1
|
Gogichaeva KK, Ogneva IV. Administration of Essential Phospholipids Prevents Drosophila Melanogaster Oocytes from Responding to Change in Gravity. Cells 2024; 13:1593. [PMID: 39329774 PMCID: PMC11430006 DOI: 10.3390/cells13181593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
The aim of this study was to prevent initial changes in Drosophila melanogaster oocytes under simulated weightlessness and hypergravity at the 2 g level. Phospholipids with polyunsaturated fatty acids in the tail groups (essential phospholipids) at a concentration of 500 mg/kg of nutrient medium were used as a protective agent. Cell stiffness was determined using atomic force microscopy, the change in the oocytes' area was assessed as a mark of deformation, and the contents of cholesterol and neutral lipids were determined using fluorescence microscopy. The results indicate that the administration of essential phospholipids leads to a decrease in the cholesterol content in the oocytes' membranes by 13% (p < 0.05). The stiffness of oocytes from flies that received essential phospholipids was 14% higher (p < 0.05) and did not change during 6 h of simulated weightlessness or hypergravity, and neither did the area, which indicates their resistance to deformation. Moreover, the exposure to simulated weightlessness and hypergravity of oocytes from flies that received a standard nutrient medium led to a more intense loss of cholesterol from cell membranes after 30 min by 13% and 18% (p < 0.05), respectively, compared to the control, but essential phospholipids prevented this effect.
Collapse
Affiliation(s)
- Ksenia K. Gogichaeva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76 a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia;
| | - Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76 a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia;
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| |
Collapse
|
2
|
Rudolf AM, Hood WR. Mitochondrial stress in the spaceflight environment. Mitochondrion 2024; 76:101855. [PMID: 38403094 DOI: 10.1016/j.mito.2024.101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Space is a challenging environment that deregulates individual homeostasis. The main external hazards associated with spaceflight include ionizing space radiation, microgravity, isolation and confinement, distance from Earth, and hostile environment. Characterizing the biological responses to spaceflight environment is essential to validate the health risks, and to develop effective protection strategies. Mitochondria energetics is a key mechanism underpinning many physiological, ecological and evolutionary processes. Moreover, mitochondrial stress can be considered one of the fundamental features of space travel. So, we attempt to synthesize key information regarding the extensive effects of spaceflight on mitochondria. In summary, mitochondria are affected by all of the five main hazards of spaceflight at multiple levels, including their morphology, respiratory function, protein, and genetics, in various tissues and organ systems. We emphasize that investigating mitochondrial biology in spaceflight conditions should become the central focus of research on the impacts of spaceflight on human health, as this approach will help resolve numerous challenges of space health and combat several health disorders associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Agata M Rudolf
- Department of Biological Sciences, Auburn University, Auburn, AL, USA; Space Technology Centre, AGH University of Science and Technology, Krakow, Poland.
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
3
|
Pourhabibian S, Iranbakhsh A, Ebadi M, Hassanpour H, Hekmat A. Alteration in the callogenesis, tropane alkaloid formation, and gene expression in Hyoscyamus niger under clinorotation. PROTOPLASMA 2024; 261:293-302. [PMID: 37814140 DOI: 10.1007/s00709-023-01894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
This study aimed to investigate the effects of clinorotation induced by 2-D clinostat on the growth, tropane alkaloid production, gene expression, antioxidant capacity, and cellular defense responses in the callus tissue of Hyoscyamus niger. Callus induction was conducted by putting hypocotyl explants in the MS culture medium supplemented with 1 mgL-1 2,4-D and 1 mgL-1 BAP growth regulators. The sub-cultured calli were placed on a clinostat for 0, 3, 7, and 10 days (2.24 × 10-5 g on the edge of the callus ring). Clinorotation significantly increased callus fresh weight, dry weight, protein, carbohydrate, and proline contents compared to the control, and their maximum contents were obtained after 7 and 10 days. H2O2 level enhanced under clinorotation with a 76.3% rise after 10 days compared to control and positively affected the atropine (77.1%) and scopolamine (69.2%) productions. Hyoscyamine 6-beta hydroxylase and putrescine N-methyltransferase gene expression involved in the tropane alkaloid biosynthesis were upregulated markedly with 14.2 and 17.1-folds increase after 10 days of clinorotation, respectively. The expressions of jasmonic acid, mitogen-activated protein kinase, and ethylene-responsive element-binding transcription factor were upregulated, and the activity of peroxidase and catalase showed a 72.7 and 80% rise after 10 days. These findings suggest that microgravity can enhance callogenesis by stimulating the ROS level, which can impact the antioxidant enzymes, tropane alkaloid formation, and gene expression.
Collapse
Affiliation(s)
- Sara Pourhabibian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Tehran, Iran
| | - Halimeh Hassanpour
- Aerospace Research Institute, Ministry of Science Research and Technology, Tehran, 14665-834, Iran
| | - Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Neikirk K, Stephens DC, Beasley HK, Marshall AG, Gaddy JA, Damo SM, Hinton A. Is space the final frontier for mitochondrial study? Biotechniques 2024; 76:46-51. [PMID: 38084381 DOI: 10.2144/btn-2023-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Tweetable abstract This perspective considers several avenues for future research on mitochondrial dynamics, stress, and DNA in outer space.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Dominique C Stephens
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Department of Life & Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Heather K Beasley
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Andrea G Marshall
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Steven M Damo
- Department of Life & Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Antentor Hinton
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Gorbacheva EY, Sventitskaya MA, Biryukov NS, Ogneva IV. The Oxidative Phosphorylation and Cytoskeleton Proteins of Mouse Ovaries after 96 Hours of Hindlimb Suspension. Life (Basel) 2023; 13:2332. [PMID: 38137934 PMCID: PMC10744499 DOI: 10.3390/life13122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The purpose of this study was to assess oxidative phosphorylation (OXPHOS) in mouse ovaries, determine the relative content of proteins that form the respiratory chain complexes and the main structures of the cytoskeleton, and determine the mRNA of the corresponding genes after hindlimb suspension for 96 h. After hindlimb suspension, the maximum rate of oxygen uptake increased by 133% (p < 0.05) compared to the control due to the complex I of the respiratory chain. The content of mRNA of genes encoding the main components of the respiratory chain increased (cyt c by 78%, cox IV by 56%, ATPase by 69%, p < 0.05 compared with the control). The relative content of cytoskeletal proteins that can participate in the processes of transport and localization of mitochondria does not change, with the exception of an increase in the content of alpha-tubulin by 25% (p < 0.05) and its acetylated isoform (by 36%, p < 0.05); however, the mRNA content of these cytoskeletal genes did not differ from the control. The content of GDF9 mRNA does not change after hindlimb suspension. The data obtained show that short-term exposure to simulated weightlessness leads to intensification of metabolism in the ovaries.
Collapse
Affiliation(s)
- Elena Yu. Gorbacheva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, Moscow 123007, Russia; (E.Y.G.); (N.S.B.); (I.V.O.)
- Gynecology Department, FGBU KB1 (Volynskaya) UDP RF, 10, Starovolynskaya Str., Moscow 121352, Russia
| | - Maria A. Sventitskaya
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, Moscow 123007, Russia; (E.Y.G.); (N.S.B.); (I.V.O.)
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Nikolay S. Biryukov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, Moscow 123007, Russia; (E.Y.G.); (N.S.B.); (I.V.O.)
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, Moscow 123007, Russia; (E.Y.G.); (N.S.B.); (I.V.O.)
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
| |
Collapse
|
6
|
Ogneva IV. The Mechanoreception in Drosophila melanogaster Oocyte under Modeling Micro- and Hypergravity. Cells 2023; 12:1819. [PMID: 37508484 PMCID: PMC10377865 DOI: 10.3390/cells12141819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
The hypothesis about the role of the cortical cytoskeleton as the primary mechanosensor was tested. Drosophila melanogaster oocytes were exposed to simulated microgravity (by 3D clinorotation in random directions with 4 rotations per minute-sµg group) and hypergravity at the 2 g level (by centrifugal force from one axis rotation-hg group) for 30, 90, and 210 min without and with cytochalasin B, colchicine, acrylamide, and calyculin A. Cell stiffness was measured by atomic force microscopy, protein content in the membrane and cytoplasmic fractions by Western blotting, and cellular respiration by polarography. The obtained results indicate that the stiffness of the cortical cytoskeleton of Drosophila melanogaster oocytes decreases in simulated micro- (after 90 min) and hypergravity (after 30 min), possibly due to intermediate filaments. The cell stiffness recovered after 210 min in the hg group, but intact microtubules were required for this. Already after 30 min of exposure to sµg, the cross-sectional area of oocytes decreased, which indicates deformation, and the singed protein, which organizes microfilaments into longitudinal bundles, diffused from the cortical cytoskeleton into the cytoplasm. Under hg, after 30 min, the cross-sectional area of the oocytes increased, and the proteins that organize filament networks, alpha-actinin and spectrin, diffused from the cortical cytoskeleton.
Collapse
Affiliation(s)
- Irina V Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| |
Collapse
|
7
|
Miglietta S, Cristiano L, Espinola MSB, Masiello MG, Micara G, Battaglione E, Linari A, Palmerini MG, Familiari G, Aragona C, Bizzarri M, Macchiarelli G, Nottola SA. Effects of Simulated Microgravity In Vitro on Human Metaphase II Oocytes: An Electron Microscopy-Based Study. Cells 2023; 12:1346. [PMID: 37408181 DOI: 10.3390/cells12101346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The Gravity Force to which living beings are subjected on Earth rules the functionality of most biological processes in many tissues. It has been reported that a situation of Microgravity (such as that occurring in space) causes negative effects on living beings. Astronauts returning from space shuttle missions or from the International Space Station have been diagnosed with various health problems, such as bone demineralization, muscle atrophy, cardiovascular deconditioning, and vestibular and sensory imbalance, including impaired visual acuity, altered metabolic and nutritional status, and immune system dysregulation. Microgravity has profound effects also on reproductive functions. Female astronauts, in fact, suppress their cycles during space travels, and effects at the cellular level in the early embryo development and on female gamete maturation have also been observed. The opportunities to use space flights to study the effects of gravity variations are limited because of the high costs and lack of repeatability of the experiments. For these reasons, the use of microgravity simulators for studying, at the cellular level, the effects, such as those, obtained during/after a spatial trip, are developed to confirm that these models can be used in the study of body responses under conditions different from those found in a unitary Gravity environment (1 g). In view of this, this study aimed to investigate in vitro the effects of simulated microgravity on the ultrastructural features of human metaphase II oocytes using a Random Positioning Machine (RPM). We demonstrated for the first time, by Transmission Electron Microscopy analysis, that microgravity might compromise oocyte quality by affecting not only the localization of mitochondria and cortical granules due to a possible alteration of the cytoskeleton but also the function of mitochondria and endoplasmic reticulum since in RPM oocytes we observed a switch in the morphology of smooth endoplasmic reticulum (SER) and associated mitochondria from mitochondria-SER aggregates to mitochondria-vesicle complexes. We concluded that microgravity might negatively affect oocyte quality by interfering in vitro with the normal sequence of morphodynamic events essential for acquiring and maintaining a proper competence to fertilization in human oocytes.
Collapse
Affiliation(s)
- Selenia Miglietta
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Salomé B Espinola
- Systems Biology Group, Department of Experimental Medicine, Sapienza University, 00165 Rome, Italy
| | - Maria Grazia Masiello
- Systems Biology Group, Department of Experimental Medicine, Sapienza University, 00165 Rome, Italy
| | - Giulietta Micara
- Department of Maternal, Infantile and Urological Sciences, Sapienza University, 00165 Rome, Italy
| | - Ezio Battaglione
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy
| | - Antonella Linari
- Department of Maternal, Infantile and Urological Sciences, Sapienza University, 00165 Rome, Italy
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy
| | - Cesare Aragona
- Systems Biology Group, Department of Experimental Medicine, Sapienza University, 00165 Rome, Italy
| | - Mariano Bizzarri
- Systems Biology Group, Department of Experimental Medicine, Sapienza University, 00165 Rome, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Stefania A Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy
| |
Collapse
|
8
|
Murali A, Sarkar RR. Mechano-immunology in microgravity. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:50-64. [PMID: 37087179 DOI: 10.1016/j.lssr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 05/03/2023]
Abstract
Life on Earth has evolved to thrive in the Earth's natural gravitational field; however, as space technology advances, we must revisit and investigate the effects of unnatural conditions on human health, such as gravitational change. Studies have shown that microgravity has a negative impact on various systemic parts of humans, with the effects being more severe in the human immune system. Increasing costs, limited experimental time, and sample handling issues hampered our understanding of this field. To address the existing knowledge gap and provide confidence in modelling the phenomena, in this review, we highlight experimental works in mechano-immunology under microgravity and different computational modelling approaches that can be used to address the existing problems.
Collapse
Affiliation(s)
- Anirudh Murali
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Sanders LM, Scott RT, Yang JH, Qutub AA, Garcia Martin H, Berrios DC, Hastings JJA, Rask J, Mackintosh G, Hoarfrost AL, Chalk S, Kalantari J, Khezeli K, Antonsen EL, Babdor J, Barker R, Baranzini SE, Beheshti A, Delgado-Aparicio GM, Glicksberg BS, Greene CS, Haendel M, Hamid AA, Heller P, Jamieson D, Jarvis KJ, Komarova SV, Komorowski M, Kothiyal P, Mahabal A, Manor U, Mason CE, Matar M, Mias GI, Miller J, Myers JG, Nelson C, Oribello J, Park SM, Parsons-Wingerter P, Prabhu RK, Reynolds RJ, Saravia-Butler A, Saria S, Sawyer A, Singh NK, Snyder M, Soboczenski F, Soman K, Theriot CA, Van Valen D, Venkateswaran K, Warren L, Worthey L, Zitnik M, Costes SV. Biological research and self-driving labs in deep space supported by artificial intelligence. NAT MACH INTELL 2023. [DOI: 10.1038/s42256-023-00618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
10
|
Grushina TI. [Potential use of thermoneutral «dry immersion» in oncological rehabilitation]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2023; 100:62-68. [PMID: 37735797 DOI: 10.17116/kurort202310004162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
OBJECTIVE To conduct an analytical review of the available literature data on thermoneutral «dry immersion» (TSI) - a method that simulates the state of weightlessness/microgravity. MATERIAL AND METHODS The review included data from electronic databases: Scopus, Web of Science, MedLine, Wiley, World Health Organization, The Cochrane Central Register of Controlled Trials, ScienceDirect, PubMed, elibrary, CyberLeninka, disserCat. RESULTS The extensive database of in vitro studies contains information on the reduction of cell proliferation, invasion, migration and increased apoptosis of thyroid, breast, lung, stomach, colon cancer cells, Hodgkin's lymphoma, glioblastoma, leukemia, melanoma, osteosarcoma of a human under the influence of microgravity. The vast majority of works are devoted to experiments on healthy people to finding out the mechanisms of action of long-term continuous microgravity. The study of the therapeutic effect of TSI as a physiotherapeutic procedure of one or repeated sessions was carried out by individual authors. Positive results of a short stay in the unsupported model were obtained in the treatment of children with perinatal disorders, cerebral palsy, patients with hypertension in a state of hypertensive crisis, Parkinson's disease, skin burn II gr. The results of the analytical review provide an opportunity to begin scientific research on the effectiveness and safety of thermoneutral «dry immersion» in the complex rehabilitation of cancer patients.
Collapse
Affiliation(s)
- T I Grushina
- Moscow Research and Practical Centre of Medical Rehabilitation, Restorative and Sports Medicine, Moscow, Russia
| |
Collapse
|
11
|
Kim M, Jang G, Kim KS, Shin J. Detrimental effects of simulated microgravity on mast cell homeostasis and function. Front Immunol 2022; 13:1055531. [PMID: 36591304 PMCID: PMC9800517 DOI: 10.3389/fimmu.2022.1055531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Exposure to microgravity causes significant alterations in astronauts' immune systems during spaceflight; however, it is unknown whether microgravity affects mast cell homeostasis and activation. Here we show that microgravity negatively regulates the survival and effector function of mast cells. Murine bone marrow-derived mast cells (BMMCs) were cultured with IL-3 in a rotary cell culture system (RCCS) that generates a simulated microgravity (SMG) environment. BMMCs exposed to SMG showed enhanced apoptosis along with the downregulation of Bcl-2, and reduced proliferation compared to Earth's gravity (1G) controls. The reduction in survival and proliferation caused by SMG exposure was recovered by stem cell factor. In addition, SMG impaired mast cell degranulation and cytokine secretion. BMMCs pre-exposed to SMG showed decreased release of β-hexosaminidase, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) upon stimulation with phorbol 12-myristate-13-acetate (PMA) plus calcium ionophore ionomycin, which correlated with decreased calcium influx. These findings provide new insights into microgravity-mediated alterations of mast cell phenotypes, contributing to the understanding of immune system dysfunction for further space medicine research.
Collapse
Affiliation(s)
- Minjin Kim
- Inha Research Institute for Aerospace Medicine, Inha University College of Medicine, Incheon, Republic of Korea,Department of Microbiology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Gyeongin Jang
- Inha Research Institute for Aerospace Medicine, Inha University College of Medicine, Incheon, Republic of Korea,Department of Microbiology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Kyu-Sung Kim
- Inha Research Institute for Aerospace Medicine, Inha University College of Medicine, Incheon, Republic of Korea,Department of Otorhinolaryngology-Head and Neck Surgery, Inha University Hospital, Incheon, Republic of Korea
| | - Jinwook Shin
- Inha Research Institute for Aerospace Medicine, Inha University College of Medicine, Incheon, Republic of Korea,Department of Microbiology, Inha University College of Medicine, Incheon, Republic of Korea,*Correspondence: Jinwook Shin,
| |
Collapse
|
12
|
Ogneva IV, Golubkova MA, Biryukov NS, Kotov OV. Drosophila melanogaster Oocytes after Space Flight: The Early Period of Adaptation to the Force of Gravity. Cells 2022; 11:cells11233871. [PMID: 36497128 PMCID: PMC9736949 DOI: 10.3390/cells11233871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
The effect of space flight factors and the subsequent adaptation to the Earth's gravity on oocytes is still poorly understood. Studies of mammalian oocytes in space present significant technical difficulties; therefore, the fruit fly Drosophila melanogaster is a convenient test subject. In this study, we analyzed the structure of the oocytes of the fruit fly Drosophila melanogaster, the maturation of which took place under space flight conditions (the "Cytomehanarium" experiment on the Russian Segment of the ISS during the ISS-67 expedition). The collection of the oocytes began immediately after landing and continued for 12 h. The flies were then transferred onto fresh agar plates and oocyte collection continued for the subsequent 12 h. The stiffness of oocytes was determined by atomic force microscopy and the content of the cytoskeletal proteins by Western blotting. The results demonstrated a significant decrease in the stiffness of oocytes in the flight group compared to the control (26.5 ± 1.1 pN/nm vs. 31.0 ± 1.8 pN/nm) against the background of a decrease in the content of some cytoskeletal proteins involved in the formation of microtubules and microfilaments. This pattern of oocyte structure leads to the disruption of cytokinesis during the cleavage of early embryos.
Collapse
|
13
|
Vroom MM, Troncoso-Garcia A, Duscher AA, Foster JS. Modeled microgravity alters apoptotic gene expression and caspase activity in the squid-vibrio symbiosis. BMC Microbiol 2022; 22:202. [PMID: 35982413 PMCID: PMC9389742 DOI: 10.1186/s12866-022-02614-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background Spaceflight is a novel and profoundly stressful environment for life. One aspect of spaceflight, microgravity, has been shown to perturb animal physiology thereby posing numerous health risks, including dysregulation of normal developmental pathways. Microgravity can also negatively impact the interactions between animals and their microbiomes. However, the effects of microgravity on developmental processes influenced by beneficial microbes, such as apoptosis, remains poorly understood. Here, the binary mutualism between the bobtail squid, Euprymna scolopes, and the gram-negative bacterium, Vibrio fischeri, was studied under modeled microgravity conditions to elucidate how this unique stressor alters apoptotic cell death induced by beneficial microbes. Results Analysis of the host genome and transcriptome revealed a complex network of apoptosis genes affiliated with extrinsic/receptor-mediated and intrinsic/stress-induced apoptosis. Expression of apoptosis genes under modeled microgravity conditions occurred earlier and at high levels compared to gravity controls, in particular the expression of genes encoding initiator and executioner caspases. Functional assays of these apoptotic proteases revealed heightened activity under modeled microgravity; however, these increases could be mitigated using caspase inhibitors. Conclusions The outcomes of this study indicated that modeled microgravity alters the expression of both extrinsic and intrinsic apoptosis gene expression and that this process is mediated in part by caspases. Modeled microgravity-associated increases of caspase activity can be pharmacologically inhibited suggesting that perturbations to the normal apoptosis signaling cascade can be mitigated, which may have broader implications for maintaining animal-microbial homeostasis in spaceflight. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02614-x.
Collapse
Affiliation(s)
- Madeline M Vroom
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
| | - Angel Troncoso-Garcia
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
| | - Alexandrea A Duscher
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
| | - Jamie S Foster
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA.
| |
Collapse
|
14
|
Wu XT, Yang X, Tian R, Li YH, Wang CY, Fan YB, Sun LW. Cells respond to space microgravity through cytoskeleton reorganization. FASEB J 2022; 36:e22114. [PMID: 35076958 DOI: 10.1096/fj.202101140r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022]
Abstract
Decades of spaceflight studies have provided abundant evidence that individual cells in vitro are capable of sensing space microgravity and responding with cellular changes both structurally and functionally. However, how microgravity is perceived, transmitted, and converted to biochemical signals by single cells remains unrevealed. Here in this review, over 40 cellular biology studies of real space fights were summarized. Studies on cells of the musculoskeletal system, cardiovascular system, and immune system were covered. Among all the reported cellular changes in response to space microgravity, cytoskeleton (CSK) reorganization emerges as a key indicator. Based on the evidence of CSK reorganization from space flight research, a possible mechanism from the standpoint of "cellular mechanical equilibrium" is proposed for the explanation of cellular response to space microgravity. Cytoskeletal equilibrium is broken by the gravitational change from ground to space and is followed by cellular morphological changes, cell mechanical properties changes, extracellular matrix reorganization, as well as signaling pathway activation/inactivation, all of which ultimately lead to the cell functional changes in space microgravity.
Collapse
Affiliation(s)
- Xin-Tong Wu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiao Yang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ran Tian
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ying-Hui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Chun-Yan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yu-Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, Beijing, China
| | - Lian-Wen Sun
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
15
|
Cialdai F, Bolognini D, Vignali L, Iannotti N, Cacchione S, Magi A, Balsamo M, Vukich M, Neri G, Donati A, Monici M, Capaccioli S, Lulli M. Effect of space flight on the behavior of human retinal pigment epithelial ARPE-19 cells and evaluation of coenzyme Q10 treatment. Cell Mol Life Sci 2021; 78:7795-7812. [PMID: 34714361 PMCID: PMC11073052 DOI: 10.1007/s00018-021-03989-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Astronauts on board the International Space Station (ISS) are exposed to the damaging effects of microgravity and cosmic radiation. One of the most critical and sensitive districts of an organism is the eye, particularly the retina, and > 50% of astronauts develop a complex of alterations designated as spaceflight-associated neuro-ocular syndrome. However, the pathogenesis of this condition is not clearly understood. In the current study, we aimed to explore the cellular and molecular effects induced in the human retinal pigment ARPE-19 cell line by their transfer to and 3-day stay on board the ISS in the context of an experiment funded by the Agenzia Spaziale Italiana. Treatment of cells on board the ISS with the well-known bioenergetic, antioxidant, and antiapoptotic coenzyme Q10 was also evaluated. In the ground control experiment, the cells were exposed to the same conditions as on the ISS, with the exception of microgravity and radiation. The transfer of ARPE-19 retinal cells to the ISS and their living on board for 3 days did not affect cell viability or apoptosis but induced cytoskeleton remodeling consisting of vimentin redistribution from the cellular boundaries to the perinuclear area, underlining the collapse of the network of intermediate vimentin filaments under unloading conditions. The morphological changes endured by ARPE-19 cells grown on board the ISS were associated with changes in the transcriptomic profile related to the cellular response to the space environment and were consistent with cell dysfunction adaptations. In addition, the results obtained from ARPE-19 cells treated with coenzyme Q10 indicated its potential to increase cell resistance to damage.
Collapse
Affiliation(s)
- Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Davide Bolognini
- Department of Experimental and Clinical Medicine, Università Degli Studi Di Firenze, Firenze, Italy
| | - Leonardo Vignali
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Nicola Iannotti
- Department of Life Sciences, Università Degli Studi Di Siena, Siena, Italy
| | - Stefano Cacchione
- Department of Biology and Biotechnology "Charles Darwin", Università Di Roma "La Sapienza", Roma, Italy
| | - Alberto Magi
- Department of Information Engineering, Università Degli Studi Di Firenze, Firenze, Italy
| | | | | | | | | | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Sergio Capaccioli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, viale Morgagni 50, 50134, Firenze, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, viale Morgagni 50, 50134, Firenze, Italy.
| |
Collapse
|
16
|
The effects of real and simulated microgravity on cellular mitochondrial function. NPJ Microgravity 2021; 7:44. [PMID: 34750383 PMCID: PMC8575887 DOI: 10.1038/s41526-021-00171-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 10/07/2021] [Indexed: 11/22/2022] Open
Abstract
Astronauts returning from space shuttle missions or the International Space Station have been diagnosed with various health problems such as bone demineralization, muscle atrophy, cardiovascular deconditioning, and vestibular and sensory imbalance including visual acuity, altered metabolic and nutritional status, and immune system dysregulation. These health issues are associated with oxidative stress caused by a microgravity environment. Mitochondria are a source of reactive oxygen species (ROS). However, the molecular mechanisms through which mitochondria produce ROS in a microgravity environment remain unclear. Therefore, this review aimed to explore the mechanism through which microgravity induces oxidative damage in mitochondria by evaluating the expression of genes and proteins, as well as relevant metabolic pathways. In general, microgravity-induced ROS reduce mitochondrial volume by mainly affecting the efficiency of the respiratory chain and metabolic pathways. The impaired respiratory chain is thought to generate ROS through premature electron leakage in the electron transport chain. The imbalance between ROS production and antioxidant defense in mitochondria is the main cause of mitochondrial stress and damage, which leads to mitochondrial dysfunction. Moreover, we discuss the effects of antioxidants against oxidative stress caused by the microgravity environment space microgravity in together with simulated microgravity (i.e., spaceflight or ground-based spaceflight analogs: parabolic flight, centrifugal force, drop towers, etc.). Further studies should be taken to explore the effects of microgravity on mitochondrial stress-related diseases, especially for the development of new therapeutic drugs that can help increase the health of astronauts on long space missions.
Collapse
|
17
|
Dhar S, Kaeley DK, Kanan MJ, Yildirim-Ayan E. Mechano-Immunomodulation in Space: Mechanisms Involving Microgravity-Induced Changes in T Cells. Life (Basel) 2021; 11:life11101043. [PMID: 34685414 PMCID: PMC8537592 DOI: 10.3390/life11101043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023] Open
Abstract
Of the most prevalent issues surrounding long-term spaceflight, the sustainability of human life and the maintenance of homeostasis in an extreme environment are of utmost concern. It has been observed that the human immune system is dysregulated in space as a result of gravitational unloading at the cellular level, leading to potential complications in astronaut health. A plethora of studies demonstrate intracellular changes that occur due to microgravity; however, these ultimately fall short of identifying the underlying mechanisms and dysfunctions that cause such changes. This comprehensive review covers the changes in human adaptive immunity due to microgravity. Specifically, there is a focus on uncovering the gravisensitive steps in T cell signaling pathways. Changes in gravitational force may lead to interrupted immune signaling cascades at specific junctions, particularly membrane and surface receptor-proximal molecules. Holistically studying the interplay of signaling with morphological changes in cytoskeleton and other cell components may yield answers to what in the T cell specifically experiences the consequences of microgravity. Fully understanding the nature of this problem is essential in order to develop proper countermeasures before long-term space flight is conducted.
Collapse
Affiliation(s)
- Sarit Dhar
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (S.D.); (D.K.K.); (M.J.K.)
| | - Dilpreet Kaur Kaeley
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (S.D.); (D.K.K.); (M.J.K.)
| | - Mohamad Jalal Kanan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (S.D.); (D.K.K.); (M.J.K.)
| | - Eda Yildirim-Ayan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (S.D.); (D.K.K.); (M.J.K.)
- Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614, USA
- Correspondence: ; Tel.: +1-419-530-8257; Fax: +1-419-530-8030
| |
Collapse
|
18
|
State of Drosophila melanogaster Ovaries after a Full Cycle of Gametogenesis under Microgravity Modeling: Cellular Respiration and the Content of Cytoskeletal Proteins. Int J Mol Sci 2021; 22:ijms22179234. [PMID: 34502148 PMCID: PMC8431292 DOI: 10.3390/ijms22179234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
The effect of weightlessness on gametogenesis and the functional state of female germ cells are still poorly understood. We studied the ovaries of Drosophila melanogaster, the full development cycle of which (from zygote to sexually mature adults) passed under simulated microgravity by a random positioning machine. The rate of cellular respiration was studied by polarography as a parameter reflecting the functional state of mitochondria. The content of cytoskeletal proteins and histones was determined using Western blotting. The relative content of mRNA was determined using qRT-PCR. The results obtained indicated an increase in the rate of cellular respiration under simulated microgravity conditions during the full cycle of gametogenesis in Drosophila melanogaster due to complex I of the respiratory chain. In addition, an increase in the contents of actin cytoskeleton components was observed against the background of an increase in the mRNA content of the cytoskeleton’s encoding genes. Moreover, we observed an increase in the relative content of histone H3 acetylated at Lys9 and Lys27, which may explain the increase in the expression of cytoskeletal genes. In conclusion, the formation of an adaptive pattern of functioning of the Drosophila melanogaster ovaries that developed under simulated microgravity includes structural and functional changes and epigenetic regulation.
Collapse
|
19
|
Ogneva IV, Usik MA. Mitochondrial Respiration in Drosophila Ovaries after a Full Cycle of Oogenesis under Simulated Microgravity. Curr Issues Mol Biol 2021; 43:176-186. [PMID: 34067415 PMCID: PMC8929054 DOI: 10.3390/cimb43010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Studies of the function of the female reproductive system in zero gravity are urgent for the future exploration of deep space. Female reproductive cells, oocytes, are rich in mitochondria, which allow oocytes to produce embryos. The rate of cellular respiration was determined to assess the functional state of the mitochondrial apparatus in Drosophila melanogaster ovaries in which the full cycle of oogenesis took place under simulated microgravity. Since cellular respiration depends on the state of the cytoskeleton, the contents of the main cytoskeletal proteins were determined by Western blotting. To modulate the structure of the cytoskeleton, essential phospholipids were administered per os at a dosage of 500 mg/kg in medium. The results of this study show that after a full cycle of oogenesis under simulated microgravity, the rate of cellular respiration in the fruit fly ovaries increases, apparently due to complex II of the respiratory chain. At the same time, we did not find any changes in the area of oocytes or in the content of proteins in the respiratory chain. However, changes were found in the relative contents of proteins of the actin cytoskeleton. There were no changes of essential phospholipids and no increase in the rate of cellular respiration of the ovaries after exposure to simulated microgravity. However, in the control, the administration of essential phospholipids led to a decrease in the efficiency of oxygen consumption in the flies’ ovaries due to complexes IV–V.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia;
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-(499)-195-63-98; Fax: +7-(499)-195-22-53
| | - Maria A. Usik
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia;
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| |
Collapse
|
20
|
Gregg RK. Implications of microgravity-induced cell signaling alterations upon cancer cell growth, invasiveness, metastatic potential, and control by host immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:107-164. [PMID: 34074492 DOI: 10.1016/bs.ircmb.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The human endeavor to venture beyond the orbit of Earth is challenged by both continuous space radiation and microgravity-induced immune dysfunction. If cancers were to develop in astronauts, it is unclear how these abnormal cells would grow and progress in the microgravity environment. It is unknown if the astronaut's immune response would be able to control or eradicate cancer. A better molecular understanding of how the mechanical force of gravity affects the cell as well as the aggressiveness of cancers and the functionality of host immunity is needed. This review will summarize findings related to microgravity-mediated alterations in the cell cytoskeleton, cell-cell, and cell-extracellular matrix interactions including cadherins, immunoglobulin superfamily of adhesion molecules, selectins, and integrins and related cell signaling. The effects of spaceflight and simulated microgravity on cell viability, cancer cell growth, invasiveness, angiogenesis, metastasis as well as immune cell functions and the subsequent signaling pathways involved will be discussed. Microgravity-induced alterations in function and signaling of the major anti-cancer immune populations will be examined including natural killer cells, dendritic cells, CD4+ T cells, and CD8+ T cells. Further studies regarding the molecular events impacted by microgravity in both cancer and immune cells will greatly increase the development of therapies to restrict tumor growth and enhance cancer-specific responses for both astronauts and patients on Earth.
Collapse
Affiliation(s)
- Randal K Gregg
- Department of Basic Medical Sciences, DeBusk College of Osteopathic Medicine at Lincoln Memorial University-Knoxville, Knoxville, TN, United States.
| |
Collapse
|
21
|
Sun Y, Kuang Y, Zuo Z. The Emerging Role of Macrophages in Immune System Dysfunction under Real and Simulated Microgravity Conditions. Int J Mol Sci 2021; 22:2333. [PMID: 33652750 PMCID: PMC7956436 DOI: 10.3390/ijms22052333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
In the process of exploring space, the astronaut's body undergoes a series of physiological changes. At the level of cellular behavior, microgravity causes significant alterations, including bone loss, muscle atrophy, and cardiovascular deconditioning. At the level of gene expression, microgravity changes the expression of cytokines in many physiological processes, such as cell immunity, proliferation, and differentiation. At the level of signaling pathways, the mitogen-activated protein kinase (MAPK) signaling pathway participates in microgravity-induced immune malfunction. However, the mechanisms of these changes have not been fully elucidated. Recent studies suggest that the malfunction of macrophages is an important breakthrough for immune disorders in microgravity. As the first line of immune defense, macrophages play an essential role in maintaining homeostasis. They activate specific immune responses and participate in large numbers of physiological activities by presenting antigen and secreting cytokines. The purpose of this review is to summarize recent advances on the dysfunction of macrophages arisen from microgravity and to discuss the mechanisms of these abnormal responses. Hopefully, our work will contribute not only to the future exploration on the immune system in space, but also to the development of preventive and therapeutic drugs against the physiological consequences of spaceflight.
Collapse
Affiliation(s)
- Yulong Sun
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (Y.K.); (Z.Z.)
| | | | | |
Collapse
|
22
|
Monti N, Masiello MG, Proietti S, Catizone A, Ricci G, Harrath AH, Alwasel SH, Cucina A, Bizzarri M. Survival Pathways Are Differently Affected by Microgravity in Normal and Cancerous Breast Cells. Int J Mol Sci 2021; 22:ijms22020862. [PMID: 33467082 PMCID: PMC7829699 DOI: 10.3390/ijms22020862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Metazoan living cells exposed to microgravity undergo dramatic changes in morphological and biological properties, which ultimately lead to apoptosis and phenotype reprogramming. However, apoptosis can occur at very different rates depending on the experimental model, and in some cases, cells seem to be paradoxically protected from programmed cell death during weightlessness. These controversial results can be explained by considering the notion that the behavior of adherent cells dramatically diverges in respect to that of detached cells, organized into organoids-like, floating structures. We investigated both normal (MCF10A) and cancerous (MCF-7) breast cells and found that appreciable apoptosis occurs only after 72 h in MCF-7 cells growing in organoid-like structures, in which major modifications of cytoskeleton components were observed. Indeed, preserving cell attachment to the substrate allows cells to upregulate distinct Akt- and ERK-dependent pathways in MCF-7 and MCF-10A cells, respectively. These findings show that survival strategies may differ between cell types but cannot provide sufficient protection against weightlessness-induced apoptosis alone if adhesion to the substrate is perturbed.
Collapse
Affiliation(s)
- Noemi Monti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Systems Biology Group Lab, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Grazia Masiello
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00161 Rome, Italy; (M.G.M.); (S.P.); (A.C.)
| | - Sara Proietti
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00161 Rome, Italy; (M.G.M.); (S.P.); (A.C.)
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy;
| | - Giulia Ricci
- Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.H.); (S.H.A.)
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.H.); (S.H.A.)
| | - Alessandra Cucina
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00161 Rome, Italy; (M.G.M.); (S.P.); (A.C.)
- Azienda Policlinico Umberto I, 00161 Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Systems Biology Group Lab, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-4976-6606
| |
Collapse
|
23
|
Paul AM, Mhatre SD, Cekanaviciute E, Schreurs AS, Tahimic CGT, Globus RK, Anand S, Crucian BE, Bhattacharya S. Neutrophil-to-Lymphocyte Ratio: A Biomarker to Monitor the Immune Status of Astronauts. Front Immunol 2020; 11:564950. [PMID: 33224136 PMCID: PMC7667275 DOI: 10.3389/fimmu.2020.564950] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
A comprehensive understanding of spaceflight factors involved in immune dysfunction and the evaluation of biomarkers to assess in-flight astronaut health are essential goals for NASA. An elevated neutrophil-to-lymphocyte ratio (NLR) is a potential biomarker candidate, as leukocyte differentials are altered during spaceflight. In the reduced gravity environment of space, rodents and astronauts displayed elevated NLR and granulocyte-to-lymphocyte ratios (GLR), respectively. To simulate microgravity using two well-established ground-based models, we cultured human whole blood-leukocytes in high-aspect rotating wall vessels (HARV-RWV) and used hindlimb unloaded (HU) mice. Both HARV-RWV simulation of leukocytes and HU-exposed mice showed elevated NLR profiles comparable to spaceflight exposed samples. To assess mechanisms involved, we found the simulated microgravity HARV-RWV model resulted in an imbalance of redox processes and activation of myeloperoxidase-producing inflammatory neutrophils, while antioxidant treatment reversed these effects. In the simulated microgravity HU model, mitochondrial catalase-transgenic mice that have reduced oxidative stress responses showed reduced neutrophil counts, NLR, and a dampened release of selective inflammatory cytokines compared to wildtype HU mice, suggesting simulated microgravity induced oxidative stress responses that triggered inflammation. In brief, both spaceflight and simulated microgravity models caused elevated NLR, indicating this as a potential biomarker for future in-flight immune health monitoring.
Collapse
Affiliation(s)
- Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Universities Space Research Association, Columbia, MD, United States
| | - Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,COSMIAC Research Center, University of New Mexico, Albuquerque, NM, United States.,KBR, Houston, TX, United States
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,COSMIAC Research Center, University of New Mexico, Albuquerque, NM, United States.,Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Sulekha Anand
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States
| | - Brian E Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Science Center, Houston, TX, United States
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| |
Collapse
|
24
|
Ogneva IV, Usik MA, Burtseva MV, Biryukov NS, Zhdankina YS, Sychev VN, Orlov OI. Drosophila melanogaster Sperm under Simulated Microgravity and a Hypomagnetic Field: Motility and Cell Respiration. Int J Mol Sci 2020; 21:ijms21175985. [PMID: 32825268 PMCID: PMC7503777 DOI: 10.3390/ijms21175985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/25/2023] Open
Abstract
The role of the Earth's gravitational and magnetic fields in the evolution and maintenance of normal processes of various animal species remains unclear. The aim of this work was to determine the effect of simulated microgravity and hypomagnetic conditions for 1, 3, and 6 h on the sperm motility of the fruit fly Drosophila melanogaster. In addition to the usual diet, the groups were administered oral essential phospholipids at a dosage of 500 mg/kg in medium. The speed of the sperm tails was determined by video recording and analysis of the obtained video files, protein content by western blotting, and cell respiration by polarography. The results indicated an increase in the speed of movement of the sperm tails after 6 h in simulated microgravity. The levels of proteins that form the axoneme of the sperm tail did not change, but cellular respiration was altered. A similar effect occurred with the administration of essential phospholipids. These results may be due to a change in the level of phosphorylation of motor proteins. Exposure to hypomagnetic conditions led to a decrease in motility after 6 h against a background of a decrease in the rate of cellular respiration due to complex I of the respiratory chain. This effect was not observed in the flies that received essential phospholipids. However, after 1 h under hypomagnetic conditions, the rate of cellular respiration also increased due to complex I, including that in the sperm of flies receiving essential phospholipids.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
- Department of Medical and Biological Physics, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-4991956398; Fax: +7-4991952253
| | - Maria A. Usik
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
- Department of Medical and Biological Physics, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Maria V. Burtseva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
| | - Nikolay S. Biryukov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
- Department of Medical and Biological Physics, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Yuliya S. Zhdankina
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
- Department of Medical and Biological Physics, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Vladimir N. Sychev
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
| | - Oleg I. Orlov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
| |
Collapse
|
25
|
Hand AR, Dagdeviren D, Larson NA, Haxhi C, Mednieks MI. Effects of spaceflight on the mouse submandibular gland. Arch Oral Biol 2019; 110:104621. [PMID: 31805482 DOI: 10.1016/j.archoralbio.2019.104621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/27/2019] [Accepted: 11/18/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study was conducted to determine if the morphology and biochemistry of the mouse submandibular gland is affected by microgravity and the spaceflight environment. DESIGN Tissues from female mice flown on the US space shuttle missions Space Transportation System (STS)-131 and STS-135 for 15 and 13 d, respectively, and from male mice flown on the 30 d Russian Bion-M1 biosatellite, were examined using transmission electron microscopy and light and electron microscopic immunohistochemistry. RESULTS In contrast to the parotid gland, morphologic changes were not apparent in the submandibular gland. No significant changes in protein expression, as assessed by quantitative immunogold labeling, occurred in female mice flown for 13-15 d. In male mice, however, increased labeling for salivary androgen binding protein alpha (in acinar cell secretory granules), and epidermal growth factor and nerve growth factor (in granular convoluted duct cell granules) was seen after 30 d in space. CONCLUSION These results indicate that spaceflight alters secretory protein expression in the submandibular gland and suggest that the sex of the animals and the length of the flight may affect the response. These findings also show that individual salivary glands respond differently to spaceflight. Saliva contains proteins secreted from salivary glands and is easily collected, therefore is a useful biofluid for general medical analyses and in particular for monitoring the physiology and health of astronauts.
Collapse
Affiliation(s)
- Arthur R Hand
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut, Farmington, CT, USA.
| | - Didem Dagdeviren
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Natasha A Larson
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Christopher Haxhi
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Maija I Mednieks
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
26
|
Kamal KY, van Loon JJ, Medina FJ, Herranz R. Differential transcriptional profile through cell cycle progression in Arabidopsis cultures under simulated microgravity. Genomics 2019; 111:1956-1965. [DOI: 10.1016/j.ygeno.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/30/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
|
27
|
Bonfiglio T, Biggi F, Bassi AM, Ferrando S, Gallus L, Loiacono F, Ravera S, Rottigni M, Scarfì S, Strollo F, Vernazza S, Sabbatini M, Masini MA. Simulated microgravity induces nuclear translocation of Bax and BCL-2 in glial cultured C6 cells. Heliyon 2019; 5:e01798. [PMID: 31338440 PMCID: PMC6580195 DOI: 10.1016/j.heliyon.2019.e01798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/21/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Alterations in the control of apoptotic processes were observed in cells during space flight or under simulated microgravity, the latter obtained with the 3D-Random Positioning Machine (3D-RPM). Usually the proteins Bax and Bcl-2, act as pro- or anti-apoptotic regulators. Here we investigated the effects of simulated microgravity obtained by the 3D-RPM on cell viability, localization and expression of Bax and Bcl-2 in cultures of glial cancerous cells. We observed for the first time a transient cytoplasmic/nuclear translocation of Bax and Bcl-2 triggered by changing gravity vector. Bax translocates into the nucleus after 1 h, is present simultaneously in the cytoplasm after 6 h and comes back to the cytoplasm after 24 h. Bcl-2 translocate into the nucleus only after 6 h and comes back to the cytoplasm after 24 h. Physiological meaning, on the regulation of apoptotic event and possible applicative outcomes of such finding are discussed.
Collapse
Affiliation(s)
- Tommaso Bonfiglio
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| | | | - Anna Maria Bassi
- DIMES, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| | - Sara Ferrando
- DISTAV, University of Genova, Corso Europa 26, 16132 Genoa, Italy
| | - Lorenzo Gallus
- DISTAV, University of Genova, Corso Europa 26, 16132 Genoa, Italy
| | | | - Silvia Ravera
- DIMES, Biochemistry Lab., University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Marino Rottigni
- DISTAV, University of Genova, Corso Europa 26, 16132 Genoa, Italy
| | - Sonia Scarfì
- DISTAV, University of Genova, Corso Europa 26, 16132 Genoa, Italy
| | - Felice Strollo
- Endocrinology and Diabetes Unit, St. Peter's FBF Hospital, Via Cassia 600, 00189 Rome, Italy
| | | | - Maurizio Sabbatini
- DISIT, University of Piemonte Orientale, Via Teresa Michel 11, Alessandria, Italy
| | - Maria A. Masini
- DISIT, University of Piemonte Orientale, Via Teresa Michel 11, Alessandria, Italy
| |
Collapse
|
28
|
Rapid Morphological and Cytoskeletal Response to Microgravity in Human Primary Macrophages. Int J Mol Sci 2019; 20:ijms20102402. [PMID: 31096581 PMCID: PMC6567851 DOI: 10.3390/ijms20102402] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/30/2019] [Accepted: 05/14/2019] [Indexed: 01/14/2023] Open
Abstract
The FLUMIAS (Fluorescence-Microscopic Analyses System for Life-Cell-Imaging in Space) confocal laser spinning disk fluorescence microscope represents a new imaging capability for live cell imaging experiments on suborbital ballistic rocket missions. During the second pioneer mission of this microscope system on the TEXUS-54 suborbital rocket flight, we developed and performed a live imaging experiment with primary human macrophages. We simultaneously imaged four different cellular structures (nucleus, cytoplasm, lysosomes, actin cytoskeleton) by using four different live cell dyes (Nuclear Violet, Calcein, LysoBrite, SiR-actin) and laser wavelengths (405, 488, 561, and 642 nm), and investigated the cellular morphology in microgravity (10−4 to 10−5 g) over a period of about six minutes compared to 1 g controls. For live imaging of the cytoskeleton during spaceflight, we combined confocal laser microscopy with the SiR-actin probe, a fluorogenic silicon-rhodamine (SiR) conjugated jasplakinolide probe that binds to F-actin and displays minimal toxicity. We determined changes in 3D cell volume and surface, nuclear volume and in the actin cytoskeleton, which responded rapidly to the microgravity environment with a significant reduction of SiR-actin fluorescence after 4–19 s microgravity, and adapted subsequently until 126–151 s microgravity. We conclude that microgravity induces geometric cellular changes and rapid response and adaptation of the potential gravity-transducing cytoskeleton in primary human macrophages.
Collapse
|
29
|
Xu D, Guo YB, Zhang M, Sun YQ. The subsequent biological effects of simulated microgravity on endothelial cell growth in HUVECs. Chin J Traumatol 2018; 21:229-237. [PMID: 30017544 PMCID: PMC6085276 DOI: 10.1016/j.cjtee.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/17/2018] [Accepted: 02/28/2018] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Microgravity is known to cause endothelium dysfunction in astronauts returning from spaceflight. We aimed to reveal the regulatory mechanism in alterations of human endothelial cells after simulated microgravity (SMG). METHODS We utilized the rotary cell culture system (RCCS-1) to explore the subsequent effects of SMG on human umbilical vein endothelial cells (HUVECs). RESULTS SMG-treated HUVECs appeared obvious growth inhibition after return to normal gravity, which might be attributed to a set of responses including alteration of cytoskeleton, decreased cell adhesion capacity and increased apoptosis. Expression levels of mTOR and its downstream Apaf-1 were increased during subsequent culturing after SMG. miR-22 was up-regulated and its target genes SRF and LAMC1 were down-regulated at mRNA levels. LAMC1 siRNAs reduced cell adhesion rate and inhibited stress fiber formation while SRF siRNAs caused apoptosis. CONCLUSION SMG has the subsequent biological effects on HUVECs, resulting in growth inhibition through mTOR signaling and miR-22-mediated mechanism.
Collapse
Affiliation(s)
- Dan Xu
- Institute of Environmental Systems Biology, Dalian Maritime University, Dalian 116026, China
| | - Yu-Bing Guo
- Institute of Environmental Systems Biology, Dalian Maritime University, Dalian 116026, China
| | - Min Zhang
- Institute of Environmental Systems Biology, Dalian Maritime University, Dalian 116026, China,Department of Molecular Physiology and Medical Bioregulation, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Ye-Qing Sun
- Institute of Environmental Systems Biology, Dalian Maritime University, Dalian 116026, China,Corresponding author.
| |
Collapse
|
30
|
Ogneva IV, Loktev SS, Sychev VN. Cytoskeleton structure and total methylation of mouse cardiac and lung tissue during space flight. PLoS One 2018; 13:e0192643. [PMID: 29768411 PMCID: PMC5955502 DOI: 10.1371/journal.pone.0192643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 01/26/2018] [Indexed: 12/27/2022] Open
Abstract
The purpose of this work was to evaluate the protein and mRNA expression levels of multiple cytoskeletal proteins in the cardiac and lung tissue of mice that were euthanized onboard the United States Orbital Segment of the International Space Station 37 days after the start of the SpaceX-4 mission (September 2014, USA). The results showed no changes in the cytoskeletal protein content in the cardiac and lung tissue of the mice, but there were significant changes in the mRNA expression levels of the associated genes, which may be due to an increase in total genome methylation. The mRNA expression levels of DNA methylases, the cytosine demethylases Tet1 and Tet3, histone acetylase and histone deacetylase did not change, and the mRNA expression level of cytosine demethylase Tet2 was significantly decreased.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- * E-mail:
| | - Sergey S. Loktev
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir N. Sychev
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
31
|
Gioia M, Michaletti A, Scimeca M, Marini M, Tarantino U, Zolla L, Coletta M. Simulated microgravity induces a cellular regression of the mature phenotype in human primary osteoblasts. Cell Death Discov 2018; 4:59. [PMID: 29760957 PMCID: PMC5945613 DOI: 10.1038/s41420-018-0055-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
Decreased mechanical loading on bones, such as prolonged bed rest and microgravity during space flights, leads to the development of an osteoporotic-like phenotype. Although osteoblast hypo-functionality is reported to be involved in the progression of bone pathological conditions, the cellular mechanisms of this process remain largely unknown. The combined application of mass spectrometry "-omics" and histochemical and ultrastructural approaches have been employed to investigate the effects of the gravitational unloading on human bone-cell biology. Here we show, ex vivo, that simulated microgravity (Sμg) on human primary osteoblasts (hpOB) induces an alteration of pro-osteogenic determinants (i.e., cell morphology and deposit of hydroxyapatite crystals), accompanied by a downregulation of adhesive proteins and bone differentiation markers (e.g., integrin beta-1, protein folding Crystallin Alpha B (CRYα-B), runt-related transcription factor 2 (RUNX-2), bone morphogenic protein-2 (BMP-2), and receptor activator of nuclear factor kappa-B ligand (RANK-L)), indicating an impairment of osteogenesis. Further, we observed for the first time that Sμg can trigger a transition toward a mesenchymal-like phenotype, in which a mature osteoblast displays an hampered vitamin A metabolism, loses adhesive molecules, gains mesenchymal components (e.g., pre-osteoblast state marker CD44), morphological protrusions (filopodium-like), enhances GTPase activities, which in turn allows it to acquire migrating properties. Although this phenotypic conversion is not complete and can be reversible, Sμg environment proves a plasticity potential hidden on Earth. Overall, our results suggest that Sμg can be a powerful physical cue for triggering ex vivo a dedifferentiation impulse on hpOBs, opening a new scenario of possible innovative therapeutical biomechanical strategies for the treatment of osteo-degenerative diseases.
Collapse
Affiliation(s)
- Magda Gioia
- 1Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Anna Michaletti
- 2Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Manuel Scimeca
- 3Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Mario Marini
- 4Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Umberto Tarantino
- 1Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lello Zolla
- 2Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Massimo Coletta
- 1Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
32
|
Taylor ER. If technological intelligent extraterrestrials exist, what biological traits are de rigueur. LIFE SCIENCES IN SPACE RESEARCH 2018; 17:15-22. [PMID: 29753409 DOI: 10.1016/j.lssr.2018.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/08/2018] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
If extraterrestrials exist in the depths of cosmic space, and are capable of interstellar communications, even space flight, there is no requirement that they be humanoid in form. However, certain humanoid capabilities would be advantageous for tool fashioning and critical to operating space craft as well as functioning under the disparate extreme conditions under which they may be forced to operate. They would have to be "gas breathing". The reasonable assumption that life based upon the same elements as Earth life requiring water stems from the unique properties of water that no other similar low molecular weight nonmetal hydride offers. Only water offers the diversity of chemical properties and reactivity, including the existence of the three common physical states within a limited temperature range of service to life, avoiding the issues presented by any alternatives. They must, like us, possess a large, abstract-thinking brain, and probably possess at least all the fundamental senses that humankind possess. They would also be carbon-based life, using oxygen as the electron sink of their biochemistry for the reasons considered. They most likely are homeothermic as us, though they may not necessarily be mammalian as we are. Their biochemistry could differ some from ours, perhaps presenting contact hazards for both species as discussed.
Collapse
Affiliation(s)
- E R Taylor
- Department of Chemistry, University of Louisiana at Lafayette, POB 44370, Lafayette, LA 70504, United States.
| |
Collapse
|
33
|
Kopp S, Sahana J, Islam T, Petersen AG, Bauer J, Corydon TJ, Schulz H, Saar K, Huebner N, Slumstrup L, Riwaldt S, Wehland M, Infanger M, Luetzenberg R, Grimm D. The role of NFκB in spheroid formation of human breast cancer cells cultured on the Random Positioning Machine. Sci Rep 2018; 8:921. [PMID: 29343717 PMCID: PMC5772637 DOI: 10.1038/s41598-017-18556-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022] Open
Abstract
Human MCF-7 breast cancer cells were exposed to a Random Positioning Machine (RPM). After 24 hours (h) the cells grew either adherently within a monolayer (AD) or within multicellular spheroids (MCS). AD and MCS populations were separately harvested, their cellular differences were determined performing qPCR on genes, which were differently expressed in AD and MCS cells. Gene array technology was applied to detect RPM-sensitive genes in MCF-7 cells after 24 h. Furthermore, the capability to form multicellular spheroids in vitro was compared with the intracellular distribution of NF-kappaB (NFκB) p65. NFκB was equally distributed in static control cells, but predominantly localized in the cytoplasm in AD cells and nucleus in MCS cells exposed to the RPM. Gene array analyses revealed a more than 2-fold change of only 23 genes including some whose products are affected by oxygen levels or regulate glycolysis. Significant upregulations of the mRNAs of enzymes degrading heme, of ANXA1, ANXA2, CTGF, CAV2 and ICAM1, as well as of FAS, Casp8, BAX, p53, CYC1 and PARP1 were observed in MCS cells as compared with 1g-control and AD cells. An interaction analysis of 47 investigated genes suggested that HMOX-1 and NFκB variants are activated, when multicellular spheroids are formed.
Collapse
Affiliation(s)
- Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120, Magdeburg, Germany
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark
| | - Tawhidul Islam
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark
| | - Asbjørn Graver Petersen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark
| | - Johann Bauer
- Max-Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark.,Department of Ophthalmology, Aarhus University Hospital, DK-8000, Aarhus C, Denmark
| | - Herbert Schulz
- Cologne Center for Genomics, University of Cologne, D-50931, Cologne, Germany
| | - Kathrin Saar
- Max-Delbrück-Center for Molecular Medicine, D-13092, Berlin-Buch, Germany
| | - Norbert Huebner
- Max-Delbrück-Center for Molecular Medicine, D-13092, Berlin-Buch, Germany
| | - Lasse Slumstrup
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark
| | - Stefan Riwaldt
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120, Magdeburg, Germany
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120, Magdeburg, Germany
| | - Ronald Luetzenberg
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120, Magdeburg, Germany
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120, Magdeburg, Germany. .,Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
34
|
Michaletti A, Gioia M, Tarantino U, Zolla L. Effects of microgravity on osteoblast mitochondria: a proteomic and metabolomics profile. Sci Rep 2017; 7:15376. [PMID: 29133864 PMCID: PMC5684136 DOI: 10.1038/s41598-017-15612-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/30/2017] [Indexed: 01/21/2023] Open
Abstract
The response of human primary osteoblasts exposed to simulated microgravity has been investigated and analysis of metabolomic and proteomic profiles demonstrated a prominent dysregulation of mitochondrion homeostasis. Gravitational unloading treatment induced a decrease in mitochondrial proteins, mainly affecting efficiency of the respiratory chain. Metabolomic analysis revealed that microgravity influenced several metabolic pathways; stimulating glycolysis and the pentose phosphate pathways, while the Krebs cycle was interrupted at succinate-fumarate transformation. Interestingly, proteomic analysis revealed that Complex II of the mitochondrial respiratory chain, which catalyses the biotransformation of this step, was under-represented by 50%. Accordingly, down-regulation of quinones 9 and 10 was measured. Complex III resulted in up-regulation by 60%, while Complex IV was down-regulated by 14%, accompanied by a reduction in proton transport synthesis of ATP. Finally, microgravity treatment induced an oxidative stress response, indicated by significant decreases in oxidised glutathione and antioxidant enzymes. Decrease in malate dehydrogenase induced a reverse in the malate-aspartate shuttle, contributing to dysregulation of ATP synthesis. Beta-oxidation of fatty acids was inhibited, promoting triglyceride production along with a reduction in the glycerol shuttle. Taken together, our findings suggest that microgravity may suppress bone cell functions, impairing mitochondrial energy potential and the energy state of the cell.
Collapse
Affiliation(s)
- Anna Michaletti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Magda Gioia
- Department of Clinical Medicine and Translational Science, University of Rome Tor Vergata, Rome, Italy
| | - Umberto Tarantino
- Department of Clinical Medicine and Translational Science, University of Rome Tor Vergata, Rome, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| |
Collapse
|
35
|
Xue L, Li Y, Chen J. Duration of simulated microgravity affects the differentiation of mesenchymal stem cells. Mol Med Rep 2017; 15:3011-3018. [PMID: 28339035 PMCID: PMC5428749 DOI: 10.3892/mmr.2017.6357] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/09/2017] [Indexed: 02/07/2023] Open
Abstract
Previous evidence has suggested that physical microenvironments and mechanical stresses, independent of soluble factors, influence mesenchymal stem cell (MSC) fate. In the present study, simulated microgravity (SMG) was demonstrated to regulate the differentiation of mesenchymal stem cells. This may be a novel strategy for tissue engineering and regenerative medicine. Rat MSCs were cultured for 72 h or 10 days in either normal gravity or a clinostat to model microgravity, followed with culture in diverse differential media. A short period of stimulation (72 h) promoted MSCs to undergo endothelial, neuronal and adipogenic differentiation. In comparison, extended microgravity (10 days) promoted MSCs to differentiate into osteoblasts. A short period of exposure to SMG significantly decreased ras homolog family member A (RhoA) activity. However, RhoA activity significantly increased following prolonged exposure to SMG. When RhoA activity was inhibited, the effects of prolonged exposure to SMG were reversed. These results demonstrated that the duration of SMG regulates the differentiation fate of MSCs via the RhoA‑associated pathway.
Collapse
Affiliation(s)
- Li Xue
- Department of Urology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710014, P.R. China
| | - Yaohui Li
- Department of Pneumology, Traditional Chinese Medicine Hospital of Shaanxi, Xi'an, Shaanxi 710014, P.R. China
| | - Jun Chen
- Department of Encephalopathy, Traditional Chinese Medicine Hospital of Shaanxi, Xi'an, Shaanxi 710014, P.R. China
| |
Collapse
|
36
|
Kupriyanova MS, Ogneva IV. Analysis of the expression levels of genes that encode cytoskeletal proteins in Drosophila melanogaster larvae during micro- and hypergravity effect simulations of different durations. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Indo HP, Majima HJ, Terada M, Suenaga S, Tomita K, Yamada S, Higashibata A, Ishioka N, Kanekura T, Nonaka I, Hawkins CL, Davies MJ, Clair DKS, Mukai C. Changes in mitochondrial homeostasis and redox status in astronauts following long stays in space. Sci Rep 2016; 6:39015. [PMID: 27982062 PMCID: PMC5159838 DOI: 10.1038/srep39015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 11/17/2016] [Indexed: 11/26/2022] Open
Abstract
The effects of long-term exposure to extreme space conditions on astronauts were investigated by analyzing hair samples from ten astronauts who had spent six months on the International Space Station (ISS). Two samples were collected before, during and after their stays in the ISS; hereafter, referred to as Preflight, Inflight and Postflight, respectively. The ratios of mitochondrial (mt) to nuclear (n) DNA and mtRNA to nRNA were analyzed via quantitative PCR. The combined data of Preflight, Inflight and Postflight show a significant reduction in the mtDNA/nDNA in Inflight, and significant reductions in the mtRNA/nRNA ratios in both the Inflight and Postflight samples. The mtRNA/mtDNA ratios were relatively constant, except in the Postflight samples. Using the same samples, the expression of redox and signal transduction related genes, MnSOD, CuZnSOD, Nrf2, Keap1, GPx4 and Catalase was also examined. The results of the combined data from Preflight, Inflight and Postflight show a significant decrease in the expression of all of the redox-related genes in the samples collected Postflight, with the exception of Catalase, which show no change. This decreased expression may contribute to increased oxidative stress Inflight resulting in the mitochondrial damage that is apparent Postflight.
Collapse
Affiliation(s)
- Hiroko P Indo
- Department of Oncology and Space Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan
| | - Hideyuki J Majima
- Department of Oncology and Space Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan
| | - Masahiro Terada
- Divison of Aerospace Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan.,Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki 305-8505, Japan.,Space Biosciences Division, NASA Ames Research Center, Moffett Field, California 94035, USA
| | - Shigeaki Suenaga
- Department of Oncology and Space Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan
| | - Kazuo Tomita
- Department of Oncology and Space Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan
| | - Shin Yamada
- Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki 305-8505, Japan
| | - Akira Higashibata
- Department of Oncology and Space Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan.,Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki 305-8505, Japan
| | - Noriaki Ishioka
- Department of Oncology and Space Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan.,Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki 305-8505, Japan.,Institute of Space and Astronautical Science, Sagamihara, Kanagawa 252-5210, Japan.,Department of Space and Astronautical Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Sagamihara, Kanagawa 252-5210, Japan
| | - Takuro Kanekura
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan
| | - Ikuya Nonaka
- National Center Hospital for Mental Nervous and Muscular Disorders, Kodaira, Tokyo 187-8551, Japan
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, 7 Eliza Street, Newtown, Sydney, NSW 2042, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Daret K St Clair
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | - Chiaki Mukai
- Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki 305-8505, Japan.,Tokyo University of Science, Shinjuku, Tokyo 162-0825, Japan
| |
Collapse
|
38
|
Terada M, Seki M, Takahashi R, Yamada S, Higashibata A, Majima HJ, Sudoh M, Mukai C, Ishioka N. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station. PLoS One 2016; 11:e0150801. [PMID: 27029003 PMCID: PMC4814050 DOI: 10.1371/journal.pone.0150801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/19/2016] [Indexed: 11/24/2022] Open
Abstract
Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles.
Collapse
Affiliation(s)
- Masahiro Terada
- Divison of Aerospace Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki, Japan
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, United States of America
- * E-mail:
| | - Masaya Seki
- Advanced Engineering Services Co., Ltd., Takezono, Tsukuba City, Ibaraki, Japan
| | - Rika Takahashi
- Advanced Engineering Services Co., Ltd., Takezono, Tsukuba City, Ibaraki, Japan
| | - Shin Yamada
- Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki, Japan
| | - Akira Higashibata
- Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki, Japan
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, Japan
| | - Hideyuki J. Majima
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, Japan
| | - Masamichi Sudoh
- Divison of Aerospace Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki, Japan
| | - Chiaki Mukai
- Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki, Japan
| | - Noriaki Ishioka
- Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki, Japan
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, Japan
- Institute of Space and Astronautical Science, Sagamihara, Kanagawa, Japan
- Department of Space and Astronautical Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Sagamihara, Kanagawa, Japan
| |
Collapse
|
39
|
Higashibata A, Hashizume T, Nemoto K, Higashitani N, Etheridge T, Mori C, Harada S, Sugimoto T, Szewczyk NJ, Baba SA, Mogami Y, Fukui K, Higashitani A. Microgravity elicits reproducible alterations in cytoskeletal and metabolic gene and protein expression in space-flown Caenorhabditis elegans. NPJ Microgravity 2016; 2:15022. [PMID: 28725720 PMCID: PMC5515518 DOI: 10.1038/npjmgrav.2015.22] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/29/2015] [Accepted: 11/17/2015] [Indexed: 11/09/2022] Open
Abstract
Although muscle atrophy is a serious problem during spaceflight, little is known about the sequence of molecular events leading to atrophy in response to microgravity. We carried out a spaceflight experiment using Caenorhabditis elegans onboard the Japanese Experiment Module of the International Space Station. Worms were synchronously cultured in liquid media with bacterial food for 4 days under microgravity or on a 1-G centrifuge. Worms were visually observed for health and movement and then frozen. Upon return, we analyzed global gene and protein expression using DNA microarrays and mass spectrometry. Body length and fat accumulation were also analyzed. We found that in worms grown from the L1 larval stage to adulthood under microgravity, both gene and protein expression levels for muscular thick filaments, cytoskeletal elements, and mitochondrial metabolic enzymes decreased relative to parallel cultures on the 1-G centrifuge (95% confidence interval (P⩽0.05)). In addition, altered movement and decreased body length and fat accumulation were observed in the microgravity-cultured worms relative to the 1-G cultured worms. These results suggest protein expression changes that may account for the progressive muscular atrophy observed in astronauts.
Collapse
Affiliation(s)
- Akira Higashibata
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Tsukuba, Japan.,Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Toko Hashizume
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Advanced Engineering Services Co., Ltd., Tsukuba, Japan
| | - Kanako Nemoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Timothy Etheridge
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby, UK.,College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Chihiro Mori
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shunsuke Harada
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomoko Sugimoto
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Tsukuba, Japan
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby, UK
| | - Shoji A Baba
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Yoshihiro Mogami
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | | | | |
Collapse
|
40
|
Microgravity promotes osteoclast activity in medaka fish reared at the international space station. Sci Rep 2015; 5:14172. [PMID: 26387549 PMCID: PMC4585676 DOI: 10.1038/srep14172] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/19/2015] [Indexed: 12/28/2022] Open
Abstract
The bone mineral density (BMD) of astronauts decreases specifically in the weight-bearing sites during spaceflight. It seems that osteoclasts would be affected by a change in gravity; however, the molecular mechanism involved remains unclear. Here, we show that the mineral density of the pharyngeal bone and teeth region of TRAP-GFP/Osterix-DsRed double transgenic medaka fish was decreased and that osteoclasts were activated when the fish were reared for 56 days at the international space station. In addition, electron microscopy observation revealed a low degree of roundness of mitochondria in osteoclasts. In the whole transcriptome analysis, fkbp5 and ddit4 genes were strongly up-regulated in the flight group. The fish were filmed for abnormal behavior; and, interestingly, the medaka tended to become motionless in the late stage of exposure. These results reveal impaired physiological function with a change in mechanical force under microgravity, which impairment was accompanied by osteoclast activation.
Collapse
|
41
|
|
42
|
Vidyasekar P, Shyamsunder P, Arun R, Santhakumar R, Kapadia NK, Kumar R, Verma RS. Genome Wide Expression Profiling of Cancer Cell Lines Cultured in Microgravity Reveals Significant Dysregulation of Cell Cycle and MicroRNA Gene Networks. PLoS One 2015; 10:e0135958. [PMID: 26295583 PMCID: PMC4546578 DOI: 10.1371/journal.pone.0135958] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/28/2015] [Indexed: 12/20/2022] Open
Abstract
Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated) and 2542 (downregulated) genes (>2 fold) in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated) and 444 (downregulated) genes (>2 fold) under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2.
Collapse
Affiliation(s)
- Prasanna Vidyasekar
- Stem cell and Molecular Biology laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Pavithra Shyamsunder
- Stem cell and Molecular Biology laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Rajpranap Arun
- Stem cell and Molecular Biology laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Rajalakshmi Santhakumar
- Stem cell and Molecular Biology laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Nand Kishore Kapadia
- Department of cardiothoracic Surgery, Global Hospital, Perumbakkam, Chennai, India
| | - Ravi Kumar
- Department of cardiology, Fortis Malar Hospital, Adyar, Chennai, India
| | - Rama Shanker Verma
- Stem cell and Molecular Biology laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
- * E-mail:
| |
Collapse
|
43
|
Indo HP, Tomiyoshi T, Suenaga S, Tomita K, Suzuki H, Masuda D, Terada M, Ishioka N, Gusev O, Cornette R, Okuda T, Mukai C, Majima HJ. MnSOD downregulation induced by extremely low 0.1 mGy single and fractionated X-rays and microgravity treatment in human neuroblastoma cell line, NB-1. J Clin Biochem Nutr 2015; 57:98-104. [PMID: 26388666 PMCID: PMC4566025 DOI: 10.3164/jcbn.15-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/16/2015] [Indexed: 11/22/2022] Open
Abstract
A human neuroblastoma cell line, NB-1, was treated with 24 h of microgravity simulation by clinostat, or irradiated with extremely small X-ray doses of 0.1 or 1.0 mGy using single and 10 times fractionation regimes with 1 and 2 h time-intervals. A quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) examination was performed for apoptosis related factors (BAX, CYTC, APAF1, VDAC1–3, CASP3, CASP8, CASP9 P53, AIF, ANT1 and 2, BCL2, MnSOD, autophagy related BECN and necrosis related CYP-40. The qRT-PCR results revealed that microgravity did not result in significant changes except for a upregulation of proapoptotic VDAC2, and downregulations of proapoptotic CASP9 and antiapoptotic MnSOD. After 0.1 mGy fractionation irradiation, there was increased expression of proapoptotic APAF1 and downregulation of proapoptotic CYTC, VDAC2, VDAC3, CASP8, AIF, ANT1, and ANT2, as well as an increase in expression of antiapoptotic BCL2. There was also a decrease in MnSOD expression with 0.1 mGy fractionation irradiation. These results suggest that microgravity and low-dose radiation may decrease apoptosis but may potentially increase oxidative stress.
Collapse
Affiliation(s)
- Hiroko P Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Tsukasa Tomiyoshi
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Shigeaki Suenaga
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Kazuo Tomita
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Hiromi Suzuki
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan ; Life Science Research Group, Department of Science and Applications, Japan Space Forum, 3-2-1 Surugadai, Chiyoda, Tokyo 100-0004, Japan
| | - Daisuke Masuda
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan ; Utilization & Engineering Department, Japan Manned Space Systems Corporation, 2-1-6 Tsukuba, Ibaraki 305-0047, Japan
| | - Masahiro Terada
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan ; Space Biosciences Division, NASA Ames Research Center, Moffett Field, California 94035, USA
| | - Noriaki Ishioka
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan ; Department of Space Biology and Microgravity Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Oleg Gusev
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan ; Department of Space Biology and Microgravity Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan ; Department of Invertebrates Zoology and Functional Morphology, Institute of Fundamental Medicine and Biology, Kazan Federal University 420008, Kremevskaya str., 17 Kazan 420-008, Russia ; Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Richard Cornette
- Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Takashi Okuda
- Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Chiaki Mukai
- Center for Applied Space Medicine and Human Research, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Hideyuki J Majima
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan ; Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
44
|
Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:538786. [PMID: 25654110 PMCID: PMC4309248 DOI: 10.1155/2015/538786] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/22/2014] [Accepted: 10/09/2014] [Indexed: 01/03/2023]
Abstract
Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells.
Collapse
|
45
|
Grimm D, Pietsch J, Wehland M, Richter P, Strauch SM, Lebert M, Magnusson NE, Wise P, Bauer J. The impact of microgravity-based proteomics research. Expert Rev Proteomics 2014; 11:465-76. [DOI: 10.1586/14789450.2014.926221] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniela Grimm
- Institute of Biomedicine, Pharmacology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jessica Pietsch
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Peter Richter
- Department of Biology, Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Sebastian M Strauch
- Department of Biology, Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Michael Lebert
- Department of Biology, Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Nils Erik Magnusson
- Medical Research Laboratories, Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Petra Wise
- Hematology/Oncology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Johann Bauer
- Max-Planck Institute for Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
46
|
Morphological and Phenotypical Characteristics of Human Osteoblasts after Short-Term Space Mission. Bull Exp Biol Med 2014; 156:393-8. [DOI: 10.1007/s10517-014-2357-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Indexed: 12/28/2022]
|
47
|
Adrian A, Schoppmann K, Sromicki J, Brungs S, von der Wiesche M, Hock B, Kolanus W, Hemmersbach R, Ullrich O. The oxidative burst reaction in mammalian cells depends on gravity. Cell Commun Signal 2013; 11:98. [PMID: 24359439 PMCID: PMC3880029 DOI: 10.1186/1478-811x-11-98] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/13/2013] [Indexed: 01/03/2023] Open
Abstract
Gravity has been a constant force throughout the Earth’s evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in “functional weightlessness” were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function of the NADPH oxidase complex.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Oliver Ullrich
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| |
Collapse
|
48
|
Shin JY, Hong SH, Kang B, Minai-Tehrani A, Cho MH. Overexpression of beclin1 induced autophagy and apoptosis in lungs of K-rasLA1 mice. Lung Cancer 2013; 81:362-370. [PMID: 23790316 DOI: 10.1016/j.lungcan.2013.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/18/2013] [Accepted: 05/18/2013] [Indexed: 12/19/2022]
Abstract
Beclin1, as a key molecule in controlling autophagy pathway, can activate both cell survival and cell death pathway. As a role of autophagy in cancer progression remains controversial, introduction of beclin1 to the lungs of K-ras(LA1) mice was performed via inhalation. Prolonged autophagy activation was induced by repeated exposure of lentivirus-beclin1, total of 8 times (2 times/week, 4 weeks). By the time of sacrifice, lungs were collected and analyzed for the therapeutic efficacy. Total numbers of tumors on the surface and histopathological tumor progression were reduced in the lungs of K-ras(LA1) mice. Successful delivery of beclin1 induced autophagy and apoptosis in the target organ, which were confirmed by following features; increased autophagic vacuoles in the cytosol, increased number of mitochondria with decreased mitochondrial 12S RNA, and increased protein levels of mitochondria-related apoptosis. Markers for cell proliferation and angiogenesis, PCNA and VEGF, which used for prediction of cancer prognosis, were significantly reduced after introduction of beclin1. Taken together, the results indicate that autophagy regulating gene, beclin1, can be a potential target for lung cancer gene therapy.
Collapse
Affiliation(s)
- Ji Young Shin
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seong-Ho Hong
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Bitna Kang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Arash Minai-Tehrani
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea; Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270, Republic of Korea; Graduate Group of Tumor Biology, Seoul National University, Seoul 151-742, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea.
| |
Collapse
|
49
|
Tauber S, Hauschild S, Crescio C, Secchi C, Paulsen K, Pantaleo A, Saba A, Buttron I, Thiel CS, Cogoli A, Pippia P, Ullrich O. Signal transduction in primary human T lymphocytes in altered gravity - results of the MASER-12 suborbital space flight mission. Cell Commun Signal 2013; 11:32. [PMID: 23651740 PMCID: PMC3653714 DOI: 10.1186/1478-811x-11-32] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/18/2013] [Indexed: 01/03/2023] Open
Abstract
We investigated the influence of altered gravity on key proteins of T cell activation during the MASER-12 ballistic suborbital rocket mission of the European Space Agency (ESA) and the Swedish Space Cooperation (SSC) at ESRANGE Space Center (Kiruna, Sweden). We quantified components of the T cell receptor, the membrane proximal signaling, MAPK-signaling, IL-2R, histone modifications and the cytoskeleton in non-activated and in ConA/CD28-activated primary human T lymphocytes. The hypergravity phase during the launch resulted in a downregulation of the IL-2 and CD3 receptor and reduction of tyrosine phosphorylation, p44/42-MAPK phosphorylation and histone H3 acetylation, whereas LAT phosphorylation was increased. Compared to the baseline situation at the point of entry into the microgravity phase, CD3 and IL-2 receptor expression at the surface of non-activated T cells were reduced after 6 min microgravity. Importantly, p44/42-MAPK-phosphorylation was also reduced after 6 min microgravity compared to the 1g ground controls, but also in direct comparison between the in-flight μg and the 1g group. In activated T cells, the reduced CD3 and IL-2 receptor expression at the baseline situation recovered significantly during in-flight 1g conditions, but not during microgravity conditions. Beta-tubulin increased significantly after onset of microgravity until the end of the microgravity phase, but not in the in-flight 1g condition. This study suggests that key proteins of T cell signal modules are not severely disturbed in microgravity. Instead, it can be supposed that the strong T cell inhibiting signal occurs downstream from membrane proximal signaling, such as at the transcriptional level as described recently. However, the MASER-12 experiment could identify signal molecules, which are sensitive to altered gravity, and indicates that gravity is obviously not only a requirement for transcriptional processes as described before, but also for specific phosphorylation / dephosphorylation of signal molecules and surface receptor dynamics.
Collapse
Affiliation(s)
- Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Effects of Space Mission Factors on the Morphology and Function of Endothelial Cells. Bull Exp Biol Med 2013; 154:796-801. [DOI: 10.1007/s10517-013-2059-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|