1
|
Singh A, Shadangi S, Gupta PK, Rana S. Type 2 Diabetes Mellitus: A Comprehensive Review of Pathophysiology, Comorbidities, and Emerging Therapies. Compr Physiol 2025; 15:e70003. [PMID: 39980164 DOI: 10.1002/cph4.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Humans are perhaps evolutionarily engineered to get deeply addicted to sugar, as it not only provides energy but also helps in storing fats, which helps in survival during starvation. Additionally, sugars (glucose and fructose) stimulate the feel-good factor, as they trigger the secretion of serotonin and dopamine in the brain, associated with the reward sensation, uplifting the mood in general. However, when consumed in excess, it contributes to energy imbalance, weight gain, and obesity, leading to the onset of a complex metabolic disorder, generally referred to as diabetes. Type 2 diabetes mellitus (T2DM) is one of the most prevalent forms of diabetes, nearly affecting all age groups. T2DM is clinically diagnosed with a cardinal sign of chronic hyperglycemia (excessive sugar in the blood). Chronic hyperglycemia, coupled with dysfunctions of pancreatic β-cells, insulin resistance, and immune inflammation, further exacerbate the pathology of T2DM. Uncontrolled T2DM, a major public health concern, also contributes significantly toward the onset and progression of several micro- and macrovascular diseases, such as diabetic retinopathy, nephropathy, neuropathy, atherosclerosis, and cardiovascular diseases, including cancer. The current review discusses the epidemiology, causative factors, pathophysiology, and associated comorbidities, including the existing and emerging therapies related to T2DM. It also provides a future roadmap for alternative drug discovery for the management of T2DM.
Collapse
Affiliation(s)
- Aditi Singh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Sucharita Shadangi
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Makam AA, Sharma S, Nagle P, Sundaram NM, Prasad VM, Gandasi NR. tPA-GFP is a reliable probe for detecting compound exocytosis in human pancreatic β-cells. FASEB Bioadv 2025; 7:e1482. [PMID: 39917393 PMCID: PMC11795275 DOI: 10.1096/fba.2024-00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 02/09/2025] Open
Abstract
Pancreatic β-cells secrete insulin stored in large dense core vesicles (LDCV) by fusion of vesicle and plasma membrane during a process called insulin exocytosis. Insulin secretion is biphasic with a fast first phase and a sustained second phase. Previous studies have pointed out that exocytosis of insulin can occur via (1) single LDCVs fusing with the plasma membrane to release their content or (2) multiple vesicles are involved during a process called compound exocytosis. Compound exocytosis represents a specialized form of secretion in which vesicles undergo homotypic fusion either before (multi-vesicular exocytosis) or continuous fusion in a sequential manner from (sequential exocytosis) within the same site at the plasma membrane. We see that the number of multi-vesicles is few and not localized in the vicinity of the plasma membrane. Studying the kinetics of this process and correlating it with biphasic insulin secretion is not possible since there are no specific probes to detect them. It is challenging to identify compound exocytosis with probes that exist for simple exocytosis. To advance our understanding, we need a fluorescent probe that could detect secretory vesicles undergoing compound exocytosis and allow us to distinguish it from other modes of exocytosis. Here, we used two cargo proteins (NPY and tPA) labeled with different fluorescent proteins (mCherry GFP and eGFP) and employed total internal reflection fluorescence microscopy (TIRF-M) to capture distinct single-granule and multi-granular fusion events. We identified tPA-GFP as a better probe for studying compound exocytosis, as it can detect both simple and sequential exocytosis reliably. Using these probes, we have studied the kinetics of compound exocytosis in human β-cells. These observations, with additional experiments, may open a whole new field to study the impact of compound exocytosis on biphasic secretion of insulin. Identifying targets to increase the compound exocytosis process can help potentiate insulin secretion in diabetics.
Collapse
Affiliation(s)
- Aishwarya A. Makam
- Department of Developmental Biology and Genetics (DBG)Indian Institute of Science (IISc)BengaluruKarnatakaIndia
| | - Shruti Sharma
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruKarnatakaIndia
- Center for Infectious Disease ResearchIndian Institute of ScienceBengaluruKarnatakaIndia
| | - Prajwal Nagle
- Department of Developmental Biology and Genetics (DBG)Indian Institute of Science (IISc)BengaluruKarnatakaIndia
| | - Nandhini M. Sundaram
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruKarnatakaIndia
- Center for Infectious Disease ResearchIndian Institute of ScienceBengaluruKarnatakaIndia
| | - Vidya Mangala Prasad
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruKarnatakaIndia
- Center for Infectious Disease ResearchIndian Institute of ScienceBengaluruKarnatakaIndia
| | - Nikhil R. Gandasi
- Department of Developmental Biology and Genetics (DBG)Indian Institute of Science (IISc)BengaluruKarnatakaIndia
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
3
|
Tanaka Y, Farkhondeh A, Yang W, Ueno H, Noda M, Hirokawa N. Kinesin-1 mediates proper ER folding of the Ca V1.2 channel and maintains mouse glucose homeostasis. EMBO Rep 2024; 25:4777-4802. [PMID: 39322740 PMCID: PMC11549326 DOI: 10.1038/s44319-024-00246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells is a principal mechanism for systemic glucose homeostasis, of which regulatory mechanisms are still unclear. Here we show that kinesin molecular motor KIF5B is essential for GSIS through maintaining the voltage-gated calcium channel CaV1.2 levels, by facilitating an Hsp70-to-Hsp90 chaperone exchange to pass through the quality control in the endoplasmic reticulum (ER). Phenotypic analyses of KIF5B conditional knockout (cKO) mouse beta cells revealed significant abolishment of glucose-stimulated calcium transients, which altered the behaviors of insulin granules via abnormally stabilized cortical F-actin. KIF5B and Hsp90 colocalize to microdroplets on ER sheets, where CaV1.2 but not Kir6.2 is accumulated. In the absence of KIF5B, CaV1.2 fails to be transferred from Hsp70 to Hsp90 via STIP1, and is likely degraded via the proteasomal pathway. KIF5B and Hsc70 overexpression increased CaV1.2 expression via enhancing its chaperone binding. Thus, ER sheets may serve as the place of KIF5B- and Hsp90-dependent chaperone exchange, which predominantly facilitates CaV1.2 production in beta cells and properly enterprises GSIS against diabetes.
Collapse
Affiliation(s)
- Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Atena Farkhondeh
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Wenxing Yang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Hitoshi Ueno
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Mitsuhiko Noda
- Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, Chiba, 272-0827, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
- Department of Advanced Morphological Imaging, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
4
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
5
|
Graff SM, Nakhe AY, Dadi PK, Dickerson MT, Dobson JR, Zaborska KE, Ibsen CE, Butterworth RB, Vierra NC, Jacobson DA. TALK-1-mediated alterations of β-cell mitochondrial function and insulin secretion impair glucose homeostasis on a diabetogenic diet. Cell Rep 2024; 43:113673. [PMID: 38206814 PMCID: PMC10961926 DOI: 10.1016/j.celrep.2024.113673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 11/08/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024] Open
Abstract
Mitochondrial Ca2+ ([Ca2+]m) homeostasis is critical for β-cell function and becomes disrupted during the pathogenesis of diabetes. [Ca2+]m uptake is dependent on elevations in cytoplasmic Ca2+ ([Ca2+]c) and endoplasmic reticulum Ca2+ ([Ca2+]ER) release, both of which are regulated by the two-pore domain K+ channel TALK-1. Here, utilizing a novel β-cell TALK-1-knockout (β-TALK-1-KO) mouse model, we found that TALK-1 limited β-cell [Ca2+]m accumulation and ATP production. However, following exposure to a high-fat diet (HFD), ATP-linked respiration, glucose-stimulated oxygen consumption rate, and glucose-stimulated insulin secretion (GSIS) were increased in control but not TALK1-KO mice. Although β-TALK-1-KO animals showed similar GSIS before and after HFD treatment, these mice were protected from HFD-induced glucose intolerance. Collectively, these data identify that TALK-1 channel control of β-cell function reduces [Ca2+]m and suggest that metabolic remodeling in diabetes drives dysglycemia.
Collapse
Affiliation(s)
- Sarah M Graff
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacy and Pharmaceutical Sciences, Lipscomb University, Nashville, TN 37204, USA
| | - Arya Y Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jordyn R Dobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Karolina E Zaborska
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Chloe E Ibsen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Regan B Butterworth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Nicholas C Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
6
|
Rahman MM, Pathak A, Schueler KL, Alsharif H, Michl A, Alexander J, Kim JA, Bhatnagar S. Genetic ablation of synaptotagmin-9 alters tomosyn-1 function to increase insulin secretion from pancreatic β-cells improving glucose clearance. FASEB J 2023; 37:e23075. [PMID: 37432648 PMCID: PMC10348599 DOI: 10.1096/fj.202300291rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Stimulus-coupled insulin secretion from the pancreatic islet β-cells involves the fusion of insulin granules to the plasma membrane (PM) via SNARE complex formation-a cellular process key for maintaining whole-body glucose homeostasis. Less is known about the role of endogenous inhibitors of SNARE complexes in insulin secretion. We show that an insulin granule protein synaptotagmin-9 (Syt9) deletion in mice increased glucose clearance and plasma insulin levels without affecting insulin action compared to the control mice. Upon glucose stimulation, increased biphasic and static insulin secretion were observed from ex vivo islets due to Syt9 loss. Syt9 colocalizes and binds with tomosyn-1 and the PM syntaxin-1A (Stx1A); Stx1A is required for forming SNARE complexes. Syt9 knockdown reduced tomosyn-1 protein abundance via proteasomal degradation and binding of tomosyn-1 to Stx1A. Furthermore, Stx1A-SNARE complex formation was increased, implicating Syt9-tomosyn-1-Stx1A complex is inhibitory in insulin secretion. Rescuing tomosyn-1 blocked the Syt9-knockdown-mediated increases in insulin secretion. This shows that the inhibitory effects of Syt9 on insulin secretion are mediated by tomosyn-1. We report a molecular mechanism by which β-cells modulate their secretory capacity rendering insulin granules nonfusogenic by forming the Syt9-tomosyn-1-Stx1A complex. Altogether, Syt9 loss in β-cells decreases tomosyn-1 protein abundance, increasing the formation of Stx1A-SNARE complexes, insulin secretion, and glucose clearance. These outcomes differ from the previously published work that identified Syt9 has either a positive or no effect of Syt9 on insulin secretion. Future work using β-cell-specific deletion of Syt9 mice is key for establishing the role of Syt9 in insulin secretion.
Collapse
Affiliation(s)
- Md Mostafizur Rahman
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Asmita Pathak
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | | | - Haifa Alsharif
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Ava Michl
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Justin Alexander
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Jeong-A Kim
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Sushant Bhatnagar
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| |
Collapse
|
7
|
Al Kury LT. Modulatory Effect of Medicinal Plants and Their Active Constituents on ATP-Sensitive Potassium Channels (KATP) in Diabetes. Pharmaceuticals (Basel) 2023; 16:ph16040523. [PMID: 37111281 PMCID: PMC10142548 DOI: 10.3390/ph16040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Hyperglycemia, which is a chronic metabolic condition caused by either a defect in insulin secretion or insulin resistance, is a hallmark of diabetes mellitus (DM). Sustained hyperglycemia leads to the onset and development of many health complications. Despite the number of available antidiabetic medications on the market, there is still a need for novel treatment agents with increased efficacy and fewer adverse effects. Many medicinal plants offer a rich supply of bioactive compounds that have remarkable pharmacological effects with less toxicity and side effects. According to published evidence, natural antidiabetic substances influence pancreatic β-cell development and proliferation, inhibit pancreatic β-cell death, and directly increase insulin output. Pancreatic ATP-sensitive potassium channels play an essential role in coupling glucose metabolism to the secretion of insulin. Although much of the literature is available on the antidiabetic effects of medicinal plants, very limited studies discuss their direct action on pancreatic KATP. The aim of this review is to focus on the modulatory effects of antidiabetic medicinal plants and their active constituents on pancreatic KATP. The KATP channel should be regarded as a key therapeutic milestone in the treatment of diabetes. Therefore, continuous research into the interaction of medicinal plants with the KATP channel is crucial.
Collapse
Affiliation(s)
- Lina T Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| |
Collapse
|
8
|
He L, Hu X, Day DB, Yan M, Teng Y, Liu XL, Yan E, Xiang J, Qiu X, Mo J, Zhang Y, Zhang JJ, Gong J. The associations of nitrated polycyclic aromatic hydrocarbon exposures with plasma glucose and amino acids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117945. [PMID: 34426189 DOI: 10.1016/j.envpol.2021.117945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) have been widely studied for their mutagenic and carcinogenic effects. This study aims to investigate whether exposure to nitro-PAHs is associated with biomarkers of carbohydrate metabolism, an underlying risk factor for metabolic disorder. Early morning urine and blood samples were longitudinally collected two times with a four-week interval from 43 healthy adults. Five urinary amino-PAHs (1-aminonaphthalene, 2-aminonaphthalene, 9-aminophenanthrene, 2-aminofluorene, and 1-aminopyrene) were measured as biomarkers of nitro-PAH exposures. We measured plasma concentrations of glucose and six amino acids that can regulate insulin secretion, including aspartate (Asp), glutamate (Glu), glutamine (Gln), alanine (Ala), Arginine (Arg), and ornithine (Orn). We found that increasing concentrations of 9-aminophenanthrene were significantly associated with increasing glucose levels and with decreasing Asp, Glu, Ala, and Orn levels. We estimated that 26.4 %-43.8 % of the 9-aminophenanthrene-associated increase in glucose level was mediated by Asp, Glu, and Orn. These results suggest that exposure to certain nitro-PAHs affects glucose homeostasis, partly resulting from the depletion of insulin-stimulating amino acids (Asp, Glu, and Orn).
Collapse
Affiliation(s)
- Linchen He
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA; Global Health Institute, Duke University, Durham, NC, 27708, USA; Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xinyan Hu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Center for Environment and Health, Peking University, Beijing, 100871, China
| | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA, 98145, United States
| | - Meilin Yan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Center for Environment and Health, Peking University, Beijing, 100871, China
| | - Yanbo Teng
- Duke Kunshan University, Kunshan City, Jiangsu Province, 215316, China
| | - Xing Lucy Liu
- Global Health Institute, Duke University, Durham, NC, 27708, USA
| | - Erik Yan
- Global Health Institute, Duke University, Durham, NC, 27708, USA; Duke Kunshan University, Kunshan City, Jiangsu Province, 215316, China
| | - Jianbang Xiang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, United States
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Center for Environment and Health, Peking University, Beijing, 100871, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, 100084, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, 100084, China
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA; Global Health Institute, Duke University, Durham, NC, 27708, USA; Duke Kunshan University, Kunshan City, Jiangsu Province, 215316, China
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Center for Environment and Health, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Kilanowska A, Szkudelski T. Effects of inhibition of phosphodiesterase 3B in pancreatic islets on insulin secretion: a potential link with some stimulatory pathways. Arch Physiol Biochem 2021; 127:250-257. [PMID: 31240952 DOI: 10.1080/13813455.2019.1628071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Elevated intracellular cAMP concentrations potentiate insulin secretion from pancreatic β cells. Phosphodiesterase 3B (PDE3B) is highly expressed in these cells and plays a role in the regulation of insulin secretion. MATERIALS AND METHODS In this study, effects of amrinone, an inhibitor of PDE3B on insulin release from isolated pancreatic islets, were determined. RESULTS Exposure of islets to amrinone for 15, 30 and 90 min markedly increased secretion induced by 6.7 mM glucose. Amrinone enhanced also secretion stimulated by 6.7 mM glucose and DB-cAMP, an activator of PKA. It was also demonstrated that amrinone potentiated insulin secretion induced by 6.7 mM glucose in the combination with PMA (activator of PKC) or acetylcholine. However, the insulin-secretory response to glucose and glibenclamide was unchanged by amrinone. CONCLUSIONS These results indicate that amrinone is capable of increasing insulin secretion; however, its action is restricted.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, University of Zielona Gora, Zielona Gora, Poland
| | - Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
10
|
Hou G, Jin Y, Liu M, Wang C, Song G. UCP2–866G/A Polymorphism is Associated with Prediabetes and Type 2 Diabetes. Arch Med Res 2020; 51:556-563. [PMID: 32553458 DOI: 10.1016/j.arcmed.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/24/2020] [Accepted: 06/03/2020] [Indexed: 01/19/2023]
|
11
|
Ulusu NN, Gok M, Erman B, Turan B. Effects of Timolol Treatment on Pancreatic Antioxidant Enzymes in Streptozotocin-induced Diabetic Rats: An Experimental and Computational Study. J Med Biochem 2019; 38:306-316. [PMID: 31156341 PMCID: PMC6534949 DOI: 10.2478/jomb-2018-0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/18/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The study aimed to investigate whether timolol-treatment has a beneficial effect on pentose phosphate pathway enzyme activities such as glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGDH) enzyme activities and cAMP level in streptozotocin-induced diabetic rats in pancreatic tissues. METHODS Diabetes was induced by streptozotocin (STZ) in 3-month old male Wistar rats. The diabetic rats were treated with timolol (5 mg/kg body weight, for 12 weeks) while the control group received saline. Enzyme activities were determined in pancreas tissue. To support our results, we performed in silico calculations, using Protein Data Bank structures. RESULTS Timolol treatment of STZ-induced diabetic rats had no noteworthy effect on high blood-glucose levels. However, this treatment induced activities of G6PD and 6PGDH in diabetic rats. Timolol treatment significantly increased cAMP level in diabetic pancreatic tissue. We found that timolol cannot bind strongly to either G6PD or 6PGD, but there is a relatively higher binding affinity to adenylyl cyclase, responsible for cAMP production, serving as a regulatory signal via specific cAMP-binding proteins. CONCLUSIONS Our data point out that timolol treatment has beneficial effects on the antioxidant defence mechanism enzymes in the pancreas of STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Nuriye Nuray Ulusu
- Koc University, School of Medicine, Department of Medical Biochemistry, IstanbulTurkey
| | - Muslum Gok
- Hacettepe University, Faculty of Medicine, Department of Medical Biochemistry, AnkaraTurkey
| | - Burak Erman
- Koc University, School of Engineering, Department of Chemical and Biological Engineering, IstanbulTurkey
| | - Belma Turan
- Ankara University, Faculty of Medicine, Department of Biophysics, AnkaraTurkey
| |
Collapse
|
12
|
Lee T, Yun S, Jeong JH, Jung TW. Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation. Mol Cell Endocrinol 2019; 486:96-104. [PMID: 30853600 DOI: 10.1016/j.mce.2019.03.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 01/02/2023]
Abstract
Severe inflammation in the islets is observed in obese patients with type 2 diabetes. Inflammation in the islets is caused by obesity-induced serum free fatty acids. Asprosin is a fasting-induced adipokine, which contributes to hepatic glucose production. However, the effects of asprosin on inflammation and cellular dysfunction in pancreatic β-cells remain to be elucidated. Here, we demonstrated that treatment of mouse insulinoma MIN6 cells and human primary islets containing β-cells with palmitate increased asprosin expression and secretion. Treatment of MIN6 cells and human primary islets with palmitate increased phosphorylation of the inflammatory marker nuclear factor-kappa B (NFκB) and the release of pro-inflammatory cytokines including TNF and MCP-1 and decreased glucose-stimulated insulin secretion and cell viability. However, siRNA-mediated suppression of asprosin reversed these changes. Recombinant asprosin treatment of MIN6 cells and human primary islets augmented the inflammation response, cellular dysfunction, and apoptosis in a dose-dependent manner. Asprosin induced toll-like receptor (TLR) 4 expression and JNK phosphorylation. siRNA for TLR4 or JNK mitigated the effects of asprosin on inflammation and cellular dysfunction. These results suggest that palmitate-derived asprosin secretion from β-cells results in their inflammation and dysfunction through a TLR4/JNK-mediated pathway. This report suggests asprosin as a novel therapeutic target for the treatment of type 2 diabetes through preservation of β-cell function.
Collapse
Affiliation(s)
- Taeseung Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea; Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Subin Yun
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea.
| |
Collapse
|
13
|
Alkhalidy H, Wang Y, Liu D. Dietary Flavonoids in the Prevention of T2D: An Overview. Nutrients 2018; 10:nu10040438. [PMID: 29614722 PMCID: PMC5946223 DOI: 10.3390/nu10040438] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) is a progressive metabolic disease that is increasing in prevalence globally. It is well established that insulin resistance (IR) and a progressive decline in functional β-cell mass are hallmarks of developing T2D. Obesity is a leading pathogenic factor for developing IR. Constant IR will progress to T2D when β-cells are unable to secret adequate amounts of insulin to compensate for decreased insulin sensitivity. Recently, a considerable amount of research has been devoted to identifying naturally occurring anti-diabetic compounds that are abundant in certain types of foods. Flavonoids are a group of polyphenols that have drawn great interest for their various health benefits. Results from many clinical and animal studies demonstrate that dietary intake of flavonoids might be helpful in preventing T2D, although cellular and molecular mechanisms underlying these effects are still not completely understood. This review discusses our current understanding of the pathophysiology of T2D and highlights the potential anti-diabetic effects of flavonoids and mechanisms of their actions.
Collapse
Affiliation(s)
- Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA.
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Yao Wang
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA.
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
14
|
Iwaoka R, Kataoka K. Glucose regulates MafA transcription factor abundance and insulin gene expression by inhibiting AMP-activated protein kinase in pancreatic β-cells. J Biol Chem 2018; 293:3524-3534. [PMID: 29348175 DOI: 10.1074/jbc.m117.817932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/15/2018] [Indexed: 01/12/2023] Open
Abstract
Insulin mRNA expression in pancreatic islet β-cells is up-regulated by extracellular glucose concentration, but the underlying mechanism remains incompletely understood. MafA is a transcriptional activator specifically enriched in β-cells that binds to the insulin gene promoter. Its expression is transcriptionally and posttranscriptionally regulated by glucose. Moreover, AMP-activated protein kinase (AMPK), a regulator of cellular energy homeostasis, is inhibited by high glucose, and this inhibition is essential for the up-regulation of insulin gene expression and glucose-stimulated insulin secretion (GSIS). Here we mutagenized the insulin promoter and found that the MafA-binding element C1/RIPE3b is required for glucose- or AMPK-induced alterations in insulin gene promoter activity. Under high-glucose conditions, pharmacological activation of AMPK in isolated mouse islets or MIN6 cells by metformin or 5-aminoimidazole-4-carboxamide riboside decreased MafA protein levels and mRNA expression of insulin and GSIS-related genes (i.e. glut2 and sur1). Overexpression of constitutively active AMPK also reduced MafA and insulin expression. Conversely, pharmacological AMPK inhibition by dorsomorphin (compound C) or expression of a dominant-negative form of AMPK increased MafA and insulin expression under low-glucose conditions. However, AMPK activation or inhibition did not change the expression levels of the β-cell-enriched transcription factors Pdx1 and Beta2/NeuroD1. AMPK activation accelerated MafA protein degradation, which is not dependent on the proteasome. We also noted that MafA overexpression prevents metformin-induced decreases in insulin and GSIS-related gene expression. These findings indicate that high glucose concentrations inhibit AMPK, thereby increasing MafA protein levels and activating the insulin promoter.
Collapse
Affiliation(s)
- Ryo Iwaoka
- From the Laboratory of Molecular Medical Bioscience, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kohsuke Kataoka
- From the Laboratory of Molecular Medical Bioscience, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
15
|
Frank JA, Yushchenko DA, Fine NHF, Duca M, Citir M, Broichhagen J, Hodson DJ, Schultz C, Trauner D. Optical control of GPR40 signalling in pancreatic β-cells. Chem Sci 2017; 8:7604-7610. [PMID: 29568424 PMCID: PMC5848828 DOI: 10.1039/c7sc01475a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023] Open
Abstract
Fatty acids activate GPR40 and K+ channels to modulate β-cell function. Herein, we describe the design and synthesis of FAAzo-10, a light-controllable GPR40 agonist based on Gw-9508. FAAzo-10 is a potent GPR40 agonist in the trans-configuration and can be inactivated on isomerization to cis with UV-A light. Irradiation with blue light reverses this effect, allowing FAAzo-10 activity to be cycled ON and OFF with a high degree of spatiotemporal precision. In dissociated primary mouse β-cells, FAAzo-10 also inactivates voltage-activated and ATP-sensitive K+ channels, and allows us to control glucose-stimulated Ca2+ oscillations in whole islets with light. As such, FAAzo-10 is a useful tool to study the complex effects, with high specificity, which FA-derivatives such as Gw-9508 exert at multiple targets in mouse β-cells.
Collapse
Affiliation(s)
- James Allen Frank
- Department of Chemistry , Center for Integrated Protein Science , Ludwig Maximilians University Munich , Butenandtstraße 5-13 , 81377 Munich , Germany
| | - Dmytro A Yushchenko
- European Molecular Biology Laboratory (EMBL) , Cell Biology & Biophysics Unit , Meyerhofstraße 1 , 69117 Heidelberg , Germany .
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , Flemingovo namesti 2 , 16610 Prague 6 , Czech Republic
| | - Nicholas H F Fine
- Institute of Metabolism and Systems Research (IMSR) , University of Birmingham , Birmingham , B15 2TT , UK .
- Centre for Endocrinology, Diabetes and Metabolism , Birmingham Health Partners , Birmingham , B15 2TH , UK
- COMPARE University of Birmingham and University of Nottingham Midlands , UK
| | - Margherita Duca
- Department of Chemistry , Center for Integrated Protein Science , Ludwig Maximilians University Munich , Butenandtstraße 5-13 , 81377 Munich , Germany
- Department of Chemistry , University of Milan , Via Golgi 19 , 20133 , Milan , Italy
| | - Mevlut Citir
- European Molecular Biology Laboratory (EMBL) , Cell Biology & Biophysics Unit , Meyerhofstraße 1 , 69117 Heidelberg , Germany .
| | - Johannes Broichhagen
- Department of Chemistry , Center for Integrated Protein Science , Ludwig Maximilians University Munich , Butenandtstraße 5-13 , 81377 Munich , Germany
- Max-Planck Institute of Medical Research , Jahnstr. 29 , 69120 Heidelberg , Germany
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) , University of Birmingham , Birmingham , B15 2TT , UK .
- Centre for Endocrinology, Diabetes and Metabolism , Birmingham Health Partners , Birmingham , B15 2TH , UK
- COMPARE University of Birmingham and University of Nottingham Midlands , UK
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL) , Cell Biology & Biophysics Unit , Meyerhofstraße 1 , 69117 Heidelberg , Germany .
- Dept. of Physiology and Pharmacology , Oregon Health and Science University , Portland , OR 97237 , USA
| | - Dirk Trauner
- Department of Chemistry , Center for Integrated Protein Science , Ludwig Maximilians University Munich , Butenandtstraße 5-13 , 81377 Munich , Germany
- Department of Chemistry , New York University , 100 Washington Square East , New York , NY 10003-6699 , USA .
| |
Collapse
|
16
|
Gul A, Ateş Ö, Özer S, Kasap T, Ensari E, Demir O, Sönmezgöz E. Role of the Polymorphisms of Uncoupling Protein Genes in Childhood Obesity and Their Association with Obesity-Related Disturbances. Genet Test Mol Biomarkers 2017; 21:531-538. [PMID: 28704105 DOI: 10.1089/gtmb.2017.0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Obesity, one of the most common disorders observed in clinical practice, has been associated with energy metabolism-related protein genes such as uncoupling proteins (UCPs). Herein, we evaluated UCPs as candidate genes for obesity and its morbidities. METHODS A total of 268 obese and 185 nonobese children and adolescents were enrolled in this study. To determine dyslipidemia, hypertension, and insulin resistance, laboratory tests were derived from fasting blood samples. UCP1-3826 A/G, UCP2 exon 8 deletion/insertion (del/ins), and UCP3-55C/T variants were also genotyped, and the relationships among the polymorphisms of these UCPs and obesity morbidities were investigated. RESULTS The mean ages of the obese and control groups were 11.61 ± 2.83 and 10.74 ± 3.36 years, respectively. The respective genotypic frequencies of the AA, AG, and GG genotypes of UCP1 were 46.3%, 33.2%, and 20.5% in obese subjects and 46.5%, 42.2%, and 11.4% in the controls (p = 0.020). G alleles were more frequent in obese subjects with hypertriglyceridemia (42.9%; p = 0.048) than in those without, and the GG genotype presented an odds ratio for obesity of 2.02 (1.17-3.47; p = 0.010). The polymorphisms of UCP2 exon 8 del/ins and UCP3-55C/T did not influence obesity risk (p > 0.05). The I (ins) allele was associated with low HDL cholesterolemia (p = 0.023). CONCLUSION The GG genotype of the UCP1-3826 A/G polymorphism appears to contribute to the onset of childhood obesity in Turkish children. The GG genotype of UCP1, together with the del/del genotype of the UCP2 polymorphism, may increase the risk of obesity with synergistic effects. The ins allele of the UCP2 exon 8 del/ins polymorphism may contribute to low HDL cholesterolemia.
Collapse
Affiliation(s)
- Ali Gul
- 1 Department of Pediatrics, Gaziosmanpasa University School of Medicine , Tokat, Turkey
| | - Ömer Ateş
- 2 Department of Medical Biology and Genetics, Gaziosmanpasa University School of Medicine , Tokat, Turkey
| | - Samet Özer
- 1 Department of Pediatrics, Gaziosmanpasa University School of Medicine , Tokat, Turkey
| | - Tuba Kasap
- 1 Department of Pediatrics, Gaziosmanpasa University School of Medicine , Tokat, Turkey
| | - Emel Ensari
- 2 Department of Medical Biology and Genetics, Gaziosmanpasa University School of Medicine , Tokat, Turkey
| | - Osman Demir
- 3 Department of Biostatistics, Gaziosmanpasa University School of Medicine , Tokat, Turkey
| | - Ergün Sönmezgöz
- 1 Department of Pediatrics, Gaziosmanpasa University School of Medicine , Tokat, Turkey
| |
Collapse
|
17
|
Martinez-Sanchez A, Rutter GA, Latreille M. MiRNAs in β-Cell Development, Identity, and Disease. Front Genet 2017; 7:226. [PMID: 28123396 PMCID: PMC5225124 DOI: 10.3389/fgene.2016.00226] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/21/2016] [Indexed: 12/22/2022] Open
Abstract
Pancreatic β-cells regulate glucose metabolism by secreting insulin, which in turn stimulates the utilization or storage of the sugar by peripheral tissues. Insulin insufficiency and a prolonged period of insulin resistance are usually the core components of type 2 diabetes (T2D). Although, decreased insulin levels in T2D have long been attributed to a decrease in β-cell function and/or mass, this model has recently been refined with the recognition that a loss of β-cell “identity” and dedifferentiation also contribute to the decline in insulin production. MicroRNAs (miRNAs) are key regulatory molecules that display tissue-specific expression patterns and maintain the differentiated state of somatic cells. During the past few years, great strides have been made in understanding how miRNA circuits impact β-cell identity. Here, we review current knowledge on the role of miRNAs in regulating the acquisition of the β-cell fate during development and in maintaining mature β-cell identity and function during stress situations such as obesity, pregnancy, aging, or diabetes. We also discuss how miRNA function could be harnessed to improve our ability to generate β-cells for replacement therapy for T2D.
Collapse
Affiliation(s)
- Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London London, UK
| | - Mathieu Latreille
- Cellular Identity and Metabolism Group, MRC London Institute of Medical SciencesLondon, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
18
|
El Khattabi I, Sharma A. Proper activation of MafA is required for optimal differentiation and maturation of pancreatic β-cells. Best Pract Res Clin Endocrinol Metab 2015; 29:821-31. [PMID: 26696512 PMCID: PMC4690007 DOI: 10.1016/j.beem.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A key therapeutic approach for the treatment of Type 1 diabetes (T1D) is transplantation of functional islet β-cells. Despite recent advances in generating stem cell-derived glucose-responsive insulin(+) cells, their further maturation to fully functional adult β-cells still remains a daunting task. Conquering this hurdle will require a better understanding of the mechanisms driving maturation of embryonic insulin(+) cells into adult β-cells, and the implementation of that knowledge to improve current differentiation protocols. Here, we will review our current understanding of β-cell maturation, and discuss the contribution of key β-cell transcription factor MafA, to this process. The fundamental importance of MafA in regulating adult β-cell maturation and function indicates that enhancing MafA expression may improve the generation of definitive β-cells for transplantation. Additionally, we suggest that the temporal control of MafA induction at a specific stage of β-cell differentiation will be the next critical challenge for achieving optimum maturation of β-cells.
Collapse
Affiliation(s)
| | - Arun Sharma
- Cardiovascular and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, USA.
| |
Collapse
|
19
|
Sun J, Xu M, Ortsäter H, Lundeberg E, Juntti-Berggren L, Chen YQ, Haeggström JZ, Gudmundsson GH, Diana J, Agerberth B. Cathelicidins positively regulate pancreatic β-cell functions. FASEB J 2015; 30:884-94. [PMID: 26527065 DOI: 10.1096/fj.15-275826] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/19/2015] [Indexed: 12/18/2022]
Abstract
Cathelicidins are pleiotropic antimicrobial peptides largely described for innate antimicrobial defenses and, more recently, immunomodulation. They are shown to modulate a variety of immune or nonimmune host cell responses. However, how cathelicidins are expressed by β cells and modulate β-cell functions under steady-state or proinflammatory conditions are unknown. We find that cathelicidin-related antimicrobial peptide (CRAMP) is constitutively expressed by rat insulinoma β-cell clone INS-1 832/13. CRAMP expression is inducible by butyrate or phenylbutyric acid and its secretion triggered upon inflammatory challenges by IL-1β or LPS. CRAMP promotes β-cell survival in vitro via the epidermal growth factor receptor (EGFR) and by modulating expression of antiapoptotic Bcl-2 family proteins: p-Bad, Bcl-2, and Bcl-xL. Also via EGFR, CRAMP stimulates glucose-stimulated insulin secretion ex vivo by rat islets. A similar effect is observed in diabetes-prone nonobese diabetic (NOD) mice. Additional investigation under inflammatory conditions reveals that CRAMP modulates inflammatory responses and β-cell apoptosis, as measured by prostaglandin E2 production, cyclooxygenases (COXs), and caspase activation. Finally, CRAMP-deficient cnlp(-/-) mice exhibit defective insulin secretion, and administration of CRAMP to prediabetic NOD mice improves blood glucose clearance upon glucose challenge. Our finding suggests that cathelicidins positively regulate β-cell functions and may be potentially used for intervening β-cell dysfunction-associated diseases.
Collapse
Affiliation(s)
- Jia Sun
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Meng Xu
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Henrik Ortsäter
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Erik Lundeberg
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lisa Juntti-Berggren
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yong Q Chen
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jesper Z Haeggström
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gudmundur H Gudmundsson
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Julien Diana
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Birgitta Agerberth
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
20
|
Al-Shaqha WM, Khan M, Salam N, Azzi A, Chaudhary AA. Anti-diabetic potential of Catharanthus roseus Linn. and its effect on the glucose transport gene (GLUT-2 and GLUT-4) in streptozotocin induced diabetic wistar rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:379. [PMID: 26490765 PMCID: PMC4618145 DOI: 10.1186/s12906-015-0899-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Catharanthus roseus is an important Ayurvedic medication in traditional medicine. It is potentially used in countries like India, South Africa, China and Malaysia for the healing of diabetes mellitus. Although, the molecular mechanisms behind this effect are yet to be exclusively explored. Due to the great antidiabetic and hyperlipidemic potential of c. roseus, we hypothesized that the insulin mimetic effect of ethanolic extract of c. roseus might add to glucose uptake through improvement in the expression of genes of the glucose transporter (GLUT) family messenger RNA (mRNA) in liver. METHODS STZ-induced diabetic rats treated by ethanolic extract of c. roseus 100 mg/kg and 200 mg/kg; and one group treated with Metformin (100 mg/kg). After final administration of treatment of 4 weeks, blood samples were collected under fasting conditions, and the body weights (BWs) were measured. Total RNA from liver was extracted with the Qiagen RNEasy Micro kit (GERMANY) as described in the manufacturer's instructions. First-strand complementary DNA (cDNA) was synthesized at 40 °C by priming with oligo-dT12-18 (Invitrogen, USA) and using Super ScriptII reverse transcriptase according to the protocol provided by the manufacturer (Invitrogen, USA). Real-time polymerase chain reaction (PCR) amplifications for GLUT-4 (gene ID: 25139) were conducted using Light-Cycler 480 (Roche, USA) with the SyBr® I nucleic acid stain (Invitrogen, USA) according to the manufacturer's instructions. Polymerase chain reaction products of β-actin primer gene were used as an internal standard. RESULTS The proposed study was framed to look at the antidiabetic efficacy of ethanolic extract of c. roseus and an expression of GLUT-2 and GLUT-4 gene in streptozotocin induced diabetic wistar rats. The doses were administered orally at a rate of 100 and 200 mg/kg and detrain the glucose transport system in liver for 4 weeks. The observed results showed a good positive correlation between intracellular calcium and insulin release levels in isolated islets of Langerhans. The supplementation of ethanolic extract of c. roseus significantly amplified the expression of GLUT gene mRNA by Real Time PCR in liver of diabetic rats. CONCLUSIONS We conclude that the observed antidiabetic effect of c. roseus on STZ induced diabetes was a result of complex mechanisms of GLUT gene mRNA expression. The findings are very encouraging and greatly advocate its candidature for the design of a novel herbal drug to cure deadly diabetes.
Collapse
Affiliation(s)
- Waleed M Al-Shaqha
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317-7544, Kingdom of Saudi Arabia (KSA)
| | - Mohsin Khan
- Department of Energy and Environmental sciences, Chaudhary Devi Lal University, Sirsa, Haryana, 125055, India
| | - Nasir Salam
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317-7544, Kingdom of Saudi Arabia (KSA)
| | - Arezki Azzi
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317-7544, Kingdom of Saudi Arabia (KSA)
| | - Anis Ahmad Chaudhary
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317-7544, Kingdom of Saudi Arabia (KSA).
| |
Collapse
|
21
|
Dajani R, Li J, Wei Z, Glessner JT, Chang X, Cardinale CJ, Pellegrino R, Wang T, Hakooz N, Khader Y, Sheshani A, Zandaki D, Hakonarson H. CNV Analysis Associates AKNAD1 with Type-2 Diabetes in Jordan Subpopulations. Sci Rep 2015; 5:13391. [PMID: 26292654 PMCID: PMC4543987 DOI: 10.1038/srep13391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/15/2015] [Indexed: 12/27/2022] Open
Abstract
Previous studies have identified a number of single nucleotide polymorphisms (SNPs) associated with type-2 diabetes (T2D), but copy number variation (CNV) association has rarely been addressed, especially in populations from Jordan. To investigate CNV associations for T2D in populations in Jordan, we conducted a CNV analysis based on intensity data from genome-wide SNP array, including 34 T2D cases and 110 healthy controls of Chechen ethnicity, as well as 34 T2D cases and 106 healthy controls of Circassian ethnicity. We found a CNV region in protein tyrosine phosphatase receptor type D (PTPRD) with significant association with T2D. PTPRD has been reported to be associated with T2D in genome-wide association studies (GWAS). We additionally identified 16 CNV regions associated with T2D which overlapped with gene exons. Of particular interest, a CNV region in the gene AKNA Domain Containing 1 (AKNAD1) surpassed the experiment-wide significance threshold. Endoplasmic reticulum (ER)-related pathways were significantly enriched among genes which are predicted to be functionally associated with human or mouse homologues of AKNAD1. This is the first CNV analysis of a complex disease in populations of Jordan. We identified and experimentally validated a significant CNVR in gene AKNAD1 associated with T2D.
Collapse
Affiliation(s)
- Rana Dajani
- Department of Biology and Biotechnology, Hashemite University, Zarqa, Jordan.,Cell Therapy Center, University of Jordan, Amman, Jordan
| | - Jin Li
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Joseph T Glessner
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xiao Chang
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher J Cardinale
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Renata Pellegrino
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tiancheng Wang
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nancy Hakooz
- Department of Biopharmaceutics and Clinical Pharmacy Faculty of Pharmacy-University of Jordan, Amman, Jordan.,Faculty of pharmacy, Zarqa University, Zarqa, Jordan
| | - Yousef Khader
- Department of Community Medicine, Public Health and Family Medicine, Faculty of Medicine, Jordan University for Science and Technology, Irbid, Jordan
| | - Amina Sheshani
- Department of Biology and Biotechnology, Hashemite University, Zarqa, Jordan
| | - Duaa Zandaki
- Department of Biology and Biotechnology, Hashemite University, Zarqa, Jordan
| | - Hakon Hakonarson
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Swisa A, Granot Z, Tamarina N, Sayers S, Bardeesy N, Philipson L, Hodson DJ, Wikstrom JD, Rutter GA, Leibowitz G, Glaser B, Dor Y. Loss of Liver Kinase B1 (LKB1) in Beta Cells Enhances Glucose-stimulated Insulin Secretion Despite Profound Mitochondrial Defects. J Biol Chem 2015; 290:20934-20946. [PMID: 26139601 PMCID: PMC4543653 DOI: 10.1074/jbc.m115.639237] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor liver kinase B1 (LKB1) is an important regulator of pancreatic β cell biology. LKB1-dependent phosphorylation of distinct AMPK (adenosine monophosphate-activated protein kinase) family members determines proper β cell polarity and restricts β cell size, total β cell mass, and glucose-stimulated insulin secretion (GSIS). However, the full spectrum of LKB1 effects and the mechanisms involved in the secretory phenotype remain incompletely understood. We report here that in the absence of LKB1 in β cells, GSIS is dramatically and persistently improved. The enhancement is seen both in vivo and in vitro and cannot be explained by altered cell polarity, increased β cell number, or increased insulin content. Increased secretion does require membrane depolarization and calcium influx but appears to rely mostly on a distal step in the secretion pathway. Surprisingly, enhanced GSIS is seen despite profound defects in mitochondrial structure and function in LKB1-deficient β cells, expected to greatly diminish insulin secretion via the classic triggering pathway. Thus LKB1 is essential for mitochondrial homeostasis in β cells and in parallel is a powerful negative regulator of insulin secretion. This study shows that β cells can be manipulated to enhance GSIS to supra-normal levels even in the face of defective mitochondria and without deterioration over months.
Collapse
Affiliation(s)
- Avital Swisa
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Natalia Tamarina
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Sophie Sayers
- Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114
| | - Louis Philipson
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - David J Hodson
- Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Jakob D Wikstrom
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; Unit of Dermatology and Venereology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Gil Leibowitz
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
23
|
Tarasov AI, Rutter GA. Use of genetically encoded sensors to monitor cytosolic ATP/ADP ratio in living cells. Methods Enzymol 2015; 542:289-311. [PMID: 24862272 DOI: 10.1016/b978-0-12-416618-9.00015-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ATP is not only recognized as the universal energy "currency" in most cells but also plays a less well-known role as an intracellular and extracellular messenger. Here, we review novel approaches for measuring free ATP (or ATP/ADP ratios) in living mammalian cells by using genetically encoded sensors. We also discuss the key technical aspects of routine real-time ATP/ADP monitoring using as a model one of the last-generation fluorescent probes, a fusion protein commonly known as "Perceval." Finally, we present detailed guidelines for the simultaneous measurement of cytosolic ATP/ADP ratios and Ca(2+) concentrations alongside electrical parameters in individual pancreatic β cells, in which energy metabolism is tightly linked to plasma membrane excitability to control the secretion of insulin. With appropriate variations, this approach can be adapted to the study of cytosolic ATP/ADP ratios and Ca(2+) concentrations in malignant cells, two important aspects of oncometabolism.
Collapse
Affiliation(s)
- Andrei I Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Guy A Rutter
- Section of Cell Biology, Department of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
24
|
Hirschberg Jensen V, Affourtit C. Mitochondrial uncoupling protein-2 is not involved in palmitate-induced impairment of glucose-stimulated insulin secretion in INS-1E insulinoma cells and is not needed for the amplification of insulin release. Biochem Biophys Rep 2015; 1:8-15. [PMID: 26339685 PMCID: PMC4547158 DOI: 10.1016/j.bbrep.2015.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/17/2022] Open
Abstract
We have recently shown that overnight exposure of INS-1E insulinoma cells to palmitate in the presence of high glucose causes defects in both mitochondrial energy metabolism and glucose-stimulated insulin secretion (GSIS). Here we report experiments designed to test the involvement of mitochondrial uncoupling protein-2 (UCP2) in these glucolipotoxic effects. Measuring real-time oxygen consumption in siRNA-transfected INS-1E cells, we show that deleterious effects of palmitate on the glucose sensitivity of mitochondrial respiration and on the coupling efficiency of oxidative phosphorylation are independent of UCP2. Consistently, palmitate impairs GSIS to the same extent in cells with and without UCP2. Furthermore, we knocked down UCP2 in spheroid INS-1E cell clusters (pseudoislets) to test whether or not UCP2 regulates insulin secretion during prolonged glucose exposure. We demonstrate that there are no differences in temporal GSIS kinetics between perifused pseudoislets with and without UCP2. We conclude that UCP2 is not involved in palmitate-induced impairment of GSIS in INS-1E insulinoma cells and is not needed for the amplification of insulin release. These conclusions inform ongoing debate on the disputed biochemical and physiological functions of the beta cell UCP2. UCP2 does not engage with palmitate-induced mitochondrial dysfunction in INS-1E cells. UCP2 does not alter palmitate-induced impairment of insulin secretion in INS-1E cells. UCP2 is not needed for the amplification of insulin secretion in INS-1E pseudoislets.
Collapse
Affiliation(s)
- Verena Hirschberg Jensen
- School of Biomedical and Healthcare Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| | - Charles Affourtit
- School of Biomedical and Healthcare Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
25
|
Hajiaghaalipour F, Khalilpourfarshbafi M, Arya A. Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int J Biol Sci 2015; 11:508-24. [PMID: 25892959 PMCID: PMC4400383 DOI: 10.7150/ijbs.11241] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/08/2015] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic diseases characterized by hyperglycemia due to insufficient or inefficient insulin secretory response. This chronic disease is a global problem and there is a need for greater emphasis on therapeutic strategies in the health system. Phytochemicals such as flavonoids have recently attracted attention as source materials for the development of new antidiabetic drugs or alternative therapy for the management of diabetes and its related complications. The antidiabetic potential of flavonoids are mainly through their modulatory effects on glucose transporter by enhancing GLUT-2 expression in pancreatic β cells and increasing expression and promoting translocation of GLUT-4 via PI3K/AKT, CAP/Cb1/TC10 and AMPK pathways. This review highlights the recent findings on beneficial effects of flavonoids in the management of diabetes with particular emphasis on the investigations that explore the role of these compounds in modulating glucose transporter proteins at cellular and molecular level.
Collapse
Affiliation(s)
- Fatemeh Hajiaghaalipour
- 1. Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Manizheh Khalilpourfarshbafi
- 2. Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Aditya Arya
- 1. Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Broichhagen J, Frank JA, Johnston NR, Mitchell RK, Šmid K, Marchetti P, Bugliani M, Rutter GA, Trauner D, Hodson DJ. A red-shifted photochromic sulfonylurea for the remote control of pancreatic beta cell function. Chem Commun (Camb) 2015; 51:6018-21. [PMID: 25744824 DOI: 10.1039/c5cc01224d] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Azobenzene photoresponsive elements can be installed on sulfonylureas, yielding optical control over pancreatic beta cell function and insulin release. An obstacle to such photopharmacological approaches remains the use of ultraviolet-blue illumination. Herein, we synthesize and test a novel yellow light-activated sulfonylurea based on a heterocyclic azobenzene bearing a push-pull system.
Collapse
Affiliation(s)
- J Broichhagen
- Department of Chemistry and Center for Integrated Protein Science, LMU Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Novel insights into pancreatic β-cell glucolipotoxicity from real-time functional analysis of mitochondrial energy metabolism in INS-1E insulinoma cells. Biochem J 2015; 456:417-26. [PMID: 24099598 DOI: 10.1042/bj20131002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High circulating glucose and non-esterified (free) fatty acid levels can cause pancreatic β-cell failure. The molecular mechanisms of this β-cell glucolipotoxicity are yet to be established conclusively. In the present paper we report on the involvement of mitochondrial dysfunction in fatty-acid-induced β-cell failure. We have used state-of-the-art extracellular flux technology to functionally probe mitochondrial energy metabolism in intact INS-1E insulinoma cells in real-time. We show that 24-h palmitate exposure at high glucose attenuates the glucose-sensitivity of mitochondrial respiration and lowers coupling efficiency of glucose-stimulated oxidative phosphorylation. These mitochondrial defects coincide with an increased level of ROS (reactive oxygen species), impaired GSIS (glucose-stimulated insulin secretion) and decreased cell viability. Palmitate lowers absolute glucose-stimulated respiration coupled to ATP synthesis, but does not affect mitochondrial proton leak. Palmitate is not toxic when administered at low glucose unless fatty acid β-oxidation is inhibited. Palmitoleate, on the other hand, does not affect mitochondrial respiration, ROS levels, GSIS or cell viability. Although palmitoleate protects against the palmitate-induced ROS increase and cell viability loss, it does not protect against respiratory and insulin secretory defects. We conclude that mitochondrial dysfunction contributes to fatty-acid-induced GSIS impairment, and that glucolipotoxic cell viability and GSIS phenotypes are mechanistically distinct.
Collapse
|
28
|
Rutter GA, Hodson DJ. Beta cell connectivity in pancreatic islets: a type 2 diabetes target? Cell Mol Life Sci 2015; 72:453-467. [PMID: 25323131 PMCID: PMC11113448 DOI: 10.1007/s00018-014-1755-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/12/2022]
Abstract
Beta cell connectivity describes the phenomenon whereby the islet context improves insulin secretion by providing a three-dimensional platform for intercellular signaling processes. Thus, the precise flow of information through homotypically interconnected beta cells leads to the large-scale organization of hormone release activities, influencing cell responses to glucose and other secretagogues. Although a phenomenon whose importance has arguably been underappreciated in islet biology until recently, a growing number of studies suggest that such cell-cell communication is a fundamental property of this micro-organ. Hence, connectivity may plausibly be targeted by both environmental and genetic factors in type 2 diabetes mellitus (T2DM) to perturb normal beta cell function and insulin release. Here, we review the mechanisms that contribute to beta cell connectivity, discuss how these may fail during T2DM, and examine approaches to restore insulin secretion by boosting cell communication.
Collapse
Affiliation(s)
- Guy A Rutter
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - David J Hodson
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
29
|
Oelkrug R, Goetze N, Meyer CW, Jastroch M. Antioxidant properties of UCP1 are evolutionarily conserved in mammals and buffer mitochondrial reactive oxygen species. Free Radic Biol Med 2014; 77:210-6. [PMID: 25224037 DOI: 10.1016/j.freeradbiomed.2014.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/20/2022]
Abstract
Mitochondrial uncoupling reduces reactive oxygen species (ROS) production and appears to be important for cellular signaling/protection, making it a focus for the treatment of metabolic and age-related diseases. Whereas the physiological role of uncoupling protein 1 (UCP1) of brown adipose tissue is established for thermogenesis, the function of UCP1 in the reduction of ROS in cold-exposed animals is currently under debate. Here, we investigated the role of UCP1 in mitochondrial ROS handling in the Lesser hedgehog tenrec (Echinops telfairi), a unique protoendothermic Malagasy mammal with recently identified brown adipose tissue (BAT). We show that the reduction of ROS by UCP1 activity also occurs in BAT mitochondria of the tenrec, suggesting that the antioxidative role of UCP1 is an ancient mammalian trait. Our analysis shows that the quantity of UCP1 displays strong control over mitochondrial hydrogen peroxide release, whereas other factors, such as mild cold, nonshivering thermogenesis, oxidative capacity, and mitochondrial respiration, do not correlate. Furthermore, hydrogen peroxide release from recoupled BAT mitochondria was positively associated with mitochondrial membrane potential. These findings led to a model of UCP1 controlling mitochondrial ROS release and, presumably, being controlled by high membrane potential, as proposed in the canonical model of "mild uncoupling". Our study further promotes a conserved role for UCP1 in the prevention of oxidative stress, which was presumably established during evolution before UCP1 was physiologically integrated into nonshivering thermogenesis.
Collapse
Affiliation(s)
- Rebecca Oelkrug
- Department of Animal Physiology, Faculty of Biology, Philipps-Universität, 35043 Marburg, Germany
| | - Nadja Goetze
- Department of Animal Physiology, Faculty of Biology, Philipps-Universität, 35043 Marburg, Germany
| | - Carola W Meyer
- Department of Animal Physiology, Faculty of Biology, Philipps-Universität, 35043 Marburg, Germany
| | - Martin Jastroch
- Department of Animal Physiology, Faculty of Biology, Philipps-Universität, 35043 Marburg, Germany.
| |
Collapse
|
30
|
Kone M, Pullen TJ, Sun G, Ibberson M, Martinez-Sanchez A, Sayers S, Nguyen-Tu MS, Kantor C, Swisa A, Dor Y, Gorman T, Ferrer J, Thorens B, Reimann F, Gribble F, McGinty JA, Chen L, French PM, Birzele F, Hildebrandt T, Uphues I, Rutter GA. LKB1 and AMPK differentially regulate pancreatic β-cell identity. FASEB J 2014; 28:4972-85. [PMID: 25070369 PMCID: PMC4377859 DOI: 10.1096/fj.14-257667] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/14/2014] [Indexed: 12/15/2022]
Abstract
Fully differentiated pancreatic β cells are essential for normal glucose homeostasis in mammals. Dedifferentiation of these cells has been suggested to occur in type 2 diabetes, impairing insulin production. Since chronic fuel excess ("glucotoxicity") is implicated in this process, we sought here to identify the potential roles in β-cell identity of the tumor suppressor liver kinase B1 (LKB1/STK11) and the downstream fuel-sensitive kinase, AMP-activated protein kinase (AMPK). Highly β-cell-restricted deletion of each kinase in mice, using an Ins1-controlled Cre, was therefore followed by physiological, morphometric, and massive parallel sequencing analysis. Loss of LKB1 strikingly (2.0-12-fold, E<0.01) increased the expression of subsets of hepatic (Alb, Iyd, Elovl2) and neuronal (Nptx2, Dlgap2, Cartpt, Pdyn) genes, enhancing glutamate signaling. These changes were partially recapitulated by the loss of AMPK, which also up-regulated β-cell "disallowed" genes (Slc16a1, Ldha, Mgst1, Pdgfra) 1.8- to 3.4-fold (E < 0.01). Correspondingly, targeted promoters were enriched for neuronal (Zfp206; P = 1.3 × 10(-33)) and hypoxia-regulated (HIF1; P = 2.5 × 10(-16)) transcription factors. In summary, LKB1 and AMPK, through only partly overlapping mechanisms, maintain β-cell identity by suppressing alternate pathways leading to neuronal, hepatic, and other characteristics. Selective targeting of these enzymes may provide a new approach to maintaining β-cell function in some forms of diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Avital Swisa
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tracy Gorman
- AstraZeneca Diabetes and Obesity Drug Discovery, Alderley Edge, UK
| | - Jorge Ferrer
- Section of β-Cell Development, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, and
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Frank Reimann
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK and
| | - Fiona Gribble
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK and
| | - James A McGinty
- Photonics Group, Department of Physics, Imperial College London, London, UK
| | - Lingling Chen
- Photonics Group, Department of Physics, Imperial College London, London, UK
| | - Paul M French
- Photonics Group, Department of Physics, Imperial College London, London, UK
| | | | | | - Ingo Uphues
- Boehringer Ingelheim Pharma, Ingelheim, Germany
| | | |
Collapse
|
31
|
Mitchell RK, Mondragon A, Chen L, Mcginty JA, French PM, Ferrer J, Thorens B, Hodson DJ, Rutter GA, Da Silva Xavier G. Selective disruption of Tcf7l2 in the pancreatic β cell impairs secretory function and lowers β cell mass. Hum Mol Genet 2014; 24:1390-9. [PMID: 25355422 PMCID: PMC4321446 DOI: 10.1093/hmg/ddu553] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes (T2D) is characterized by β cell dysfunction and loss. Single nucleotide polymorphisms in the T-cell factor 7-like 2 (TCF7L2) gene, associated with T2D by genome-wide association studies, lead to impaired β cell function. While deletion of the homologous murine Tcf7l2 gene throughout the developing pancreas leads to impaired glucose tolerance, deletion in the β cell in adult mice reportedly has more modest effects. To inactivate Tcf7l2 highly selectively in β cells from the earliest expression of the Ins1 gene (∼E11.5) we have therefore used a Cre recombinase introduced at the Ins1 locus. Tcfl2fl/fl::Ins1Cre mice display impaired oral and intraperitoneal glucose tolerance by 8 and 16 weeks, respectively, and defective responses to the GLP-1 analogue liraglutide at 8 weeks. Tcfl2fl/fl::Ins1Cre islets displayed defective glucose- and GLP-1-stimulated insulin secretion and the expression of both the Ins2 (∼20%) and Glp1r (∼40%) genes were significantly reduced. Glucose- and GLP-1-induced intracellular free Ca2+ increases, and connectivity between individual β cells, were both lowered by Tcf7l2 deletion in islets from mice maintained on a high (60%) fat diet. Finally, analysis by optical projection tomography revealed ∼30% decrease in β cell mass in pancreata from Tcfl2fl/fl::Ins1Cre mice. These data demonstrate that Tcf7l2 plays a cell autonomous role in the control of β cell function and mass, serving as an important regulator of gene expression and islet cell coordination. The possible relevance of these findings for the action of TCF7L2 polymorphisms associated with Type 2 diabetes in man is discussed.
Collapse
Affiliation(s)
- Ryan K Mitchell
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine
| | - Angeles Mondragon
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine
| | | | | | | | - Jorge Ferrer
- Section of Genetics and Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Bernard Thorens
- Center for Integrative Genomics, Physiology Department, University of Lausanne, Genopode Building, CH-1015 Lausanne, Switzerland
| | - David J Hodson
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine
| | - Guy A Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine,
| | - Gabriela Da Silva Xavier
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine,
| |
Collapse
|
32
|
Optical control of insulin release using a photoswitchable sulfonylurea. Nat Commun 2014; 5:5116. [PMID: 25311795 PMCID: PMC4208094 DOI: 10.1038/ncomms6116] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 09/01/2014] [Indexed: 12/15/2022] Open
Abstract
Sulfonylureas are widely prescribed for the treatment of type 2 diabetes mellitus (T2DM). Through their actions on ATP-sensitive potassium (KATP) channels, sulfonylureas boost insulin release from the pancreatic beta cell mass to restore glucose homeostasis. A limitation of these compounds is the elevated risk of developing hypoglycemia and cardiovascular disease, both potentially fatal complications. Here, we describe the design and development of a photoswitchable sulfonylurea, JB253, which reversibly and repeatedly blocks KATP channel activity following exposure to violet-blue light. Using in situ imaging and hormone assays, we further show that JB253 bestows light sensitivity upon rodent and human pancreatic beta cell function. Thus, JB253 enables the optical control of insulin release and may offer a valuable research tool for the interrogation of KATP channel function in health and T2DM.
Collapse
|
33
|
Affiliation(s)
- Guy A Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital, London, U.K
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
34
|
Chaudhury A. Similarity in Transcytosis of nNOSα in Enteric Nerve Terminals and Beta Cells of Pancreatic Islet. Front Med (Lausanne) 2014; 1:20. [PMID: 25705631 PMCID: PMC4335384 DOI: 10.3389/fmed.2014.00020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Affiliation(s)
- Arun Chaudhury
- Division of Surgery, Brigham and Women's Hospital, Harvard Medical School and VA Boston HealthCare System , Boston, MA , USA
| |
Collapse
|
35
|
Soluble adenylyl cyclase in health and disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2584-92. [PMID: 25064591 DOI: 10.1016/j.bbadis.2014.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
The second messenger cAMP is integral for many physiological processes. Soluble adenylyl cyclase (sAC) was recently identified as a widely expressed intracellular source of cAMP in mammalian cells. sAC is evolutionary, structurally, and biochemically distinct from the G-protein-responsive transmembranous adenylyl cyclases (tmAC). The structure of the catalytic unit of sAC is similar to tmAC, but sAC does not contain transmembranous domains, allowing localizations independent of the membranous compartment. sAC activity is stimulated by HCO(3)(-), Ca²⁺ and is sensitive to physiologically relevant ATP fluctuations. sAC functions as a physiological sensor for carbon dioxide and bicarbonate, and therefore indirectly for pH. Here we review the physiological role of sAC in different human tissues with a major focus on the lung. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease, guest edited by J. Buck and L.R. Levin.
Collapse
|
36
|
Hodson DJ, Tarasov AI, Gimeno Brias S, Mitchell RK, Johnston NR, Haghollahi S, Cane MC, Bugliani M, Marchetti P, Bosco D, Johnson PR, Hughes SJ, Rutter GA. Incretin-modulated beta cell energetics in intact islets of Langerhans. Mol Endocrinol 2014; 28:860-71. [PMID: 24766140 PMCID: PMC4042069 DOI: 10.1210/me.2014-1038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
Incretins such as glucagon-like peptide 1 (GLP-1) are released from the gut and potentiate insulin release in a glucose-dependent manner. Although this action is generally believed to hinge on cAMP and protein kinase A signaling, up-regulated beta cell intermediary metabolism may also play a role in incretin-stimulated insulin secretion. By employing recombinant probes to image ATP dynamically in situ within intact mouse and human islets, we sought to clarify the role of GLP-1-modulated energetics in beta cell function. Using these techniques, we show that GLP-1 engages a metabolically coupled subnetwork of beta cells to increase cytosolic ATP levels, an action independent of prevailing energy status. We further demonstrate that the effects of GLP-1 are accompanied by alterations in the mitochondrial inner membrane potential and, at elevated glucose concentration, depend upon GLP-1 receptor-directed calcium influx through voltage-dependent calcium channels. Lastly, and highlighting critical species differences, beta cells within mouse but not human islets respond coordinately to incretin stimulation. Together, these findings suggest that GLP-1 alters beta cell intermediary metabolism to influence ATP dynamics in a species-specific manner, and this may contribute to divergent regulation of the incretin-axis in rodents and man.
Collapse
Affiliation(s)
| | | | - Silvia Gimeno Brias
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Ryan K. Mitchell
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Natalie R. Johnston
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Shahab Haghollahi
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Matthew C. Cane
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Marco Bugliani
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Piero Marchetti
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Domenico Bosco
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Paul R. Johnson
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Stephen J. Hughes
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
37
|
Locke JM, da Silva Xavier G, Dawe HR, Rutter GA, Harries LW. Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion. Diabetologia 2014; 57:122-8. [PMID: 24149837 PMCID: PMC3855472 DOI: 10.1007/s00125-013-3089-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/04/2013] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is characterised by progressive beta cell dysfunction, with changes in gene expression playing a crucial role in its development. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and therefore alterations in miRNA levels may be involved in the deterioration of beta cell function. METHODS Global TaqMan arrays and individual TaqMan assays were used to measure islet miRNA expression in discovery (n = 20) and replication (n = 20) cohorts from individuals with and without type 2 diabetes. The role of specific dysregulated miRNAs in regulating insulin secretion, content and apoptosis was subsequently investigated in primary rat islets and INS-1 cells. Identification of miRNA targets was assessed using luciferase assays and by measuring mRNA levels. RESULTS In the discovery and replication cohorts miR-187 expression was found to be significantly increased in islets from individuals with type 2 diabetes compared with matched controls. An inverse correlation between miR-187 levels and glucose-stimulated insulin secretion (GSIS) was observed in islets from normoglycaemic donors. This correlation paralleled findings in primary rat islets and INS-1 cells where overexpression of miR-187 markedly decreased GSIS without affecting insulin content or apoptotic index. Finally, the gene encoding homeodomain-interacting protein kinase-3 (HIPK3), a known regulator of insulin secretion, was identified as a direct target of miR-187 and displayed reduced expression in islets from individuals with type 2 diabetes. CONCLUSIONS/INTERPRETATION Our findings suggest a role for miR-187 in the blunting of insulin secretion, potentially involving regulation of HIPK3, which occurs during the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- J. M. Locke
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW UK
| | - G. da Silva Xavier
- Section of Cell Biology, Department of Medicine, Imperial College London, London, UK
| | - H. R. Dawe
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - G. A. Rutter
- Section of Cell Biology, Department of Medicine, Imperial College London, London, UK
| | - L. W. Harries
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW UK
| |
Collapse
|
38
|
Could lncRNAs contribute to β-cell identity and its loss in Type 2 diabetes? Biochem Soc Trans 2013; 41:797-801. [PMID: 23697940 DOI: 10.1042/bst20120355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The progression of Type 2 diabetes is accompanied by diminishing islet β-cell mass and function. It has been proposed that β-cells are lost not only through apoptosis, but also by dedifferentiating into progenitor-like cells. There is therefore much interest in the mechanisms which define and maintain β-cell identity. The advent of genome-wide analyses of chromatin modifications has highlighted the role of epigenetic factors in determining cell identity. There is also evidence from both human populations and animal models for an epigenetic component in susceptibility to Type 2 diabetes. The mechanisms responsible for defining the epigenetic landscape in individual cell types are poorly understood, but there is growing evidence of a role for lncRNAs (long non-coding RNAs) in this process. In the present paper, we discuss some of the mechanisms through which lncRNAs may contribute to β-cell identity and Type 2 diabetes risk.
Collapse
|
39
|
Tsui S, Dai W, Lu L. CCCTC-binding factor mediates effects of glucose on beta cell survival. Cell Prolif 2013; 47:28-37. [PMID: 24354619 DOI: 10.1111/cpr.12085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Pancreatic islet β-cell survival is paramount for regulation of insulin activity and for maintaining glucose homeostasis. Recently, Pax6 has been shown to be essential for many vital functions in β-cells, although many molecular mechanisms of its homeostasis in β-cells remain unclear. The present study investigates novel effects of glucose- and insulin-induced CCCTC-binding factor (CTCF) activity on Pax6 gene expression as well as for subsequent effects of insulin-activated signalling pathways, on β-cell proliferation. MATERIALS AND METHODS Pancreatic β-TC-1-6 cells were cultured in DMEM and stimulated with high concentrations of glucose (5-125 mm); cell viability was assessed by MTT assay. Effects of CTCF on Pax6 were evaluated in the high glucose-induced environment and CTCF/Erk-suppressed cells, by promoter reporter and western blotting analyses. RESULTS Increases in glucose and insulin concentrations upregulated CTCF and consequently downregulated Pax6 in β-cell survival and proliferation. Knocking-down CTCF directly affected Pax6 transcription through CTCF binding and blocked the response to glucose. Altered Erk activity mediated effects of CTCF on controlling Pax6 expression, which partially regulated β-cell proliferation. CONCLUSIONS CTCF functioned as a molecular mediator between insulin-induced upstream Erk signalling and Pax6 expression in these pancreatic β-cells. This pathway may contribute to regulation of β-cell survival and proliferation.
Collapse
Affiliation(s)
- S Tsui
- Department of Medicine, David Geffen School of Medicine University of California Los Angeles, Torrance, CA, 90502, USA
| | | | | |
Collapse
|
40
|
Rutter GA, Hodson DJ. Minireview: intraislet regulation of insulin secretion in humans. Mol Endocrinol 2013; 27:1984-95. [PMID: 24243488 PMCID: PMC5426601 DOI: 10.1210/me.2013-1278] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/23/2013] [Indexed: 12/25/2022] Open
Abstract
The higher organization of β-cells into spheroid structures termed islets of Langerhans is critical for the proper regulation of insulin secretion. Thus, rodent β-cells form a functional syncytium that integrates and propagates information encoded by secretagogues, producing a "gain-of-function" in hormone release through the generation of coordinated cell-cell activity. By contrast, human islets possess divergent topology, and this may have repercussions for the cell-cell communication pathways that mediate the population dynamics underlying the intraislet regulation of insulin secretion. This is pertinent for type 2 diabetes mellitus pathogenesis, and its study in rodent models, because environmental and genetic factors may converge on these processes in a species-specific manner to precipitate the defective insulin secretion associated with glucose intolerance. The aim of the present minireview is therefore to discuss the structural and functional underpinnings that influence insulin secretion from human islets, and the possibility that dyscoordination between individual β-cells may play an important role in some forms of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Guy A Rutter
- Section Cell Biology, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom. ; or Professor Guy A. Rutter, Section of Cell Biology, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom. E-mail:
| | | |
Collapse
|
41
|
Zippin JH, Chen Y, Straub SG, Hess KC, Diaz A, Lee D, Tso P, Holz GG, Sharp GWG, Levin LR, Buck J. CO2/HCO3(-)- and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor. J Biol Chem 2013; 288:33283-91. [PMID: 24100033 DOI: 10.1074/jbc.m113.510073] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In β cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo.
Collapse
|
42
|
Yadav D, Chaudhary AA, Garg V, Anwar MF, Rahman MMU, Jamil SS, Khan HA, Asif M. In vitro toxicity and antidiabetic activity of a newly developed polyherbal formulation (MAC-ST/001) in streptozotocin-induced diabetic Wistar rats. PROTOPLASMA 2013; 250:741-749. [PMID: 23053765 DOI: 10.1007/s00709-012-0458-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/18/2012] [Indexed: 06/01/2023]
Abstract
The present study was designed to investigate the hypoglycemic effect of an aqueous extract of MAC-ST/001 (a new polyherbal formulation) which was given once daily to rats at different doses. The animals were divided into diabetic and nondiabetic control groups. The duration of each experiment lasted from 1 week to 1 month, and the results were compared with that of the standard hypoglycemic drug glibenclamide (10 mg/kg), which was given once daily. In this study, biochemical and histopathological parameters were studied in streptozotacin (STZ) (single intraperitoneal injection of 55 mg/kg)-induced diabetic rats. The diabetic rats showed a significant (p < 0.05 and p < 0.01) decrease in their body weight and serum amylase with marked elevation in blood glucose, serum cholesterol, blood urea nitrogen, creatinine, alkaline phosphatase, and serum transaminases (AST and ALT) after 1 week till the 28th day of diabetes. Cytotoxicity of MAC-ST/001 formulation was also studied on C2C12, 3T3-L1, and HepG2 cells through MTT assay. Histological examination of the liver and pancreas of normal control, diabetic control, and drug-treated rats revealed significant results. Finally, it was concluded that administration of this MAC-ST/001 extract reversed most blood and tissue changes caused by STZ-induced diabetes in rats.
Collapse
Affiliation(s)
- Deepak Yadav
- Drug Standardization Lab, Department of Ilmul-Advia, F/O Medicine, Jamia Hamdard, New Delhi, 110062, India.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Pullen TJ, Rutter GA. When less is more: the forbidden fruits of gene repression in the adult β-cell. Diabetes Obes Metab 2013; 15:503-12. [PMID: 23121289 DOI: 10.1111/dom.12029] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/08/2012] [Accepted: 10/28/2012] [Indexed: 12/15/2022]
Abstract
Outside of the biological arena the term 'repression' often has a negative connotation. However, in the pancreatic β-cell a small group of genes, which are abundantly expressed in most if not all other mammalian tissues, are highly selectively repressed, with likely functional consequences. The two 'founder' members of this group, lactate dehydrogenase A (Ldha) and monocarboxylate transporter-1 (MCT-1/Slc16a1), are inactivated by multiple mechanisms including histone modifications and microRNA-mediated silencing. Their inactivation ensures that pyruvate and lactate, derived from muscle during exercise, do not stimulate insulin release inappropriately. Correspondingly, activating mutations in the MCT-1 promoter underlie 'exercise-induced hyperinsulinism' (EIHI) in man, a condition mimicked by forced over-expression of MCT-1 in the β-cell in mice. Furthermore, LDHA expression in the β-cell is upregulated in both human type 2 diabetes and in rodent models of the disease. Recent work by us and by others has identified a further ∼60 genes which are selectively inactivated in the β-cell, a list which we refine here up to seven by detailed comparison of the two studies. These genes include key regulators of cell proliferation and stimulus-secretion coupling. The present, and our earlier results, thus highlight the probable importance of shutting down a subset of 'disallowed' genes for the differentiated function of β-cells, and implicate previously unsuspected signalling pathways in the control of β-cell expansion and insulin secretion. Targeting of deregulated 'disallowed' genes in these cells may thus, in the future, provide new therapeutic avenues for type 2 diabetes.
Collapse
Affiliation(s)
- T J Pullen
- Section of Cell Biology, Department of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
44
|
Abstract
Mitochondrial fusion, fission, and mitophagy form an essential axis of mitochondrial quality control. However, quality control might not be the only task carried out by mitochondrial dynamics. Recent studies link mitochondrial dynamics to the balance between energy demand and nutrient supply, suggesting changes in mitochondrial architecture as a mechanism for bioenergetic adaptation to metabolic demands. By favoring either connected or fragmented architectures, mitochondrial dynamics regulates bioenergetic efficiency and energy expenditure. Placement of bioenergetic adaptation and quality control as competing tasks of mitochondrial dynamics might provide a new mechanism, linking excess nutrient environment to progressive mitochondrial dysfunction, common to age-related diseases.
Collapse
Affiliation(s)
- Marc Liesa
- Department of Medicine, Obesity and Nutrition Section, Mitochondria ARC, Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA
| | | |
Collapse
|
45
|
Barlow J, Hirschberg V, Brand MD, Affourtit C. Measuring Mitochondrial Uncoupling Protein-2 Level and Activity in Insulinoma Cells. Methods Enzymol 2013; 528:257-67. [DOI: 10.1016/b978-0-12-405881-1.00015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
46
|
Tarasov AI, Semplici F, Li D, Rizzuto R, Ravier MA, Gilon P, Rutter GA. Frequency-dependent mitochondrial Ca(2+) accumulation regulates ATP synthesis in pancreatic β cells. Pflugers Arch 2012; 465:543-54. [PMID: 23149488 PMCID: PMC3631125 DOI: 10.1007/s00424-012-1177-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 12/23/2022]
Abstract
Pancreatic β cells respond to increases in glucose concentration with enhanced metabolism, the closure of ATP-sensitive K+ channels and electrical spiking. The latter results in oscillatory Ca2+ influx through voltage-gated Ca2+ channels and the activation of insulin release. The relationship between changes in cytosolic and mitochondrial free calcium concentration ([Ca2+]cyt and [Ca2+]mit, respectively) during these cycles is poorly understood. Importantly, the activation of Ca2+-sensitive intramitochondrial dehydrogenases, occurring alongside the stimulation of ATP consumption required for Ca2+ pumping and other processes, may exert complex effects on cytosolic ATP/ADP ratios and hence insulin secretion. To explore the relationship between these parameters in single primary β cells, we have deployed cytosolic (Fura red, Indo1) or green fluorescent protein-based recombinant-targeted (Pericam, 2mt8RP for mitochondria; D4ER for the ER) probes for Ca2+ and cytosolic ATP/ADP (Perceval) alongside patch-clamp electrophysiology. We demonstrate that: (1) blockade of mitochondrial Ca2+ uptake by shRNA-mediated silencing of the uniporter MCU attenuates glucose- and essentially blocks tolbutamide-stimulated, insulin secretion; (2) during electrical stimulation, mitochondria decode cytosolic Ca2+ oscillation frequency as stable increases in [Ca2+]mit and cytosolic ATP/ADP; (3) mitochondrial Ca2+ uptake rates remained constant between individual spikes, arguing against activity-dependent regulation (“plasticity”) and (4) the relationship between [Ca2+]cyt and [Ca2+]mit is essentially unaffected by changes in endoplasmic reticulum Ca2+ ([Ca2+]ER). Our findings thus highlight new aspects of Ca2+ signalling in β cells of relevance to the actions of both glucose and sulphonylureas.
Collapse
Affiliation(s)
- Andrei I Tarasov
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, SW7 2AZ, London, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Du X, Ounissi-Benkalha H, Loder MK, Rutter GA, Polychronakos C. Overexpression of ZAC impairs glucose-stimulated insulin translation and secretion in clonal pancreatic beta-cells. Diabetes Metab Res Rev 2012; 28:645-53. [PMID: 22865650 PMCID: PMC6101213 DOI: 10.1002/dmrr.2325] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND ZAC (Zinc finger protein that regulates apoptosis and cell-cycle arrest) is a candidate gene for transient neonatal diabetes mellitus (TNDM). This condition involves severe insulin deficiency at birth that reverses over weeks or months but may relapse with diabetes recurring in later life. ZAC overexpression in transgenic mice has previously been shown to result in complex changes in both beta-cell mass and possibly function. The present study therefore aimed to examine the role of ZAC in beta-cell function in vitro, independent of the confounder of a reduced beta-cell mass at birth. METHODS Overexpression of ZAC was achieved through the tetracycline-regulatable system in the beta-cell line, INS-1. RESULTS We found that ZAC overexpression exerted no significant effect on proliferation in this transformed cell line at any of the glucose concentrations examined. By contrast, glucose-stimulated insulin secretion was impaired through a mechanism downstream of cytosolic Ca(2+) increases. Furthermore, glucose-stimulated proinsulin biosynthesis was inhibited despite an increase in insulin transcript level. Finally, we found that glucose downregulated ZAC expression in both INS-1 cells and primary mouse islets. CONCLUSIONS These results indicate that ZAC is a negative regulator of the acute stimulatory effects of glucose on beta-cells, and provide a possible explanation for both insulin deficiency in the neonate and the later relapse of diabetes in patients with transient neonatal diabetes mellitus cases.
Collapse
Affiliation(s)
- Xiaoyu Du
- Division of Pediatric Endocrinology, McGill University Health Center Research Institute (Children's Hospital), Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
48
|
Iglesias J, Barg S, Vallois D, Lahiri S, Roger C, Yessoufou A, Pradevand S, McDonald A, Bonal C, Reimann F, Gribble F, Debril MB, Metzger D, Chambon P, Herrera P, Rutter GA, Prentki M, Thorens B, Wahli W. PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice. J Clin Invest 2012; 122:4105-17. [PMID: 23093780 DOI: 10.1172/jci42127] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/19/2012] [Indexed: 12/30/2022] Open
Abstract
PPARβ/δ protects against obesity by reducing dyslipidemia and insulin resistance via effects in muscle, adipose tissue, and liver. However, its function in pancreas remains ill defined. To gain insight into its hypothesized role in β cell function, we specifically deleted Pparb/d in the epithelial compartment of the mouse pancreas. Mutant animals presented increased numbers of islets and, more importantly, enhanced insulin secretion, causing hyperinsulinemia. Gene expression profiling of pancreatic β cells indicated a broad repressive function of PPARβ/δ affecting the vesicular and granular compartment as well as the actin cytoskeleton. Analyses of insulin release from isolated PPARβ/δ-deficient islets revealed an accelerated second phase of glucose-stimulated insulin secretion. These effects in PPARβ/δ-deficient islets correlated with increased filamentous actin (F-actin) disassembly and an elevation in protein kinase D activity that altered Golgi organization. Taken together, these results provide evidence for a repressive role for PPARβ/δ in β cell mass and insulin exocytosis, and shed a new light on PPARβ/δ metabolic action.
Collapse
Affiliation(s)
- José Iglesias
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic β-cell survival and function via CREB. J Nutr Biochem 2012; 24:638-46. [PMID: 22819546 DOI: 10.1016/j.jnutbio.2012.03.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/21/2012] [Accepted: 03/01/2012] [Indexed: 01/09/2023]
Abstract
Chronic hyperlipidemia causes β-cell apoptosis and dysfunction, thereby contributing to the pathogenesis of type 2 diabetes (T2D). Thus, searching for agents to promote pancreatic β-cell survival and improve its function could be a promising strategy to prevent and treat T2D. We investigated the effects of kaempferol, a small molecule isolated from ginkgo biloba, on apoptosis and function of β-cells and further determined the mechanism underlying its actions. Kaempferol treatment promoted viability, inhibited apoptosis and reduced caspase-3 activity in INS-1E cells and human islets chronically exposed to palmitate. In addition, kaempferol prevented the lipotoxicity-induced down-regulation of antiapoptotic proteins Akt and Bcl-2. The cytoprotective effects of kaempferol were associated with improved insulin secretion, synthesis, and pancreatic and duodenal homeobox-1 (PDX-1) expression. Chronic hyperlipidemia significantly diminished cyclic adenosine monophosphate (cAMP) production, protein kinase A (PKA) activation, cAMP-responsive element binding protein (CREB) phosphorylation and its regulated transcriptional activity in β-cells, all of which were restored by kaempferol treatment. Disruption of CREB expression by transfection of CREB siRNA in INS-1E cells or adenoviral transfer of dominant-negative forms of CREB in human islets ablated kaempferol protection of β-cell apoptosis and dysfunction caused by palmitate. Incubation of INS-1E cells or human islets with kaempferol for 48h induced PDX-1 expression. This effect of kaempferol on PDX-1 expression was not shared by a host of structurally related flavonoid compounds. PDX-1 gene knockdown reduced kaempferol-stimulated cAMP generation and CREB activation in INS-1E cells. These findings demonstrate that kaempferol is a novel survivor factor for pancreatic β-cells via up-regulating the PDX-1/cAMP/PKA/CREB signaling cascade.
Collapse
|
50
|
Tarasov AI, Semplici F, Ravier MA, Bellomo EA, Pullen TJ, Gilon P, Sekler I, Rizzuto R, Rutter GA. The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic β-cells. PLoS One 2012; 7:e39722. [PMID: 22829870 PMCID: PMC3400633 DOI: 10.1371/journal.pone.0039722] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/25/2012] [Indexed: 01/09/2023] Open
Abstract
Glucose induces insulin release from pancreatic β-cells by stimulating ATP synthesis, membrane depolarisation and Ca2+ influx. As well as activating ATP-consuming processes, cytosolic Ca2+ increases may also potentiate mitochondrial ATP synthesis. Until recently, the ability to study the role of mitochondrial Ca2+ transport in glucose-stimulated insulin secretion has been hindered by the absence of suitable approaches either to suppress Ca2+ uptake into these organelles, or to examine the impact on β-cell excitability. Here, we have combined patch-clamp electrophysiology with simultaneous real-time imaging of compartmentalised changes in Ca2+ and ATP/ADP ratio in single primary mouse β-cells, using recombinant targeted (Pericam or Perceval, respectively) as well as entrapped intracellular (Fura-Red), probes. Through shRNA-mediated silencing we show that the recently-identified mitochondrial Ca2+ uniporter, MCU, is required for depolarisation-induced mitochondrial Ca2+ increases, and for a sustained increase in cytosolic ATP/ADP ratio. By contrast, silencing of the mitochondrial Na+-Ca2+ exchanger NCLX affected the kinetics of glucose-induced changes in, but not steady state values of, cytosolic ATP/ADP. Exposure to gluco-lipotoxic conditions delayed both mitochondrial Ca2+ uptake and cytosolic ATP/ADP ratio increases without affecting the expression of either gene. Mitochondrial Ca2+ accumulation, mediated by MCU and modulated by NCLX, is thus required for normal glucose sensing by pancreatic β-cells, and becomes defective in conditions mimicking the diabetic milieu.
Collapse
Affiliation(s)
- Andrei I. Tarasov
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Francesca Semplici
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Magalie A. Ravier
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- Institut de Génomique Fonctionnelle, INSERM U661, CNRS UMR5203, Université Montpellier I et II, Montpellier, France
| | - Elisa A. Bellomo
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Timothy J. Pullen
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Patrick Gilon
- Pole of Endocrinology, Diabetes and Nutrition, Faculty of Medicine, Université Catholique de Louvain, Brussels, Belgium
| | - Israel Sekler
- Department of Physiology, Faculty of Health Sciences, Ben Gurion University, Beer-Sheva, Israel
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Guy A. Rutter
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|