CLL) has provided the first comprehensive view of somatic mutations in this disease. Subsequent studies have characterized the oncogenic pathways and clinical implications of a number of these mutations. The global number of somatic mutations per case is lower than those described in solid tumors but is in agreement with previous estimates of less than one mutation per megabase in hematological neoplasms. The number and pattern of somatic mutations differ in tumors with unmutated and mutated IGHV, extending at the genomic level the clinical differences observed in these two CLL subtypes. One of the striking conclusions of these studies has been the marked genetic heterogeneity of the disease, with a relatively large number of genes recurrently mutated at low frequency and only a few genes mutated in up to 10-15 % of the patients. The mutated genes tend to cluster in different pathways that include NOTCH1 signaling, RNA splicing and processing machinery, innate inflammatory response, Wnt signaling, and DNA damage and cell cycle control, among others. These results highlight the molecular heterogeneity of CLL and may provide new biomarkers and potential therapeutic targets for the diagnosis and management of the disease.
Collapse
Affiliation(s)
- Alejandra Martínez-Trillos
- Unidad de Hematopatologia, Departamento de Anatomía Patológica, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Fatima K, Paracha RZ, Qadri I. Post-transcriptional silencing of Notch2 mRNA in chronic lymphocytic [corrected] leukemic cells of B-CLL patients. Mol Biol Rep 2012; 39:5059-5067. [PMID: 22161246 DOI: 10.1007/s11033-011-1301-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 11/30/2011] [Indexed: 12/20/2022]
Abstract
Environmental and genomic stresses induce different pathological conditions and one of them is blood cancer. This escalating load of disease with a constant threat to life requires an intensive comprehensive response. For our understanding about the cancer treatment capabilities, novel medicinal platforms should be strived to explore among the existing conventional and molecular approaches that have already been proven to be successful in fighting against genetic diseases. Several DNA therapeutics previously studied are currently in clinical settings. RNA interfering antisense oligonucleotide (AS-ODN) is the most experimentally advanced molecular therapeutic which has the potential to modify the gene activity resulting in the down regulation of particular protein. In this study, we focused on the inhibition of Notch2 function in B-cell chronic lymphocytic leukemia (B-CLL) by AS-ODN (phosphorothioate oligomers) targeted to the initiation codon region of the Notch2 mRNA. We investigated the in vitro ability of four such oligomers to reduce the expression of Notch2 gene in peripheral blood mononuclear cells from B-CLL patients. Our findings implicate that AS-ODNs specifically designed for the region of 314-333 neucleotides (AS1) of Notch2 inhibits its gene expression better than other AS-ODNs designed for other regions and respond in a dose dependent manner. The results of cell proliferation assay for the evaluation of AS1 in gene silencing, infer that the number of cells were reduced to 80% (P < 0.001). Our results implicate that using the AS-ODNs against specific Notch2 nucleotide sequence can be used as future therapeutic agent with the ability of Notch2 down regulation, which is the root problem in the pathogenicity of B-CLL.
Collapse
MESH Headings
- Base Sequence
- Cell Proliferation/drug effects
- DNA Primers/metabolism
- DNA, Complementary/genetics
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Oligonucleotides, Antisense/pharmacology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA Interference/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Receptors, IgE/genetics
- Receptors, IgE/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Kaneez Fatima
- NUST Centre of Virology and Immunology (NCVI), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | | | | |
Collapse
|
17
|
Wu W, Sun XH. A mechanism underlying NOTCH-induced and ubiquitin-mediated JAK3 degradation. J Biol Chem 2011; 286:41153-41162. [PMID: 21969365 DOI: 10.1074/jbc.m111.273755] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although NOTCH signaling is well known to regulate lymphopoiesis, Janus kinase 3 (JAK3) also plays a critical role in promoting lymphocyte development. We have previously found that NOTCH signaling leads to the degradation of JAK3 in B lineage cells, suggesting that NOTCH signaling exerts its biological effect on lymphopoiesis through modulating JAK3 levels. Here, we delineate the biochemical mechanisms involved in NOTCH-induced JAK3 ubiquitination and degradation. NOTCH signaling is known to transcriptionally activate the genes encoding ASB2 (ankyrin-repeat SOCS box containing protein 2) and SKP2 (S-phase kinase-associated protein 2). We show that not only NOTCH but also ASB2 and SKP2 can promote the ubiquitination and degradation of JAK3. Both ASB2 and SKP2 can interact with JAK3 through different domains; the FERM and pseudo-kinase domains each had high affinities for ASB2, whereas the kinase domain primarily associated with SKP2. ASB2 and SKP2 previously have been shown to associate with each other to bridge the formation of a non-canonical Cullin1 and Cullin5-containing dimeric E3 ligase complex. Interestingly, the R980W mutant of JAK3 exhibited diminished interaction with SKP2 and resistance to NOTCH or ASB2-induced degradation. Furthermore, dominant-negative mutants of either Cullin1 or Cullin5, which lack the C terminus responsible for recruiting the E2 enzymes, were able to prevent JAK3 degradation induced by both ASB2/SKP2 and NOTCH signaling. Together, these results suggest that JAK3 ubiquitination involves the non-canonical dimeric E3 ligase complex, and the R980W mutant will serve as an excellent tool for investigating the biological significance of NOTCH-mediated JAK3 turnover.
Collapse
Affiliation(s)
- Wei Wu
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Xiao-Hong Sun
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
18
|
Abstract
Notch is a crucial cell signaling pathway in metazoan development. By means of cell-cell interactions, Notch signaling regulates cellular identity, proliferation, differentiation and apoptosis. Within the last decade, numerous studies have shown an important role for this pathway in the development and homeostasis of mammalian stem cell populations. Hematopoietic stem cells (HSCs) constitute a well-defined population that shows self-renewal and multi-lineage differentiation potential, with the clinically relevant capacity to repopulate the hematopoietic system of an adult organism. Here, we review the emergence, development and maintenance of HSCs during mammalian embryogenesis and adulthood, with respect to the role of Notch signaling in hematopoietic biology.
Collapse
|
19
|
Li M, Chen F, Clifton N, Sullivan DM, Dalton WS, Gabrilovich DI, Nefedova Y. Combined inhibition of Notch signaling and Bcl-2/Bcl-xL results in synergistic antimyeloma effect. Mol Cancer Ther 2011; 9:3200-9. [PMID: 21159606 DOI: 10.1158/1535-7163.mct-10-0372] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling through the receptor/transcriptional regulator Notch plays an important role in tumor cell survival. Recent studies have demonstrated that pharmacological inhibition of the Notch pathway with γ-secretase inhibitor (GSI) induces apoptosis of multiple myeloma (MM) cells via upregulation of the proapoptotic protein Noxa. ABT-737, a novel BH3 mimetic, was shown to block Bcl-2 and Bcl-xL and induce MM cell apoptosis. Here, we investigated whether the inhibition of Notch signaling could enhance the proapoptotic effect of ABT-737. The antimyeloma effect of ABT-737 on MM cell lines or primary cells was substantially increased by the addition of Notch inhibitor. The synergistic effect of the GSI+ABT-737 combination was mediated by activation of Bak and Bax and release of cytochrome c. While toxic for MM cells, the combination of GSI and ABT-737 did not affect survival of peripheral blood mononuclear cells isolated from healthy donors. In vivo experiments using xenograft and SCID-hu models of MM demonstrated a significant antitumor effect of the GSI/ABT-737 combination as compared to the effect of Notch or Bcl-2/Bcl-xL inhibitors alone. Thus, this drug combination may be therapeutically beneficial for patients with MM.
Collapse
Affiliation(s)
- Ming Li
- H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Wiernik PH, Österborg A. RETRACTED ARTICLE: Survival of MM cells is dependent on Notch signaling. Med Oncol 2011; 28:1626. [PMID: 21359862 DOI: 10.1007/s12032-011-9859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/04/2011] [Indexed: 11/29/2022]
|
21
|
Jiao Z, Wang W, Xu H, Wang S, Guo M, Chen Y, Gao J. Engagement of activated Notch signalling in collagen II-specific T helper type 1 (Th1)- and Th17-type expansion involving Notch3 and Delta-like1. Clin Exp Immunol 2011; 164:66-71. [PMID: 21235539 DOI: 10.1111/j.1365-2249.2010.04310.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Our previous study demonstrated that T helper (Th) cells from patients with rheumatoid arthritis (RA) display an altered expression profile of Notch receptors and enhanced activation of Notch signalling. The aim of this study was to investigate the role of distinct Notch receptors and ligands in the activation and differentiation of collagen II (CII)-reactive Th cells upon antigen-specific restimulation. Spleen mononuclear cells (SMNCs) from CII-immunized DBA/1J mice were restimulated by culturing with CII. CII-specific proliferation and differentiation of T cells were determined by tritiated thymidine ((3) [H]-TdR) incorporation and flow cytometric analysis, respectively. The mRNA expression of Notch receptors and Hes1 was assessed by real-time polymerase chain reaction (PCR). There was a clear increase in the percentage of Th1 cells and Th17 cells after CII restimulation. No significant difference was observed in the percentage of regulation T cells (T(reg) ) in SMNCs with or without CII restimulation. CII restimulation induced up-regulated transcript levels of Hes1 in CII-reactive CD4(+) T cells. The mRNA level of Notch3 was also up-regulated significantly, while the levels of the other three Notch receptors were not increased. Inhibition of Notch signalling by N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) and Notch3 antibody decreased the collagen-specific T cell proliferation and attenuated Th1- and Th17-type responses, while treatment with Notch ligand Delta-like 1 promoted such a response. The present study demonstrates that Notch signalling is engaged in CII-specific Th1- and Th17-type expansion in which Notch3 and Delta-like1 were involved. Selective inhibition of Notch signalling mediated by Notch3 or Delta-like1 may offer a new strategy for the treatment of RA.
Collapse
Affiliation(s)
- Z Jiao
- Central Laboratory, Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University Pathogenic Biology Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang Department of Laboratory Medicine, Jiangyin People's Hospital, Jiangyin, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Klein G, Klein E, Kashuba E. Interaction of Epstein-Barr virus (EBV) with human B-lymphocytes. Biochem Biophys Res Commun 2010; 396:67-73. [PMID: 20494113 DOI: 10.1016/j.bbrc.2010.02.146] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 02/22/2010] [Indexed: 12/22/2022]
Abstract
Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis. Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions. The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program. In this short review we touch upon aspects which are the subject of our present work. We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells. The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma that depends on the presence of EBV.
Collapse
Affiliation(s)
- George Klein
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Box 280, S17177 Stockholm, Sweden.
| | | | | |
Collapse
|
23
|
Cheng P, Zhou J, Gabrilovich D. Regulation of dendritic cell differentiation and function by Notch and Wnt pathways. Immunol Rev 2010; 234:105-19. [PMID: 20193015 DOI: 10.1111/j.0105-2896.2009.00871.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The process of dendritic cell differentiation is governed by a tightly controlled signaling network regulated by cytokines and direct interaction between progenitor cells and bone marrow stroma. Notch signaling represents one of the major pathways activated during direct interaction between hematopoietic progenitor cells and bone marrow stroma. Wnt pathway is activated by soluble proteins produced by bone marrow stroma. Until recently, the role of Notch and Wnt signaling in the development of myeloid cells and dendritic cells in particular remained unclear. In this review, we discuss recent exciting findings that shed light on the critical role of Notch and Wnt pathways, their interaction in differentiation and function of dendritic cells, and their impact on immune responses.
Collapse
Affiliation(s)
- Pingyan Cheng
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | |
Collapse
|
24
|
Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling. Exp Cell Res 2010; 316:1465-78. [PMID: 20347808 DOI: 10.1016/j.yexcr.2010.03.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 03/17/2010] [Accepted: 03/18/2010] [Indexed: 11/21/2022]
Abstract
The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the gamma-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-gamma-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the gamma-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.
Collapse
|
25
|
Generation of functional NKT cells in vitro from embryonic stem cells bearing rearranged invariant Vα14-Jα18 TCRα gene. Blood 2010; 115:230-7. [DOI: 10.1182/blood-2009-04-217729] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Establishment of a system with efficient generation of natural killer T (NKT) cells from embryonic stem (ES) cells would enable us to identify the cells with NKT-cell potential and obtain NKT cells with desired function. Here, using cloned ES (NKT-ES) cells generated by the transfer of nuclei from mature NKT cells, we have established a culture system that preferentially developed functional NKT cells and also identified early NKT progenitors, which first appeared on day 11 as a c-kit+ population in the cocultures on OP9 cells with expression of Notch ligand, delta-like1 (OP9/Dll-1) and became c-kitlo/− on day 14. Interestingly, in the presence of Notch signals, NKT-ES cells differentiated only to thymic CD44lo CD24hi NKT cells producing mainly interleukin-4 (IL-4), whereas NKT cells resembling CD44hi CD24lo liver NKT cells producing mainly interferon γ (IFN-γ) and exhibiting strong adjuvant activity in vivo were developed in the switch culture starting at day 14 in the absence of Notch. The cloned ES culture system offers a new opportunity for the elucidation of the molecular events on NKT-cell development and for the establishment of NKT-cell therapy.
Collapse
|
26
|
Hes1 immortalizes committed progenitors and plays a role in blast crisis transition in chronic myelogenous leukemia. Blood 2009; 115:2872-81. [PMID: 19861684 DOI: 10.1182/blood-2009-05-222836] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hairy enhancer of split 1 (Hes1) is a basic helix-loop-helix transcriptional repressor that affects differentiation and often helps maintain cells in an immature state in various tissues. Here we show that retroviral expression of Hes1 immortalizes common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs) in the presence of interleukin-3, conferring permanent replating capability on these cells. Whereas these cells did not develop myeloproliferative neoplasms when intravenously administered to irradiated mice, the combination of Hes1 and BCR-ABL in CMPs and GMPs caused acute leukemia resembling blast crisis of chronic myelogenous leukemia (CML), resulting in rapid death of the recipient mice. On the other hand, BCR-ABL alone caused CML-like disease when expressed in c-Kit-positive, Sca-1-positive, and lineage-negative hematopoietic stem cells (KSLs), but not committed progenitors CMPs or GMPs, as previously reported. Leukemic cells derived from Hes1 and BCR-ABL-expressing CMPs and GMPs were more immature than those derived from BCR-ABL-expressing KSLs. Intriguingly, Hes1 was highly expressed in 8 of 20 patients with CML in blast crisis, but not in the chronic phase, and dominant negative Hes1 retarded the growth of some CML cell lines expressing Hes1. These results suggest that Hes1 is a key molecule in blast crisis transition in CML.
Collapse
|
27
|
Palmieri G, Capone M, Ascierto ML, Gentilcore G, Stroncek DF, Casula M, Sini MC, Palla M, Mozzillo N, Ascierto PA. Main roads to melanoma. J Transl Med 2009; 7:86. [PMID: 19828018 PMCID: PMC2770476 DOI: 10.1186/1479-5876-7-86] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/14/2009] [Indexed: 12/12/2022] Open
Abstract
The characterization of the molecular mechanisms involved in development and progression of melanoma could be helpful to identify the molecular profiles underlying aggressiveness, clinical behavior, and response to therapy as well as to better classify the subsets of melanoma patients with different prognosis and/or clinical outcome. Actually, some aspects regarding the main molecular changes responsible for the onset as well as the progression of melanoma toward a more aggressive phenotype have been described. Genes and molecules which control either cell proliferation, apoptosis, or cell senescence have been implicated. Here we provided an overview of the main molecular changes underlying the pathogenesis of melanoma. All evidence clearly indicates the existence of a complex molecular machinery that provides checks and balances in normal melanocytes. Progression from normal melanocytes to malignant metastatic cells in melanoma patients is the result of a combination of down- or up-regulation of various effectors acting on different molecular pathways.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche (CNR), Sassari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Id1 attenuates Notch signaling and impairs T-cell commitment by elevating Deltex1 expression. Mol Cell Biol 2009; 29:4640-52. [PMID: 19564409 DOI: 10.1128/mcb.00119-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complete inhibition of E protein transcription factors by Id1 blocks the developmental transition of CD4/CD8 double-negative 1 (DN1; CD44(+) CD25(-)) thymocytes to the DN2 (CD44(+) CD25(+)) stage. To understand the underlying mechanisms, we observed that mRNA levels of Deltex1, as well as Deltex4, were dramatically elevated in Id1-expressing thymocytes, which could result in developmental arrest by attenuating Notch function. In support of this hypothesis, we found that Deltex1 ablation enabled Id1-expressing progenitors to differentiate to the DN3 (CD44(-) CD25(+)) stage, which was accompanied by enhanced Notch1 expression in T-cell progenitors. Consistently, constitutive activation of Notch1 drove the differentiation of Id1-expressing progenitors to the DN3 stage. Furthermore, we showed that Gfi1b levels decreased, whereas GATA3 levels increased in Id1 transgenic thymocytes. When overexpressed, GATA3 was able to upregulate Deltex1 transcription. Thus, T-cell commitment may be controlled by the interplay among E proteins, Gfi1b, and GATA3 transcription regulators, which influence Notch function through the expression of Deltex1.
Collapse
|
29
|
Zhou J, Cheng P, Youn JI, Cotter MJ, Gabrilovich DI. Notch and wingless signaling cooperate in regulation of dendritic cell differentiation. Immunity 2009; 30:845-59. [PMID: 19523851 DOI: 10.1016/j.immuni.2009.03.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 03/04/2009] [Accepted: 03/26/2009] [Indexed: 12/30/2022]
Abstract
Dendritic cell (DC) differentiation is regulated by stroma via a network of soluble and cell-bound factors. Notch is one of the major elements of this network. Its role in DC differentiation, however, is controversial. Here, we demonstrate that activation of Notch signaling in hematopoietic progenitor cells (HPCs) promoted differentiation of conventional DCs via activation of the canonical Wingless (Wnt) pathway. Inhibition of the Wnt pathway abrogated the effect of Notch on DC differentiation. The fact that activation of the Wnt pathway in Notch-1-deficient embryonic stem cells restored DC differentiation indicates that Wnt signaling is downstream of the Notch pathway in regulating DC differentiation. Notch signaling activated the Wnt pathway in HPCs via expression of multiple members of the Frizzled family of Wnt receptors, which was directly regulated by the CSL (RPB-Jkappa) transcription factor. Thus, these data suggest a model of DC differentiation via cooperation between Wnt and Notch pathways.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Immunology, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
30
|
Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv Cancer Res 2009; 101:127-248. [PMID: 19055945 DOI: 10.1016/s0065-230x(08)00406-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of hematopoietic malignancies owing to their ability to induce apoptosis of these cancerous cells. Whereas some types of lymphoma and leukemia respond well to this drug, others are resistant. Also, GC-resistance gradually develops upon repeated treatments ultimately leading to refractory relapsed disease. Understanding the mechanisms regulating GC-induced apoptosis is therefore uttermost important for designing novel treatment strategies that overcome GC-resistance. This review discusses updated data describing the complex regulation of the cell's susceptibility to apoptosis triggered by GCs. We address both the genomic and nongenomic effects involved in promoting the apoptotic signals as well as the resistance mechanisms opposing these signals. Eventually we address potential strategies of clinical relevance that sensitize GC-resistant lymphoma and leukemia cells to this drug. The major target is the nongenomic signal transduction machinery where the interplay between protein kinases determines the cell fate. Shifting the balance of the kinome towards a state where Glycogen synthase kinase 3alpha (GSK3alpha) is kept active, favors an apoptotic response. Accumulating data show that it is possible to therapeutically modulate GC-resistance in patients, thereby improving the response to GC therapy.
Collapse
|
31
|
Liu S, Breit S, Danckwardt S, Muckenthaler MU, Kulozik AE. Downregulation of Notch signaling by gamma-secretase inhibition can abrogate chemotherapy-induced apoptosis in T-ALL cell lines. Ann Hematol 2008; 88:613-21. [PMID: 19057901 DOI: 10.1007/s00277-008-0646-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/11/2008] [Indexed: 01/13/2023]
Abstract
Activation of Notch1 signaling plays an important role in the pathogenesis of precursor T-cell lymphoblastic leukemia (T-ALL). The Notch1 receptor is cleaved and activated via the gamma-secretase complex. Downregulation of Notch1 signaling by gamma-secretase inhibitors (GSIs) thus represents a potential novel therapeutic approach. In this study, we analyzed the response of four T-ALL cell lines to compound E, a potent gamma-secretase inhibitor, and to the combination of compound E with vincristine, daunorubicin, L-asparaginase (L-ASP), and dexamethasone (DEX). We identified two distinct types of responses: In type 1 cell lines, represented by TALL1 and HSB2, GSI-induced apoptosis followed cell cycle arrest and enhanced the induction of apoptosis caused by DEX and L-ASP. In type 2 cell lines, represented by CEM and Jurkat J6, GSI caused neither cell cycle block nor cell death. Notably, the combination of GSI with chemotherapy-induced resistance by decreasing apoptosis. In type 2 cells, GSI induced the upregulation of Bcl-xl mRNA and protein, which was thus identified as a candidate mechanism for the inhibition of apoptosis. In conclusion, the data presented here caution against clinical use of a combination treatment of GSI and chemotherapy in T-ALL.
Collapse
Affiliation(s)
- Shuangyou Liu
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
32
|
Holland AM, Zakrzewski JL, Goldberg GL, Ghosh A, van den Brink MRM. Adoptive precursor cell therapy to enhance immune reconstitution after hematopoietic stem cell transplantation in mouse and man. Semin Immunopathol 2008; 30:479-87. [PMID: 19015856 DOI: 10.1007/s00281-008-0138-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 10/01/2008] [Indexed: 01/23/2023]
Abstract
Hematopoietic stem cell transplantation is a curative therapy for hematological malignancies. T cell deficiency following transplantation is a major cause of morbidity and mortality. In this review, we discuss adoptive transfer of committed precursor cells to enhance T cell reconstitution and improve overall prognosis after transplantation.
Collapse
Affiliation(s)
- Amanda M Holland
- Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 2008; 113:856-65. [PMID: 18796623 DOI: 10.1182/blood-2008-02-139725] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Notch signaling is involved in tumorigenesis, but its role in B-chronic lymphocytic leukemia (B-CLL) pathogenesis is not completely defined. This study examined the expression and activation of Notch receptors in B-CLL cells and the role of Notch signaling in sustaining the survival of these cells. Our results show that B-CLL cells but not normal B cells constitutively express Notch1 and Notch2 proteins as well as their ligands Jagged1 and Jagged2. Notch signaling is constitutively activated in B-CLL cells, and its activation is further increased in B-CLL cells, which resist spontaneous apoptosis after 24-hour ex vivo culture. Notch stimulation by a soluble Jagged1 ligand increases B-CLL cell survival and is accompanied by increased nuclear factor-kappa B (NF-kappaB) activity and cellular inhibitor of apoptosis protein 2 (c-IAP2) and X-linked inhibitor of apoptosis protein (XIAP) expression. In contrast, Notch-signaling inhibition by the gamma-secretase inhibitor I (GSI; z-Leu-Leu-Nle-CHO) and the specific Notch2 down-regulation by small-interfering RNA accelerate spontaneous B-CLL cell apoptosis. Apoptotic activity of GSI is accompanied by reduction of NF-kappaB activity and c-IAP2 and XIAP expression. Overall, our findings show that Notch signaling plays a critical role in B-CLL cell survival and apoptosis resistance and suggest that it could be a novel potential therapeutic target.
Collapse
|
35
|
Abstract
Hematopoietic stem cells give rise to multiple lineages of cells. This process is governed by a tightly controlled signaling network regulated by cytokines and a direct cell-cell contact. Notch signaling represents one of the major pathways activated during direct interaction between hematopoietic progenitor cells and bone marrow stroma. A critical role of Notch signaling in differentiation of T- and B-lymphocytes has now been established. Until recently, the role of Notch signaling in the development of myeloid cells and particular dendritic cells remained unclear. In this review, we discuss recent exciting findings that shed light on the critical role of Notch in differentiation and the function of dendritic cells and its impact on immune responses.
Collapse
Affiliation(s)
- Pingyan Cheng
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | |
Collapse
|
36
|
The Notch Signalling Pathway in the Development of the Mouse Placenta. Placenta 2008; 29:651-9. [DOI: 10.1016/j.placenta.2008.06.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 11/19/2022]
|
37
|
Nie L, Wu H, Sun XH. Ubiquitination and Degradation of Tal1/SCL Are Induced by Notch Signaling and Depend on Skp2 and CHIP. J Biol Chem 2008; 283:684-92. [DOI: 10.1074/jbc.m704981200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
|
39
|
Li T, Wen H, Brayton C, Laird FM, Ma G, Peng S, Placanica L, Wu TC, Crain BJ, Price DL, Eberhart CG, Wong PC. Moderate reduction of gamma-secretase attenuates amyloid burden and limits mechanism-based liabilities. J Neurosci 2007; 27:10849-59. [PMID: 17913918 PMCID: PMC6672827 DOI: 10.1523/jneurosci.2152-07.2007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although gamma-secretase is recognized as a therapeutic target for Alzheimer's disease, side effects associated with strong inhibition of this aspartyl protease raised serious concerns regarding this therapeutic strategy. However, it is not known whether moderate inhibition of this enzyme will allow dissociation of beneficial effects in the CNS from mechanism-based toxicities in the periphery. We tested this possibility by using a series of mice with genetic reduction of gamma-secretase (levels ranging from 25 to 64% of control mice). Here, we document that even 30% reduction of gamma-secretase can effectively ameliorate amyloid burden in the CNS. However, global reduction of this enzyme below a threshold level increased the risk of developing squamous cell carcinoma as well as abnormal proliferation of granulocytes in a gamma-secretase dosage-dependent manner. Importantly, we demonstrate that there exists a critical gamma-secretase level that reduces the risk of amyloidosis in the CNS and limits tumorigenesis in epithelia. Our findings suggest that moderate inhibition of gamma-secretase represents an attractive anti-amyloid therapy for Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Cory Brayton
- Comparative Medicine, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, and
| | | | | | | | - Lisa Placanica
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | | | | | | | | | |
Collapse
|
40
|
Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood 2007; 111:2220-9. [PMID: 18039953 DOI: 10.1182/blood-2007-07-102632] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Drug resistance remains a critical problem in the treatment of patients with multiple myeloma. Recent studies have determined that Notch signaling plays a major role in bone marrow (BM) stroma-mediated protection of myeloma cells from de novo drug-induced apoptosis. Here, we investigated whether pharmacologic inhibition of Notch signaling could affect the viability of myeloma cells and their sensitivity to chemotherapy. Treatment with a gamma-secretase inhibitor (GSI) alone induced apoptosis of myeloma cells via specific inhibition of Notch signaling. At concentrations toxic for myeloma cell lines and primary myeloma cells, GSI did not affect normal BM or peripheral blood mononuclear cells. Treatment with GSI prevented BM stroma-mediated protection of myeloma cells from drug-induced apoptosis. The cytotoxic effect of GSI was mediated via Hes-1 and up-regulation of the proapoptotic protein Noxa. In vivo experiments using xenograft and SCID-hu models of multiple myeloma demonstrated substantial antitumor effect of GSI. In addition, GSI significantly improved the cytotoxicity of the chemotherapeutic drugs doxorubicin and melphalan. Thus, this study demonstrates that inhibition of Notch signaling prevents BM-mediated drug resistance and sensitizes myeloma cells to chemotherapy. This may represent a promising approach for therapeutic intervention in multiple myeloma.
Collapse
|
41
|
Hajdu M, Sebestyén A, Barna G, Reiniger L, Jánosi J, Sréter L, Várkonyi J, Demeter J, Kopper L. Activity of the notch-signalling pathway in circulating human chronic lymphocytic leukaemia cells. Scand J Immunol 2007; 65:271-5. [PMID: 17309782 DOI: 10.1111/j.1365-3083.2006.01897.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dysregulation of the Notch-pathway has been implicated in the pathogenesis of chronic lymphocytic leukaemia (B-CLL). We characterized the mRNA expression of Notch pathway elements in circulating normal B- and B-CLL cells, and compared expression profiles with clinical and prognostic data. Similar expression profiles were found in normal B-cells and B-CLL cells, however, most B-CLL samples showed lower Hairy/Enhancer of Split-1 expression than normal B-cells, which suggests that the pathway is not over-activated in B-CLL. The expression of Notch-pathway genes did not correlate with other prognostic factors of B-CLL. The importance of Notch-signalling in CLL cells in lymphatic tissue microenvironments remains to be determined.
Collapse
Affiliation(s)
- M Hajdu
- I Department of Pathology and Experimental Cancer Research, Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cheng P, Nefedova Y, Corzo CA, Gabrilovich DI. Regulation of dendritic-cell differentiation by bone marrow stroma via different Notch ligands. Blood 2006; 109:507-15. [PMID: 16973960 PMCID: PMC1766374 DOI: 10.1182/blood-2006-05-025601] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Notch is a major factor mediating interaction between hematopoietic progenitor cells (HPCs) and bone marrow stroma (BMS). However its contribution to dendritic cell (DC) differentiation is controversial. We found that main Notch ligands Delta-1 and Jagged-1 had the opposite effect on DC differentiation. Delta-1 promoted generation of fully differentiated DCs, whereas Jagged-1 stimulated accumulation of DC precursors but prevented their transition to terminally differentiated DCs. BMS expressed a substantially higher level of Jagged-1 than Delta-1. Just the opposite expression pattern was observed in spleen stroma (SS). The BMS effect on DC differentiation was similar to that of Jagged-1, whereas the effect of SS was similar to the effect of Delta-1. Down-regulation of Jagged-1 in BMS substantially increased DC differentiation. Experiments in vivo with adoptive transfer of DC precursors further supported the different roles of BMS and SS in DC development. Jagged-1 and Delta-1 equally activated CBF-1/RBPJkappa transcription factor, which is a major Notch target. However, they produced a different pattern of activation of Notch target gene Hes1. Overexpression of Hes1 resulted in increased DC differentiation from HPCs. Thus, this study not only revealed the different role of Notch ligands in DC differentiation but also may provide a new insight into regulation of DC differentiation by BMS.
Collapse
Affiliation(s)
- Pingyan Cheng
- H. Lee Moffitt Cancer Center and the Department of Interdisciplinary Oncology University of South Florida, Tampa
| | - Yulia Nefedova
- H. Lee Moffitt Cancer Center and the Department of Interdisciplinary Oncology University of South Florida, Tampa
| | - Cesar A. Corzo
- H. Lee Moffitt Cancer Center and the Department of Interdisciplinary Oncology University of South Florida, Tampa
| | - Dmitry I. Gabrilovich
- H. Lee Moffitt Cancer Center and the Department of Interdisciplinary Oncology University of South Florida, Tampa
- Correspondence: Dmitry I. Gabrilovich,
H. Lee Moffitt Cancer Center, MRC 2067, 12902 Magnolia Dr, Tampa, FL 33612; e-mail:
| |
Collapse
|
43
|
García-Peydró M, de Yébenes VG, Toribio ML. Notch1 and IL-7 Receptor Interplay Maintains Proliferation of Human Thymic Progenitors while Suppressing Non-T Cell Fates. THE JOURNAL OF IMMUNOLOGY 2006; 177:3711-20. [PMID: 16951331 DOI: 10.4049/jimmunol.177.6.3711] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Notch signaling is critical for T cell development of multipotent hemopoietic progenitors. Yet, how Notch regulates T cell fate specification during early thymopoiesis remains unclear. In this study, we have identified an early subset of CD34high c-kit+ flt3+ IL-7Ralpha+ cells in the human postnatal thymus, which includes primitive progenitors with combined lymphomyeloid potential. To assess the impact of Notch signaling in early T cell development, we expressed constitutively active Notch1 in such thymic lymphomyeloid precursors (TLMPs), or triggered their endogenous Notch pathway in the OP9-Delta-like1 stroma coculture. Our results show that proliferation vs differentiation is a critical decision influenced by Notch at the TLMP stage. We found that Notch signaling plays a prominent role in inhibiting non-T cell differentiation (i.e., macrophages, dendritic cells, and NK cells) of TLMPs, while sustaining the proliferation of undifferentiated thymocytes with T cell potential in response to unique IL-7 signals. However, Notch activation is not sufficient for inducing T-lineage progression of proliferating progenitors. Rather, stroma-derived signals are concurrently required. Moreover, while ectopic IL-7R expression cannot replace Notch for the maintenance and expansion of undifferentiated thymocytes, Notch signals sustain IL-7R expression in proliferating thymocytes and induce IL-7R up-regulation in a T cell line. Thus, IL-7R and Notch pathways cooperate to synchronize cell proliferation and suppression of non-T lineage choices in primitive intrathymic progenitors, which will be allowed to progress along the T cell pathway only upon interaction with an inductive stromal microenvironment. These data provide insight into a mechanism of Notch-regulated amplification of the intrathymic pool of early human T cell progenitors.
Collapse
Affiliation(s)
- Marina García-Peydró
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | |
Collapse
|
44
|
Loeb CRK, Harris JL, Craik CS. Granzyme B Proteolyzes Receptors Important to Proliferation and Survival, Tipping the Balance toward Apoptosis. J Biol Chem 2006; 281:28326-35. [PMID: 16798735 DOI: 10.1074/jbc.m604544200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Granzyme B is critical to the ability of natural killer cells and cytotoxic T lymphocytes to induce efficient cell death of virally infected or tumor cell targets. Although granzyme B can cleave and activate caspases to induce apoptosis, granzyme B can also cause caspase-independent cell death. Thirteen prospective granzyme B substrates were identified from a cDNA expression-cleavage screen, including Hsp70, Notch1, fibroblast growth factor receptor-1 (FGFR1), poly-A-binding protein, cAbl, heterogeneous nuclear ribonucleoprotein H', Br140, and intersectin-1. Validation revealed that Notch1 is a substrate of both granzyme B and caspases, whereas FGFR1 is a caspase-independent substrate of granzyme B. Proteolysis of FGFR1 in prostate cancer cells has functionally relevant consequences that indicate its cleavage may be advantageous for granzyme B to kill prostate cancer cells. Therefore, granzyme B not only activates pro-death functions within a target, but also has a previously unidentified role in inactivating pro-growth signals to cause cell death.
Collapse
Affiliation(s)
- Carly R K Loeb
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, 94131, USA
| | | | | |
Collapse
|
45
|
Beverly LJ, Ascano JM, Capobianco AJ. Expression of JAGGED1 in T-lymphocytes results in thymic involution by inducing apoptosis of thymic stromal epithelial cells. Genes Immun 2006; 7:476-86. [PMID: 16791277 DOI: 10.1038/sj.gene.6364318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proper development of the thymus and differentiation of T-lymphocytes requires cell-cell interactions between the developing T-lymphocytes and the thymic epithelia. The Delta/Serrate/Lag-2 (DSL)/Notch signal-transduction pathway is known to govern cell fate decisions required for proper development through direct cell-cell interactions. The functional consequences of specific DSL/Notch interactions during the development of a complex organ, such as the thymus, have not been thoroughly elucidated, however. In order to examine the role of DSL proteins during thymus development and T-lymphocyte differentiation, we targeted expression of JAGGED1 in T-lymphocyte progenitors via the control of the proximal lck promoter. Here, we report that expression of JAGGED1 in T cells causes premature involution of the thymus by directing thymic epithelial cells to undergo an apoptotic program. Adoptive transfer of JAGGED1 transgenic bone marrow into non-transgenic mice revealed that JAGGED1 expression on T cells does not alter T-cell differentiation, but is directly responsible for involution of the thymus. We propose that the phenotype of the lck-JAGGED1 transgenic mice is a direct result of specific DSL/Notch interactions and improper cell-to-cell signaling.
Collapse
Affiliation(s)
- L J Beverly
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
46
|
Monsalve E, Pérez MA, Rubio A, Ruiz-Hidalgo MJ, Baladrón V, García-Ramírez JJ, Gómez JC, Laborda J, Díaz-Guerra MJM. Notch-1 up-regulation and signaling following macrophage activation modulates gene expression patterns known to affect antigen-presenting capacity and cytotoxic activity. THE JOURNAL OF IMMUNOLOGY 2006; 176:5362-73. [PMID: 16622004 DOI: 10.4049/jimmunol.176.9.5362] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Notch signaling has been extensively implicated in cell-fate determination along the development of the immune system. However, a role for Notch signaling in fully differentiated immune cells has not been clearly defined. We have analyzed the expression of Notch protein family members during macrophage activation. Resting macrophages express Notch-1, -2, and -4, as well as the Notch ligands Jagged-1 and -2. After treatment with LPS and/or IFN-gamma, we observed a p38 MAPK-dependent increase in Notch-1 and Jagged-1 mRNA and protein levels. To study the role of Notch signaling in macrophage activation, we forced the transient expression of truncated, active intracellular Notch-1 (Notch-IC) proteins in Raw 264.7 cells and analyzed their effects on the activity of transcription factors involved in macrophage activation. Notch-IC increased STAT-1-dependent transcription. Furthermore, Raw 264.7 Notch-IC stable transfectants increased STAT1-dependent transcription in response to IFN-gamma, leading to higher expression of IFN regulatory factor-1, suppressor of cytokine signaling-1, ICAM-1, and MHC class II proteins. This effect was independent from an increase of STAT1 Tyr or Ser phosphorylation. However, inducible NO synthase expression and NO production decreased under the same conditions. Our results show that Notch up-regulation and subsequent signaling following macrophage activation modulate gene expression patterns known to affect the function of mature macrophages.
Collapse
Affiliation(s)
- Eva Monsalve
- Facultad de Medicina, Centro Regional de Investigaciones Biomédicas (CRIB), Avenida de Almansa No. 14, 02006 Albacete, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Massi D, Tarantini F, Franchi A, Paglierani M, Di Serio C, Pellerito S, Leoncini G, Cirino G, Geppetti P, Santucci M. Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Mod Pathol 2006; 19:246-54. [PMID: 16341148 DOI: 10.1038/modpathol.3800526] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Notch signaling has been implicated in the regulation of self-renewal of adult stem cells and differentiation of precursors along a specific cell lineage, in normal embryonic development and organogenesis. There is also evidence that signaling through Notch receptors regulate cell proliferation and cell survival in several types of cancer, with opposing results depending on tissue context. No data are available in the literature concerning modulation of the expression of Notch receptors, and their ligands, in human cutaneous malignant melanoma. Here, we have investigated, for the first time, the expression of Notch-1, Notch-2, Jagged-1, Jagged-2 and Delta-like 1 proteins, by immunohistochemistry, in a series of benign and malignant human melanocytic lesions: five common melanocytic nevi, five 'dysplastic nevi' and 20 melanomas (five in situ, five T1-T2, five T3-T4 and five metastatic melanomas). We found that the expression of Notch-1 and Notch-2, as well as Notch ligands, was upregulated in 'dysplastic nevi' and melanomas as compared with common melanocytic nevi. These results indicate that the activation of Notch may represent an early event in melanocytic tumor growth and upregulation of Notch signaling may sustain tumor progression.
Collapse
Affiliation(s)
- Daniela Massi
- Department of Human Pathology and Oncology, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Talora C, Cialfi S, Oliviero C, Palermo R, Pascucci M, Frati L, Vacca A, Gulino A, Screpanti I. Cross talk among Notch3, pre-TCR, and Tal1 in T-cell development and leukemogenesis. Blood 2005; 107:3313-20. [PMID: 16368887 DOI: 10.1182/blood-2005-07-2823] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrated pathways are believed to determine hematopoietic cell fate and/or neoplastic transformation. Notch signaling has been shown to regulate T-cell differentiation and leukemogenesis. However, specific target genes and molecular partners are not fully elucidated. We show that Notch3 activation sustains aberrant SCL/Tal1 overexpression and phosphorylation in mature thymocytes. Furthermore, we define the role of SCL/Tal1 as a component of an activator complex, including phosphorylated Tal1 and Sp1, that specifically enhances cyclin D1 expression and demonstrate that Tal1/Sp1 specifically co-occupy the D1 promoter in vivo, only in the presence of pre-T-cell receptor (TCR). We therefore conclude not only that cyclin D1 is a target of the Tal1/Sp1 complex, but also that Notch3-dependent activation of pre-TCR/ERK signaling regulates SCL/Tal1 function.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Cell Differentiation/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Leukemia/genetics
- Leukemia/metabolism
- Mice
- Mice, Mutant Strains
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptor, Notch3
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Signal Transduction/genetics
- T-Cell Acute Lymphocytic Leukemia Protein 1
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Claudio Talora
- Dipartimento di Medicina Sperimentale e Patologia, University La Sapienza, Viale Regina Elena 32400161 Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Allman D, Miller JP. B cell development and receptor diversity during aging. Curr Opin Immunol 2005; 17:463-7. [PMID: 16054808 DOI: 10.1016/j.coi.2005.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
Although it is clear that B cell genesis declines with age, the specifics of why this happens are largely unknown. Even less clear is how the age-related decline in B cell development might affect peripheral B cell function. Recent studies have investigated the impact of aging on both B cell genesis in the bone marrow and the resulting peripheral B cell repertoire. On the basis of these studies we propose a model in which the aging of very early B cell progenitors results in shifts in the peripheral B cell repertoire and, consequently, changes in mature B cell function.
Collapse
Affiliation(s)
- David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6082, USA.
| | | |
Collapse
|
50
|
Delaney C, Varnum-Finney B, Aoyama K, Brashem-Stein C, Bernstein ID. Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood 2005; 106:2693-9. [PMID: 15976178 PMCID: PMC1366491 DOI: 10.1182/blood-2005-03-1131] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although significant advances have been made over the last decade with respect to our understanding of stem cell biology, progress has been limited in the development of successful techniques for clinically significant ex vivo expansion of hematopoietic stem and progenitor cells. We here describe the effect of Notch ligand density on induction of Notch signaling and subsequent cell fate of human CD34+CD38- cord blood progenitors. Lower densities of Delta1(ext-IgG) enhanced the generation of CD34+ cells as well as CD14+ and CD7+ cells, consistent with early myeloid and lymphoid differentiation, respectively. However, culture with increased amounts of Delta1(ext-IgG) induced apoptosis of CD34+ precursors resulting in decreased cell numbers, without affecting generation of CD7+ cells. RNA interference studies revealed that the promotion of lymphoid differentiation was primarily mediated by Delta1 activation of Notch1. Furthermore, enhanced generation of NOD/SCID repopulating cells was seen following culture with lower but not higher densities of ligand. These studies indicate critical, quantitative aspects of Notch signaling in affecting hematopoietic precursor cell-fate outcomes and suggest that density of Notch ligands in different organ systems may be an important determinant in regulating cell-fate outcomes. Moreover, these findings contribute to the development of methodology for manipulation of hematopoietic precursors for therapeutic purposes.
Collapse
Affiliation(s)
- Colleen Delaney
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D2-373, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|