1
|
Nakamura K, Okuyama R. Changes in the Immune Cell Repertoire for the Treatment of Malignant Melanoma. Int J Mol Sci 2022; 23:12991. [PMID: 36361781 PMCID: PMC9658693 DOI: 10.3390/ijms232112991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 10/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been used for the treatment of various types of cancers, including malignant melanoma. Mechanistic exploration of tumor immune responses is essential to improve the therapeutic efficacy of ICIs. Since tumor immune responses are based on antigen-specific immune responses, investigators have focused on T cell receptors (TCRs) and have analyzed changes in the TCR repertoire. The proliferation of T cell clones against tumor antigens is detected in patients who respond to treatment with ICIs. The proliferation of these T cell clones is observed within tumors as well as in the peripheral blood. Clonal proliferation has been detected not only in CD8-positive T cells but also in CD4-positive T cells, resident memory T cells, and B cells. Moreover, changes in the repertoire at an early stage of treatment seem to be useful for predicting the therapeutic efficacy of ICIs. Further analyses of the repertoire of immune cells are desirable to improve and predict the therapeutic efficacy of ICIs.
Collapse
Affiliation(s)
- Kenta Nakamura
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | | |
Collapse
|
2
|
Paranjape AM, Desai SS, Nishana M, Roy U, Nilavar NM, Mondal A, Kumari R, Radha G, Katapadi VK, Choudhary B, Raghavan SC. Nonamer dependent RAG cleavage at CpGs can explain mechanism of chromosomal translocations associated to lymphoid cancers. PLoS Genet 2022; 18:e1010421. [PMID: 36228010 PMCID: PMC9595545 DOI: 10.1371/journal.pgen.1010421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/25/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Chromosomal translocations are considered as one of the major causes of lymphoid cancers. RAG complex, which is responsible for V(D)J recombination, can also cleave non-B DNA structures and cryptic RSSs in the genome leading to chromosomal translocations. The mechanism and factors regulating the illegitimate function of RAGs resulting in oncogenesis are largely unknown. Upon in silico analysis of 3760 chromosomal translocations from lymphoid cancer patients, we find that 93% of the translocation breakpoints possess adjacent cryptic nonamers (RAG binding sequences), of which 77% had CpGs in proximity. As a proof of principle, we show that RAGs can efficiently bind to cryptic nonamers present at multiple fragile regions and cleave at adjacent mismatches generated to mimic the deamination of CpGs. ChIP studies reveal that RAGs can indeed recognize these fragile sites on a chromatin context inside the cell. Finally, we show that AID, the cytidine deaminase, plays a significant role during the generation of mismatches at CpGs and reconstitute the process of RAG-dependent generation of DNA breaks both in vitro and inside the cells. Thus, we propose a novel mechanism for generation of chromosomal translocation, where RAGs bind to the cryptic nonamer sequences and direct cleavage at adjacent mismatch generated due to deamination of meCpGs or cytosines.
Collapse
Affiliation(s)
- Amita M. Paranjape
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sagar S. Desai
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mayilaadumveettil Nishana
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Namrata M. Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amrita Mondal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Gudapureddy Radha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
- * E-mail: (BC); (SCR)
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- * E-mail: (BC); (SCR)
| |
Collapse
|
3
|
Desai SS, Whadgar S, Raghavan SC, Choudhary B. MiRAGDB: A Knowledgebase of RAG Regulators. Front Immunol 2022; 13:863110. [PMID: 35401578 PMCID: PMC8987502 DOI: 10.3389/fimmu.2022.863110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
RAG1 and RAG2 genes generate diversity in immunoglobulin and TCR genes by initiating the process of V-D-J recombination. RAGs recognize specific sequences (heptamer-nonamer) to generate a diversity of immunoglobulins. RAG expression is limited to early B and T cell developmental stages. Aberrant expression of RAG can lead to double strand breaks and translocations as observed in leukemia and lymphoma. The expression of RAG is tightly regulated at the transcriptional and posttranscriptional levels. MicroRNAs (miRNAs) are small non-coding RNAs that are involved in the post-transcriptional regulation of gene expression. This study aimed to identify and catalog RAG regulation by miRNA during normal development and cancer. NGS data from normal B-cell and T-cell developmental stages and blood cancer samples have been analyzed for the expression of miRNAs against RAG1 (1,173 against human RAG1 and 749 against mouse RAG1). The analyzed data has been organized to retrieve the miRNA and mRNA expression of various RAG regulators (10 transcription factors and interacting partners) in normal and diseased states. The database allows users to navigate through the human and mouse RAG regulators, visualize and plot expression. miRAGDB is freely available and can be accessed at http://52.4.112.252/shiny/miragdb/.
Collapse
Affiliation(s)
- Sagar Sanjiv Desai
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- Graduate Student Registered Under Manipal Academy of Higher Education, Manipal, India
| | - Saurabh Whadgar
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | | | - Bibha Choudhary
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- *Correspondence: Bibha Choudhary,
| |
Collapse
|
4
|
Mastio J, Saeed MB, Wurzer H, Krecke M, Westerberg LS, Thomas C. Higher Incidence of B Cell Malignancies in Primary Immunodeficiencies: A Combination of Intrinsic Genomic Instability and Exocytosis Defects at the Immunological Synapse. Front Immunol 2020; 11:581119. [PMID: 33240268 PMCID: PMC7680899 DOI: 10.3389/fimmu.2020.581119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital defects of the immune system called primary immunodeficiency disorders (PID) describe a group of diseases characterized by a decrease, an absence, or a malfunction of at least one part of the immune system. As a result, PID patients are more prone to develop life-threatening complications, including cancer. PID currently include over 400 different disorders, however, the variety of PID-related cancers is narrow. We discuss here reasons for this clinical phenotype. Namely, PID can lead to cell intrinsic failure to control cell transformation, failure to activate tumor surveillance by cytotoxic cells or both. As the most frequent tumors seen among PID patients stem from faulty lymphocyte development leading to leukemia and lymphoma, we focus on the extensive genomic alterations needed to create the vast diversity of B and T lymphocytes with potential to recognize any pathogen and why defects in these processes lead to malignancies in the immunodeficient environment of PID patients. In the second part of the review, we discuss PID affecting tumor surveillance and especially membrane trafficking defects caused by altered exocytosis and regulation of the actin cytoskeleton. As an impairment of these membrane trafficking pathways often results in dysfunctional effector immune cells, tumor cell immune evasion is elevated in PID. By considering new anti-cancer treatment concepts, such as transfer of genetically engineered immune cells, restoration of anti-tumor immunity in PID patients could be an approach to complement standard therapies.
Collapse
Affiliation(s)
- Jérôme Mastio
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Mezida B Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Wurzer
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Max Krecke
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Clément Thomas
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
5
|
Kaeser G, Chun J. Brain cell somatic gene recombination and its phylogenetic foundations. J Biol Chem 2020; 295:12786-12795. [PMID: 32699111 PMCID: PMC7476723 DOI: 10.1074/jbc.rev120.009192] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
A new form of somatic gene recombination (SGR) has been identified in the human brain that affects the Alzheimer's disease gene, amyloid precursor protein (APP). SGR occurs when a gene sequence is cut and recombined within a single cell's genomic DNA, generally independent of DNA replication and the cell cycle. The newly identified brain SGR produces genomic complementary DNAs (gencDNAs) lacking introns, which integrate into locations distinct from germline loci. This brief review will present an overview of likely related recombination mechanisms and genomic cDNA-like sequences that implicate evolutionary origins for brain SGR. Similarities and differences exist between brain SGR and VDJ recombination in the immune system, the first identified SGR form that now has a well-defined enzymatic machinery. Both require gene transcription, but brain SGR uses an RNA intermediate and reverse transcriptase (RT) activity, which are characteristics shared with endogenous retrotransposons. The identified gencDNAs have similarities to other cDNA-like sequences existing throughout phylogeny, including intron-less genes and inactive germline processed pseudogenes, with likely overlapping biosynthetic processes. gencDNAs arise somatically in an individual to produce multiple copies; can be functional; appear most frequently within postmitotic cells; have diverse sequences; change with age; and can change with disease state. Normally occurring brain SGR may represent a mechanism for gene optimization and long-term cellular memory, whereas its dysregulation could underlie multiple brain disorders and, potentially, other diseases like cancer. The involvement of RT activity implicates already Food and Drug Administration-approved RT inhibitors as possible near-term interventions for managing SGR-associated diseases and suggest next-generation therapeutics targeting SGR elements.
Collapse
Affiliation(s)
- Gwendolyn Kaeser
- Degenerative Disease Program at the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jerold Chun
- Degenerative Disease Program at the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
6
|
Valpione S, Galvani E, Tweedy J, Mundra PA, Banyard A, Middlehurst P, Barry J, Mills S, Salih Z, Weightman J, Gupta A, Gremel G, Baenke F, Dhomen N, Lorigan PC, Marais R. Immune-awakening revealed by peripheral T cell dynamics after one cycle of immunotherapy. NATURE CANCER 2020; 1:210-221. [PMID: 32110781 PMCID: PMC7046489 DOI: 10.1038/s43018-019-0022-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022]
Abstract
Our understanding of how checkpoint inhibitors (CPI) affect T cell evolution is incomplete, limiting our ability to achieve full clinical benefit from these drugs. Here we analyzed peripheral T cell populations after one cycle of CPI and identified a dynamic awakening of the immune system revealed by T cell evolution in response to treatment. We sequenced T cell receptors (TCR) in plasma cell-free DNA (cfDNA) and peripheral blood mononuclear cells (PBMC) and performed phenotypic analysis of peripheral T cell subsets from metastatic melanoma patients treated with CPI. We found that early peripheral T cell turnover and TCR repertoire dynamics identified which patients would respond to treatment. Additionally, the expansion of a subset of immune-effector peripheral T cells we call TIE cells correlated with response. These events are prognostic and occur within 3 weeks of starting immunotherapy, raising the potential for monitoring patients responses using minimally invasive liquid biopsies."
Collapse
Affiliation(s)
- Sara Valpione
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Elena Galvani
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Joshua Tweedy
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Piyushkumar A Mundra
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Antonia Banyard
- Advanced Imaging and Flow Cytometry, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Philippa Middlehurst
- Manchester Cancer Research Centre Biobank, The Christie NHS Foundation Trust, Manchester, UK
| | - Jeff Barry
- Advanced Imaging and Flow Cytometry, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Sarah Mills
- Manchester Cancer Research Centre Biobank, The Christie NHS Foundation Trust, Manchester, UK
| | - Zena Salih
- The Christie NHS Foundation Trust, Manchester, UK
| | - John Weightman
- Molecular Biology Core Facility, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | | | - Gabriela Gremel
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
- Boehringer Ingelheim, Vienna, Austria
| | - Franziska Baenke
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
- German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Nathalie Dhomen
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | | | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK.
| |
Collapse
|
7
|
Li J, Luo Y, Wang X, Feng G. Regulatory B cells and advances in transplantation. J Leukoc Biol 2018; 105:657-668. [PMID: 30548970 DOI: 10.1002/jlb.5ru0518-199r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/03/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
The effects of B cell subsets with regulatory activity on the immune response to an allograft have evoked increasing interest. Here, we summarize the function and signaling of regulatory B cells (Bregs) and their potential effects on transplantation. These cells are able to suppress the immune system directly via ligand-receptor interactions and indirectly by secretion of immunosuppressive cytokines, particularly IL-10. In experimental animal models, the extensively studied IL-10-producing B cells have shown unique therapeutic advantages in the transplant field. In addition, adoptive transfer of B cell subsets with regulatory activity may reveal a new approach to prolonging allograft survival. Recent clinical observations on currently available therapies targeting B cells have revealed that Bregs play an important role in immune tolerance and that these cells are expected to become a new target of immunotherapy for transplant-related diseases.
Collapse
Affiliation(s)
- Jinfeng Li
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongsheng Luo
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Wang
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Guiwen Feng
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Chure G, Lee HJ, Rasmussen A, Phillips R. Connecting the Dots between Mechanosensitive Channel Abundance, Osmotic Shock, and Survival at Single-Cell Resolution. J Bacteriol 2018; 200:e00460-18. [PMID: 30201782 PMCID: PMC6222198 DOI: 10.1128/jb.00460-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022] Open
Abstract
Rapid changes in extracellular osmolarity are one of many insults microbial cells face on a daily basis. To protect against such shocks, Escherichia coli and other microbes express several types of transmembrane channels that open and close in response to changes in membrane tension. In E. coli, one of the most abundant channels is the mechanosensitive channel of large conductance (MscL). While this channel has been heavily characterized through structural methods, electrophysiology, and theoretical modeling, our understanding of its physiological role in preventing cell death by alleviating high membrane tension remains tenuous. In this work, we examine the contribution of MscL alone to cell survival after osmotic shock at single-cell resolution using quantitative fluorescence microscopy. We conducted these experiments in an E. coli strain which is lacking all mechanosensitive channel genes save for MscL, whose expression was tuned across 3 orders of magnitude through modifications of the Shine-Dalgarno sequence. While theoretical models suggest that only a few MscL channels would be needed to alleviate even large changes in osmotic pressure, we find that between 500 and 700 channels per cell are needed to convey upwards of 80% survival. This number agrees with the average MscL copy number measured in wild-type E. coli cells through proteomic studies and quantitative Western blotting. Furthermore, we observed zero survival events in cells with fewer than ∼100 channels per cell. This work opens new questions concerning the contribution of other mechanosensitive channels to survival, as well as regulation of their activity.IMPORTANCE Mechanosensitive (MS) channels are transmembrane protein complexes which open and close in response to changes in membrane tension as a result of osmotic shock. Despite extensive biophysical characterization, the contribution of these channels to cell survival remains largely unknown. In this work, we used quantitative video microscopy to measure the abundance of a single species of MS channel in single cells, followed by their survival after a large osmotic shock. We observed total death of the population with fewer than ∼100 channels per cell and determined that approximately 500 to 700 channels were needed for 80% survival. The number of channels we found to confer nearly full survival is consistent with the counts of the numbers of channels in wild-type cells in several earlier studies. These results prompt further studies to dissect the contribution of other channel species to survival.
Collapse
Affiliation(s)
- Griffin Chure
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Heun Jin Lee
- Department of Applied Physics, California Institute of Technology, Pasadena, California, USA
| | - Akiko Rasmussen
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Rob Phillips
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Department of Physics, California Institute of Technology, Pasadena, California, USA
- Department of Applied Physics, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
9
|
Lin CY, Shukla A, Grady JP, Fink JL, Dray E, Duijf PHG. Translocation Breakpoints Preferentially Occur in Euchromatin and Acrocentric Chromosomes. Cancers (Basel) 2018; 10:cancers10010013. [PMID: 29316705 PMCID: PMC5789363 DOI: 10.3390/cancers10010013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/11/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Chromosomal translocations drive the development of many hematological and some solid cancers. Several factors have been identified to explain the non-random occurrence of translocation breakpoints in the genome. These include chromatin density, gene density and CCCTC-binding factor (CTCF)/cohesin binding site density. However, such factors are at least partially interdependent. Using 13,844 and 1563 karyotypes from human blood and solid cancers, respectively, our multiple regression analysis only identified chromatin density as the primary statistically significant predictor. Specifically, translocation breakpoints preferentially occur in open chromatin. Also, blood and solid tumors show markedly distinct translocation signatures. Strikingly, translocation breakpoints occur significantly more frequently in acrocentric chromosomes than in non-acrocentric chromosomes. Thus, translocations are probably often generated around nucleoli in the inner nucleoplasm, away from the nuclear envelope. Importantly, our findings remain true both in multivariate analyses and after removal of highly recurrent translocations. Finally, we applied pairwise probabilistic co-occurrence modeling. In addition to well-known highly prevalent translocations, such as those resulting in BCR-ABL1 (BCR-ABL) and RUNX1-RUNX1T1 (AML1-ETO) fusion genes, we identified significantly underrepresented translocations with putative fusion genes, which are probably subject to strong negative selection during tumor evolution. Taken together, our findings provide novel insights into the generation and selection of translocations during cancer development.
Collapse
Affiliation(s)
- Cheng-Yu Lin
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - Ankit Shukla
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - John P Grady
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - J Lynn Fink
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - Eloise Dray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
- Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| |
Collapse
|
10
|
Martin-Guerrero I, de Prado E, Ardanaz M, Martin-Arruti M, Garcia-Orad C, Guerra I, Ruiz I, Zabalza I, Garcia-Orad A. Methylation of CpG sites in BCL2 major breakpoint region and the increase of BCL2/JH translocation with aging. AGE (DORDRECHT, NETHERLANDS) 2015; 37:94. [PMID: 26335622 PMCID: PMC5005837 DOI: 10.1007/s11357-015-9834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
The BCL2 breakage mechanism has been shown to be highly dependent on DNA methylation at the major breakpoint region (MBR) CpG sites. We recently described an increased frequency of BCL2/ JH translocation with aging. It is known that methylation levels change with aging. The present study aimed to determine whether methylation alterations at CpG sites of BCL2 MBR were the cause of increased breakages with aging. We analyzed the methylation levels of three CpG sites on the region by pyrosequencing and studied if methylation levels and/or polymorphisms affecting CpG sites were associated with an increase of translocations. We observed that although the methylation levels of MBR CpG sites were higher in individuals with BCL2/JH translocation, in contrast to our expectations, these levels decreased with the age. Moreover, we show that polymorphisms at those CpG sites leading to absence of methylation seem to be a protective factor for the apparition of translocations.
Collapse
Affiliation(s)
- Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country UPV/EHU, Barrio Sarriena sn, 48940 Leioa, Bizkaia Spain
| | - Elena de Prado
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country UPV/EHU, Barrio Sarriena sn, 48940 Leioa, Bizkaia Spain
| | | | | | - Cristina Garcia-Orad
- Assistance to Primary Health Care Center—Torrent 1, Hospital General Valencia, Valencia, Spain
| | | | - Irune Ruiz
- Donostia University Hospital, Donostia, Spain
| | | | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country UPV/EHU, Barrio Sarriena sn, 48940 Leioa, Bizkaia Spain
- BioCruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
11
|
Stolp J, Turka LA, Wood KJ. B cells with immune-regulating function in transplantation. Nat Rev Nephrol 2014; 10:389-97. [PMID: 24846332 DOI: 10.1038/nrneph.2014.80] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In transplantation, the contribution of B cells to the rejection or acceptance of the allograft is a topic of major interest. The presence of donor-specific antibodies in transplant recipients is often associated with decreased graft function and rejection, clearly indicating a pathogenetic role of B cells in transplantation. However, data from studies in humans and rodents suggest that under certain conditions, B cells have the capacity to control or regulate the immune response to a transplanted organ. Although a great deal of attention has been focused on B cells in human and murine models of autoimmunity, our understanding of the role of these cells in transplantation is limited at present. Indeed, results in this setting are controversial and seem to depend on the model system used or the clinical situation studied. Here, we review the current understanding of the various phenotypes and roles that have been associated with immune-regulating B cells. We also discuss the mechanisms employed by subsets of these regulatory B cells to control the immune response in transplant recipients and in animal models of transplantation.
Collapse
Affiliation(s)
- Jessica Stolp
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Laurence A Turka
- Transplantation Biology Research Centre, Massachusetts General Hospital, Room 5102, Charlestown, MA 02129, USA
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
12
|
Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J. Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol 2014; 122:1-57. [PMID: 24507154 PMCID: PMC4150736 DOI: 10.1016/b978-0-12-800267-4.00001-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Upon encountering antigens, mature IgM-positive B lymphocytes undergo class-switch recombination (CSR) wherein exons encoding the default Cμ constant coding gene segment of the immunoglobulin (Ig) heavy-chain (Igh) locus are excised and replaced with a new constant gene segment (referred to as "Ch genes", e.g., Cγ, Cɛ, or Cα). The B cell thereby changes from expressing IgM to one producing IgG, IgE, or IgA, with each antibody isotype having a different effector function during an immune reaction. CSR is a DNA deletional-recombination reaction that proceeds through the generation of DNA double-strand breaks (DSBs) in repetitive switch (S) sequences preceding each Ch gene and is completed by end-joining between donor Sμ and acceptor S regions. CSR is a multistep reaction requiring transcription through S regions, the DNA cytidine deaminase AID, and the participation of several general DNA repair pathways including base excision repair, mismatch repair, and classical nonhomologous end-joining. In this review, we discuss our current understanding of how transcription through S regions generates substrates for AID-mediated deamination and how AID participates not only in the initiation of CSR but also in the conversion of deaminated residues into DSBs. Additionally, we review the multiple processes that regulate AID expression and facilitate its recruitment specifically to the Ig loci, and how deregulation of AID specificity leads to oncogenic translocations. Finally, we summarize recent data on the potential role of AID in the maintenance of the pluripotent stem cell state during epigenetic reprogramming.
Collapse
Affiliation(s)
- Allysia J Matthews
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Simin Zheng
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Lauren J DiMenna
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA.
| |
Collapse
|
13
|
Jaeger S, Fernandez B, Ferrier P. Epigenetic aspects of lymphocyte antigen receptor gene rearrangement or 'when stochasticity completes randomness'. Immunology 2013; 139:141-50. [PMID: 23278765 DOI: 10.1111/imm.12057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 01/05/2023] Open
Abstract
To perform their specific functional role, B and T lymphocytes, cells of the adaptive immune system of jawed vertebrates, need to express one (and, preferably, only one) form of antigen receptor, i.e. the immunoglobulin or T-cell receptor (TCR), respectively. This end goal depends initially on a series of DNA cis-rearrangement events between randomly chosen units from separate clusters of V, D (at some immunoglobulin and TCR loci) and J gene segments, a biomolecular process collectively referred to as V(D)J recombination. V(D)J recombination takes place in immature T and B cells and relies on the so-called RAG nuclease, a site-specific DNA cleavage apparatus that corresponds to the lymphoid-specific moiety of the VDJ recombinase. At the genome level, this recombinase's mission presents substantial biochemical challenges. These relate to the huge distance between (some of) the gene segments that it eventually rearranges and the need to achieve cell-lineage-restricted and developmentally ordered routines with at times, mono-allelic versus bi-allelic discrimination. The entire process must be completed without any recombination errors, instigators of chromosome instability, translocation and, potentially, tumorigenesis. As expected, such a precisely choreographed and yet potentially risky process demands sophisticated controls; epigenetics demonstrates what is possible when calling upon its many facets. In this vignette, we will recall the evidence that almost from the start appeared to link the two topics, V(D)J recombination and epigenetics, before reviewing the latest advances in our knowledge of this joint venture.
Collapse
Affiliation(s)
- Sébastien Jaeger
- Centre d'Immunologie de Marseille-Luminy (CIML), Institut National de la Santé et de la Recherche Médicale (Inserm) U1104, Centre National de la Recherche Scientifique (CNRS)UMR7280, Aix-Marseille University UM2, Marseille, France
| | | | | |
Collapse
|
14
|
Alt FW, Zhang Y, Meng FL, Guo C, Schwer B. Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 2013; 152:417-29. [PMID: 23374339 PMCID: PMC4382911 DOI: 10.1016/j.cell.2013.01.007] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Indexed: 12/15/2022]
Abstract
Chromosomal translocations involving antigen receptor loci are common in lymphoid malignancies. Translocations require DNA double-strand breaks (DSBs) at two chromosomal sites, their physical juxtaposition, and their fusion by end-joining. Ability of lymphocytes to generate diverse repertoires of antigen receptors and effector antibodies derives from programmed genomic alterations that produce DSBs. We discuss these lymphocyte-specific processes, with a focus on mechanisms that provide requisite DSB target specificity and mechanisms that suppress DSB translocation. We also discuss recent work that provides new insights into DSB repair pathways and the influences of three-dimensional genome organization on physiological processes and cancer genomes.
Collapse
Affiliation(s)
- Frederick W Alt
- Departments of Genetics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
15
|
Nambiar M, Raghavan SC. Mechanism of fragility at BCL2 gene minor breakpoint cluster region during t(14;18) chromosomal translocation. J Biol Chem 2012; 287:8688-701. [PMID: 22275374 DOI: 10.1074/jbc.m111.307363] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Breaks in chromosome 18 are localized at the 3'-UTR of BCL2 gene or downstream and are mainly clustered in either the major breakpoint region or the minor breakpoint cluster region (mcr). The recombination activating gene (RAG) complex induces breaks at IgH locus of chromosome 14, whereas the mechanism of fragility at BCL2 mcr remains unclear. Here, for the first time, we show that RAGs can nick mcr; however, the mechanism is unique. Three independent nicks of equal efficiency are generated, when both Mg(2+) and Mn(2+) are present, unlike a single nick during V(D)J recombination. Further, we demonstrate that RAG binding and nicking at the mcr are independent of nonamer, whereas a CCACCTCT motif plays a critical role in its fragility, as shown by sequential mutagenesis. More importantly, we recapitulate the BCL2 mcr translocation and find that mcr can undergo synapsis with a standard recombination signal sequence within the cells, in a RAG-dependent manner. Further, mutation to the CCACCTCT motif abolishes recombination within the cells, indicating its vital role. Hence, our data suggest a novel, physiologically relevant, nonamer-independent mechanism of RAG nicking at mcr, which may be important for generation of chromosomal translocations in humans.
Collapse
Affiliation(s)
- Mridula Nambiar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
16
|
Naik AK, Raghavan SC. Differential reaction kinetics, cleavage complex formation, and nonamer binding domain dependence dictate the structure-specific and sequence-specific nuclease activity of RAGs. J Mol Biol 2011; 415:475-88. [PMID: 22119487 DOI: 10.1016/j.jmb.2011.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/27/2011] [Accepted: 11/01/2011] [Indexed: 11/28/2022]
Abstract
During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the "nonamer binding region," which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
17
|
Nambiar M, Raghavan SC. How does DNA break during chromosomal translocations? Nucleic Acids Res 2011; 39:5813-25. [PMID: 21498543 PMCID: PMC3152359 DOI: 10.1093/nar/gkr223] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 12/20/2022] Open
Abstract
Chromosomal translocations are one of the most common types of genetic rearrangements and are molecular signatures for many types of cancers. They are considered as primary causes for cancers, especially lymphoma and leukemia. Although many translocations have been reported in the last four decades, the mechanism by which chromosomes break during a translocation remains largely unknown. In this review, we summarize recent advances made in understanding the molecular mechanism of chromosomal translocations.
Collapse
Affiliation(s)
- Mridula Nambiar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
18
|
Lira A, Kulczycki J, Slack R, Anisman H, Park DS. Involvement of the Fc gamma receptor in a chronic N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of dopaminergic loss. J Biol Chem 2011; 286:28783-28793. [PMID: 21693708 DOI: 10.1074/jbc.m111.244830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although there is growing evidence for a role of the innate immune response in Parkinson's disease, the nature of any humoral response in dopaminergic degeneration is uncertain. Here we report on a protracted N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of dopaminergic death that potentially allows a more full adaptive humoral response to develop. Rag2 mutant mice that lack the full adaptive response (deficient in both T and B cells) are resistant to dopaminergic death and behavioral deficiencies in this model. These mice are resensitized after reconstitution with WT splenocytes. To more directly provide evidence for humoral/IgG involvement, we show that deficiency of Fcγ receptors, which are critical for activation of macrophages/microglia by binding to IgGs, is also protective in this protracted model. FcγR-deficient mice display improved behavior and impaired microglial activation. Interestingly, however, Rag2 mutant but not FcγR-deficient mice are resistant to a more standard N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine paradigm where death is more rapid. Taken together, these data indicate that, provided sufficient time, the humoral arm of the adaptive immune system can play a critical functional role in modulating the microglial response to dopaminergic degeneration and suggest that this humoral component may participate in degeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Arman Lira
- Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jerzy Kulczycki
- Institute of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada, and
| | - Ruth Slack
- Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Hymie Anisman
- Institute of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada, and
| | - David S Park
- Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada,; Department of Cogno-Mechatronics Engineering, Pusan National University, Korea.
| |
Collapse
|
19
|
Giallourakis CC, Franklin A, Guo C, Cheng HL, Yoon HS, Gallagher M, Perlot T, Andzelm M, Murphy AJ, Macdonald LE, Yancopoulos GD, Alt FW. Elements between the IgH variable (V) and diversity (D) clusters influence antisense transcription and lineage-specific V(D)J recombination. Proc Natl Acad Sci U S A 2010; 107:22207-12. [PMID: 21123744 PMCID: PMC3009784 DOI: 10.1073/pnas.1015954107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ig and T-cell receptor (TCR) variable-region gene exons are assembled from component variable (V), diversity (D) and joining (J) gene segments during early B and T cell development. The RAG1/2 endonuclease initiates V(D)J recombination by introducing DNA double-strand breaks at borders of the germ-line segments. In mice, the Ig heavy-chain (IgH) locus contains, from 5' to 3', several hundred V(H) gene segments, 13 D segments, and 4 J(H) segments within a several megabase region. In developing B cells, IgH variable-region exon assembly is ordered with D to J(H) rearrangement occurring on both alleles before appendage of a V(H) segment. Also, IgH V(H) to DJ(H) rearrangement does not occur in T cells, even though DJ(H) rearrangements occur at low levels. In these contexts, V(D)J recombination is controlled by modulating substrate gene segment accessibility to RAG1/2 activity. To elucidate control elements, we deleted the 100-kb intergenic region that separates the V(H) and D clusters (generating ΔV(H)-D alleles). In both B and T cells, ΔV(H)-D alleles initiated high-level antisense and, at lower levels, sense transcription from within the downstream D cluster, with antisense transcripts extending into proximal V(H) segments. In developing T lymphocytes, activated germ-line antisense transcription was accompanied by markedly increased IgH D-to-J(H) rearrangement and substantial V(H) to DJ(H) rearrangement of proximal IgH V(H) segments. Thus, the V(H)-D intergenic region, and likely elements within it, can influence silencing of sense and antisense germ-line transcription from the IgH D cluster and thereby influence targeting of V(D)J recombination.
Collapse
Affiliation(s)
- Cosmas C. Giallourakis
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114; and
| | - Andrew Franklin
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Chunguang Guo
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Hwei-Ling Cheng
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Hye Suk Yoon
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Michael Gallagher
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Thomas Perlot
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Milena Andzelm
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | | | | | | - Frederick W. Alt
- The Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
20
|
Naik AK, Lieber MR, Raghavan SC. Cytosines, but not purines, determine recombination activating gene (RAG)-induced breaks on heteroduplex DNA structures: implications for genomic instability. J Biol Chem 2010; 285:7587-97. [PMID: 20051517 DOI: 10.1074/jbc.m109.089631] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sequence specificity of the recombination activating gene (RAG) complex during V(D)J recombination has been well studied. RAGs can also act as structure-specific nuclease; however, little is known about the mechanism of its action. Here, we show that in addition to DNA structure, sequence dictates the pattern and efficiency of RAG cleavage on altered DNA structures. Cytosine nucleotides are preferentially nicked by RAGs when present at single-stranded regions of heteroduplex DNA. Although unpaired thymine nucleotides are also nicked, the efficiency is many fold weaker. Induction of single- or double-strand breaks by RAGs depends on the position of cytosines and whether it is present on one or both of the strands. Interestingly, RAGs are unable to induce breaks when adenine or guanine nucleotides are present at single-strand regions. The nucleotide present immediately next to the bubble sequence could also affect RAG cleavage. Hence, we propose "C((d))C((S))C((S))" (d, double-stranded; s, single-stranded) as a consensus sequence for RAG-induced breaks at single-/double-strand DNA transitions. Such a consensus sequence motif is useful for explaining RAG cleavage on other types of DNA structures described in the literature. Therefore, the mechanism of RAG cleavage described here could explain facets of chromosomal rearrangements specific to lymphoid tissues leading to genomic instability.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
21
|
Chromosomal translocations in cancer. Biochim Biophys Acta Rev Cancer 2008; 1786:139-52. [PMID: 18718509 DOI: 10.1016/j.bbcan.2008.07.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 07/15/2008] [Accepted: 07/19/2008] [Indexed: 11/22/2022]
Abstract
Genetic alterations in DNA can lead to cancer when it is present in proto-oncogenes, tumor suppressor genes, DNA repair genes etc. Examples of such alterations include deletions, inversions and chromosomal translocations. Among these rearrangements chromosomal translocations are considered as the primary cause for many cancers including lymphoma, leukemia and some solid tumors. Chromosomal translocations in certain cases can result either in the fusion of genes or in bringing genes close to enhancer or promoter elements, hence leading to their altered expression. Moreover, chromosomal translocations are used as diagnostic markers for cancer and its therapeutics. In the first part of this review, we summarize the well-studied chromosomal translocations in cancer. Although the mechanism of formation of most of these translocations is still unclear, in the second part we discuss the recent advances in this area of research.
Collapse
|
22
|
Abe K, Fuchs H, Lisse T, Hans W, Hrabé de Angelis M. New ENU-induced semidominant mutation, Ali18, causes inflammatory arthritis, dermatitis, and osteoporosis in the mouse. Mamm Genome 2006; 17:915-26. [PMID: 16964445 DOI: 10.1007/s00335-006-0014-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 04/27/2006] [Indexed: 01/04/2023]
Abstract
Inflammation is a complex cellular and humoral response against trauma and infection, and its presence leads to destruction of tissue in humans. The mechanisms that initiate inflammatory diseases remain largely unknown because of complex interactions between multiple genetic and environmental factors during pathogenesis. Animal models for human diseases offer dissection of complex pathogenesis by inbred genetic backgrounds and controlled circumstances. In this article we report a chemically induced new mutation, Ali18 (Abnormal limb), as a mouse model for inflammatory arthritis and dermatitis. Ali18/+ mice exhibit rubor and swelling of footpads in hindlimbs in adults. In Ali18/Ali18 mice, the digits in forelimbs and hindlimbs and tails were necrotic and/or deformed by severe swelling. Histologic analysis revealed infiltration of mixed populations of inflammatory cells into bone marrow, peripheral joints, and skin in the affected areas of Ali18/Ali18 mice. In addition, generalized osteoporosis-like phenotypes were confirmed by dual energy X-ray absorptiometry (DXA), microcomputed tomography (muCT), and peripheral quantitative computed tomography (pQCT) in homozygous animals. Whereas the Ali18 mutation was mapped to a single locus, the phenotype presentation was altered by complex modifier effects from other inbred genetic backgrounds. Detailed analysis of the Ali18 phenotype and identification of the mutation and its modifier genes may provide molecular insights into the complex nature of inflammatory diseases and the relationship between inflammation and bone metabolism.
Collapse
Affiliation(s)
- Koichiro Abe
- Institute of Experimental Genetics, GSF National Research Center for Environment and Health, D-85764, Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
23
|
Abstract
The origin of the recombination-activating genes (RAGs) is considered to be a foundation hallmark for adaptive immunity, characterised by the presence of antigen receptor genes that provide the ability to recognise and respond to specific peptide antigens. In vertebrates, a diverse repertoire of antigen-specific receptors, T cell receptors and immunoglobulins is generated by V(D)J recombination performed by the RAG-1 and RAG-2 protein complex. RAG homologues were identified in many jawed vertebrates. Despite their crucial importance, no homologues have been found in jawless vertebrates and invertebrates. This paper focuses on the RAG homologues in humans and other vertebrates for which the genome is completely sequenced, and also discusses the main contribution of the use of RAG homologues in phylogenetics and vertebrate evolution. Since mutations in both genes cause a spectrum of severe combined immunodeficiencies, including the Omenn syndrome (OS), these topics are discussed in detail. Finally, the relevance to genomic diversity and implications to immunomics are addressed. The search for homologues could enlighten us about the evolutionary processes that shaped the adaptive immune system. Understanding the diversity of the adaptive immune system is crucially important for the design and development of new therapies to modulate the immune responses in humans and/or animal models.
Collapse
Affiliation(s)
- Maristela Martins de Camargo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Laila Alves Nahum
- Department of Biological Science, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|