1
|
Yim H, Sun R, Xu Z, Kim HS, Kim M, Cao T, Xie L, Chen X, Kaniskan HÜ, Jin J. Discovery of the first-in-class DOT1L PROTAC degrader. Eur J Med Chem 2025; 291:117595. [PMID: 40186895 PMCID: PMC12045715 DOI: 10.1016/j.ejmech.2025.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
DOT1L is the lysine methyltransferase responsible for histone H3 lysine 79 (H3K79) methylation and plays a crucial role in leukemia progression. Furthermore, DOT1L has biological functions that are independent of its methyltransferase activity. Therefore, targeting and degrading DOT1L with PROteolysis TArgeting Chimeras (PROTACs) could represent a promising therapeutic strategy. Here, we report the discovery of the first-in-class DOT1L PROTAC degrader, compound 13 (MS2133), which potently induces DOT1L degradation in a concentration- and time-dependent manner, without affecting DOT1L mRNA expression. The DOT1L degradation induced by 13 requires binding to the E3 ligase von Hippel-Lindau (VHL) and DOT1L and occurs through the ubiquitin-proteasome system. 13 is selective for DOT1L over other methyltransferases and effectively inhibits the growth of mixed lineage leukemia-rearranged (MLL-r) leukemia cells while having no toxicity on normal cells. Overall, 13 is a valuable chemical biology tool for further studying functions of DOT1L and a potential therapeutic for DOT1L-dependent cancers.
Collapse
Affiliation(s)
- Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Renhong Sun
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Zhongli Xu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Huen Suk Kim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Minjeong Kim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Tao Cao
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States.
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States.
| |
Collapse
|
2
|
Zehtabcheh S, Soleimani Samarkhazan H, Asadi M, Zabihi M, Parkhideh S, Mohammadi MH. Insights into KMT2A rearrangements in acute myeloid leukemia: from molecular characteristics to targeted therapies. Biomark Res 2025; 13:73. [PMID: 40361241 PMCID: PMC12077025 DOI: 10.1186/s40364-025-00786-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
Acute myeloid leukemia (AML) with KMT2A rearrangements (KMT2A-r) represents a highly aggressive and prognostically unfavorable subtype of leukemia, often resistant to standard treatments and associated with high relapse rates. KMT2A-r, found in 3-10% of adult AML cases, disrupt epigenetic regulation by forming chimeric proteins that activate oncogenic pathways like HOXA and MEIS1. These fusion proteins recruit cofactors such as Menin and DOT1L, driving leukemogenesis through abnormal histone methylation. Diagnosing KMT2A-r AML requires precision, with traditional methods like FISH and RT-PCR being complemented by advanced technologies such as next-generation sequencing (NGS) and machine learning (ML). ML models, leveraging transcriptomic data, can predict KMT2A-r and identify biomarkers like LAMP5 and SKIDA1, improving risk stratification. Therapeutically, there is a shift from chemotherapy to targeted therapies. Menin inhibitors (e.g., Revumenib, Ziftomenib) disrupt the Menin-KMT2A interaction, suppressing HOXA/MEIS1 and promoting differentiation. DOT1L inhibitors (e.g., Pinometostat) show promise in combination therapies, while novel approaches like WDR5 inhibitors and PROTAC-mediated degradation are expanding treatment options. Despite progress, challenges remain, including optimizing minimal residual disease monitoring, overcoming resistance, and validating biomarkers. This review emphasizes the imperative to translate molecular insights into personalized therapeutic regimens, offering renewed hope for patients afflicted by this historically refractory malignancy.
Collapse
Affiliation(s)
- Sara Zehtabcheh
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Soleimani Samarkhazan
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Asadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Zabihi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Parkhideh
- Hematopoetic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Shen F, Zeng L, Gao Y. DOT1L in neural development and neurological and psychotic disorders. Neurochem Int 2025; 185:105955. [PMID: 39993657 DOI: 10.1016/j.neuint.2025.105955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Disruptor of Telomeric Silencing 1-Like (DOT1L) is the sole methyltransferase in mammals responsible for catalyzing the mono-, di-, and trimethylation of histone H3 at lysine 79 (H3K79), a modification crucial for various cellular processes, including gene transcription, cell cycle regulation, DNA repair, and development. Recent studies have increasingly linked DOT1L to the nervous system, where it plays a vital role in neurodevelopment and neuronal function. It has been shown to regulate the proliferation and differentiation of neural progenitor cells, promote neuronal maturation, and influence synaptic function, all of which are essential for proper neural circuit formation and brain function. Moreover, dysregulation of DOT1L has been associated with several neurological disorders, highlighting its potential role in disease pathology. Abnormal expression or activity of DOT1L has been implicated in cognitive deficits and neurodegenerative diseases, underscoring the enzyme's significance in both the development and maintenance of the nervous system. This review synthesizes recent findings on DOT1L's role in the nervous system, emphasizing its importance in neurodevelopment and exploring its potential as a therapeutic target for treating neurological disorders.
Collapse
Affiliation(s)
- Feiyan Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China; College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, China.
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
| | - Yanpan Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
| |
Collapse
|
4
|
Kurani H, Slingerland JM. DOT1L Mediates Stem Cell Maintenance and Represents a Therapeutic Vulnerability in Cancer. Cancer Res 2025; 85:838-847. [PMID: 39700409 PMCID: PMC11873724 DOI: 10.1158/0008-5472.can-24-3304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Tumor-initiating cancer stem cells (CSC) pose a challenge in human malignancies as they are largely treatment resistant and can seed local recurrence and metastasis. Epigenetic mechanisms governing cell fate decisions in embryonic and adult stem cells are deregulated in CSCs. This review focuses on the methyltransferase disruptor of telomeric silencing protein 1-like (DOT1L), which methylates histone H3 lysine 79 and is a key epigenetic regulator governing embryonic organogenesis and adult tissue stem cell maintenance. DOT1L is overexpressed in many human malignancies, and dysregulated histone H3 lysine 79 methylation is pathogenic in acute myeloid leukemia and several solid tumors. DOT1L regulates core stem cell genes governing CSC self-renewal, tumorigenesis, and multidrug resistance. Recent work has situated DOT1L as an attractive stem cell target in cancer. These reports showed that DOT1L is overexpressed and its protein activated specifically in malignant stem cells compared with bulk tumor cells, making them vulnerable to DOT1L inhibition in vitro and in vivo. Although early DOT1L inhibitor clinical trials were limited by inadequate drug bioavailability, accumulating preclinical data indicate that DOT1L critically regulates CSC self-renewal and might be more effective when given with other anticancer therapies. The appropriate combinations of DOT1L inhibitors with other agents and the sequence and timing of drug delivery for maximum efficacy warrant further investigation.
Collapse
Affiliation(s)
- Hetakshi Kurani
- Cancer Host Interactions Program, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Joyce M. Slingerland
- Cancer Host Interactions Program, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| |
Collapse
|
5
|
Singh PR, Nagaraja V. Epigenetic maneuvering: an emerging strategy for mycobacterial intracellular survival. Trends Microbiol 2025; 33:354-369. [PMID: 39613689 DOI: 10.1016/j.tim.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024]
Abstract
Mycobacterium tuberculosis (Mtb) has elaborated numerous mechanisms for its pathogenesis. Mtb manipulates host signaling pathways to interfere with the immune response and cell death pathways. By employing virulence factors - of which secretory proteins are emerging as significant components - it ensures successful survival in the host. In this review, we discuss advances made on the largely unexplored secretory modifiers of Mtb that alter the host epigenome to impact host pathways for the pathogen's advantage. We highlight the findings on the Mtb-encoded modification enzymes and their role in maneuvering the host machinery. We also provide pointers to the gaps that still exist in this area and approaches to address these questions for a better appreciation of the uncanny success of Mtb as an intracellular pathogen.
Collapse
Affiliation(s)
- Prakruti R Singh
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India; Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Valakunja Nagaraja
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India; Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India.
| |
Collapse
|
6
|
Eisenhuth N, Rauh ET, Mitnacht M, Debus A, Schleicher U, Butter F, Pruzinova K, Volf P, Janzen CJ. The histone methyltransferase DOT1B is dispensable for stage differentiation and macrophage infection of Leishmania mexicana. Front Cell Infect Microbiol 2025; 14:1502339. [PMID: 39902184 PMCID: PMC11788152 DOI: 10.3389/fcimb.2024.1502339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
Conserved histone methyltransferases of the DOT1 family are involved in replication regulation, cell cycle progression, stage differentiation, and gene regulation in trypanosomatids. However, the specific functions of these enzymes depend on the host evasion strategies of the parasites. In this study, we investigated the role of DOT1B in Leishmania mexicana, focusing on life cycle progression and infectivity. In contrast to Trypanosoma brucei, in which DOT1B is essential for the differentiation of mammal-infective bloodstream forms to insect procyclic forms, L. mexicana DOT1B (LmxDOT1B) is not critical for the differentiation of promastigotes to amastigotes in vitro. Additionally, there are no significant differences in the ability to infect or differentiate in macrophages or sand fly vectors between the LmxDOT1B-depleted and control strains. These findings highlight the divergence of the function of DOT1B in these related parasites, suggesting genus-specific adaptations in the use of histone modifications for life cycle progression and host adaptation processes.
Collapse
Affiliation(s)
- Nicole Eisenhuth
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Elisa Theres Rauh
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Melina Mitnacht
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Andrea Debus
- Microbiology Institute-Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander-University, Erlangen, Germany
| | - Ulrike Schleicher
- Microbiology Institute-Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander-University, Erlangen, Germany
| | - Falk Butter
- Proteomics und Systems Biology, Institute of Molecular Virology and Cell Biology (IMVZ), Friedrich Loeffler Institute, Greifswald, Germany
| | | | - Petr Volf
- Department of Parasitology, Charles University, Prague, Czechia
| | - Christian J. Janzen
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Mutchler AL, Haynes AP, Saleem M, Jamison S, Khan MM, Ertuglu L, Kirabo A. Epigenetic Regulation of Innate and Adaptive Immune Cells in Salt-Sensitive Hypertension. Circ Res 2025; 136:232-254. [PMID: 39819017 PMCID: PMC11750173 DOI: 10.1161/circresaha.124.325439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Access to excess dietary sodium has heightened the risk of cardiovascular diseases, particularly affecting individuals with salt sensitivity of blood pressure. Our research indicates that innate antigen-presenting immune cells contribute to rapid blood pressure increases in response to excess sodium intake. Emerging evidence suggests that epigenetic reprogramming, with subsequent transcriptional and metabolic changes, of innate immune cells allows these cells to have a sustained response to repetitive stimuli. Epigenetic mechanisms also steer T-cell differentiation in response to innate immune signaling. Immune cells respond to environmental and nutritional cues, such as salt, promoting epigenetic regulation changes. This article aims to identify and discuss the role of epigenetic mechanisms in the immune system contributing to salt-sensitive hypertension.
Collapse
Affiliation(s)
- Ashley L. Mutchler
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Porcia Haynes
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mohd Mabood Khan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lale Ertuglu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37212-8802, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
8
|
Pollin G, Chi YI, Mathison AJ, Zimmermann MT, Lomberk G, Urrutia R. Emergent properties of the lysine methylome reveal regulatory roles via protein interactions and histone mimicry. Epigenomics 2025; 17:5-20. [PMID: 39632680 DOI: 10.1080/17501911.2024.2435244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
AIMS Epigenomics has significantly advanced through the incorporation of Systems Biology approaches. This study aims to investigate the human lysine methylome as a system, using a data-science approach to reveal its emergent properties, particularly focusing on histone mimicry and the broader implications of lysine methylation across the proteome. METHODS We employed a data-science-driven OMICS approach, leveraging high-dimensional proteomic data to study the lysine methylome. The analysis focused on identifying sequence-based recognition motifs of lysine methyltransferases and evaluating the prevalence and distribution of lysine methylation across the human proteome. RESULTS Our analysis revealed that lysine methylation impacts 15% of the known proteome, with a notable bias toward mono-methylation. We identified sequence-based recognition motifs of 13 lysine methyltransferases, highlighting candidates for histone mimicry. These findings suggest that the selective inhibition of individual lysine methyltransferases could have systemic effects rather than merely targeting histone methylation. CONCLUSIONS The lysine methylome has significant mechanistic value and should be considered in the design and testing of therapeutic strategies, particularly in precision oncology. The study underscores the importance of considering non-histone proteins involved in DNA damage and repair, cell signaling, metabolism, and cell cycle pathways when targeting lysine methyltransferases.
Collapse
Affiliation(s)
- Gareth Pollin
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Young-In Chi
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Angela J Mathison
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T Zimmermann
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gwen Lomberk
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
Zhu Z, Zhang Q, Sui Z. Screening of ApDOT1.9 interacting proteins and the potential function of interactor ApSNARE in the rapid growth regulation of Alexandrium pacificum. MARINE POLLUTION BULLETIN 2024; 209:117080. [PMID: 39393244 DOI: 10.1016/j.marpolbul.2024.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Alexandrium pacificum is a toxic dinoflagellate resulting in harmful algal blooms (HABs). ApDOT1.9 is a methyltransferase involved in the rapid growth regulation of A. pacificum, but its protein interaction information is still limited. In this study, 14 candidate interacting proteins of ApDOT1.9, which were involved in metabolism, genetic information processing, environmental information processing and cellular processes, were screened. The interaction between candidate interactor ApSNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptors of Alexandrium pacificum) and ApDOT1.9 was further validated by molecular docking and GST (Glutathione S transferase) pull-down. The relevant biological functional information and gene expression of ApSNARE were also analyzed and detected. These results indicate that ApSNARE was an interactor of ApDOT1.9 and it may also participate in A. pacificum rapid growth regulation under high light or high nitrogen conditions, which will provide preliminary information on the interaction proteins of ApDOT1.9 and molecular regulation mechanisms of growth in A. pacificum.
Collapse
Affiliation(s)
- Zhimei Zhu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education of China, Qingdao 266003, China
| | - Qingyue Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education of China, Qingdao 266003, China
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education of China, Qingdao 266003, China.
| |
Collapse
|
10
|
Sethy B, Yu ZY, Narwanti I, Upadhyay R, Lai MJ, Lee SB, Liou JP. Design, synthesis, and biological evaluation of adenosine derivatives targeting DOT1L and HAT as anti-leukemia agents. Bioorg Chem 2024; 153:107771. [PMID: 39299178 DOI: 10.1016/j.bioorg.2024.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
Disruptor of telomeric silencing 1-like (DOT1L) is a key hub in histone lysine methyltransferase and an attractive therapeutic target for treating hematological malignancies including acute myeloid leukemia (AML). In this study, we report the design and synthesis of a new series of adenosine derivatives as DOT1L inhibitors by accommodating a basic linker piperidine-4-ylmethyl motif to respective aryl-urea/benzimidazole scaffolds. The anti-DOT1L enzyme activity analysis demonstrated that compounds 8, 12, and 13 strongly suppressed DOT1L activity with IC50 values ranging from 0.125 to 0.408 µM among all the synthetics, and the structure-activity relationships were summarized. Moreover, compound 12 possessed relatively potent DOT1L inhibitory activity by significantly reduced histone H3 di-methylation at lysine 79 (H3K79me2) level in cells. Subsequently, all the synthetics were screened against various leukemia cell lines, indicating the DOT1L active adenosine derivatives exhibited low to moderate while compound 15 showed strong cellular inhibition despite its unsuccessful DOT1L inhibition. Therefore, acknowledging the distinctive potency of compound 15 against five different leukemia cell lines, including MLL-r (MV4-11) and non-MLL-r cell lines (HL-60, HH, K562, and KG-1), with IC50 values in the 0.45 ∼ 1.66 μM range and its mode of action was explored. Furthermore, compound 15 hindered histone acetylation, induced remarkable DNA damage, and triggered apoptosis. Importantly, normal T lymphocytes only showed moderate response to compound 15. These findings provide a basis for future studies on its potential application against AML.
Collapse
Affiliation(s)
- Bidyadhar Sethy
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Zih-Yao Yu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Iin Narwanti
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Richa Upadhyay
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Mei-Jung Lai
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Sung-Bau Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Seneviratne JA, Ravindrarajah D, Carter DR, Zhai V, Lalwani A, Krishan S, Balachandran A, Ng E, Pandher R, Wong M, Nero TL, Wang S, Norris MD, Haber M, Liu T, Parker MW, Cheung BB, Marshall GM. Combined inhibition of histone methyltransferases EZH2 and DOT1L is an effective therapy for neuroblastoma. Cancer Med 2024; 13:e70082. [PMID: 39501501 PMCID: PMC11538032 DOI: 10.1002/cam4.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND The child cancer, neuroblastoma (NB), is characterised by a low incidence of mutations and strong oncogenic embryonal driver signals. Many new targeted epigenetic modifier drugs have failed in human trials as monotherapy. METHODS We performed a high-throughput, combination chromatin-modifier drug screen against NB cells. We screened 13 drug candidates in 78 unique combinations. RESULTS We found that the combination of two histone methyltransferase (HMT) inhibitors: GSK343, targeting EZH2, and SGC0946, targeting DOT1L, demonstrated the strongest synergy across 8 NB cell lines, with low normal fibroblast toxicity. High mRNA expression of both EZH2 and DOT1L in NB tumour samples correlated with the poorest patient survival. Combination HMT inhibitor treatment caused activation of ATF4-mediated endoplasmic reticulum (ER) stress responses. In addition, glutathione and several amino acids were depleted by HMT inhibitor combination on mass spectrometry analysis. The combination of SGC0946 and GSK343 reduced tumour growth in comparison to single agents. CONCLUSION Our results support further investigation of HMT inhibitor combinations as a therapeutic approach in NB.
Collapse
Affiliation(s)
- Janith A. Seneviratne
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Daenikka Ravindrarajah
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Daniel R. Carter
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Vicki Zhai
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Amit Lalwani
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Sukriti Krishan
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Anushree Balachandran
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
| | - Ernest Ng
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Ruby Pandher
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Matthew Wong
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Tracy L. Nero
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Murray D. Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
- Centre for Childhood Cancer ResearchUNSW SydneyRandwickNew South WalesAustralia
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Michael W. Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
- ACRF Rational Drug Discovery CentreSt. Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
| | - Belamy B. Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
| | - Glenn M. Marshall
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research CentreUNSW SydneyKensingtonNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine and HealthUNSW SydneyKensingtonNew South WalesAustralia
- Kids Cancer CentreSydney Children's HospitalRandwickNew South WalesAustralia
| |
Collapse
|
12
|
Cuamatzi-Flores J, Colón-González M, Requena-Romo F, Quiñones-Galeana S, Cervantes-Chávez JA, Morales L. Enhanced oxidative stress resistance in Ustilago maydis and its implications on the virulence. Int Microbiol 2024; 27:1501-1511. [PMID: 38401003 PMCID: PMC11452521 DOI: 10.1007/s10123-024-00489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
The phytopathogenic fungus Ustilago maydis causes corn smut by suppressing host plant defenses, including the oxidative burst response. While many studies have investigated how U. maydis responds to oxidative stress during infection, the consequences of heightened resistance to oxidative stress on virulence remain understudied. This study aimed to identify the effects on virulence in U. maydis strains exhibiting enhanced resistance to hydrogen peroxide (H2O2).To achieve this, we exposed U. maydis SG200 to 20 escalating H2O2 shocks, resulting in an adapted strain resistant to concentrations as high as 60 mM of H2O2, a lethal dose for the initial strain. Genetic analysis of the adapted strain revealed five nucleotide substitutions, two minor copy number variants, and a large amplification event on chromosome nine (1-149 kb) encompassing the sole catalase gene. Overexpressing catalase increased resistance to H2O2; however, this resistance was lower than that observed in the adapted strain. Additionally, virulence was reduced in both strains with enhanced H2O2 resistance.In summary, enhanced H2O2 resistance, achieved through either continuous exposure to the oxidative agent or through catalase overexpression, decreased virulence. This suggests that the response to the oxidative stress burst in U. maydis is optimal and that increasing the resistance to H2O2 does not translate into increased virulence. These findings illuminate the intricate relationship between oxidative stress resistance and virulence in U. maydis, offering insights into its infection mechanisms.
Collapse
Affiliation(s)
- Jorge Cuamatzi-Flores
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, 76230, Querétaro, México.
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, México.
| | - Maritrini Colón-González
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, México
| | - Fernanda Requena-Romo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, México
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, Universidad Nacional Autónoma de México, 76230, Querétaro, México
| | - Samuel Quiñones-Galeana
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, México
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, Universidad Nacional Autónoma de México, 76230, Querétaro, México
| | - José Antonio Cervantes-Chávez
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, 76230, Querétaro, México.
| | - Lucia Morales
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, México.
| |
Collapse
|
13
|
Boulter M, Biggar KK. Biological Relevance of Dual Lysine and N-Terminal Methyltransferase METTL13. Biomolecules 2024; 14:1112. [PMID: 39334878 PMCID: PMC11430744 DOI: 10.3390/biom14091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
The dual methyltransferase methyltransferase-like protein 13, also referred to as METTL13, or formerly known as FEAT (faintly expressed in healthy tissues, aberrantly overexpressed in tumors), has garnered attention as a significant enzyme in various cancer types, as evidenced by prior literature reviews. Recent studies have shed light on new potential roles for METTL13, hinting at its promise as a therapeutic target. This review aims to delve into the multifaceted biology of METTL13, elucidating its proposed mechanisms of action, regulatory pathways, and its implications in disease states, as supported by the current body of literature. Furthermore, the review will highlight emerging trends and gaps in our understanding of METTL13, paving the way for future research efforts. By contextualizing METTL13 within the broader landscape of cancer biology and therapeutics, this study serves as an introductory guide to METTL13, aiming to provide readers with a thorough understanding of its role in disease phenotypes.
Collapse
Affiliation(s)
| | - Kyle K. Biggar
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1N 5B6, Canada;
| |
Collapse
|
14
|
Wang Y, Zhang N, Shang W, Peng H, Hu Z, Yang Y, Tan L, Zhang L, He F, Rao X. Dexamethasone Inhibits the Growth of B-Lymphoma Cells by Downregulating DOT1L. Cancer Rep (Hoboken) 2024; 7:e2150. [PMID: 39307938 PMCID: PMC11417011 DOI: 10.1002/cnr2.2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 07/18/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Dexamethasone (Dex), a synthetic glucocorticoid that acts by binding to the glucocorticoid receptor (GR), has been widely applied to treat leukemia and lymphoma; however, the precise mechanism underlying Dex action is still not well elucidated. DOT1L, a histone H3-lysine79 (H3K79) methyltransferase, has been linked to multiple cancer types, particularly mixed lineage leukemia (MLL) gene rearranged leukemia, but its contribution to lymphoma is yet to be delineated. Analysis from the TCGA database displayed that DOT1L was highly expressed in lymphoma and leukemia. RESULTS We initially demonstrated that DOT1L served as a new target gene controlled by GR, and the downregulation of DOT1L was critical for the killing of B-lymphoma cells by Dex. Further study revealed that Dex had no impact on the transcriptional activity of the DOT1L promoter, rather it reduced the mRNA level of DOT1L at the posttranscriptional level. In addition, knockdown of DOT1L remarkably inhibited the B-lymphoma cell growth. CONCLUSIONS Overall, our findings indicated that DOT1L may serve as a potential drug target and a promising biomarker of Dex sensitivity when it comes to treating B lymphoma.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Nan Zhang
- Department of HematologyPeople's Liberation Army the General Hospital of Western Theater CommandChengduChina
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| | - Li Zhang
- Department of OncologyXiangya Hospital, Central South UniversityChangshaChina
| | - Fengtian He
- Department of Biochemistry and Molecular BiologyCollege of Basic Medical Sciences, Army Medical UniversityChongqingChina
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical UniversityChongqingChina
| |
Collapse
|
15
|
Tang H, Lu YF, Zeng R, Liu C, Shu Y, Wu Y, Su J, Di L, Qian J, Zhang J, Tian Y, Lu X, Pei XH, Zhu Q, Zhu WG. DOT1L-mediated RAP80 methylation promotes BRCA1 recruitment to elicit DNA repair. Proc Natl Acad Sci U S A 2024; 121:e2320804121. [PMID: 39172790 PMCID: PMC11363320 DOI: 10.1073/pnas.2320804121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Breast Cancer Type 1 Susceptibility Protein (BRCA1) is a tumor-suppressor protein that regulates various cellular pathways, including those that are essential for preserving genome stability. One essential mechanism involves a BRCA1-A complex that is recruited to double-strand breaks (DSBs) by RAP80 before initiating DNA damage repair (DDR). How RAP80 itself is recruited to DNA damage sites, however, is unclear. Here, we demonstrate an intrinsic correlation between a methyltransferase DOT1L-mediated RAP80 methylation and BRCA1-A complex chromatin recruitment that occurs during cancer cell radiotherapy resistance. Mechanistically, DOT1L is quickly recruited onto chromatin and methylates RAP80 at multiple lysines in response to DNA damage. Methylated RAP80 is then indispensable for binding to ubiquitinated H2A and subsequently triggering BRCA1-A complex recruitment onto DSBs. Importantly, DOT1L-catalyzed RAP80 methylation and recruitment of BRCA1 have clinical relevance, as inhibition of DOT1L or RAP80 methylation seems to enhance the radiosensitivity of cancer cells both in vivo and in vitro. These data reveal a crucial role for DOT1L in DDR through initiating recruitment of RAP80 and BRCA1 onto chromatin and underscore a therapeutic strategy based on targeting DOT1L to overcome tumor radiotherapy resistance.
Collapse
Affiliation(s)
- Huangqi Tang
- Shenzhen University International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen518055, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen518060, China
| | - Ya-Fei Lu
- Shenzhen University International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen518055, China
| | - Rongsheng Zeng
- Shenzhen University International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen518055, China
| | - Chaohua Liu
- Department of Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Yuxin Shu
- Shenzhen University International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen518055, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen518060, China
| | - Yupei Wu
- Shenzhen University International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen518055, China
| | - Jiajie Su
- Shenzhen University International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen518055, China
| | - Longjiang Di
- Shenzhen University International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen518055, China
| | - Jinqin Qian
- Shenzhen University International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen518055, China
| | - Jun Zhang
- Shenzhen University International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen518055, China
| | - Yuan Tian
- Shenzhen University International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen518055, China
| | - Xiaopeng Lu
- Shenzhen University International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen518055, China
| | - Xin-Hai Pei
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen518055, China
| | - Qian Zhu
- Shenzhen University International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen518055, China
| | - Wei-Guo Zhu
- Shenzhen University International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen518055, China
| |
Collapse
|
16
|
Zhang S, Lin T, Xiong X, Chen C, Tan P, Wei Q. Targeting histone modifiers in bladder cancer therapy - preclinical and clinical evidence. Nat Rev Urol 2024; 21:495-511. [PMID: 38374198 DOI: 10.1038/s41585-024-00857-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
Bladder cancer in the most advanced, muscle-invasive stage is lethal, and very limited therapeutic advances have been reported for decades. To date, cisplatin-based chemotherapy remains the first-line therapy for advanced bladder cancer. Late-line options have historically been limited. In the past few years, next-generation sequencing technology has enabled chromatin remodelling gene mutations to be characterized, showing that these alterations are more frequent in urothelial bladder carcinoma than in other cancer types. Histone modifiers have functional roles in tumour progression by modulating the expression of tumour suppressors and oncogenes and, therefore, have been considered as novel drug targets for cancer therapy. The roles of epigenetic reprogramming through histone modifications have been increasingly studied in bladder cancer, and the therapeutic efficacy of targeting those histone modifiers genetically or chemically is being assessed in preclinical studies. Results from preclinical studies in bladder cancer encouraged the investigation of some of these drugs in clinical trials, which yield mixed results. Further understanding of how alterations of histone modification mechanistically contribute to bladder cancer progression, drug resistance and tumour microenvironment remodelling will be required to facilitate clinical application of epigenetic drugs in bladder cancer.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianhai Lin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xingyu Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ping Tan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
17
|
Tan Z, Guo N, Cao Z, Liu S, Zhang J, Ma D, Zhang J, Lv W, Jiang N, Zang L, Wang L, Zhai X. Discovery of first-in-class DOT1L inhibitors against the R231Q gain-of-function mutation in the catalytic domain with therapeutic potential of lung cancer. Acta Pharm Sin B 2024; 14:3605-3623. [PMID: 39220866 PMCID: PMC11365375 DOI: 10.1016/j.apsb.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 09/04/2024] Open
Abstract
Recent research certified that DOT1L and its mutations represented by R231Q were potential targets for the treatment of lung cancer. Herein, a series of adenosine-containing derivatives were identified with DOT1LR231Q inhibition through antiproliferation assay and Western blot analysis in the H460R231Q cell. The most promising compound 37 significantly reduced DOT1LR231Q mediated H3K79 methylation and effectively inhibited the proliferation, self-renewal, migration, and invasion of lung cancer cell lines at low micromolar concentrations. The cell permeability and cellular target engagement of 37 were verified by both CETSA and DARTS assays. In the H460R231Q OE cell-derived xenograft (CDX) model, 37 displayed pronounced tumor growth inhibition after intraperitoneal administration at 20 mg/kg dose for 3 weeks (TGI = 54.38%), without obvious toxicities. A pharmacokinetic study revealed that 37 possessed tolerable properties (t 1/2 = 1.93 ± 0.91 h, F = 97.2%) after intraperitoneal administration in rats. Mechanism study confirmed that 37 suppressed malignant phenotypes of lung cancer carrying R231Q gain-of-function mutation via the MAPK/ERK signaling pathway. Moreover, analysis of the binding modes between molecules and DOT1LWT/R231Q proteins put forward the "Induced-fit" allosteric model in favor to the discovery of potent DOT1L candidates.
Collapse
Affiliation(s)
- Zehui Tan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhi Cao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuyu Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiayu Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Deyi Ma
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiahao Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wencai Lv
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nan Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linghe Zang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
18
|
Sudholz H, Schuster IS, Foroutan M, Sng X, Andoniou CE, Doan A, Camilleri T, Shen Z, Zaph C, Degli-Esposti MA, Huntington ND, Scheer S. DOT1L maintains NK cell phenotype and function for optimal tumor control. Cell Rep 2024; 43:114333. [PMID: 38865244 DOI: 10.1016/j.celrep.2024.114333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Histone methyltransferases (HMTs) are crucial in gene regulation and function, yet their role in natural killer (NK) cell biology within the tumor microenvironment (TME) remains largely unknown. We demonstrate that the HMT DOT1L limits NK cell conversion to CD49a+ CD49b+ intILC1, a subset that can be observed in the TME in response to stimulation with transforming growth factor (TGF)-β and is correlated with impaired tumor control. Deleting Dot1l in NKp46-expressing cells reveals its pivotal role in maintaining NK cell phenotype and function. Loss of DOT1L skews NK cells toward intILC1s even in the absence of TGF-β. Transcriptionally, DOT1L-null NK cells closely resemble intILC1s and ILC1s, correlating with altered NK cell responses and impaired solid tumor control. These findings deepen our understanding of NK cell biology and could inform approaches to prevent NK cell conversion to intILC1s in adoptive NK cell therapies for cancer.
Collapse
Affiliation(s)
- Harrison Sudholz
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia
| | - Iona S Schuster
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Momeneh Foroutan
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia; oNKo-Innate Pty Ltd, Moonee Ponds, VIC 3039, Australia
| | - Xavier Sng
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Christopher E Andoniou
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Anh Doan
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia
| | - Tania Camilleri
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia
| | - Zihan Shen
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia
| | - Colby Zaph
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Nicholas D Huntington
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia; oNKo-Innate Pty Ltd, Moonee Ponds, VIC 3039, Australia.
| | - Sebastian Scheer
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
19
|
Kealy L, Runting J, Thiele D, Scheer S. An emerging maestro of immune regulation: how DOT1L orchestrates the harmonies of the immune system. Front Immunol 2024; 15:1385319. [PMID: 38962004 PMCID: PMC11219580 DOI: 10.3389/fimmu.2024.1385319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 07/05/2024] Open
Abstract
The immune system comprises a complex yet tightly regulated network of cells and molecules that play a critical role in protecting the body from infection and disease. The activity and development of each immune cell is regulated in a myriad of ways including through the cytokine milieu, the availability of key receptors, via tailored intracellular signalling cascades, dedicated transcription factors and even by directly modulating gene accessibility and expression; the latter is more commonly known as epigenetic regulation. In recent years, epigenetic regulators have begun to emerge as key players involved in modulating the immune system. Among these, the lysine methyltransferase DOT1L has gained significant attention for its involvement in orchestrating immune cell formation and function. In this review we provide an overview of the role of DOT1L across the immune system and the implications of this role on health and disease. We begin by elucidating the general mechanisms of DOT1L-mediated histone methylation and its impact on gene expression within immune cells. Subsequently, we provide a detailed and comprehensive overview of recent studies that identify DOT1L as a crucial regulator of immune cell development, differentiation, and activation. Next, we discuss the potential mechanisms of DOT1L-mediated regulation of immune cell function and shed light on how DOT1L might be contributing to immune cell homeostasis and dysfunction. We then provide food for thought by highlighting some of the current obstacles and technical limitations precluding a more in-depth elucidation of DOT1L's role. Finally, we explore the potential therapeutic implications of targeting DOT1L in the context of immune-related diseases and discuss ongoing research efforts to this end. Overall, this review consolidates the current paradigm regarding DOT1L's role across the immune network and emphasises its critical role in governing the healthy immune system and its potential as a novel therapeutic target for immune-related diseases. A deeper understanding of DOT1L's immunomodulatory functions could pave the way for innovative therapeutic approaches which fine-tune the immune response to enhance or restore human health.
Collapse
Affiliation(s)
- Liam Kealy
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jessica Runting
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Daniel Thiele
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sebastian Scheer
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
20
|
Mabe NW, Perry JA, Malone CF, Stegmaier K. Pharmacological targeting of the cancer epigenome. NATURE CANCER 2024; 5:844-865. [PMID: 38937652 PMCID: PMC11936478 DOI: 10.1038/s43018-024-00777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
Epigenetic dysregulation is increasingly appreciated as a hallmark of cancer, including disease initiation, maintenance and therapy resistance. As a result, there have been advances in the development and evaluation of epigenetic therapies for cancer, revealing substantial promise but also challenges. Three epigenetic inhibitor classes are approved in the USA, and many more are currently undergoing clinical investigation. In this Review, we discuss recent developments for each epigenetic drug class and their implications for therapy, as well as highlight new insights into the role of epigenetics in cancer.
Collapse
Affiliation(s)
- Nathaniel W Mabe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer A Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Clare F Malone
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
21
|
Liu C, Li J, Xu F, Chen L, Ni M, Wu J, Zhao H, Wu Y, Li J, Wu X, Chen X. PARP1-DOT1L transcription axis drives acquired resistance to PARP inhibitor in ovarian cancer. Mol Cancer 2024; 23:111. [PMID: 38778348 PMCID: PMC11110363 DOI: 10.1186/s12943-024-02025-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitor (PARPi) resistance poses a significant challenge in ovarian carcinoma (OC). While the role of DOT1L in cancer and chemoresistance is acknowledged, its specific role in PARPi resistance remains unclear. This study aims to elucidate the molecular mechanism of DOT1L in PARPi resistance in OC patients. METHODS This study analyzed the expression of DOT1L in PARPi-resistant cell lines compared to sensitive ones and correlated it with clinical outcomes in OC patients. Comprehensive in vitro and in vivo functional experiments were conducted using cellular and mouse models. Molecular investigations, including RNA sequencing, chromatin immunoprecipitation (ChIP) and Cleavage Under Targets and Tagmentation (CUT&Tag) assays, were employed to unravel the molecular mechanisms of DOT1L-mediated PARPi resistance. RESULTS Our investigation revealed a robust correlation between DOT1L expression and clinical PARPi resistance in non-BRCA mutated OC cells. Upregulated DOT1L expression in PARPi-resistant tissues was associated with diminished survival in OC patients. Mechanistically, we identified that PARP1 directly binds to the DOT1L gene promoter, promoting transcription independently of its enzyme activity. PARP1 trapping induced by PARPi treatment amplified this binding, enhancing DOT1L transcription and contributing to drug resistance. Sequencing analysis revealed that DOT1L plays a crucial role in the transcriptional regulation of PLCG2 and ABCB1 via H3K79me2. This established the PARP1-DOT1L-PLCG2/ABCB1 axis as a key contributor to PARPi resistance. Furthermore, we discovered that combining a DOT1L inhibitor with PARPi demonstrated a synergistic effect in both cell line-derived xenograft mouse models (CDXs) and patient-derived organoids (PDOs). CONCLUSIONS Our results demonstrate that DOT1L is an independent prognostic marker for OC patients. The PARP1-DOT1L/H3K79me2-PLCG2/ABCB1 axis is identified as a pivotal contributor to PARPi resistance. Targeted inhibition of DOT1L emerges as a promising therapeutic strategy for enhancing PARPi treatment outcomes in OC patients.
Collapse
Affiliation(s)
- Chaohua Liu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiana Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lihua Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengdong Ni
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiangchun Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haiyun Zhao
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yangjun Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajia Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Zhou Q, Shi R. Shared Genetic Features of Psoriasis and Myocardial Infarction: Insights From a Weighted Gene Coexpression Network Analysis. J Am Heart Assoc 2024; 13:e033893. [PMID: 38533976 PMCID: PMC11179746 DOI: 10.1161/jaha.123.033893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Increasing evidence suggests a higher propensity for acute myocardial infarction (MI) in patients with psoriasis. However, the shared mechanisms underlying this comorbidity in these patients remain unclear. This study aimed to explore the shared genetic features of psoriasis and MI and to identify potential biomarkers indicating their coexistence. METHODS AND RESULTS Data sets obtained from the gene expression omnibus were examined using a weighted gene coexpression network analysis approach. Hub genes were identified using coexpression modules and validated in other data sets and through in vitro cellular experiments. Bioinformatics tools, including the Human microRNA Disease Database, StarBase, and miRNet databases, were used to construct a ceRNA network and predict potential regulatory mechanisms. By applying weighted gene coexpression network analysis, we identified 2 distinct modules that were significant for both MI and psoriasis. Inflammatory and immune pathways were highlighted by gene ontology enrichment analysis of the overlapping genes. Three pivotal genes-Src homology and collagen 1, disruptor of telomeric silencing 1-like, and feline leukemia virus subgroup C cellular receptor family member 2-were identified as potential biomarkers. We constructed a ceRNA network that suggested the upstream regulatory roles of these genes in the coexistence of psoriasis and MI. CONCLUSIONS As potential therapeutic targets, Src homology and collagen 1, feline leukemia virus subgroup C cellular receptor family member 2, and disruptor of telomeric silencing 1-like provide novel insights into the shared genetic features between psoriasis and MI. This study paves the way for future studies focusing on the prevention of MI in patients with psoriasis.
Collapse
Affiliation(s)
- Qiaoyu Zhou
- Department of Cardiovascular MedicineThird Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Ruizheng Shi
- Department of Cardiovascular MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
23
|
Frisbie VS, Hashimoto H, Xie Y, De Luna Vitorino FN, Baeza J, Nguyen T, Yuan Z, Kiselar J, Garcia BA, Debler EW. Two DOT1 enzymes cooperatively mediate efficient ubiquitin-independent histone H3 lysine 76 tri-methylation in kinetoplastids. Nat Commun 2024; 15:2467. [PMID: 38503750 PMCID: PMC10951340 DOI: 10.1038/s41467-024-46637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
In higher eukaryotes, a single DOT1 histone H3 lysine 79 (H3K79) methyltransferase processively produces H3K79me2/me3 through histone H2B mono-ubiquitin interaction, while the kinetoplastid Trypanosoma brucei di-methyltransferase DOT1A and tri-methyltransferase DOT1B efficiently methylate the homologous H3K76 without H2B mono-ubiquitination. Based on structural and biochemical analyses of DOT1A, we identify key residues in the methyltransferase motifs VI and X for efficient ubiquitin-independent H3K76 methylation in kinetoplastids. Substitution of a basic to an acidic residue within motif VI (Gx6K) is essential to stabilize the DOT1A enzyme-substrate complex, while substitution of the motif X sequence VYGE by CAKS renders a rigid active-site loop flexible, implying a distinct mechanism of substrate recognition. We further reveal distinct methylation kinetics and substrate preferences of DOT1A (H3K76me0) and DOT1B (DOT1A products H3K76me1/me2) in vitro, determined by a Ser and Ala residue within motif IV, respectively, enabling DOT1A and DOT1B to mediate efficient H3K76 tri-methylation non-processively but cooperatively, and suggesting why kinetoplastids have evolved two DOT1 enzymes.
Collapse
Affiliation(s)
- Victoria S Frisbie
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hideharu Hashimoto
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Francisca N De Luna Vitorino
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Josue Baeza
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tam Nguyen
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhangerjiao Yuan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Janna Kiselar
- Case Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Erik W Debler
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Weinzapfel EN, Fedder-Semmes KN, Sun ZW, Keogh MC. Beyond the tail: the consequence of context in histone post-translational modification and chromatin research. Biochem J 2024; 481:219-244. [PMID: 38353483 PMCID: PMC10903488 DOI: 10.1042/bcj20230342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
The role of histone post-translational modifications (PTMs) in chromatin structure and genome function has been the subject of intense debate for more than 60 years. Though complex, the discourse can be summarized in two distinct - and deceptively simple - questions: What is the function of histone PTMs? And how should they be studied? Decades of research show these queries are intricately linked and far from straightforward. Here we provide a historical perspective, highlighting how the arrival of new technologies shaped discovery and insight. Despite their limitations, the tools available at each period had a profound impact on chromatin research, and provided essential clues that advanced our understanding of histone PTM function. Finally, we discuss recent advances in the application of defined nucleosome substrates, the study of multivalent chromatin interactions, and new technologies driving the next era of histone PTM research.
Collapse
|
25
|
Sepulveda GP, Gushchanskaia ES, Mora-Martin A, Esse R, Nikorich I, Ceballos A, Kwan J, Blum BC, Dholiya P, Emili A, Perissi V, Cardamone MD, Grishok A. DOT1L stimulates MYC/Mondo transcription factor activity by promoting its degradation cycle on chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579191. [PMID: 38370658 PMCID: PMC10871221 DOI: 10.1101/2024.02.06.579191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The proto-oncogene c-MYC is a key representative of the MYC transcription factor network regulating growth and metabolism. MML-1 (Myc- and Mondo-like) is its homolog in C. elegans. The functional and molecular cooperation between c-MYC and H3 lysine 79 methyltransferase DOT1L was demonstrated in several human cancer types, and we have earlier discovered the connection between C. elegans MML-1 and DOT-1.1. Here, we demonstrate the critical role of DOT1L/DOT-1.1 in regulating c-MYC/MML-1 target genes genome-wide by ensuring the removal of "spent" transcription factors from chromatin by the nuclear proteasome. Moreover, we uncover a previously unrecognized proteolytic activity of DOT1L, which may facilitate c-MYC turnover. This new mechanism of c-MYC regulation by DOT1L may lead to the development of new approaches for cancer treatment.
Collapse
Affiliation(s)
- Gian P. Sepulveda
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ekaterina S. Gushchanskaia
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Tessera Therapeutics, Somerville, MA, 02143, USA
| | - Alexandra Mora-Martin
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Ruben Esse
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Cell and Gene Therapy Catapult, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Iana Nikorich
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ainhoa Ceballos
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Present address: Research Unit, Diagnostica Longwood S.L. 50011 Zaragoza, Spain
| | - Julian Kwan
- Center for Network Systems Biology, Boston University, Boston, MA, 02118, USA
| | - Benjamin C. Blum
- Center for Network Systems Biology, Boston University, Boston, MA, 02118, USA
| | - Prakruti Dholiya
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Andrew Emili
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Network Systems Biology, Boston University, Boston, MA, 02118, USA
- Division of Computational Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: OHSU Knight Cancer Institute, School of Medicine, Portland, OR, 97239, USA
| | - Valentina Perissi
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Maria D. Cardamone
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Present address: Korro Bio Inc., Cambridge, MA, 02139, USA
| | - Alla Grishok
- Department of Biochemistry & Cell Biology, Boston University School of Medicine, Boston, MA, 02118, USA
- Genome Science Institute, Boston University, Boston, MA, 02118, USA
| |
Collapse
|
26
|
Park MJ, Sohn WM, Bae YA. Genome-wide identification of histone lysine methyltransferases and their implications in the epigenetic regulation of eggshell formation-related genes in a trematode parasite Clonorchis sinensis. PARASITES, HOSTS AND DISEASES 2024; 62:98-116. [PMID: 38443774 PMCID: PMC10915263 DOI: 10.3347/phd.23116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 03/07/2024]
Abstract
Epigenetic writers including DNA and histone lysine methyltransferases (DNMT and HKMT, respectively) play an initiative role in the differentiation and development of eukaryotic organisms through the spatiotemporal regulation of functional gene expressions. However, the epigenetic mechanisms have long been suspected in helminth parasites lacking the major DNA methyltransferases DNMT1 and DNMT3a/3b. Very little information on the evolutionary status of the epigenetic tools and their role in regulating chromosomal genes is currently available in the parasitic trematodes. We previously suggested the probable role of a DNMT2-like protein (CsDNMT2) as a genuine epigenetic writer in a trematode parasite Clonorchis sinensis. Here, we analyzed the phylogeny of HKMT subfamily members in the liver fluke and other platyhelminth species. The platyhelminth genomes examined conserved genes for the most of SET domain-containing HKMT and Disruptor of Telomeric Silencing 1 subfamilies, while some genes were expanded specifically in certain platyhelminth genomes. Related to the high gene dosages for HKMT activities covering differential but somewhat overlapping substrate specificities, variously methylated histones were recognized throughout the tissues/organs of C. sinensis adults. The temporal expressions of genes involved in eggshell formation were gradually decreased to their lowest levels proportionally to aging, whereas those of some epigenetic tool genes were re-boosted in the later adult stages of the parasite. Furthermore, these expression levels were significantly affected by treatment with DNMT and HKMT inhibitors. Our data strongly suggest that methylated histones are potent epigenetic markers that modulate the spatiotemporal expressions of C. sinensis genes, especially those involved in sexual reproduction.
Collapse
Affiliation(s)
- Min-Ji Park
- Department of Microbiology, College of Medicine and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999,
Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999,
Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Young-An Bae
- Department of Microbiology, College of Medicine and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999,
Korea
| |
Collapse
|
27
|
Schnee P, Pleiss J, Jeltsch A. Approaching the catalytic mechanism of protein lysine methyltransferases by biochemical and simulation techniques. Crit Rev Biochem Mol Biol 2024; 59:20-68. [PMID: 38449437 DOI: 10.1080/10409238.2024.2318547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Protein lysine methyltransferases (PKMTs) transfer up to three methyl groups to the side chains of lysine residues in proteins and fulfill important regulatory functions by controlling protein stability, localization and protein/protein interactions. The methylation reactions are highly regulated, and aberrant methylation of proteins is associated with several types of diseases including neurologic disorders, cardiovascular diseases, and various types of cancer. This review describes novel insights into the catalytic machinery of various PKMTs achieved by the combined application of biochemical experiments and simulation approaches during the last years, focusing on clinically relevant and well-studied enzymes of this group like DOT1L, SMYD1-3, SET7/9, G9a/GLP, SETD2, SUV420H2, NSD1/2, different MLLs and EZH2. Biochemical experiments have unraveled many mechanistic features of PKMTs concerning their substrate and product specificity, processivity and the effects of somatic mutations observed in PKMTs in cancer cells. Structural data additionally provided information about the substrate recognition, enzyme-substrate complex formation, and allowed for simulations of the substrate peptide interaction and mechanism of PKMTs with atomistic resolution by molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. These simulation technologies uncovered important mechanistic details of the PKMT reaction mechanism including the processes responsible for the deprotonation of the target lysine residue, essential conformational changes of the PKMT upon substrate binding, but also rationalized regulatory principles like PKMT autoinhibition. Further developments are discussed that could bring us closer to a mechanistic understanding of catalysis of this important class of enzymes in the near future. The results described here illustrate the power of the investigation of enzyme mechanisms by the combined application of biochemical experiments and simulation technologies.
Collapse
Affiliation(s)
- Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
28
|
Singh PR, Dadireddy V, Udupa S, Kalladi SM, Shee S, Khosla S, Rajmani RS, Singh A, Ramakumar S, Nagaraja V. The Mycobacterium tuberculosis methyltransferase Rv2067c manipulates host epigenetic programming to promote its own survival. Nat Commun 2023; 14:8497. [PMID: 38129415 PMCID: PMC10739865 DOI: 10.1038/s41467-023-43940-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Mycobacterium tuberculosis has evolved several mechanisms to counter host defense arsenals for its proliferation. Here we report that M. tuberculosis employs a multi-pronged approach to modify host epigenetic machinery for its survival. It secretes methyltransferase (MTase) Rv2067c into macrophages, trimethylating histone H3K79 in a non-nucleosomal context. Rv2067c downregulates host MTase DOT1L, decreasing DOT1L-mediated nucleosomally added H3K79me3 mark on pro-inflammatory response genes. Consequent inhibition of caspase-8-dependent apoptosis and enhancement of RIPK3-mediated necrosis results in increased pathogenesis. In parallel, Rv2067c enhances the expression of SESTRIN3, NLRC3, and TMTC1, enabling the pathogen to overcome host inflammatory and oxidative responses. We provide the structural basis for differential methylation of H3K79 by Rv2067c and DOT1L. The structures of Rv2067c and DOT1L explain how their action on H3K79 is spatially and temporally separated, enabling Rv2067c to effectively intercept the host epigenetic circuit and downstream signaling.
Collapse
Affiliation(s)
- Prakruti R Singh
- Department of Microbiology & Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | | | - Shubha Udupa
- Department of Microbiology & Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Shashwath Malli Kalladi
- Department of Microbiology & Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Somnath Shee
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Sanjeev Khosla
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh (CSIR -IMTech), Chandigarh, India
| | - Raju S Rajmani
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Amit Singh
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | | | - Valakunja Nagaraja
- Department of Microbiology & Cell Biology, Indian Institute of Science (IISc), Bengaluru, India.
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India.
| |
Collapse
|
29
|
Nil Z, Deshwar AR, Huang Y, Barish S, Zhang X, Choufani S, Le Quesne Stabej P, Hayes I, Yap P, Haldeman-Englert C, Wilson C, Prescott T, Tveten K, Vøllo A, Haynes D, Wheeler PG, Zon J, Cytrynbaum C, Jobling R, Blyth M, Banka S, Afenjar A, Mignot C, Robin-Renaldo F, Keren B, Kanca O, Mao X, Wegner DJ, Sisco K, Shinawi M, Wangler MF, Weksberg R, Yamamoto S, Costain G, Bellen HJ. Rare de novo gain-of-function missense variants in DOT1L are associated with developmental delay and congenital anomalies. Am J Hum Genet 2023; 110:1919-1937. [PMID: 37827158 PMCID: PMC10645550 DOI: 10.1016/j.ajhg.2023.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.
Collapse
Affiliation(s)
- Zelha Nil
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ashish R Deshwar
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yan Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Polona Le Quesne Stabej
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Ian Hayes
- Genetic Health Service New Zealand- Northern Hub, Auckland District Health Board, Auckland, New Zealand
| | - Patrick Yap
- Genetic Health Service New Zealand- Northern Hub, Auckland District Health Board, Auckland, New Zealand
| | | | - Carolyn Wilson
- Mission Fullerton Genetics Center, Asheville, NC 28803, USA
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Arve Vøllo
- Department of Pediatrics, Hospital of Østfold, 1714 Grålum, Norway
| | - Devon Haynes
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, FL, USA; Clinical Genetics Service, Guy's Hospital, Guy's and St Thomas' NHS Trust, London, England, UK
| | - Patricia G Wheeler
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, FL, USA
| | - Jessica Zon
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cheryl Cytrynbaum
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rebekah Jobling
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Moira Blyth
- North of Scotland Regional Genetics Service, Clinical Genetics Centre, Ashgrove House, Foresterhill, Aberdeen, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9WL Manchester, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, M13 9WL Manchester, UK
| | - Alexandra Afenjar
- Service de génétique, CRMR des malformations et maladies congénitales du cervelet et CRMR déficience intellectuelle, hôpital Trousseau, AP-HP, Paris, France
| | - Cyril Mignot
- Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière and Hôpital Trousseau, Paris, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | | | - Boris Keren
- AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, 75013 Paris, France
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xiao Mao
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China; Clinical Research Center for Placental Medicine in Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China
| | - Daniel J Wegner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen Sisco
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marwan Shinawi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Kriegesmann J, Brik A. Synthesis of ubiquitinated proteins for biochemical and functional analysis. Chem Sci 2023; 14:10025-10040. [PMID: 37772107 PMCID: PMC10529715 DOI: 10.1039/d3sc03664b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/27/2023] [Indexed: 09/30/2023] Open
Abstract
Ubiquitination plays a crucial role in controlling various biological processes such as translation, DNA repair and immune response. Protein degradation for example, is one of the main processes which is controlled by the ubiquitin system and has significant implications on human health. In order to investigate these processes and the roles played by different ubiquitination patterns on biological systems, homogeneously ubiquitinated proteins are needed. Notably, these conjugates that are made enzymatically in cells cannot be easily obtained in large amounts and high homogeneity by employing such strategies. Therefore, chemical and semisynthetic approaches have emerged to prepare different ubiquitinated proteins. In this review, we will present the key synthetic strategies and their applications for the preparation of various ubiquitinated proteins. Furthermore, the use of these precious conjugates in different biochemical and functional studies will be highlighted.
Collapse
Affiliation(s)
- Julia Kriegesmann
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Haifa Israel
| |
Collapse
|
31
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
32
|
Lee RS, Sad K, Fawwal DV, Spangle JM. Emerging Role of Epigenetic Modifiers in Breast Cancer Pathogenesis and Therapeutic Response. Cancers (Basel) 2023; 15:4005. [PMID: 37568822 PMCID: PMC10417282 DOI: 10.3390/cancers15154005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Breast cancer pathogenesis, treatment, and patient outcomes are shaped by tumor-intrinsic genomic alterations that divide breast tumors into molecular subtypes. These molecular subtypes often dictate viable therapeutic interventions and, ultimately, patient outcomes. However, heterogeneity in therapeutic response may be a result of underlying epigenetic features that may further stratify breast cancer patient outcomes. In this review, we examine non-genetic mechanisms that drive functional changes to chromatin in breast cancer to contribute to cell and tumor fitness and highlight how epigenetic activity may inform the therapeutic response. We conclude by providing perspectives on the future of therapeutic targeting of epigenetic enzymes, an approach that holds untapped potential to improve breast cancer patient outcomes.
Collapse
Affiliation(s)
- Richard Sean Lee
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.S.L.); (K.S.); (D.V.F.)
- Department of Biology, Emory College, Atlanta, GA 30322, USA
| | - Kirti Sad
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.S.L.); (K.S.); (D.V.F.)
| | - Dorelle V. Fawwal
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.S.L.); (K.S.); (D.V.F.)
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University School of Medicine, Atlanta, GA 30311, USA
| | - Jennifer Marie Spangle
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; (R.S.L.); (K.S.); (D.V.F.)
| |
Collapse
|
33
|
Nguyen TQ, Koh S, Kwon J, Jang S, Kang W, Yang JK. Structural basis for recognition and methylation of p97 by METTL21D, a valosin-containing protein lysine methyltransferase. iScience 2023; 26:107222. [PMID: 37456834 PMCID: PMC10339199 DOI: 10.1016/j.isci.2023.107222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/22/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
p97 is a human AAA+ (ATPase associated with diverse cellular activities, also known as valosin-containing protein [VCP]) ATPase, which is involved in diverse cellular processes such as membrane fusion and proteolysis. Lysine-specific methyltransferase of p97 (METTL21D) was identified as a class I methyltransferase that catalyzes the trimethylation of Lys315 of p97, a so-called VCP lysine methyltransferase (VCPKMT). Interestingly, VCPKMT disassembles a single hexamer ring consisting of p97-D1 domain and methylates Lys315 residue. Herein, the structures of S-adenosyl-L-methionine-bound VCPKMT and S-adenosyl-L-homocysteine-bound VCPKMT in complex with p97 N/D1 (N21-Q458) were reported at a resolution of 1.8 Å and 2.8 Å, respectively. The structures revealed the molecular details for the recognition and methylation of monomeric p97 by VCPKMT. Using biochemical analysis, we also investigated whether the methylation of full-length p97 could be sufficiently enhanced through cooperation between VCPKMT and the C terminus of alveolar soft part sarcoma locus (ASPL). Our study provides the groundwork for future structural and mechanistic studies of p97 and inhibitors.
Collapse
Affiliation(s)
- Thang Quyet Nguyen
- Department of Chemistry and Integrative Institute of Basic Science, College of Natural Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Seri Koh
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Jiin Kwon
- Department of Chemistry and Integrative Institute of Basic Science, College of Natural Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Soyeon Jang
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Wonchull Kang
- Department of Chemistry and Integrative Institute of Basic Science, College of Natural Sciences, Soongsil University, Seoul 06978, Republic of Korea
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Jin Kuk Yang
- Department of Chemistry and Integrative Institute of Basic Science, College of Natural Sciences, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
34
|
Jurich C, Yang ZJ. High-throughput computational investigation of protein electrostatics and cavity for SAM-dependent methyltransferases. Protein Sci 2023; 32:e4690. [PMID: 37278582 PMCID: PMC10273352 DOI: 10.1002/pro.4690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/25/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
S-adenosyl methionine (SAM)-dependent methyl transferases (MTases) are a ubiquitous class of enzymes catalyzing dozens of essential life processes. Despite targeting a large space of substrates with diverse intrinsic reactivity, SAM MTases have similar catalytic efficiency. While understanding of MTase mechanism has grown tremendously through the integration of structural characterization, kinetic assays, and multiscale simulations, it remains elusive how these enzymes have evolved to fit the diverse chemical needs of their respective substrates. In this work, we performed a high-throughput molecular modeling analysis of 91 SAM MTases to better understand how their properties (i.e., electric field [EF] strength and active site volumes) help achieve similar catalytic efficiency toward substrates of different reactivity. We found that EF strengths have largely adjusted to make the target atom a better methyl acceptor. For MTases that target RNA/DNA and histone proteins, our results suggest that EF strength accommodates formal hybridization state and variation in cavity volume trends with diversity of substrate classes. Metal ions in SAM MTases contribute negatively to EF strength for methyl donation and enzyme scaffolds tend to offset these contributions.
Collapse
Affiliation(s)
| | - Zhongyue J. Yang
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashvilleTennesseeUSA
- Data Science InstituteVanderbilt UniversityNashvilleTennesseeUSA
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
35
|
Zhang J, Yang T, Han M, Wang X, Yang W, Guo N, Ren Y, Cui W, Li S, Zhao Y, Zhai X, Jia L, Yang J, Wu C, Wang L. Gain-of-function mutations in the catalytic domain of DOT1L promote lung cancer malignant phenotypes via the MAPK/ERK signaling pathway. SCIENCE ADVANCES 2023; 9:eadc9273. [PMID: 37256945 PMCID: PMC10413674 DOI: 10.1126/sciadv.adc9273] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Lung cancer is a lethal malignancy lacking effective therapies. Emerging evidence suggests that epigenetic enzyme mutations are closely related to the malignant phenotype of lung cancer. Here, we identified a series of gain-of-function mutations in the histone methyltransferase DOT1L. The strongest of them is R231Q, located in the catalytic DOT domain. R231Q can enhance the substrate binding ability of DOT1L. Moreover, R231Q promotes cell growth and drug resistance of lung cancer cells in vitro and in vivo. Mechanistic studies also revealed that the R231Q mutant specifically activates the MAPK/ERK signaling pathway by enriching H3K79me2 on the RAF1 promoter and epigenetically regulating the expression of downstream targets. The combination of a DOT1L inhibitor (SGC0946) and a MAPK/ERK axis inhibitor (binimetinib) can effectively reverse the R231Q-induced phenomena. Our results reveal gain-of-function mutations in an epigenetic enzyme and provide promising insights for the precise treatment of lung cancer patients.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Ting Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Mei Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Xiaoxuan Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Weiming Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Ning Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Yong Ren
- Department of Pathology, General Hospital of Central Theater Command of People's Liberation Army, Wuhan 430070, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shangxiao Li
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongshan Zhao
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| |
Collapse
|
36
|
Zhu Z, Qi J, Liu Y, Sui Z. The H3K79 methylase DOT1, unreported in photosynthetic plants, exists in Alexandrium pacificum and participates in its growth regulation. MARINE POLLUTION BULLETIN 2023; 190:114867. [PMID: 37011538 DOI: 10.1016/j.marpolbul.2023.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Alexandrium pacificum is one of the typical toxic dinoflagellate species leading to harmful algal blooms (HABs). Histone modifications play key roles in many cellular events, but little is known about the mechanism of regulating A. pacificum growth. In this study, a total of 30 proteins containing the DOT1 domain were identified and analyzed. Some ApDOT1 gene expression levels were significantly influenced by light intensity and nitrogen by expression analysis and RT-qPCR validation. The enrichment of H3K79 methylation also showed a similar trend. In addition, ApDOT1.9 protein was proved to have the function of catalyzing the methylation of H3K79 by homology analysis and in vitro methylation. The results suggested that ApDOT1 proteins and H3K79 methylation were involved in responding to harmful algal blooms-inducing conditions (high light intensity, and high nitrogen), which provided basic information for further exploration of the regulatory mechanism of histone methylation in A. pacificum rapid growth.
Collapse
Affiliation(s)
- Zhimei Zhu
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Juan Qi
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
37
|
Assi R, Cherifi C, Cornelis FMF, Zhou Q, Storms L, Pazmino S, Coutinho de Almeida R, Meulenbelt I, Lories RJ, Monteagudo S. Inhibition of KDM7A/B histone demethylases restores H3K79 methylation and protects against osteoarthritis. Ann Rheum Dis 2023:ard-2022-223789. [PMID: 36927643 DOI: 10.1136/ard-2022-223789] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVES In osteoarthritis, methylation of lysine 79 on histone H3 (H3K79me), a protective epigenetic mechanism, is reduced. Histone methylation levels are dynamically regulated by histone methyltransferases and demethylases. Here, we aimed to identify which histone demethylases regulate H3K79me in cartilage and investigate whether their targeting protects against osteoarthritis. METHODS We determined histone demethylase expression in human non-osteoarthritis and osteoarthritis cartilage using qPCR. The role of histone demethylase families and subfamilies on H3K79me was interrogated by treatment of human C28/I2 chondrocytes with pharmacological inhibitors, followed by western blot and immunofluorescence. We performed C28/I2 micromasses to evaluate effects on glycosaminoglycans by Alcian blue staining. Changes in H3K79me after destabilisation of the medial meniscus (DMM) in mice were determined by immunohistochemistry. Daminozide, a KDM2/7 subfamily inhibitor, was intra-articularly injected in mice upon DMM. Histone demethylases targeted by daminozide were individually silenced in chondrocytes to dissect their role on H3K79me and osteoarthritis. RESULTS We documented the expression signature of histone demethylases in human non-osteoarthritis and osteoarthritis articular cartilage. Inhibition of Jumonji-C demethylase family increased H3K79me in human chondrocytes. Blockade of KDM2/7 histone demethylases with daminozide increased H3K79me and glycosaminoglycans. In mouse articular cartilage, H3K79me decayed rapidly upon induction of joint injury. Early and sustained intra-articular treatment with daminozide enhanced H3K79me and exerted protective effects in mice upon DMM. Individual silencing of KDM7A/B demethylases in human chondrocytes demonstrated that KDM7A/B mediate protective effects of daminozide on H3K79me and osteoarthritis. CONCLUSION Targeting KDM7A/B histone demethylases could be an attractive strategy to protect joints against osteoarthritis.
Collapse
Affiliation(s)
- Reem Assi
- Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Chahrazad Cherifi
- Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium .,Glycobiology Cell Growth Tissue Repair and Regeneration Research Unit, Gly-CRRET, Univ Paris Est Créteil, Créteil, France
| | - Frederique M F Cornelis
- Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Qiongfei Zhou
- Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Lies Storms
- Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Sofia Pazmino
- Development and Regeneration, Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Belgium
| | - Rodrigo Coutinho de Almeida
- Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid Meulenbelt
- Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Integrated research on Developmental determinants of Ageing and Longevity (IDEAL), Leiden University Medical Center, Leiden, The Netherlands
| | - Rik J Lories
- Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Silvia Monteagudo
- Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Zhang J, Huang L, Ge G, Hu K. Emerging Epigenetic-Based Nanotechnology for Cancer Therapy: Modulating the Tumor Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206169. [PMID: 36599655 PMCID: PMC9982594 DOI: 10.1002/advs.202206169] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Indexed: 06/02/2023]
Abstract
Dysregulated epigenetic modifications dynamically drive the abnormal transcription process to affect the tumor microenvironment; thus, promoting cancer progression, drug resistance, and metastasis. Nowadays, therapies targeting epigenetic dysregulation of tumor cells and immune cells in the tumor microenvironment appear to be promising adjuncts to other cancer therapies. However, the clinical results of combination therapies containing epigenetic agents are disappointing due to systemic toxicities and limited curative effects. Here, the role of epigenetic processes, including DNA methylation, post-translational modification of histones, and noncoding RNAs is discussed, followed by detailed descriptions of epigenetic regulation of the tumor microenvironment, as well as the application of epigenetic modulators in antitumor therapy, with an emphasis on the epigenetic-based advanced drug delivery system in targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Kaili Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
39
|
Roy A, Niharika, Chakraborty S, Mishra J, Singh SP, Patra SK. Mechanistic aspects of reversible methylation modifications of arginine and lysine of nuclear histones and their roles in human colon cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:261-302. [PMID: 37019596 DOI: 10.1016/bs.pmbts.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Developmental proceedings and maintenance of cellular homeostasis are regulated by the precise orchestration of a series of epigenetic events that eventually control gene expression. DNA methylation and post-translational modifications (PTMs) of histones are well-characterized epigenetic events responsible for fine-tuning gene expression. PTMs of histones bear molecular logic of gene expression at chromosomal territory and have become a fascinating field of epigenetics. Nowadays, reversible methylation on histone arginine and lysine is gaining increasing attention as a significant PTM related to reorganizing local nucleosomal structure, chromatin dynamics, and transcriptional regulation. It is now well-accepted and reported that histone marks play crucial roles in colon cancer initiation and progression by encouraging abnormal epigenomic reprogramming. It is becoming increasingly clear that multiple PTM marks at the N-terminal tails of the core histones cross-talk with one another to intricately regulate DNA-templated biological processes such as replication, transcription, recombination, and damage repair in several malignancies, including colon cancer. These functional cross-talks provide an additional layer of message, which spatiotemporally fine-tunes the overall gene expression regulation. Nowadays, it is evident that several PTMs instigate colon cancer development. How colon cancer-specific PTM patterns or codes are generated and how they affect downstream molecular events are uncovered to some extent. Future studies would address more about epigenetic communication, and the relationship between histone modification marks to define cellular functions in depth. This chapter will comprehensively highlight the importance of histone arginine and lysine-based methylation modifications and their functional cross-talk with other histone marks from the perspective of colon cancer development.
Collapse
|
40
|
Baghel VS, Shinde S, Sinha V, Dixit V, Tiwari AK, Saxena S, Vishvakarma NK, Shukla D, Bhatt P. Inhibitors targeting epigenetic modifications in cancer. TRANSCRIPTION AND TRANSLATION IN HEALTH AND DISEASE 2023:287-324. [DOI: 10.1016/b978-0-323-99521-4.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
41
|
Zhang JQ, Li YY, Zhang XY, Tian ZH, Liu C, Wang ST, Zhang FR. Cellular senescence of renal tubular epithelial cells in renal fibrosis. Front Endocrinol (Lausanne) 2023; 14:1085605. [PMID: 36926022 PMCID: PMC10011622 DOI: 10.3389/fendo.2023.1085605] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Renal fibrosis (RF) is the common pathological manifestation of virtually all chronic kidney diseases (CKD) and one of the major causes of end-stage renal disease (ESRD), but the pathogenesis of which is still unclear. Renal tubulointerstitial lesions have been identified as a key pathological hallmark of RF pathology. Renal tubular epithelial cells are the resident cells of the tubulointerstitium and play an important role in kidney recovery versus renal fibrosis following injury. Studies in recent years have shown that senescence of renal tubular epithelial cells can accelerate the progression of renal fibrosis. Oxidative stress(OS), telomere attrition and DNA damage are the major causes of renal tubular epithelial cell senescence. Current interventions and therapeutic strategies for cellular senescence include calorie restriction and routine exercise, Klotho, senolytics, senostatics, and other related drugs. This paper provides an overview of the mechanisms and the key signaling pathways including Wnt/β-catenin/RAS, Nrf2/ARE and STAT-3/NF-κB pathway involved in renal tubular epithelial cell senescence in RF and therapies targeting renal tubular epithelial cell senescence future therapeutic potential for RF patients. These findings may offer promise for the further treatment of RF and CKD.
Collapse
Affiliation(s)
- Jun-Qing Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Ying Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue-Yan Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zeng-Hui Tian
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shi-Tao Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fa-Rong Zhang
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Fa-Rong Zhang,
| |
Collapse
|
42
|
Gaál Z. Targeted Epigenetic Interventions in Cancer with an Emphasis on Pediatric Malignancies. Biomolecules 2022; 13:61. [PMID: 36671446 PMCID: PMC9855367 DOI: 10.3390/biom13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Over the past two decades, novel hallmarks of cancer have been described, including the altered epigenetic landscape of malignant diseases. In addition to the methylation and hyd-roxymethylation of DNA, numerous novel forms of histone modifications and nucleosome remodeling have been discovered, giving rise to a wide variety of targeted therapeutic interventions. DNA hypomethylating drugs, histone deacetylase inhibitors and agents targeting histone methylation machinery are of distinguished clinical significance. The major focus of this review is placed on targeted epigenetic interventions in the most common pediatric malignancies, including acute leukemias, brain and kidney tumors, neuroblastoma and soft tissue sarcomas. Upcoming novel challenges include specificity and potential undesirable side effects. Different epigenetic patterns of pediatric and adult cancers should be noted. Biological significance of epigenetic alterations highly depends on the tissue microenvironment and widespread interactions. An individualized treatment approach requires detailed genetic, epigenetic and metabolomic evaluation of cancer. Advances in molecular technologies and clinical translation may contribute to the development of novel pediatric anticancer treatment strategies, aiming for improved survival and better patient quality of life.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatric Hematology-Oncology, Institute of Pediatrics, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
43
|
Levinsky AJ, McEdwards G, Sethna N, Currie MA. Targets of histone H3 lysine 9 methyltransferases. Front Cell Dev Biol 2022; 10:1026406. [PMID: 36568972 PMCID: PMC9768651 DOI: 10.3389/fcell.2022.1026406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022] Open
Abstract
Histone H3 lysine 9 di- and trimethylation are well-established marks of constitutively silenced heterochromatin domains found at repetitive DNA elements including pericentromeres, telomeres, and transposons. Loss of heterochromatin at these sites causes genomic instability in the form of aberrant DNA repair, chromosome segregation defects, replication stress, and transposition. H3K9 di- and trimethylation also regulate cell type-specific gene expression during development and form a barrier to cellular reprogramming. However, the role of H3K9 methyltransferases extends beyond histone methylation. There is a growing list of non-histone targets of H3K9 methyltransferases including transcription factors, steroid hormone receptors, histone modifying enzymes, and other chromatin regulatory proteins. Additionally, two classes of H3K9 methyltransferases modulate their own function through automethylation. Here we summarize the structure and function of mammalian H3K9 methyltransferases, their roles in genome regulation and constitutive heterochromatin, as well as the current repertoire of non-histone methylation targets including cases of automethylation.
Collapse
Affiliation(s)
- Aidan J. Levinsky
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Gregor McEdwards
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nasha Sethna
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mark A. Currie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada,*Correspondence: Mark A. Currie,
| |
Collapse
|
44
|
Zhu Z, Liu Y, Qi J, Sui Z. Identification of epigenetic histone modifications and analysis of histone lysine methyltransferases in Alexandrium pacificum. HARMFUL ALGAE 2022; 119:102323. [PMID: 36344193 DOI: 10.1016/j.hal.2022.102323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Alexandrium pacificum is a toxic dinoflagellate that can cause harmful algal blooms (HABs). The molecular mechanisms of HABs are still poorly understood, especially at the epigenetics level. Organism growth and metabolic processes are affected by histone modifications, an important mode of epigenetic regulation. In this study, various types of modifications, including methylation, acetylation, ubiquitination, and phosphorylation in A. pacificum cells were identified by using pan-antibodies, mass spectrometry, and an H3 modification multiplex assay kit. The modification abundance of H3K4me2 and H3K27me3 of A. pacificum varied under different growth conditions detected by Western blots. A class of SET domain genes (SDGs) encoding histone lysine methyltransferase was analyzed. A total of 179 SDG members were identified in A. pacificum, of which 53 sequences encoding complete proteins were classified into three categories by phylogenetic analysis, conserved domains and motifs analysis. Expression analysis and real-time polymerase chain reaction validation showed that the expressions of some SDGs were significantly influenced by light, nitrogen, phosphorus and manganese supplements. The results revealed that histone lysine methylation played an important role in responding to HABs inducing conditions. This study provided useful information for the further exploration of the role and regulatory mechanism of SDGs in the rapid growth of A. pacificum.
Collapse
Affiliation(s)
- Zhimei Zhu
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Juan Qi
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
45
|
Sharda A, Humphrey TC. The role of histone H3K36me3 writers, readers and erasers in maintaining genome stability. DNA Repair (Amst) 2022; 119:103407. [PMID: 36155242 DOI: 10.1016/j.dnarep.2022.103407] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
Histone Post-Translational Modifications (PTMs) play fundamental roles in mediating DNA-related processes such as transcription, replication and repair. The histone mark H3K36me3 and its associated methyltransferase SETD2 (Set2 in yeast) are archetypical in this regard, performing critical roles in each of these DNA transactions. Here, we present an overview of H3K36me3 regulation and the roles of its writers, readers and erasers in maintaining genome stability through facilitating DNA double-strand break (DSB) repair, checkpoint signalling and replication stress responses. Further, we consider how loss of SETD2 and H3K36me3, frequently observed in a number of different cancer types, can be specifically targeted in the clinic through exploiting loss of particular genome stability functions.
Collapse
Affiliation(s)
- Asmita Sharda
- CRUK and MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Timothy C Humphrey
- CRUK and MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
46
|
Bioinformatic Analyses of Broad H3K79me2 Domains in Different Leukemia Cell Line Data Sets. Cells 2022; 11:cells11182830. [PMID: 36139405 PMCID: PMC9496709 DOI: 10.3390/cells11182830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
A subset of expressed genes is associated with a broad H3K4me3 (histone H3 trimethylated at lysine 4) domain that extends throughout the gene body. Genes marked in this way in normal cells are involved in cell-identity and tumor-suppressor activities, whereas in cancer cells, genes driving the cancer phenotype (oncogenes) have this feature. Other histone modifications associated with expressed genes that display a broad domain have been less studied. Here, we identified genes with the broadest H3K79me2 (histone H3 dimethylated at lysine 79) domain in human leukemic cell lines representing different forms of leukemia. Taking a bioinformatic approach, we provide evidence that genes with the broadest H3K79me2 domain have known roles in leukemia (e.g., JMJD1C). In the mixed-lineage leukemia cell line MOLM-13, the HOXA9 gene is in a 100 kb broad H3K79me2 domain with other HOXA protein-coding and oncogenic long non-coding RNA genes. The genes in this domain contribute to leukemia. This broad H3K79me2 domain has an unstable chromatin structure, as was evident by enhanced chromatin accessibility throughout. Together, we provide evidence that identification of genes with the broadest H3K79me2 domain will aid in generating a panel of genes in the diagnosis and therapeutic treatment of leukemia in the future.
Collapse
|
47
|
Karami Fath M, Babakhaniyan K, Anjomrooz M, Jalalifar M, Alizadeh SD, Pourghasem Z, Abbasi Oshagh P, Azargoonjahromi A, Almasi F, Manzoor HZ, Khalesi B, Pourzardosht N, Khalili S, Payandeh Z. Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines (Basel) 2022; 10:1448. [PMID: 36146527 PMCID: PMC9501259 DOI: 10.3390/vaccines10091448] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most typical and aggressive form of primary brain tumor in adults, with a poor prognosis. Successful glioma treatment is hampered by ineffective medication distribution across the blood-brain barrier (BBB) and the emergence of drug resistance. Although a few FDA-approved multimodal treatments are available for glioblastoma, most patients still have poor prognoses. Targeting epigenetic variables, immunotherapy, gene therapy, and different vaccine- and peptide-based treatments are some innovative approaches to improve anti-glioma treatment efficacy. Following the identification of lymphatics in the central nervous system, immunotherapy offers a potential method with the potency to permeate the blood-brain barrier. This review will discuss the rationale, tactics, benefits, and drawbacks of current glioma therapy options in clinical and preclinical investigations.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Kimiya Babakhaniyan
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran 1996713883, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | | | | | - Zeinab Pourghasem
- Department of Microbiology, Islamic Azad University of Lahijan, Gilan 4416939515, Iran
| | - Parisa Abbasi Oshagh
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer 6571995863, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz 7417773539, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1411734115, Iran
| | - Hafza Zahira Manzoor
- Experimental and Translational Medicine, University of Insubria, Via jean Henry Dunant 3, 21100 Varese, Italy
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4193713111, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
48
|
Liu Y, Chen C, Wang X, Sun Y, Zhang J, Chen J, Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells 2022; 11:cells11162518. [PMID: 36010594 PMCID: PMC9406960 DOI: 10.3390/cells11162518] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are not only the main energy supplier but are also the cell metabolic center regulating multiple key metaborates that play pivotal roles in epigenetics regulation. These metabolites include acetyl-CoA, α-ketoglutarate (α-KG), S-adenosyl methionine (SAM), NAD+, and O-linked beta-N-acetylglucosamine (O-GlcNAc), which are the main substrates for DNA methylation and histone post-translation modifications, essential for gene transcriptional regulation and cell fate determination. Tumorigenesis is attributed to many factors, including gene mutations and tumor microenvironment. Mitochondria and epigenetics play essential roles in tumor initiation, evolution, metastasis, and recurrence. Targeting mitochondrial metabolism and epigenetics are promising therapeutic strategies for tumor treatment. In this review, we summarize the roles of mitochondria in key metabolites required for epigenetics modification and in cell fate regulation and discuss the current strategy in cancer therapies via targeting epigenetic modifiers and related enzymes in metabolic regulation. This review is an important contribution to the understanding of the current metabolic-epigenetic-tumorigenesis concept.
Collapse
Affiliation(s)
- Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xinye Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- Correspondence: (J.C.); (Y.S.)
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
- Correspondence: (J.C.); (Y.S.)
| |
Collapse
|
49
|
Rolando M, Silvestre CD, Gomez-Valero L, Buchrieser C. Bacterial methyltransferases: from targeting bacterial genomes to host epigenetics. MICROLIFE 2022; 3:uqac014. [PMID: 37223361 PMCID: PMC10117894 DOI: 10.1093/femsml/uqac014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 05/25/2023]
Abstract
Methyltransferase (MTases) enzymes transfer methyl groups particularly on proteins and nucleotides, thereby participating in controlling the epigenetic information in both prokaryotes and eukaryotes. The concept of epigenetic regulation by DNA methylation has been extensively described for eukaryotes. However, recent studies have extended this concept to bacteria showing that DNA methylation can also exert epigenetic control on bacterial phenotypes. Indeed, the addition of epigenetic information to nucleotide sequences confers adaptive traits including virulence-related characteristics to bacterial cells. In eukaryotes, an additional layer of epigenetic regulation is obtained by post-translational modifications of histone proteins. Interestingly, in the last decades it was shown that bacterial MTases, besides playing an important role in epigenetic regulations at the microbe level by exerting an epigenetic control on their own gene expression, are also important players in host-microbe interactions. Indeed, secreted nucleomodulins, bacterial effectors that target the nucleus of infected cells, have been shown to directly modify the epigenetic landscape of the host. A subclass of nucleomodulins encodes MTase activities, targeting both host DNA and histone proteins, leading to important transcriptional changes in the host cell. In this review, we will focus on lysine and arginine MTases of bacteria and their hosts. The identification and characterization of these enzymes will help to fight bacterial pathogens as they may emerge as promising targets for the development of novel epigenetic inhibitors in both bacteria and the host cells they infect.
Collapse
Affiliation(s)
- Monica Rolando
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 28, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Cristina Di Silvestre
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 28, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Laura Gomez-Valero
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 28, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 28, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
50
|
Chemical biology and pharmacology of histone lysine methylation inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194840. [PMID: 35753676 DOI: 10.1016/j.bbagrm.2022.194840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/20/2022]
Abstract
Histone lysine methylation is a post-translational modification that plays a key role in the epigenetic regulation of a broad spectrum of biological processes. Moreover, the dysregulation of histone lysine methyltransferases (KMTs) has been implicated in the pathogenesis of several diseases particularly cancer. Due to their pathobiological importance, KMTs have garnered immense attention over the last decade as attractive therapeutic targets. These endeavors have culminated in tens of chemical probes that have been used to interrogate many aspects of histone lysine methylation. Besides, over a dozen inhibitors have been advanced to clinical trials, including the EZH2 inhibitor tazemetostat approved for the treatment of follicular lymphoma and advanced epithelioid sarcoma. In this Review, we highlight the chemical biology and pharmacology of KMT inhibitors and targeted protein degraders focusing on the clinical development of EZH1/2, DOT1L, Menin-MLL, and WDR5-MLL inhibitors. We also briefly discuss the pharmacologic targeting of other KMTs.
Collapse
|